1
|
Maya-Rodríguez LM, Gómez-Verduzco G, Trigo-Tavera FJ, Moreno-Fierros L, Rojas-Trejo V, Miranda-Morales RE. A comparative in silico analysis of the vlhA gene regions of Mycoplasma gallisepticum and Mycoplasma synoviae isolates from commercial hen farms in Mexico. Access Microbiol 2025; 7:000760.v4. [PMID: 39990596 PMCID: PMC11845793 DOI: 10.1099/acmi.0.000760.v4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 12/16/2024] [Indexed: 02/25/2025] Open
Abstract
Avian mycoplasmosis, caused by Mycoplasma synoviae and Mycoplasma gallisepticum, poses significant economic challenges due to respiratory issues, reduced egg production and soft eggshells. The variable lipoprotein haemagglutinin (VlhA) protein, crucial for pathogenicity, comprises conserved (MSPB) and variable (MSPA) regions. The aim of this study was to identify the conserved region of vlhA gene sequences in field strain. We examined vlhA sequences from field strains collected in central Mexico (Jalisco and Mexico City). Specifically, we analysed 124 deformed eggs and 10 laying hens from 9 farms with Hy-line and Bovans breeds. Using PCR targeting the mgc2 and 16S rRNA genes, we characterized 24 field strains, 4 of which were Myc. synoviae and 20 of which were Myc. gallisepticum. We analysed the vlhA regions, based on the AF035624.1 reference sequence, with American Type Culture Collection strains as positive controls. Additionally, we validated the PCR with 20 negative samples from Mycoplasma isolation without the need for cultivation. We identified two amplification regions: MSPB and MSPA. Bioanalysis revealed relationships between our field samples and avian Mycoplasma sequences in GenBank, alongside similarities with lipoproteins present in Acholeplasma laidlawii PG8 and Escherichia coli. Given the significance of the VlhA protein in pathogenicity and immune evasion, the identified conserved sequences hold potential as therapeutic targets and for phylogenetic studies.
Collapse
Affiliation(s)
- Linda M. Maya-Rodríguez
- Departamento de Microbiología e Inmunología, Facultad de Medicina Veterinaria y Zootecnia, Ciudad Universitaria, Universidad Nacional Autónoma de México, CDMX, 04510, Mexico
| | - Gabriela Gómez-Verduzco
- Departamento de Medicina y Zootecnia de Aves, Facultad de Medicina Veterinaria y Zootecnia, Ciudad Universitaria, Universidad Nacional Autónoma de México, CDMX, 04510, Mexico
| | - Francisco J. Trigo-Tavera
- Departamento de Patología, Facultad de Medicina Veterinaria y Zootecnia, Ciudad Universitaria, Universidad Nacional Autónoma de México, CDMX, 04510, Mexico
| | - Leticia Moreno-Fierros
- Facultad de Estudios Superiores Iztacala, Unidad de Biomedicina (UBIMED), Los Reyes Ixtacala, Universidad Nacional Autónoma de México, Tlanepantla de Baz, 54090, Mexico
| | - Verónica Rojas-Trejo
- Departamento de Microbiología e Inmunología, Facultad de Medicina Veterinaria y Zootecnia, Ciudad Universitaria, Universidad Nacional Autónoma de México, CDMX, 04510, Mexico
| | - Rosa Elena Miranda-Morales
- Departamento de Microbiología e Inmunología, Facultad de Medicina Veterinaria y Zootecnia, Ciudad Universitaria, Universidad Nacional Autónoma de México, CDMX, 04510, Mexico
| |
Collapse
|
2
|
Xie M, Huang Z, Zhang Y, Gan Y, Li H, Li D, Ding H. The Mycoplasma hyopneumoniae protein Mhp274 elicits mucosal and systemic immune responses in mice. Front Cell Infect Microbiol 2025; 15:1516944. [PMID: 39991712 PMCID: PMC11842358 DOI: 10.3389/fcimb.2025.1516944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 01/23/2025] [Indexed: 02/25/2025] Open
Abstract
Background Mycoplasma hyopneumoniae is the etiological agent of mycoplasmal pneumonia of swine (MPS). Commercial vaccines provide partial protection and do not prevent the colonization and transmission of M. hyopneumoniae. The bottleneck in the development of more effective vaccines for MPS is the stimulation of effective immune responses in the host. The purpose of the present study was to evaluate the immune responses of immunodominant proteins Mhp170, Mhp274 and Mhp336 in BALB/c mice. Methods The recombinant Mhp170 (rMhp170), Mhp274 (rMhp274), and Mhp336 (rMhp336) proteins were purified from recombinant bacteria. Fifty-two six-week-old SPF female BALB/c mice were divided into five groups: a commercial inactivated vaccine-immunized group, three recombinant protein-inoculated groups, and a PBS-treated group. The physical parameters and body weights of the mice were observed during the experiment. The lung/body coefficient and macroscopic and microscopic lung lesions were evaluated. IgG and its isotypes IgG1 and IgG2a in serum and BALF and sIgA in BALF were assessed. The levels of IFN-γ, IL-4, and IL-17, in the supernatants of splenocytes and in serum were measured, and the mRNA levels of three cytokines in splenocytes were analyzed. Finally, lymphocyte proliferation after stimulation with corresponding proteins or crude extract of M. hyopneumoniae J strain was assessed. Results We successfully constructed recombinant bacteria expressing rMhp170, rMhp274, and rMhp336. None of the mice from all groups presented adverse reactions and macroscopic and microscopic lung lesions. rMhp170 and rMhp274 were capable of inducing the production of IgG, IgG1 and IgG2 in serum and BALF, the secretion of IFN-γ, IL-4 and IL-17 in serum, the expression of IFN-γ, IL-4 and IL-17 mRNAs in splenocytes, and high levels of lymphocyte proliferation. Moreover, rMhp274 significantly increased sIgA in BALF. Nevertheless, rMhp336 induced only IgG, IgG1 and IgG2 production in sera; the secretion of IFN-γ and IL-4 in sera and BALF; the expression of IFN-γ and IL-4 mRNAs in the splenocyte population; and lymphocyte proliferation. Conclusion Mhp170 and Mhp274 induced Th1/Th2/Th17 immune responses, and Mhp336 stimulated mixed Th1/Th2-type immune responses, in mice. Our data suggest that Mhp274 is a potential viable candidate for the development of a subunit vaccine for MPS.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Honglei Ding
- Laboratory of Veterinary Mycoplasmology, College of Veterinary Medicine, Southwest University, Chongqing, China
| |
Collapse
|
3
|
Yacoub E, Baby V, Sirand-Pugnet P, Arfi Y, Mardassi H, Blanchard A, Chibani S, Ben Abdelmoumen Mardassi B. A sweeping view of avian mycoplasmas biology drawn from comparative genomic analyses. BMC Genomics 2025; 26:24. [PMID: 39789465 PMCID: PMC11720521 DOI: 10.1186/s12864-024-11201-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 12/31/2024] [Indexed: 01/12/2025] Open
Abstract
BACKGROUND Avian mycoplasmas are small bacteria associated with several pathogenic conditions in many wild and poultry bird species. Extensive genomic data are available for many avian mycoplasmas, yet no comparative studies focusing on this group of mycoplasmas have been undertaken so far. RESULTS Here, based on the comparison of forty avian mycoplasma genomes belonging to ten different species, we provide insightful information on the phylogeny, pan/core genome, energetic metabolism, and virulence of these avian pathogens. Analyses disclosed considerable inter- and intra-species genomic variabilities, with genome sizes that can vary by twice as much. Phylogenetic analysis based on concatenated orthologous genes revealed that avian mycoplasmas fell into either Hominis or Pneumoniae groups within the Mollicutes and could split into various clusters. No host co-evolution of avian mycoplasmas can be inferred from the proposed phylogenetic scheme. With 3,237 different gene clusters, the avian mycoplasma group under study proved diverse enough to have an open pan genome. However, a set of 150 gene clusters was found to be shared between all avian mycoplasmas, which is likely encoding essential functions. Comparison of energy metabolism pathways showed that avian mycoplasmas rely on various sources of energy. Superposition between phylogenetic and energy metabolism groups revealed that the glycolytic mycoplasmas belong to two distinct phylogenetic groups (Hominis and Pneumoniae), while all the arginine-utilizing mycoplasmas belong only to Hominis group. This can stand for different evolutionary strategies followed by avian mycoplasmas and further emphasizes the diversity within this group. Virulence determinants survey showed that the involved gene arsenals vary significantly within and between species, and could even be found in species often reported apathogenic. Immunoglobulin-blocking proteins were detected in almost all avian mycoplasmas. Although these systems are not exclusive to this group, they seem to present some particular features making them unique among mycoplasmas. CONCLUSION This comparative genomic study uncovered the significant variable nature of avian mycoplasmas, furthering our knowledge on their biological attributes and evoking new hallmarks.
Collapse
Affiliation(s)
- Elhem Yacoub
- Unit of Mycoplasmas, Laboratory of Molecular Microbiology, Vaccinology and Biotechnology Development, Institut Pasteur de Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Vincent Baby
- Centre de Diagnostic Vétérinaire de L'Université de Montréal (CDVUM), Faculty of Veterinary Medecine, Université de Montréal, Saint-Hyacinthe, Québec, Canada
| | | | - Yonathan Arfi
- Univ. Bordeaux, INRAE, UMR BFP, 33882, Villenave d'Ornon, France
| | - Helmi Mardassi
- Unit of Typing and Genetics of Mycobacteria, Laboratory of Molecular Microbiology, Vaccinology and Biotechnology Development, Institut Pasteur de Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Alain Blanchard
- Univ. Bordeaux, INRAE, UMR BFP, 33882, Villenave d'Ornon, France
| | - Salim Chibani
- Unit of Mycoplasmas, Laboratory of Molecular Microbiology, Vaccinology and Biotechnology Development, Institut Pasteur de Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Boutheina Ben Abdelmoumen Mardassi
- Unit of Mycoplasmas, Laboratory of Molecular Microbiology, Vaccinology and Biotechnology Development, Institut Pasteur de Tunis, University Tunis El Manar, Tunis, Tunisia.
| |
Collapse
|
4
|
Santos MR, Toledo LT, Bassi ÊJ, Porto WJN, Bressan GC, Moreira MAS, Chang YF, Silva-Júnior A. Chimeric proteins of Mycoplasma hyopneumoniae as vaccine and preclinical model for immunological evaluation. Braz J Microbiol 2024; 55:943-953. [PMID: 38217795 PMCID: PMC10920614 DOI: 10.1007/s42770-023-01240-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 12/28/2023] [Indexed: 01/15/2024] Open
Abstract
Mycoplasma hyopneumoniae (M. hyopneumoniae) is a primary agent of porcine enzootic pneumonia, a disease that causes significant economic losses to pig farming worldwide. Commercial vaccines induce partial protection, evidencing the need for a new vaccine against M. hyopneumoniae. In our work, three chimeric proteins were constructed, composed of potentially immunogenic domains from M. hyopneumoniae proteins. We designed three chimeric proteins (Q1, Q2, and Q3) based on bioinformatics analysis that identified five potential proteins with immunogenic potential (MHP418, MHP372, MHP199, P97, and MHP0461). The chimeric proteins were inoculated in the murine model to evaluate the immune response. The mice vaccinated with the chimeras presented IgG and IgG1 against proteins of M. hyopneumoniae. There was induction of IgG in mice immunized with Q3 starting from 30 days post-vaccination, and groups Q1 and Q2 showed induction at 45 days. Mice of the group immunized with Q3 showed the production of IgA. In addition, the mice inoculated with chimeric proteins showed a proinflammatory cytokine response; Q1 demonstrated higher levels of TNF, IL-6, IL2, and IL-17. In contrast, animals immunized with Q2 showed an increase in the concentrations of TNF, IL-6, and IL-4, whereas those immunized with Q3 exhibited an increase in the concentrations of TNF, IL-6, IL-10, and IL-4. The results of the present study indicate that these three chimeric proteins can be used in future vaccine trials with swine because of the promising antigenicity.
Collapse
Affiliation(s)
- Marcus Rebouças Santos
- Department of Veterinary Medicine, Universidade Federal de Vicosa, Vicosa, Minas Gerais, Brazil
| | - Leonardo Teófilo Toledo
- Department of Veterinary Medicine, Universidade Federal de Vicosa, Vicosa, Minas Gerais, Brazil
| | - Ênio José Bassi
- Institute of Biological Sciences and Health, Universidade Federal de Alagoas, Maceió, Brazil
| | | | - Gustavo Costa Bressan
- Department of Veterinary Medicine, Universidade Federal de Vicosa, Vicosa, Minas Gerais, Brazil
| | | | - Yung-Fu Chang
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Abelardo Silva-Júnior
- Institute of Biological Sciences and Health, Universidade Federal de Alagoas, Maceió, Brazil.
| |
Collapse
|
5
|
Souza dos Santos P, Paes JA, Del Prá Netto Machado L, Paludo GP, Zaha A, Ferreira HB. Differential domains and endoproteolytic processing in dominant surface proteins of unknown function from Mycoplasma hyopneumoniae and Mycoplasma flocculare. Heliyon 2023; 9:e16141. [PMID: 37251846 PMCID: PMC10213202 DOI: 10.1016/j.heliyon.2023.e16141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 04/28/2023] [Accepted: 05/06/2023] [Indexed: 05/31/2023] Open
Abstract
Mycoplasma hyopneumoniae causes porcine enzootic pneumonia (PEP), a chronic respiratory disease that leads to severe economic losses in the pig industry. Swine infection and PEP development depend on the adhesion of the pathogen to the swine respiratory tract and the host immune response, but these and other disease determinants are not fully understood. For instance, M. hyopneumoniae has a large repertoire of proteins of unknown function (PUFs) and some of them are abundant in the cell surface, where they likely mediate so far unknown pathogen-host interactions. Moreover, these surface PUFs may undergo endoproteolytic processing to generate larger repertoires of proteoforms to further complicate this scenario. Here, we investigated the five PUFs more represented on the surface of M. hyopneumoniae pathogenic strain 7448 in comparison with their orthologs from the nonpathogenic M. hyopneumoniae J strain and the closely related commensal species Mycoplasma flocculare. Comparative in silico analyses of deduced amino acid sequences and proteomic data identified differential domains, disordered regions and repeated motifs. We also provide evidence of differential endoproteolytic processing and antigenicity. Phylogenetic analyses were also performed with ortholog sequences, showing higher conservation of three of the assessed PUFs among Mycoplasma species related to respiratory diseases. Overall, our data point out to M. hyopneumoniae surface-dominant PUFs likely associated with pathogenicity.
Collapse
Affiliation(s)
- Priscila Souza dos Santos
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, UFRGS, Porto Alegre, Brazil
| | - Jéssica Andrade Paes
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, UFRGS, Porto Alegre, Brazil
| | - Lais Del Prá Netto Machado
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, UFRGS, Porto Alegre, Brazil
| | - Gabriela Prado Paludo
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, UFRGS, Porto Alegre, Brazil
| | - Arnaldo Zaha
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, UFRGS, Porto Alegre, Brazil
- Laboratório de Biologia Molecular de Cestódeos, Centro de Biotecnologia, UFRGS, Porto Alegre, Brazil
- Departamento de Biologia Molecular e Biotecnologia, Instituto de Biociências, UFRGS, Porto Alegre, Brazil
| | - Henrique Bunselmeyer Ferreira
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, UFRGS, Porto Alegre, Brazil
- Laboratório de Biologia Molecular de Cestódeos, Centro de Biotecnologia, UFRGS, Porto Alegre, Brazil
- Departamento de Biologia Molecular e Biotecnologia, Instituto de Biociências, UFRGS, Porto Alegre, Brazil
| |
Collapse
|
6
|
Andrade MR, Daniel AG, Zarate JB, Sato JP, Santos LF, Guedes RM. Genetic diversity of Mycoplasma hyopneumoniae in finishing pigs in Minas Gerais. PESQUISA VETERINÁRIA BRASILEIRA 2023. [DOI: 10.1590/1678-5150-pvb-7155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
ABSTRACT: Mycoplasma hyopneumoniae is one of the most challenging respiratory pathogens involved with swine pneumonia worldwide, responsible for a chronic infection with high morbidity, which predisposes secondary bacterial infections in growing and finishing pigs. Advances in diagnostic techniques allowed identification of genetic characteristics associated with high antigenic and proteomic variability among bacterial strains. This study aimed to evaluate the genetic diversity of M. hyopneumoniae strains in lungs with pneumonic lesions obtained from 52 pig farms located in Minas Gerais, one of the largest swine production states in Brazil. Genotyping was performed using multilocus variable number of tandem repeat (VNTR) analysis (MLVA), targeting two loci encoding P97 and P146 adhesins VNTR. The results showed that this agent is widely disseminated in pig farms and there is a high polymorphism of M. hyopneumoniae variants circulating in the state of Minas Gerais. Different M. hyopneumoniae genotypes are randomly distributed in several regions of the state, with no specific geographic population structure pattern. M. hyopneumoniae association with viral agents was sporadic (3.17% with Influenza A and 1.9% with PCV2).
Collapse
|
7
|
Wu Y, Yu Y, Hua L, Wei Y, Gan Y, Chenia HY, Wang Y, Xie X, Wang J, Liu M, Shao G, Xiong Q, Feng Z. Genotyping and biofilm formation of Mycoplasma hyopneumoniae and their association with virulence. Vet Res 2022; 53:95. [PMCID: PMC9673451 DOI: 10.1186/s13567-022-01109-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/13/2022] [Indexed: 11/19/2022] Open
Abstract
AbstractMycoplasma hyopneumoniae, the causative agent of swine respiratory disease, demonstrates differences in virulence. However, factors associated with this variation remain unknown. We herein evaluated the association between differences in virulence and genotypes as well as phenotype (i.e., biofilm formation ability). Strains 168 L, RM48, XLW-2, and J show low virulence and strains 232, 7448, 7422, 168, NJ, and LH show high virulence, as determined through animal challenge experiments, complemented with in vitro tracheal mucosa infection tests. These 10 strains with known virulence were then subjected to classification via multilocus sequence typing (MLST) with three housekeeping genes, P146-based genotyping, and multilocus variable-number tandem-repeat analysis (MLVA) of 13 loci. MLST and P146-based genotyping identified 168, 168 L, NJ, and RM48 as the same type and clustered them in a single branch. MLVA assigned a different sequence type to each strain. Simpson’s index of diversity indicates a higher discriminatory ability for MLVA. However, no statistically significant correlation was found between genotypes and virulence. Furthermore, we investigated the correlation between virulence and biofilm formation ability. The strains showing high virulence demonstrate strong biofilm formation ability, while attenuated strains show low biofilm formation ability. Pearson correlation analysis revealed a significant positive correlation between biofilm formation ability and virulence. To conclude, there was no association between virulence and our genotyping data, but virulence was found to be significantly associated with the biofilm formation ability of M. hyopneumoniae.
Collapse
|
8
|
Zong B, Zhu Y, Liu M, Wang X, Chen H, Zhang Y, Tan C. Characteristics of Mycoplasma hyopneumoniae Strain ES-2 Isolated From Chinese Native Black Pig Lungs. Front Vet Sci 2022; 9:883416. [PMID: 35847655 PMCID: PMC9280346 DOI: 10.3389/fvets.2022.883416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/25/2022] [Indexed: 11/30/2022] Open
Abstract
Mycoplasma hyopneumoniae is the primary pathogen of swine enzootic pneumonia and causes great economic losses to the swine industry worldwide. In China, M. hyopneumoniae seriously hinders the healthy development of the native black pigs. To prevent and treat porcine respiratory disease caused by M. hyopneumoniae, the characteristics of M. hyopneumoniae strain ES-2 isolated from Chinese native black pig lungs with gross lesions at post-mortem were studied for the first time in this study. Strain ES-2 cell was round or oval cells and most sensitive to kanamycin. The diameters of most strain ES-2 cells ranged from 0.4 to 1.0 μm with maximum viability of 1010 CCU/ml. Experimental challenge of animals with strain ES-2 showed respiratory disease could be reproduced, with pneumonic lung lesions evident. Comparative genomics analysis identified that 2 genes are specific to pathogenic M. hyopneumoniae strains, which may be predicted to be a molecular marker. These findings suggest that the study on the characteristics of M. hyopneumoniae strain ES-2 will guide the rapid and accurate drug use in the clinic, and develop a theoretical foundation for accurately diagnosing and treating the infection caused by pathogenic M. hyopneumoniae.
Collapse
Affiliation(s)
- Bingbing Zong
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
| | - Yongwei Zhu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Manli Liu
- Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Xiangru Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, China
| | - Yanyan Zhang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
| | - Chen Tan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, China
| |
Collapse
|
9
|
Dordet-Frisoni E, Vandecasteele C, Contarin R, Sagné E, Baranowski E, Klopp C, Nouvel LX, Citti C. Impacts of Mycoplasma agalactiae restriction-modification systems on pan-epigenome dynamics and genome plasticity. Microb Genom 2022; 8:mgen000829. [PMID: 35576144 PMCID: PMC9465063 DOI: 10.1099/mgen.0.000829] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 04/14/2022] [Indexed: 11/18/2022] Open
Abstract
DNA methylations play an important role in the biology of bacteria. Often associated with restriction modification (RM) systems, they are important drivers of bacterial evolution interfering in horizontal gene transfer events by providing a defence against foreign DNA invasion or by favouring genetic transfer through production of recombinogenic DNA ends. Little is known regarding the methylome of the Mycoplasma genus, which encompasses several pathogenic species with small genomes. Here, genome-wide detection of DNA methylations was conducted using single molecule real-time (SMRT) and bisulphite sequencing in several strains of Mycoplasma agalactiae, an important ruminant pathogen and a model organism. Combined with whole-genome analysis, this allowed the identification of 19 methylated motifs associated with three orphan methyltransferases (MTases) and eight RM systems. All systems had a homolog in at least one phylogenetically distinct Mycoplasma spp. Our study also revealed that several superimposed genetic events may participate in the M. agalactiae dynamic epigenomic landscape. These included (i) DNA shuffling and frameshift mutations that affect the MTase and restriction endonuclease content of a clonal population and (ii) gene duplication, erosion, and horizontal transfer that modulate MTase and RM repertoires of the species. Some of these systems were experimentally shown to play a major role in mycoplasma conjugative, horizontal DNA transfer. While the versatility of DNA methylation may contribute to regulating essential biological functions at cell and population levels, RM systems may be key in mycoplasma genome evolution and adaptation by controlling horizontal gene transfers.
Collapse
Affiliation(s)
- Emilie Dordet-Frisoni
- IHAP, Université de Toulouse, INRAE, ENVT, Toulouse, France
- Present address: INTHERES, Université de Toulouse, INRAE, ENVT, Toulouse, France
| | | | | | - Eveline Sagné
- IHAP, Université de Toulouse, INRAE, ENVT, Toulouse, France
| | | | - Christophe Klopp
- INRAE, UR875 MIAT, Sigenae, BioInfo Genotoul, BioInfoMics, F-31326 Auzeville, France
| | | | | |
Collapse
|
10
|
Simionatto S, Marchioro SB, dos Santos Barbosa M, Galli V, Brum CB, Jorge S, Dellagostin OA. Development of ELISA Using Recombinant Proteins for the Diagnosis of Mycoplasma hyopneumoniae Infection. Indian J Microbiol 2022; 62:88-95. [PMID: 35068608 PMCID: PMC8758847 DOI: 10.1007/s12088-021-00981-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 09/02/2021] [Indexed: 01/19/2023] Open
Abstract
In order to develop a more sensitive and reliable method for detection of serum antibodies against Mycoplasma hyopneumoniae infection in pigs, six recombinant proteins of M. hyopneumoniae (P102, P95, P46, P97 like, Lppt, and hypothetical P987) were used for the standardization of an indirect enzyme-linked immunosorbent assay (ELISA). The proteins were evaluated against 50 sera of the specific pathogen-free and 50 sera of pigs with lesions suggestive of infection. The sensitivity was 88%, 86%, 78%, 74%, 66%, and 60% for the proteins P102, P95, P46, P97 like, Lppt, and hypothetical protein P987, respectively. Moreover, the proteins were used to establish the seroprevalence in two different commercial herds (254 sera pigs from farm considered free of M. hyopneumoniae and 246 from farm with clinical signs of enzootic pneumonia and positive serology for M. hyopneumoniae) and the positive rate was 65.2% for P95, 54.6% for P102, 40.2% for P46, 37.2% for P97 like, 17.4% for the hypothetical P987, and 14% for Lppt protein. In addition, the ELISA with six recombinant proteins was compared to commercial HerdCheck kit using 118 random pig sera samples and the results showed that ELISA with recombinant proteins were more sensitive than the commercial test. These data show that the recombinant proteins P95 and P102 are potential targets to be used in diagnostic tests to detect antibodies against M. hyopneumoniae. Although more studies are necessary, this study provides insights that these recombinant proteins can be useful in epidemiological investigations and as potential biomarkers in differentiating infected animals from those vaccinated.
Collapse
Affiliation(s)
- Simone Simionatto
- grid.412335.20000 0004 0388 2432Laboratório de Pesquisa em Ciências da Saúde, Universidade Federal da Grande Dourados, Dourados, MS Brazil
| | - Silvana Beutinger Marchioro
- grid.412335.20000 0004 0388 2432Laboratório de Pesquisa em Ciências da Saúde, Universidade Federal da Grande Dourados, Dourados, MS Brazil ,grid.8399.b0000 0004 0372 8259Laboratório de Imunologia e Biologia Molecular, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, BA Brazil
| | - Marcelo dos Santos Barbosa
- grid.412335.20000 0004 0388 2432Laboratório de Pesquisa em Ciências da Saúde, Universidade Federal da Grande Dourados, Dourados, MS Brazil
| | - Vanessa Galli
- grid.411221.50000 0001 2134 6519Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS Brazil
| | - Clarice Brink Brum
- grid.411221.50000 0001 2134 6519Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS Brazil ,grid.411221.50000 0001 2134 6519Programa de Pós Graduação em Epidemiologia, Universidade Federal de Pelotas, Pelotas, RS Brazil
| | - Sergio Jorge
- grid.411221.50000 0001 2134 6519Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS Brazil
| | - Odir Antonio Dellagostin
- grid.411221.50000 0001 2134 6519Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS Brazil
| |
Collapse
|
11
|
Abstract
Mycoplasmas are small, genome-reduced bacteria. They are obligate parasites that can be found in a wide range of host species, including the majority of livestock animals and humans. Colonization of the host can result in a wide spectrum of outcomes. In many cases, these successful parasites are considered commensal, as they are found in the microbiota of asymptomatic carriers. Conversely, mycoplasmas can also be pathogenic, as they are associated with a range of both acute and chronic inflammatory diseases which are problematic in veterinary and human medicine. The chronicity of mycoplasma infections and the ability of these bacteria to infect even recently vaccinated individuals clearly indicate that they are able to successfully evade their host’s humoral immune response. Over the years, multiple strategies of immune evasion have been identified in mycoplasmas, with a number of them aimed at generating important antigenic diversity. More recently, mycoplasma-specific anti-immunoglobulin strategies have also been characterized. Through the expression of the immunoglobulin-binding proteins protein M or mycoplasma immunoglobulin binding (MIB), mycoplasmas have the ability to target the host’s antibodies and to prevent them from interacting with their cognate antigens. In this review, we discuss how these discoveries shed new light on the relationship between mycoplasmas and their host’s immune system. We also propose that these strategies should be taken into consideration for future studies, as they are key to our understanding of mycoplasma diseases' chronic and inflammatory nature and are probably a contributing factor to reduce vaccine efficacy.
Collapse
|
12
|
Tavares BADR, Paes JA, Zaha A, Ferreira HB. Reannotation of Mycoplasma hyopneumoniae hypothetical proteins revealed novel potential virulence factors. Microb Pathog 2021; 162:105344. [PMID: 34864146 DOI: 10.1016/j.micpath.2021.105344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 01/08/2023]
Abstract
Mycoplasma hyopneumoniae is a bacterium that inhabits the swine respiratory tract, causing porcine enzootic pneumonia, which generates significant economic losses to the swine industry worldwide. The knowledge on M. hyopneumoniae biology and virulence have been significantly increased by genomics studies. However, around 30% of the predicted proteins remained of unknown function so far. According to the original annotation, the genome of M. hyopneumoniae 7448, a Brazilian pathogenic strain, had 693 coding DNA sequences, 244 of which were annotated as coding for hypothetical or uncharacterized proteins. Among them, there may be still several genes coding for unknown virulence factors. Therefore, this study aimed to functionally reannotate the whole set of 244 M. hyopneumoniae 7448 proteins of unknown function based on currently available database and bioinformatic tools, in order to predict novel potential virulence factors. Predictions of physicochemical properties, subcellular localization, function, overall association to virulence and antigenicity are provided. With that, 159 out of the set of 244 proteins of unknown function had a putative function associated to them, allowing identification of novel enzymes, membrane transporters, lipoproteins, DNA-binding proteins and adhesins. Furthermore, 139 proteins were generally associated to virulence, 14 of which had a function assigned and were differentially expressed between pathogenic and non-pathogenic strains of M. hyopneumoniae. Moreover, all extracellular or cytoplasmic membrane predicted proteins had putative epitopes identified. Overall, these analyses improved the functional annotation of M. hyopneumoniae 7448 genome from 65% to 87% and allowed the identification of new potential virulence factors.
Collapse
Affiliation(s)
- Bryan Augusto da Rosa Tavares
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande Do Sul (UFRGS), Porto Alegre, Brazil; Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, UFRGS, Porto Alegre, Brazil
| | - Jéssica Andrade Paes
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande Do Sul (UFRGS), Porto Alegre, Brazil; Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, UFRGS, Porto Alegre, Brazil
| | - Arnaldo Zaha
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande Do Sul (UFRGS), Porto Alegre, Brazil; Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, UFRGS, Porto Alegre, Brazil; Laboratório de Biologia Molecular de Cestódeos, Centro de Biotecnologia, UFRGS, Porto Alegre, Brazil; Departamento de Biologia Molecular e Biotecnologia, Instituto de Biociências, UFRGS, Porto Alegre, Brazil
| | - Henrique Bunselmeyer Ferreira
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande Do Sul (UFRGS), Porto Alegre, Brazil; Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, UFRGS, Porto Alegre, Brazil; Laboratório de Biologia Molecular de Cestódeos, Centro de Biotecnologia, UFRGS, Porto Alegre, Brazil; Departamento de Biologia Molecular e Biotecnologia, Instituto de Biociências, UFRGS, Porto Alegre, Brazil.
| |
Collapse
|
13
|
Merker Breyer G, Malvessi Cattani A, Silveira Schrank I, Maboni Siqueira F. The influence of regulatory elements on Mycoplasma hyopneumoniae 7448 transcriptional response during oxidative stress and heat shock. Mol Biol Rep 2021; 49:139-147. [PMID: 34676505 DOI: 10.1007/s11033-021-06851-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/15/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND The comprehension of genome organization and gene modulation is essential for understanding pathogens' infection mechanisms. Mycoplasma hyopneumoniae 7448 genome is organized in transcriptional units (TUs), which are flanked by regulatory elements such as putative promoters, terminators and repetitive sequences. Yet the relationship between the presence of these elements and bacterial responses during stress conditions remains unclear. Thus, in this study, in silico and RT-qPCR analyses were associated to determine the effect of regulatory elements in gene expression regulation upon heat shock and oxidative stress conditions. METHODS AND RESULTS Thirteen TU's organizational profiles were found based on promoters and terminators distribution. Differential expression in genes sharing the same TUs was observed, suggesting the activity of internal regulatory elements. Moreover, 88.8% of tested genes were differentially expressed under oxidative stress in comparison to the control condition, being 81.3% of them surrounded by their own regulatory elements. Similarly, under heat shock, 44.4% of the genes showed regulation when compared to control condition, being 75.0% of them surrounded by their own regulatory elements. CONCLUSIONS Altogether, this data suggests the activity of internal regulatory elements in gene modulation of M. hyopneumoniae 7448 transcription.
Collapse
Affiliation(s)
- Gabriela Merker Breyer
- Laboratory of Veterinary Bacteriology, Veterinary Pathology Department, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Amanda Malvessi Cattani
- Graduate Program in Cell and Molecular Biology, Biotechnology Center, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Irene Silveira Schrank
- Graduate Program in Cell and Molecular Biology, Biotechnology Center, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Franciele Maboni Siqueira
- Laboratory of Veterinary Bacteriology, Veterinary Pathology Department, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
14
|
Genome mosaicism in field strains of Mycoplasma bovis as footprints of in-host horizontal chromosomal transfer. Appl Environ Microbiol 2021; 88:e0166121. [PMID: 34669423 DOI: 10.1128/aem.01661-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Horizontal gene transfer was long thought to be marginal in Mollicutes, but the capacity of some of these wall-less bacteria to exchange large chromosomal regions has been recently documented. Mycoplasma chromosomal transfer (MCT) is an unconventional mechanism that relies on the presence of a functional integrative conjugative element (ICE) in at least one partner and involves the horizontal acquisition of small and large chromosomal fragments from any part of the donor genome, which results in progenies composed of an infinitive variety of mosaic genomes. The present study focuses on Mycoplasma bovis, an important pathogen of cattle responsible for major economic losses worldwide. By combining phylogenetic tree reconstructions and detailed comparative genome analyses of 36 isolates collected in Spain (2016-2018) we confirmed the mosaic nature of 16 field isolates and mapped chromosomal transfers exchanged between their hypothetical ancestors. This study provides evidence that MCT can take place in the field, most likely during co-infections by multiple strains. Because mobile genetic elements (MGEs) are classical contributors of genome plasticity, the presence of phages, insertion sequences (ISs) and ICEs was also investigated. Data revealed that these elements are widespread within the M. bovis species and evidenced classical horizontal transfer of phages and ICEs in addition to MCT. These events contribute to wide-genome diversity and reorganization within this species and may have a tremendous impact on diagnostic and disease control. IMPORTANCE Mycoplasma bovis is a major pathogen of cattle with significant detrimental economic and animal welfare on cattle rearing worldwide. Understanding the evolution and the adaptative potential of pathogenic mycoplasma species in the natural host is essential to combating them. In this study, we documented the occurrence of mycoplasma chromosomal transfer, an atypical mechanism of horizontal gene transfer, in field isolates of M. bovis that provide new insights into the evolution of this pathogenic species in their natural host. Despite these events are expected to occur at low frequency, their impact is accountable for genome-wide variety and reorganization within M. bovis species, which may compromise both diagnostic and disease control.
Collapse
|
15
|
Abstract
Mycoplasma hyopneumoniae: is the etiological agent of porcine enzootic pneumonia (EP), a disease that impacts the swine industry worldwide. Pathogen-induced damage, as well as the elicited host-response, contribute to disease. Here, we provide an overview of EP epidemiology, control and prevention, and a more in-depth review of M. hyopneumoniae pathogenicity determinants, highlighting some molecular mechanisms of pathogen-host interactions relevant for pathogenesis. Based on recent functional, immunological, and comparative “omics” results, we discuss the roles of many known or putative M. hyopneumoniae virulence factors, along with host molecules involved in EP. Moreover, the known molecular bases of pathogenicity mechanisms, including M. hyopneumoniae adhesion to host respiratory epithelium, protein secretion, cell damage, host microbicidal response and its modulation, and maintenance of M. hyopneumoniae homeostasis during infection are described. Recent findings regarding M. hyopneumoniae pathogenicity determinants also contribute to the development of novel diagnostic tests, vaccines, and treatments for EP.
Collapse
Affiliation(s)
- Fernanda M A Leal Zimmer
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande Do Sul (UFRGS) , Porto Alegre, Brazil.,Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, UFRGS , Porto Alegre, Brazil
| | - Jéssica Andrade Paes
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande Do Sul (UFRGS) , Porto Alegre, Brazil.,Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, UFRGS , Porto Alegre, Brazil
| | - Arnaldo Zaha
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande Do Sul (UFRGS) , Porto Alegre, Brazil.,Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, UFRGS , Porto Alegre, Brazil.,Laboratório de Biologia Molecular de Cestódeos, Centro de Biotecnologia, UFRGS , Porto Alegre, Brazil.,Departamento de Biologia Molecular e Biotecnologia, Instituto de Biociências, UFRGS , Porto Alegre, Brazil
| | - Henrique Bunselmeyer Ferreira
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande Do Sul (UFRGS) , Porto Alegre, Brazil.,Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, UFRGS , Porto Alegre, Brazil.,Laboratório de Biologia Molecular de Cestódeos, Centro de Biotecnologia, UFRGS , Porto Alegre, Brazil.,Departamento de Biologia Molecular e Biotecnologia, Instituto de Biociências, UFRGS , Porto Alegre, Brazil
| |
Collapse
|
16
|
Ferreira MM, Mechler-Dreibi ML, Sonalio K, Almeida HMDS, Ferraz MES, Jacintho APP, Maes D, de Oliveira LG. Co-infections by Mycoplasma hyopneumoniae, Mycoplasma hyorhinis and Mycoplasma flocculare in macroscopic lesions of lung consolidation of pigs at slaughter. Vet Microbiol 2021; 258:109123. [PMID: 34023636 DOI: 10.1016/j.vetmic.2021.109123] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 05/13/2021] [Indexed: 10/21/2022]
Abstract
Infections with Mycoplasma hyopneumoniae (Mhyo), Mycoplasma hyorhinis (Mhr) and Mycoplasma flocculare (Mfloc) are common in swine. However, the degree of co-infections and the correlations between these mycoplasma co-infection and the severity of macroscopic lung consolidation lesions (MLCL) have not yet been explored in Brazil.The objectives were to quantify Mhyo, Mhr, and Mfloc in MLCL of slaughter pigs in Brazil, and to assess correlations with the degree of MLCL in slaughter pigs. To this end, five groups of lungs were made based on severity of lung lesions, and 80 lungs were collected for each group (400 lungs in total). The Mycoplasmas were quantified using a multiplex qPCR. Statistical differences and comparison between the groups were evaluated, respectively, by the Kruskal-Wallis test (p < 0.05) and Dunn's test (p < 0.05), and the correlation between the data was performed by Spearman's method (p < 0.05). The results revealed that the extent of MLCL showed a positive correlation with the Mhyo estimate (rho = 0.26; p < 0.05), a negative correlation with the Mfloc estimate (rho= -0.15; p < 0.05), and no significant correlation with the Mhr estimate (p = 0, 12). The extension of MLCL showed a positive correlation with the co-infection by Mfloc and Mhr (rho = 0.17; p < 0.05), and no significant correlation with Mhyo and Mhr (p = 0.87), and a negative correlation with Mhyo and Mfloc (rho= -0.28; p < 0.05). This study allowed to infer that, regarding the extension of MLCL, Mhr and Mfloc did not present opportunistic activity in relation to primary infection by Mhyo, but revealed some potential aggravation of these lesions. In addition, Mhyo expressed inhibitory behavior towards Mfloc, suggesting that one can compete with the other's presence.
Collapse
Affiliation(s)
- Marcela Manduca Ferreira
- São Paulo State University, School of Agricultural and Veterinarian Sciences, Jaboticabal, São Paulo, Brazil
| | - Marina Lopes Mechler-Dreibi
- São Paulo State University, School of Agricultural and Veterinarian Sciences, Jaboticabal, São Paulo, Brazil
| | - Karina Sonalio
- São Paulo State University, School of Agricultural and Veterinarian Sciences, Jaboticabal, São Paulo, Brazil
| | | | | | - Ana Paula Prudente Jacintho
- São Paulo State University, School of Agricultural and Veterinarian Sciences, Jaboticabal, São Paulo, Brazil
| | - Dominiek Maes
- Faculty of Veterinary Medicine, Ghent University- Ghent, Belgium
| | - Luís Guilherme de Oliveira
- São Paulo State University, School of Agricultural and Veterinarian Sciences, Jaboticabal, São Paulo, Brazil.
| |
Collapse
|
17
|
Maes D, Boyen F, Devriendt B, Kuhnert P, Summerfield A, Haesebrouck F. Perspectives for improvement of Mycoplasma hyopneumoniae vaccines in pigs. Vet Res 2021; 52:67. [PMID: 33964969 PMCID: PMC8106180 DOI: 10.1186/s13567-021-00941-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/23/2021] [Indexed: 12/21/2022] Open
Abstract
Mycoplasma hyopneumoniae (M. hyopneumoniae) is one of the primary agents involved in the porcine respiratory disease complex, economically one of the most important diseases in pigs worldwide. The pathogen adheres to the ciliated epithelium of the trachea, bronchi, and bronchioles, causes damage to the mucosal clearance system, modulates the immune system and renders the animal more susceptible to other respiratory infections. The pathogenesis is very complex and not yet fully understood. Cell-mediated and likely also mucosal humoral responses are considered important for protection, although infected animals are not able to rapidly clear the pathogen from the respiratory tract. Vaccination is frequently practiced worldwide to control M. hyopneumoniae infections and the associated performance losses, animal welfare issues, and treatment costs. Commercial vaccines are mostly bacterins that are administered intramuscularly. However, the commercial vaccines provide only partial protection, they do not prevent infection and have a limited effect on transmission. Therefore, there is a need for novel vaccines that confer a better protection. The present paper gives a short overview of the pathogenesis and immune responses following M. hyopneumoniae infection, outlines the major limitations of the commercial vaccines and reviews the different experimental M. hyopneumoniae vaccines that have been developed and tested in mice and pigs. Most experimental subunit, DNA and vector vaccines are based on the P97 adhesin or other factors that are important for pathogen survival and pathogenesis. Other studies focused on bacterins combined with novel adjuvants. Very few efforts have been directed towards the development of attenuated vaccines, although such vaccines may have great potential. As cell-mediated and likely also humoral mucosal responses are important for protection, new vaccines should aim to target these arms of the immune response. The selection of proper antigens, administration route and type of adjuvant and carrier molecule is essential for success. Also practical aspects, such as cost of the vaccine, ease of production, transport and administration, and possible combination with vaccines against other porcine pathogens, are important. Possible avenues for further research to develop better vaccines and to achieve a more sustainable control of M. hyopneumoniae infections are discussed.
Collapse
Affiliation(s)
- Dominiek Maes
- Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium.
| | - Filip Boyen
- Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Bert Devriendt
- Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Peter Kuhnert
- Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Artur Summerfield
- Institute of Virology and Immunology, Sensemattstrasse 293, Mittelhäusern, Switzerland.,Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | | |
Collapse
|
18
|
Cattani AM, Pinheiro CV, Schrank IS, Siqueira FM. Functional characterization of the putative FAD synthase from Mycoplasma hyopneumoniae. FEMS Microbiol Lett 2021; 368:6102549. [PMID: 33452877 DOI: 10.1093/femsle/fnab008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 01/14/2021] [Indexed: 11/12/2022] Open
Abstract
In bacteria, the biosynthesis of the cofactor flavin adenine dinucleotide (FAD), important in many physiological responses, is catalyzed by the bifunctional enzyme FAD synthase (FADSyn) which converts riboflavin into FAD by both kinase and adenylylation activity. The in silico 3D structure of a putative FADSyn from Mycoplasma hyopneumoniae (MhpFADSyn), the etiological agent of enzootic pneumonia was already reported, nevertheless, the in vitro functional characterization was not yet demonstrated. Our phylogenetic analysis revealed that MhpFADSyn is close related to the bifunctional FADSyn from Corynebacterium ammoniagenes. However, only the domain related to adenylylation was assigned by InterPro database. The activity of MhpFADSyn was evaluated through in vitro enzymatic assays using cell extracts from IPTG-inducible heterologous expression of MhpFADSyn in Escherichia coli. The flavoproteins were analyzed by HPLC and results showed that IPTG-induced cell lysate resulted in the formation of twofold increased amounts of FAD if compared to non IPTG-induced cells. Consumption of riboflavin substrate was also threefold greater in IPTG-induced lysate compared to non IPTG-induced cell extract. Thus, the recombinant MhpFADSyn protein could be associated to FAD biosynthesis. These findings contribute to expand the range of potential drug targets in diseases control and unveil metabolic pathways that could be attribute to mycoplasmas.
Collapse
Affiliation(s)
- Amanda Malvessi Cattani
- Graduate Program in Cell and Molecular Biology, Center for Biotechnology, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9500 - Porto Alegre, 91501-970, RS, Brazil
| | - Camila Vieira Pinheiro
- Graduate Program in Biological Sciences: Physiology, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500 - Porto Alegre, 90050-170, RS, Brazil
| | - Irene Silveira Schrank
- Graduate Program in Cell and Molecular Biology, Center for Biotechnology, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9500 - Porto Alegre, 91501-970, RS, Brazil
| | - Franciele Maboni Siqueira
- Laboratory of Veterinary Bacteriology, Veterinary Pathology Department, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9090 - Porto Alegre, 91540-000, RS, Brazil
| |
Collapse
|
19
|
Chernova OA, Chernov VM, Mouzykantov AA, Baranova NB, Edelstein IA, Aminov RI. Antimicrobial drug resistance mechanisms among Mollicutes. Int J Antimicrob Agents 2020; 57:106253. [PMID: 33264670 DOI: 10.1016/j.ijantimicag.2020.106253] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 07/08/2020] [Accepted: 11/22/2020] [Indexed: 12/11/2022]
Abstract
Representatives of the Mollicutes class are the smallest, wall-less bacteria capable of independent reproduction. They are widespread in nature, most are commensals, and some are pathogens of humans, animals and plants. They are also the main contaminants of cell cultures and vaccine preparations. Despite limited biosynthetic capabilities, they are highly adaptable and capable of surviving under various stress and extreme conditions, including antimicrobial selective pressure. This review describes current understanding of antibiotic resistance (ABR) mechanisms in Mollicutes. Protective mechanisms in these bacteria include point mutations, which may include non-target genes, and unique gene exchange mechanisms, contributing to transfer of ABR genes. Better understanding of the mechanisms of emergence and dissemination of ABR in Mollicutes is crucial to control these hypermutable bacteria and prevent the occurrence of highly ABR strains.
Collapse
Affiliation(s)
- Olga A Chernova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Centre of RAS, Kazan, Russian Federation
| | - Vladislav M Chernov
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Centre of RAS, Kazan, Russian Federation
| | - Alexey A Mouzykantov
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Centre of RAS, Kazan, Russian Federation
| | - Natalya B Baranova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Centre of RAS, Kazan, Russian Federation
| | - Inna A Edelstein
- Smolensk State Medical University, Ministry of Health of Russian Federation, Smolensk, Russian Federation
| | - Rustam I Aminov
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK; Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russian Federation.
| |
Collapse
|
20
|
Ning Y, Zhou Y, Wang Z, Wen Y, Xu Z, Tian Y, Yang M, Wang X, Yang Y, Ding H. Elevated Mhp462 antibody induced by natural infection but not in vitro culture of Mycoplasma hyopneumoniae. Heliyon 2020; 6:e04832. [PMID: 32923730 PMCID: PMC7476235 DOI: 10.1016/j.heliyon.2020.e04832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/10/2020] [Accepted: 08/27/2020] [Indexed: 12/20/2022] Open
Abstract
Mycoplasma hyopneumoniae is the respiratory pathogen of porcine enzootic pneumonia, a chronic respiratory infectious disease that causes substantial pecuniary losses to pig husbandry worldwide. Commercial bacterins only provide incomplete protection and do not prevent the colonization and transmission of M. hyopneumoniae. Identification of new protective antigens is a key imperative for the development of more effective novel vaccine. The objective of this study was to evaluate antibody responses of 27 recombinant proteins in convalescent sera obtained from pigs that were naturally infected with M. hyopneumoniae. Fifteen proteins were identified as serological immunodominant antigens, while 3 proteins were not recognized by any convalescent serum. Moreover, Mhp462, a leucine aminopeptidase, was found to be a discriminative serological immunodominant antigen which reacted with convalescent sera but not with hyperimmune sera. The serological immunodominant proteins were antigenic and were expressed during infection; this suggests that these proteins (especially the discriminative one) are potential candidate antigens for the development of next generation vaccines against M. hyopneumoniae.
Collapse
Affiliation(s)
- Yaru Ning
- Laboratory of Veterinary Infectious Diseases, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Yaoqin Zhou
- College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
| | - Zhaodi Wang
- Laboratory of Veterinary Infectious Diseases, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Yukang Wen
- Laboratory of Veterinary Infectious Diseases, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Zuobo Xu
- Laboratory of Veterinary Infectious Diseases, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Yaqin Tian
- Laboratory of Veterinary Infectious Diseases, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Mei Yang
- Laboratory of Veterinary Infectious Diseases, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Xudong Wang
- Laboratory of Veterinary Infectious Diseases, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Yujiao Yang
- Laboratory of Veterinary Infectious Diseases, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Honglei Ding
- Laboratory of Veterinary Infectious Diseases, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| |
Collapse
|
21
|
Kamminga T, Benis N, Martins Dos Santos V, Bijlsma JJE, Schaap PJ. Combined Transcriptome Sequencing of Mycoplasma hyopneumoniae and Infected Pig Lung Tissue Reveals Up-Regulation of Bacterial F1-Like ATPase and Down-Regulation of the P102 Cilium Adhesin in vivo. Front Microbiol 2020; 11:1679. [PMID: 32765473 PMCID: PMC7379848 DOI: 10.3389/fmicb.2020.01679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 06/26/2020] [Indexed: 12/21/2022] Open
Abstract
Mycoplasma hyopneumoniae (M. hyopneumoniae) causes enzootic pneumonia in pigs but it is still largely unknown which host-pathogen interactions enable persistent infection and cause disease. In this study, we analyzed the host and bacterial transcriptomes during infection using RNA sequencing. Comparison of the transcriptome of lung lesion tissue from infected pigs with lung tissue from non-infected animals, identified 424 differentially expressed genes (FDR < 0.01 and fold change > 1.5LOG2). These genes were part of the following major pathways of the immune system: interleukin signaling (type 4, 10, 13, and 18), regulation of Toll-like receptors by endogenous ligand and activation of C3 and C5 in the complement system. Besides analyzing the lung transcriptome, a sampling protocol was developed to obtain enough bacterial mRNA from infected lung tissue for RNA sequencing. This was done by flushing infected lobes in the lung, and subsequently enriching for bacterial RNA. On average, 2.2 million bacterial reads were obtained per biological replicate to analyze the bacterial in vivo transcriptome. We compared the in vivo bacterial transcriptome with the transcriptome of bacteria grown in vitro and identified 22 up-regulated and 30 down-regulated genes (FDR < 0.01 and fold change > 2LOG2). Six out of seven genes in the operon encoding the mycoplasma specific F1-like ATPase (MHP_RS02445-MHP_RS02475) and all genes in the operon MHP_RS01965-MHP_RS01990 with functions related to nucleotide metabolism, spermidine transport and glycerol-3-phoshate transport were up-regulated in vivo. Down-regulated in vivo were genes related to glycerol uptake, cilium adhesion (P102), cell division and myo-inositol metabolism. In addition to providing a novel method to isolate bacterial mRNA from infected lung, this study provided insights into changes in gene expression during infection, which could help development of novel treatment strategies against enzootic pneumonia caused by M. hyopneumoniae.
Collapse
Affiliation(s)
- Tjerko Kamminga
- Laboratory of Systems and Synthetic Biology, Department of Agrotechnology and Food Sciences, Wageningen University and Research, Wageningen, Netherlands.,Bioprocess Technology and Support, MSD Animal Health, Boxmeer, Netherlands
| | - Nirupama Benis
- Laboratory of Systems and Synthetic Biology, Department of Agrotechnology and Food Sciences, Wageningen University and Research, Wageningen, Netherlands
| | - Vitor Martins Dos Santos
- Laboratory of Systems and Synthetic Biology, Department of Agrotechnology and Food Sciences, Wageningen University and Research, Wageningen, Netherlands
| | | | - Peter J Schaap
- Laboratory of Systems and Synthetic Biology, Department of Agrotechnology and Food Sciences, Wageningen University and Research, Wageningen, Netherlands
| |
Collapse
|
22
|
The pathogen Mycoplasma dispar Shows High Minimum Inhibitory Concentrations for Antimicrobials Commonly Used for Bovine Respiratory Disease. Antibiotics (Basel) 2020; 9:antibiotics9080460. [PMID: 32751401 PMCID: PMC7459706 DOI: 10.3390/antibiotics9080460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/10/2020] [Accepted: 07/25/2020] [Indexed: 11/17/2022] Open
Abstract
Mycoplasma dispar is an overlooked pathogen often involved in bovine respiratory disease (BRD), which affects cattle around the world. BRD results in lost production and high treatment and prevention costs. Additionally, chronic therapies with multiple antimicrobials may lead to antimicrobial resistance. Data on antimicrobial susceptibility to M. dispar is limited so minimum inhibitory concentrations (MIC) of a range of antimicrobials routinely used in BRD were evaluated using a broth microdilution technique for 41 M. dispar isolates collected in Italy between 2011–2019. While all isolates had low MIC values for florfenicol (<1 μg/mL), many showed high MIC values for erythromycin (MIC90 ≥8 μg/mL). Tilmicosin MIC values were higher (MIC50 = 32 μg/mL) than those for tylosin (MIC50 = 0.25 μg/mL). Seven isolates had high MIC values for lincomycin, tilmicosin and tylosin (≥32 μg/mL). More, alarmingly, results showed more than half the strains had high MICs for enrofloxacin, a member of the fluoroquinolone class considered critically important in human health. A time-dependent progressive drift of enrofloxacin MICs towards high-concentration values was observed, indicative of an on-going selection process among the isolates.
Collapse
|
23
|
Genomic Islands in Mycoplasmas. Genes (Basel) 2020; 11:genes11080836. [PMID: 32707922 PMCID: PMC7466169 DOI: 10.3390/genes11080836] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/17/2020] [Accepted: 07/20/2020] [Indexed: 12/23/2022] Open
Abstract
Bacteria of the Mycoplasma genus are characterized by the lack of a cell-wall, the use of UGA as tryptophan codon instead of a universal stop, and their simplified metabolic pathways. Most of these features are due to the small-size and limited-content of their genomes (580–1840 Kbp; 482–2050 CDS). Yet, the Mycoplasma genus encompasses over 200 species living in close contact with a wide range of animal hosts and man. These include pathogens, pathobionts, or commensals that have retained the full capacity to synthesize DNA, RNA, and all proteins required to sustain a parasitic life-style, with most being able to grow under laboratory conditions without host cells. Over the last 10 years, comparative genome analyses of multiple species and strains unveiled some of the dynamics of mycoplasma genomes. This review summarizes our current knowledge of genomic islands (GIs) found in mycoplasmas, with a focus on pathogenicity islands, integrative and conjugative elements (ICEs), and prophages. Here, we discuss how GIs contribute to the dynamics of mycoplasma genomes and how they participate in the evolution of these minimal organisms.
Collapse
|
24
|
Guasch A, Montané J, Moros A, Piñol J, Sitjà M, González-González L, Fita I. Structure of P46, an immunodominant surface protein from Mycoplasma hyopneumoniae: interaction with a monoclonal antibody. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2020; 76:418-427. [PMID: 32355038 DOI: 10.1107/s2059798320003903] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 03/17/2020] [Indexed: 01/13/2023]
Abstract
Mycoplasma hyopneumoniae is a prokaryotic pathogen that colonizes the respiratory ciliated epithelial cells in swine. Infected animals suffer respiratory lesions, causing major economic losses in the porcine industry. Characterization of the immunodominant membrane-associated proteins from M. hyopneumoniae may be instrumental in the development of new therapeutic approaches. Here, the crystal structure of P46, one of the main surface-antigen proteins, from M. hyopneumoniae is presented and shows N- and C-terminal α/β domains connected by a hinge. The structures solved in this work include a ligand-free open form of P46 (3.1 Å resolution) and two ligand-bound structures of P46 with maltose (2.5 Å resolution) and xylose (3.5 Å resolution) in open and closed conformations, respectively. The ligand-binding site is buried in the cleft between the domains at the hinge region. The two domains of P46 can rotate with respect to each other, giving open or closed alternative conformations. In agreement with this structural information, sequence analyses show similarities to substrate-binding members of the ABC transporter superfamily, with P46 facing the extracellular side as a functional subunit. In the structure with xylose, P46 was also bound to a high-affinity (Kd = 29 nM) Fab fragment from a monoclonal antibody, allowing the characterization of a structural epitope in P46 that exclusively involves residues from the C-terminal domain. The Fab structure in the complex with P46 shows only small conformational rearrangements in the six complementarity-determining regions (CDRs) with respect to the unbound Fab (the structure of which is also determined in this work at 1.95 Å resolution). The structural information that is now available should contribute to a better understanding of sugar nutrient intake by M. hyopneumoniae. This information will also allow the design of protocols and strategies for the generation of new vaccines against this important swine pathogen.
Collapse
Affiliation(s)
- Alicia Guasch
- Institut de Biologia Molecular de Barcelona (IBMB-CSIC) and Maria de Maeztu Unit of Excellence, Parc Cientific, Baldiri Reixac 10-12, 08028 Barcelona, Spain
| | | | | | - Jaume Piñol
- Departament de Bioquimica i Biologia Molecular and Institut de Biotecnologia i Biomedicina, Universidad Autonoma de Bellaterra, 08193 Cerdanyola del Valles, Spain
| | | | | | - Ignasi Fita
- Institut de Biologia Molecular de Barcelona (IBMB-CSIC) and Maria de Maeztu Unit of Excellence, Parc Cientific, Baldiri Reixac 10-12, 08028 Barcelona, Spain
| |
Collapse
|
25
|
Liu R, Xu B, Yu S, Zhang J, Sun H, Liu C, Lu F, Pan Q, Zhang X. Integrated Transcriptomic and Proteomic Analyses of the Interaction Between Chicken Synovial Fibroblasts and Mycoplasma synoviae. Front Microbiol 2020; 11:576. [PMID: 32318048 PMCID: PMC7147270 DOI: 10.3389/fmicb.2020.00576] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 03/16/2020] [Indexed: 12/29/2022] Open
Abstract
Mycoplasma synoviae (MS), which causes respiratory disease, eggshell apex abnormalities, infectious synovitis, and arthritis in avian species, has become an economically detrimental poultry pathogen in recent years. In China, the disease is characterized by infectious synovitis and arthritis. However, the mechanism by which MS causes infectious synovitis and arthritis remains unknown. Increasing evidence suggests that synovial fibroblasts (SF) play a key role in the pathogenesis of arthritis. Here, both RNA sequencing and tandem mass tag analyses are utilized to compare the response of primary chicken SF (CSF) following infection with and without MS. The host response between non-infected and infected cells was remarkably different at both the mRNA and protein levels. In total, 2,347 differentially expressed genes (DEGs) (upregulated, n = 1,137; downregulated, n = 1,210) and 221 differentially expressed proteins (DEPs) (upregulated, n = 129; downregulated, n = 92) were detected in the infected group. A correlation analysis indicated a moderate positive correlation between the mRNA and protein level changes in MS-infected CSF. At both the transcriptomic and proteomic levels, 149 DEGs were identified; 88 genes were upregulated and 61 genes were downregulated in CSF. Additionally, part of these regulated genes and their protein products were grouped into seven categories: proliferation-related and apoptosis-related factors, inflammatory mediators, proangiogenic factors, antiangiogenic factors, matrix metalloproteinases, and other arthritis-related proteins. These proteins may be involved in the pathogenesis of MS-induced arthritis in chickens. To our knowledge, this is the first integrated analysis on the mechanism of CSF-MS interactions that combined transcriptomic and proteomic technologies. In this study, many key candidate genes and their protein products related to MS-induced infectious synovitis and arthritis were identified.
Collapse
Affiliation(s)
- Rui Liu
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,National Center for Engineering Research of Veterinary Bio-products, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Bin Xu
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,National Center for Engineering Research of Veterinary Bio-products, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Shengqing Yu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Jingfeng Zhang
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,National Center for Engineering Research of Veterinary Bio-products, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Huawei Sun
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,National Center for Engineering Research of Veterinary Bio-products, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Chuanmin Liu
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,National Center for Engineering Research of Veterinary Bio-products, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Fengying Lu
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,National Center for Engineering Research of Veterinary Bio-products, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Qunxing Pan
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,National Center for Engineering Research of Veterinary Bio-products, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xiaofei Zhang
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,National Center for Engineering Research of Veterinary Bio-products, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| |
Collapse
|
26
|
Kordafshari S, Marenda MS, Agnew R, Shil P, Shahid MA, Marth C, Konsak BM, Noormohammadi AH. Complementation of the Mycoplasma synoviae MS-H vaccine strain with wild-type oppF1 influences its growth characteristics. Avian Pathol 2020; 49:275-285. [PMID: 32054292 DOI: 10.1080/03079457.2020.1729957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The Mycoplasma synoviae (MS) vaccine strain MS-H harbours a frameshift mutation in oppF1 (oligopeptide permease transporter) which results in expression of a truncated OppF1. The effect of this mutation on growth and attenuation of the MS-H is unknown. In this study, the impact of the mutation on the vaccine phenotype was investigated in vitro by introducing a wild-type copy of oppF1 gene in the MS-H genome. Wild-type oppF1 was cloned under the vlhA promoter into an oriC vector carrying a tetracycline resistance gene. MS-H was successfully transformed with the final construct pMS-oppF1-tetM or with a similar vector lacking oppF1 coding sequence (pMS-tetM). The MS-H transformed with pMS-oppF1-tetM exhibited smaller colony size than MS-H transformed with pMS-tetM. Monospecific rabbit sera against C-terminus of OppF1 detected bands of expected size for full-length OppF1 in the 86079/7NS parental strain of MS-H and the MS-H transformed with pMS-oppF1-tetM, but not in MS-H and MS-H transformed with pMS-tetM. Comparison of the growth curve of MS-H transformants harvested from media with/without tetracycline was conducted using vlhA Q-PCR which revealed that MS-H transformed with pMS-tetM had a higher growth rate than MS-H transformed with pMS-oppF1-tetM in the media with/without tetracycline. Lastly, the whole genome sequencing of MS-H transformed with pMS-oppF1-tetM (passage 27) showed that the chromosomal copy of the mutated oppF1 had been replaced with a wild-type version of the gene. This study reveals that the truncation of oppF1 impacts on growth characteristics of the MS-H and provides insight into the molecular pathogenesis of MS and perhaps broader mycoplasma species.RESEARCH HIGHLIGHTS The full-length OppF1 was expressed in Mycoplasma synoviae MS-H vaccine.Truncation of oppF1 impacts on growth characteristics of the MS-H.Chromosomal copy of the mutated oppF1 in MS-H was replaced with wild-type oppF1.
Collapse
Affiliation(s)
- Somayeh Kordafshari
- Asia Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary & Agricultural Sciences, The University of Melbourne, Werribee, Australia
| | - Marc S Marenda
- Asia Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary & Agricultural Sciences, The University of Melbourne, Werribee, Australia
| | - Rebecca Agnew
- Asia Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary & Agricultural Sciences, The University of Melbourne, Werribee, Australia
| | - Pollob Shil
- Asia Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary & Agricultural Sciences, The University of Melbourne, Werribee, Australia
| | - Muhammad A Shahid
- Department of Pathobiology, Faculty of Veterinary Sciences, Bahauddin Zakariya University, Multan, Pakistan
| | - Christina Marth
- Asia Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary & Agricultural Sciences, The University of Melbourne, Werribee, Australia
| | - Barbara M Konsak
- Asia Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary & Agricultural Sciences, The University of Melbourne, Werribee, Australia
| | - Amir H Noormohammadi
- Asia Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary & Agricultural Sciences, The University of Melbourne, Werribee, Australia
| |
Collapse
|
27
|
Ipoutcha T, Tsarmpopoulos I, Talenton V, Gaspin C, Moisan A, Walker CA, Brownlie J, Blanchard A, Thebault P, Sirand-Pugnet P. Multiple Origins and Specific Evolution of CRISPR/Cas9 Systems in Minimal Bacteria ( Mollicutes). Front Microbiol 2019; 10:2701. [PMID: 31824468 PMCID: PMC6882279 DOI: 10.3389/fmicb.2019.02701] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 11/07/2019] [Indexed: 12/13/2022] Open
Abstract
CRISPR/Cas systems provide adaptive defense mechanisms against invading nucleic acids in prokaryotes. Because of its interest as a genetic tool, the Type II CRISPR/Cas9 system from Streptococcus pyogenes has been extensively studied. It includes the Cas9 endonuclease that is dependent on a dual-guide RNA made of a tracrRNA and a crRNA. Target recognition relies on crRNA annealing and the presence of a protospacer adjacent motif (PAM). Mollicutes are currently the bacteria with the smallest genome in which CRISPR/Cas systems have been reported. Many of them are pathogenic to humans and animals (mycoplasmas and ureaplasmas) or plants (phytoplasmas and some spiroplasmas). A global survey was conducted to identify and compare CRISPR/Cas systems found in the genome of these minimal bacteria. Complete or degraded systems classified as Type II-A and less frequently as Type II-C were found in the genome of 21 out of 52 representative mollicutes species. Phylogenetic reconstructions predicted a common origin of all CRISPR/Cas systems of mycoplasmas and at least two origins were suggested for spiroplasmas systems. Cas9 in mollicutes were structurally related to the S. aureus Cas9 except the PI domain involved in the interaction with the PAM, suggesting various PAM might be recognized by Cas9 of different mollicutes. Structure of the predicted crRNA/tracrRNA hybrids was conserved and showed typical stem-loop structures pairing the Direct Repeat part of crRNAs with the 5' region of tracrRNAs. Most mollicutes crRNA/tracrRNAs showed G + C% significantly higher than the genome, suggesting a selective pressure for maintaining stability of these secondary structures. Examples of CRISPR spacers matching with mollicutes phages were found, including the textbook case of Mycoplasma cynos strain C142 having no prophage sequence but a CRISPR/Cas system with spacers targeting prophage sequences that were found in the genome of another M. cynos strain that is devoid of a CRISPR system. Despite their small genome size, mollicutes have maintained protective means against invading DNAs, including restriction/modification and CRISPR/Cas systems. The apparent lack of CRISPR/Cas systems in several groups of species including main pathogens of humans, ruminants, and plants suggests different evolutionary routes or a lower risk of phage infection in specific ecological niches.
Collapse
Affiliation(s)
- Thomas Ipoutcha
- INRA, UMR 1332 de Biologie du Fruit et Pathologie, Villenave d'Ornon, France.,Université de Bordeaux, UMR 1332 de Biologie du Fruit et Pathologie, Villenave d'Ornon, France
| | - Iason Tsarmpopoulos
- INRA, UMR 1332 de Biologie du Fruit et Pathologie, Villenave d'Ornon, France.,Université de Bordeaux, UMR 1332 de Biologie du Fruit et Pathologie, Villenave d'Ornon, France
| | - Vincent Talenton
- INRA, UMR 1332 de Biologie du Fruit et Pathologie, Villenave d'Ornon, France.,Université de Bordeaux, UMR 1332 de Biologie du Fruit et Pathologie, Villenave d'Ornon, France
| | - Christine Gaspin
- INRA, Mathématiques et Informatique Appliquées de Toulouse, Université de Toulouse, Toulouse, France
| | - Annick Moisan
- INRA, Mathématiques et Informatique Appliquées de Toulouse, Université de Toulouse, Toulouse, France
| | - Caray A Walker
- School of Life Sciences, Anglia Ruskin University, Cambridge, United Kingdom
| | - Joe Brownlie
- Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, London, United Kingdom
| | - Alain Blanchard
- INRA, UMR 1332 de Biologie du Fruit et Pathologie, Villenave d'Ornon, France.,Université de Bordeaux, UMR 1332 de Biologie du Fruit et Pathologie, Villenave d'Ornon, France
| | | | - Pascal Sirand-Pugnet
- INRA, UMR 1332 de Biologie du Fruit et Pathologie, Villenave d'Ornon, France.,Université de Bordeaux, UMR 1332 de Biologie du Fruit et Pathologie, Villenave d'Ornon, France
| |
Collapse
|
28
|
Assao VS, Scatamburlo TM, Araujo EN, Santos MR, Pereira CER, Guedes RMC, Bressan GC, Fietto JLR, Chang YF, Moreira MAS, Silva-Júnior A. Genetic variation of Mycoplasma hyopneumoniae from Brazilian field samples. BMC Microbiol 2019; 19:234. [PMID: 31660853 PMCID: PMC6819545 DOI: 10.1186/s12866-019-1603-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 09/27/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Porcine enzootic pneumonia is a worldwide problem in swine production. The infected host demonstrates a respiratory disease whose etiologic agent is Mycoplasma hyopneumoniae (Mhp). A total of 266 lung samples with Mycoplasma-like lesions were collected from two slaughterhouses. We analyzed the genetic profile of Mhp field samples using 16 genes that encode proteins involved in the mechanisms of bacterial pathogenesis and/or the immune responses of the host. Bioinformatic analyses were performed to classify the Mhp field samples based on their similarity according to the presence of the studied genes. RESULTS Our results showed variations in the frequency of the 16 studied genes among different Mhp field samples. It was also noted that samples from the same farm were genetically different from each other and samples from different regions could be genetically similar, which is evidence of the presence of different genetic profiles among the Mhp field strains that circulate in Brazilian swine herds. CONCLUSION This work demonstrated the genetic diversity of several Mhp field strains based on 16 selected genes related to virulence and/or immune response in Brazil. Our findings demonstrate the difference between Mhp field strains could influence the virulence, and we hypothesize that the most frequent genes in Mhp field strains could possibly be used as vaccine candidates. Based on our results, we suspect that Mhp genetic variability may be associated with the frequency of genes among the field strains and we have demonstrated that some Mhp field samples could not have many important genes described in the literature.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Yung-Fu Chang
- Cornell University College of Veterinary Medicine, Ithaca, USA
| | | | | |
Collapse
|
29
|
Dordet-Frisoni E, Faucher M, Sagné E, Baranowski E, Tardy F, Nouvel LX, Citti C. Mycoplasma Chromosomal Transfer: A Distributive, Conjugative Process Creating an Infinite Variety of Mosaic Genomes. Front Microbiol 2019; 10:2441. [PMID: 31708906 PMCID: PMC6819513 DOI: 10.3389/fmicb.2019.02441] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 10/10/2019] [Indexed: 11/13/2022] Open
Abstract
The capacity of Mycoplasmas to engage in horizontal gene transfers has recently been highlighted. Despite their small genome, some of these wall-less bacteria are able to exchange multiple, large portions of their chromosome via a conjugative mechanism that does not conform to canonical Hfr/oriT models. To understand the exact features underlying mycoplasma chromosomal transfer (MCT), extensive genomic analyses were performed at the nucleotide level, using individual mating progenies derived from our model organism, Mycoplasma agalactiae. Genome reconstruction showed that MCT resulted in the distributive transfer of multiple chromosomal DNA fragments and generated progenies composed of a variety of mosaic genomes, each being unique. Analyses of macro- and micro-events resulting from MCT revealed that the vast majority of the acquired fragments were unrelated and co-transferred independently from the selection marker, these resulted in up to 17% of the genome being exchanged. Housekeeping and accessory genes were equally affected by MCT, with up to 35 CDSs being gained or lost. This efficient HGT process also created a number of chimeric genes and genetic micro-variations that may impact gene regulation and/or expression. Our study unraveled the tremendous plasticity of M. agalactiae genome and point toward MCT as a major player in diversification and adaptation to changing environments, offering a significant advantage to this minimal pathogen.
Collapse
Affiliation(s)
| | - Marion Faucher
- IHAP, INRA, ENVT, Université de Toulouse, Toulouse, France
| | - Eveline Sagné
- IHAP, INRA, ENVT, Université de Toulouse, Toulouse, France
| | | | - Florence Tardy
- UMR Mycoplasmoses des Ruminants, VetAgro Sup, Laboratoire de Lyon, ANSES, Université de Lyon, Marcy-l'Étoile, France
| | | | | |
Collapse
|
30
|
Complete Genome Sequences of Three Mycoplasma anserisalpingitis ( Mycoplasma sp. 1220) Strains. Microbiol Resour Announc 2019; 8:8/37/e00985-19. [PMID: 31515351 PMCID: PMC6742802 DOI: 10.1128/mra.00985-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Mycoplasma anserisalpingitis is a goose pathogen. The main symptoms in affected flocks are inflammation of the cloaca and the reproductive organs, decreased egg production, and increased embryo mortality. Here, we report the complete genome sequences of the type strain (ATCC BAA-2147) and two clinical isolates. Mycoplasma anserisalpingitis is a goose pathogen. The main symptoms in affected flocks are inflammation of the cloaca and the reproductive organs, decreased egg production, and increased embryo mortality. Here, we report the complete genome sequences of the type strain (ATCC BAA-2147) and two clinical isolates.
Collapse
|
31
|
Leal Zimmer FMA, Moura H, Barr JR, Ferreira HB. Intracellular changes of a swine tracheal cell line infected with a Mycoplasma hyopneumoniae pathogenic strain. Microb Pathog 2019; 137:103717. [PMID: 31494300 DOI: 10.1016/j.micpath.2019.103717] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 08/13/2019] [Accepted: 09/04/2019] [Indexed: 12/20/2022]
Abstract
Mycoplasma hyopneumoniae is the etiological agent of enzootic pneumonia (EP), a widespread disease that causes major economic losses to the pig industry. The swine host response plays an important role in the outcome of M. hyopneumoniae infections. The whole proteome of newborn pig trachea (NPTr) epithelial cells infected with the M. hyopneumoniae pathogenic strain 7448 was analyzed using an LC-MS/MS approach to shed light on intracellular processes triggered in response to the pathogen. Overall, 853 swine protein species were identified, 156 of which were differentially represented in response to M. hyopneumoniae 7448 infection in comparison with non-infected control cells. These differentially represented proteins were categorized by function. Fifty-seven of them were assigned to the immune system and/or response to stimulus functional subcategories. Comparative expression analysis of these immune-related proteins in NPTr cells infected with attenuated or non-pathogenic mycoplasmas (M. hyopneumoniae J strain and M. flocculare, respectively) revealed proteins whose abundance was altered only in response to the pathogenic M. hyopneumoniae 7448 strain. Among these proteins, calcium homeostasis and endoplasmic reticulum stress-related biomarkers were detected, providing evidence of molecular mechanisms that might lead to swine cell apoptosis.
Collapse
Affiliation(s)
- Fernanda M A Leal Zimmer
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, 9500, Porto Alegre, Rio Grande do Sul, Brazil
| | - Hercules Moura
- Biological Mass Spectrometry Laboratory, Clinical Chemistry Branch, Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - John R Barr
- Biological Mass Spectrometry Laboratory, Clinical Chemistry Branch, Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Henrique Bunselmeyer Ferreira
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, 9500, Porto Alegre, Rio Grande do Sul, Brazil.
| |
Collapse
|
32
|
Zhu L, Shahid MA, Markham J, Browning GF, Noormohammadi AH, Marenda MS. Comparative genomic analyses of Mycoplasma synoviae vaccine strain MS-H and its wild-type parent strain 86079/7NS: implications for the identification of virulence factors and applications in diagnosis of M. synoviae. Avian Pathol 2019; 48:537-548. [PMID: 31244324 DOI: 10.1080/03079457.2019.1637514] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Mycoplasma synoviae is an economically important avian pathogen worldwide, causing respiratory disease, infectious synovitis, airsacculitis and eggshell apex abnormalities in commercial chickens. Despite the widespread use of MS-H as a live attenuated vaccine over the past two decades, the precise molecular basis for loss of virulence in this vaccine is not yet fully understood. To address this, the whole genome sequence of the vaccine parent strain, 86079/7NS, was obtained and compared to that of the MS-H vaccine. Except for the vlhA expressed region, both genomes were nearly identical. Thirty-two single nucleotide polymorphisms (SNPs) were identified in MS-H, including 11 non-synonymous mutations that were predicted, by bioinformatics analysis, to have changed the secondary structure of the deduced proteins. One of these mutations caused truncation of the oppF-1 gene, which encodes the ATP-binding protein of an oligopeptide permease transporter. Overall, the attenuation of MS-H strain may be caused by the cumulative and complex effects of several mutations. The SNPs identified in MS-H were further analyzed by comparing the MS-H and 86079/7NS sequences with the strains WVU-1853 and MS53. In the genomic regions conserved between all strains, 30 SNPs were found to be unique to MS-H lineage. These results have provided a foundation for developing novel biomarkers for the detection of virulence in M. synoviae and also for designing new genotyping assays for discrimination of MS-H from field strains.
Collapse
Affiliation(s)
- Ling Zhu
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, the University of Melbourne , Werribee , Australia
| | - Muhammad A Shahid
- Department of Pathobiology, Faculty of Veterinary Sciences, Bahauddin Zakariya University , Multan , Pakistan
| | - John Markham
- Department of Electrical and Electronic Engineering, the University of Melbourne , Parkville , Australia
| | - Glenn F Browning
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, the University of Melbourne , Parkville , Australia
| | - Amir H Noormohammadi
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, the University of Melbourne , Werribee , Australia
| | - Marc S Marenda
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, the University of Melbourne , Werribee , Australia
| |
Collapse
|
33
|
Quantitative Proteomic Analyses of a Pathogenic Strain and Its Highly Passaged Attenuated Strain of Mycoplasma hyopneumoniae. BIOMED RESEARCH INTERNATIONAL 2019; 2019:4165735. [PMID: 31355261 PMCID: PMC6634062 DOI: 10.1155/2019/4165735] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 04/14/2019] [Accepted: 05/27/2019] [Indexed: 12/21/2022]
Abstract
Mycoplasma hyopneumoniae is the causative agent of porcine enzootic pneumonia, a chronic respiratory disease in swine resulting in enormous economic losses. To identify the components that contribute to virulence and unveil those biological processes potentially related to attenuation, we used isobaric tags for relative and absolute quantification technology (iTRAQ) to compare the protein profiles of the virulent M. hyopneumoniae strain 168 and its attenuated highly passaged strain 168L. We identified 489 proteins in total, 70 of which showing significant differences in level of expression between the two strains. Remarkably, proteins participating in inositol phosphate metabolism were significantly downregulated in the virulent strain, while some proteins involved in nucleoside metabolism were upregulated. We also mined a series of novel promising virulence-associated factors in our study compared with those in previous reports, such as some moonlighting adhesins, transporters, lipoate-protein ligase, and ribonuclease and several hypothetical proteins with conserved functional domains, deserving further research. Our survey constitutes an iTRAQ-based comparative proteomic analysis of a virulent M. hyopneumoniae strain and its attenuated strain originating from a single parent with a well-characterized genetic background and lays the groundwork for future work to mine for potential virulence factors and identify candidate vaccine proteins.
Collapse
|
34
|
Betlach AM, Maes D, Garza-Moreno L, Tamiozzo P, Sibila M, Haesebrouck F, Segalés J, Pieters M. Mycoplasma hyopneumoniae variability: Current trends and proposed terminology for genomic classification. Transbound Emerg Dis 2019; 66:1840-1854. [PMID: 31099490 DOI: 10.1111/tbed.13233] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/04/2019] [Accepted: 05/13/2019] [Indexed: 01/02/2023]
Abstract
Mycoplasma hyopneumoniae (M. hyopneumoniae) is the aetiologic agent of enzootic pneumonia in swine, a prevalent chronic respiratory disease worldwide. Mycoplasma hyopneumoniae is a small, self-replicating microorganism that possesses several characteristics allowing for limited biosynthetic abilities, resulting in the fastidious, host-specific growth and unique pathogenic properties of this microorganism. Variation across several isolates of M. hyopneumoniae has been described at antigenic, proteomic, transcriptomic, pathogenic and genomic levels. The microorganism possesses a minimal number of genes that regulate the transcription process. Post-translational modifications (PTM) occur frequently in a wide range of functional proteins. The PTM by which M. hyopneumoniae regulates its surface topography could play key roles in cell adhesion, evasion and/or modulation of the host immune system. The clinical outcome of M. hyopneumoniae infections is determined by different factors, such as housing conditions, management practices, co-infections and also by virulence differences among M. hyopneumoniae isolates. Factors contributing to adherence and colonization as well as the capacity to modulate inflammatory and immune responses might be crucial. Different components of the cell membrane (i.e. proteins, glycoproteins and lipoproteins) may serve as adhesins and/or be toxic for the respiratory tract cells. Mechanisms leading to virulence are complex and more research is needed to identify markers for virulence. The utilization of typing methods and complete or partial-gene sequencing for M. hyopneumoniae characterization has increased in diagnostic laboratories as control and elimination strategies for this microorganism are attempted worldwide. A commonly employed molecular typing method for M. hyopneumoniae is Multiple-Locus Variable number tandem repeat Analysis (MLVA). The agreement of a shared terminology and classification for the various techniques, specifically MLVA, has not been described, which makes inferences across the literature unsuitable. Therefore, molecular trends for M. hyopneumoniae have been outlined and a common terminology and classification based on Variable Number Tandem Repeats (VNTR) types has been proposed.
Collapse
Affiliation(s)
- Alyssa M Betlach
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota.,Swine Vet Center, St. Peter, Minnesota
| | - Dominiek Maes
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Unit Porcine Health Management, Ghent University, Merelbeke, Belgium
| | - Laura Garza-Moreno
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autonoma de Barcelona, Bellaterra, Spain
| | - Pablo Tamiozzo
- Departamento de Patología Animal, Facultad de Agronomía y Veterinaria, Universidad Nacional de Río Cuarto, Río Cuarto, Argentina
| | - Marina Sibila
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autonoma de Barcelona, Bellaterra, Spain
| | - Freddy Haesebrouck
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Joaquim Segalés
- Department de Sanitat i Anatomia Animals, Facultat de Veterinària, UAB, Bellaterra, Spain.,UAB, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autónoma de Barcelona, Bellaterra, Spain
| | - Maria Pieters
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota
| |
Collapse
|
35
|
Paes JA, Machado LDPN, Dos Anjos Leal FM, De Moraes SN, Moura H, Barr JR, Ferreira HB. Comparative proteomics of two Mycoplasma hyopneumoniae strains and Mycoplasma flocculare identified potential porcine enzootic pneumonia determinants. Virulence 2019; 9:1230-1246. [PMID: 30027802 PMCID: PMC6104684 DOI: 10.1080/21505594.2018.1499379] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Mycoplasma hyopneumoniae and Mycoplasma flocculare are genetically similar bacteria, which coinhabit the porcine respiratory tract. These mycoplasmas share most of the known virulence factors, but, while M. hyopneumoniae causes porcine enzootic pneumonia (PEP), M. flocculare is a commensal species. To identify potential PEP determinants and provide novel insights on mycoplasma-host interactions, the whole cell proteomes of two M. hyopneumoniae strains, one pathogenic (7448) and other non-pathogenic (J), and M. flocculare were compared. A cell fractioning approach combined with mass spectrometry (LC-MS/MS) proteomics was used to analyze cytoplasmic and surface-enriched protein fractions. Average detection of ~ 50% of the predicted proteomes of M. hyopneumoniae 7448 and J, and M. flocculare was achieved. Many of the identified proteins were differentially represented in M. hyopneumoniae 7448 in comparison to M. hyopneumoniae J and M. flocculare, including potential PEP determinants, such as adhesins, proteases, and redox-balancing proteins, among others. The LC-MS/MS data also provided experimental validation for several genes previously regarded as hypothetical for all analyzed mycoplasmas, including some coding for proteins bearing virulence-related functional domains. The comprehensive proteome profiling of two M. hyopneumoniae strains and M. flocculare provided tens of novel candidates to PEP determinants or virulence factors, beyond those classically described.
Collapse
Affiliation(s)
- Jéssica Andrade Paes
- a Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia , Universidade Federal do Rio Grande do Sul , Porto Alegre , Brazil
| | - Lais Del Prá Netto Machado
- a Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia , Universidade Federal do Rio Grande do Sul , Porto Alegre , Brazil
| | - Fernanda Munhoz Dos Anjos Leal
- a Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia , Universidade Federal do Rio Grande do Sul , Porto Alegre , Brazil
| | - Sofia Nóbrega De Moraes
- a Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia , Universidade Federal do Rio Grande do Sul , Porto Alegre , Brazil
| | - Hercules Moura
- b Biological Mass Spectrometry Laboratory, Clinical Chemistry Branch, Division of Laboratory Sciences , National Center for Environmental Health, Centers for Disease Control and Prevention , Atlanta , GA , USA
| | - John R Barr
- b Biological Mass Spectrometry Laboratory, Clinical Chemistry Branch, Division of Laboratory Sciences , National Center for Environmental Health, Centers for Disease Control and Prevention , Atlanta , GA , USA
| | - Henrique Bunselmeyer Ferreira
- a Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia , Universidade Federal do Rio Grande do Sul , Porto Alegre , Brazil
| |
Collapse
|
36
|
Differential responses to stress of two Mycoplasma hyopneumoniae strains. J Proteomics 2019; 199:67-76. [PMID: 30862566 DOI: 10.1016/j.jprot.2019.03.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 02/18/2019] [Accepted: 03/07/2019] [Indexed: 12/14/2022]
Abstract
Mycoplasma hyopneumoniae is a respiratory pathogen, causing porcine enzootic pneumonia. To survive in the porcine respiratory tract, M. hyopneumoniae must cope with both oxidative and heat stress imposed by the host. To get insights into M. hyopneumoniae stress responses and pathogenicity mechanisms, the protein profiles of two M. hyopneumoniae strains, pathogenic 7448 strain and non-pathogenic strain J, were surveyed under oxidative (OS) or heat (HS) stress. M. hyopneumoniae strains were submitted to OS (0.5% hydrogen peroxide) or HS (temperature shifts to 42 °C) conditions and protein profiling was carried out by LC-MS/MS and label-free quantitative analyses. Data are available via ProteomeXchange with identifier PXD012742. Qualitative and quantitative differences involving 40-60 M. hyopneumoniae proteins were observed for both strains when comparing bacteria exposed to OS or HS to non-treated controls. However, no differences in abundance were found in proteins classically related to stress responses, as peroxidases and chaperones, suggesting that these proteins would be constitutively present in both strains in the tested conditions. Interestingly, under stress conditions, more virulence-related proteins were detected in M. hyopneumoniae 7448 differentially represented proteins than in M. hyopneumoniae J, suggesting that stress may trigger a differential response of the corresponding genes, shared by both strains.
Collapse
|
37
|
Huang T, Zhang M, Tong X, Chen J, Yan G, Fang S, Guo Y, Yang B, Xiao S, Chen C, Huang L, Ai H. Microbial communities in swine lungs and their association with lung lesions. Microb Biotechnol 2019; 12:289-304. [PMID: 30556308 PMCID: PMC6389860 DOI: 10.1111/1751-7915.13353] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 11/15/2018] [Accepted: 11/15/2018] [Indexed: 12/26/2022] Open
Abstract
Under natural farming, environmental pathogenic microorganisms may invade and affect swine lungs, further resulting in lung lesions. However, few studies on swine lung microbiota and their potential relationship with lung lesions were reported. Here, we sampled 20 pigs from a hybrid herd raised under natural conditions; we recorded a lung-lesion phenotype and investigated lung microbial communities by sequencing the V3-V4 region of 16S rRNA gene for each individual. We found reduced microbial diversity but more biomass in the severe-lesion lungs. Methylotenera, Prevotella, Sphingobium and Lactobacillus were the prominent bacteria in the healthy lungs, while Mycoplasma, Ureaplasma, Sphingobium, Haemophilus and Phyllobacterium were the most abundant microbes in the severe-lesion lungs. Notably, we identified 64 lung-lesion-associated OTUs, of which two classified to Mycoplasma were positively associated with lung lesions and 62 showed negative association including thirteen classified to Prevotella and six to Ruminococcus. Cross-validation analysis showed that lung microbiota explained 23.7% phenotypic variance of lung lesions, suggesting that lung microbiota had large effects on promoting lung healthy. Furthermore, 22 KEGG pathways correlated with lung lesions were predicted. Altogether, our findings improve the knowledge about swine lung microbial communities and give insights into the relationship between lung microbiota and lung lesions.
Collapse
Affiliation(s)
- Tao Huang
- State Key Laboratory for Swine Genetic Improvement and Production TechnologyJiangxi Agricultural UniversityNanchang330045China
| | - Mingpeng Zhang
- State Key Laboratory for Swine Genetic Improvement and Production TechnologyJiangxi Agricultural UniversityNanchang330045China
| | - Xinkai Tong
- State Key Laboratory for Swine Genetic Improvement and Production TechnologyJiangxi Agricultural UniversityNanchang330045China
| | - Jiaqi Chen
- State Key Laboratory for Swine Genetic Improvement and Production TechnologyJiangxi Agricultural UniversityNanchang330045China
| | - Guorong Yan
- State Key Laboratory for Swine Genetic Improvement and Production TechnologyJiangxi Agricultural UniversityNanchang330045China
| | - Shaoming Fang
- State Key Laboratory for Swine Genetic Improvement and Production TechnologyJiangxi Agricultural UniversityNanchang330045China
| | - Yuanmei Guo
- State Key Laboratory for Swine Genetic Improvement and Production TechnologyJiangxi Agricultural UniversityNanchang330045China
| | - Bin Yang
- State Key Laboratory for Swine Genetic Improvement and Production TechnologyJiangxi Agricultural UniversityNanchang330045China
| | - Shijun Xiao
- State Key Laboratory for Swine Genetic Improvement and Production TechnologyJiangxi Agricultural UniversityNanchang330045China
| | - Congying Chen
- State Key Laboratory for Swine Genetic Improvement and Production TechnologyJiangxi Agricultural UniversityNanchang330045China
| | - Lusheng Huang
- State Key Laboratory for Swine Genetic Improvement and Production TechnologyJiangxi Agricultural UniversityNanchang330045China
| | - Huashui Ai
- State Key Laboratory for Swine Genetic Improvement and Production TechnologyJiangxi Agricultural UniversityNanchang330045China
| |
Collapse
|
38
|
Faucher M, Nouvel LX, Dordet-Frisoni E, Sagné E, Baranowski E, Hygonenq MC, Marenda MS, Tardy F, Citti C. Mycoplasmas under experimental antimicrobial selection: The unpredicted contribution of horizontal chromosomal transfer. PLoS Genet 2019; 15:e1007910. [PMID: 30668569 PMCID: PMC6358093 DOI: 10.1371/journal.pgen.1007910] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 02/01/2019] [Accepted: 12/19/2018] [Indexed: 11/18/2022] Open
Abstract
Horizontal Gene Transfer was long thought to be marginal in Mycoplasma a large group of wall-less bacteria often portrayed as minimal cells because of their reduced genomes (ca. 0.5 to 2.0 Mb) and their limited metabolic pathways. This view was recently challenged by the discovery of conjugative exchanges of large chromosomal fragments that equally affected all parts of the chromosome via an unconventional mechanism, so that the whole mycoplasma genome is potentially mobile. By combining next generation sequencing to classical mating and evolutionary experiments, the current study further explored the contribution and impact of this phenomenon on mycoplasma evolution and adaptation using the fluoroquinolone enrofloxacin (Enro), for selective pressure and the ruminant pathogen Mycoplasma agalactiae, as a model organism. For this purpose, we generated isogenic lineages that displayed different combination of spontaneous mutations in Enro target genes (gyrA, gyrB, parC and parE) in association to gradual level of resistance to Enro. We then tested whether these mutations can be acquired by a susceptible population via conjugative chromosomal transfer knowing that, in our model organism, the 4 target genes are scattered in three distinct and distant loci. Our data show that under antibiotic selective pressure, the time scale of the mutational pathway leading to high-level of Enro resistance can be readily compressed into a single conjugative step, in which several EnroR alleles were transferred from resistant to susceptible mycoplasma cells. In addition to acting as an accelerator for antimicrobial dissemination, mycoplasma chromosomal transfer reshuffled genomes beyond expectations and created a mosaic of resistant sub-populations with unpredicted and unrelated features. Our findings provide insights into the process that may drive evolution and adaptability of several pathogenic Mycoplasma spp. via an unconventional conjugative mechanism.
Collapse
Affiliation(s)
- Marion Faucher
- IHAP, Université de Toulouse, INRA, ENVT, Toulouse, France
- UMR Mycoplasmoses of ruminants, ANSES, VetAgro Sup, University of Lyon, Lyon, France
| | | | | | - Eveline Sagné
- IHAP, Université de Toulouse, INRA, ENVT, Toulouse, France
| | | | | | - Marc-Serge Marenda
- Asia-Pacific Centre for Animal Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Florence Tardy
- UMR Mycoplasmoses of ruminants, ANSES, VetAgro Sup, University of Lyon, Lyon, France
| | - Christine Citti
- IHAP, Université de Toulouse, INRA, ENVT, Toulouse, France
- * E-mail: (LXN); (CC)
| |
Collapse
|
39
|
Liu W, Zhou D, Yuan F, Liu Z, Duan Z, Yang K, Guo R, Li M, Li S, Fang L, Xiao S, Tian Y. Surface proteins mhp390 (P68) contributes to cilium adherence and mediates inflammation and apoptosis in Mycoplasma hyopneumoniae. Microb Pathog 2018; 126:92-100. [PMID: 30385395 DOI: 10.1016/j.micpath.2018.10.035] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/22/2018] [Accepted: 10/26/2018] [Indexed: 10/28/2022]
Abstract
Mycoplasma hyopneumoniae is the causative agent of porcine enzootic pneumonia (EP) and responsible for major economic losses in global swine industry. After colonization of the respiratory epithelium, M. hyopneumoniae elicits a general mucociliary clearance loss, prolonged inflammatory response, host immunosuppression and secondary infections. Until now, the pathogenesis of M. hyopneumoniae is not completely elucidated. This present study explores the pathogenicity of mhp390 (P68, a membrane-associated lipoprotein) by elucidating its multiple functions. Microtitrer plate adherence assay demonstrated that mhp390 is a new cilia adhesin that plays an important role in binding to swine tracheal cilia. Notably, mhp390 could induce significant apoptosis of lymphocytes and monocytes from peripheral blood mononuclear cells (PBMCs), as well as primary alveolar macrophages (PAMs), which might weaken the host immune response. In addition, mhp390 contributes to the production of proinflammatory cytokines, at least partially, via the release of IL-1β and TNF-α. To the best of our knowledge, this is the first report of the multiple functions of M. hyopneumoniae mhp390, which may supplement known virulence genes and further develop our understanding of the pathogenicity of M. hyopneumoniae.
Collapse
Affiliation(s)
- Wei Liu
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, 430070, People's Republic of China
| | - Danna Zhou
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, 430070, People's Republic of China
| | - Fangyan Yuan
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, 430070, People's Republic of China
| | - Zewen Liu
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, 430070, People's Republic of China
| | - Zhengyin Duan
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, 430070, People's Republic of China
| | - Keli Yang
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, 430070, People's Republic of China
| | - Rui Guo
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, 430070, People's Republic of China
| | - Mao Li
- Division of Animal Infectious Diseases, State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Sha Li
- Division of Animal Infectious Diseases, State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Liurong Fang
- Division of Animal Infectious Diseases, State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Shaobo Xiao
- Division of Animal Infectious Diseases, State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| | - Yongxiang Tian
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
40
|
Fritsch TE, Siqueira FM, Schrank IS. Global analysis of sRNA target genes in Mycoplasma hyopneumoniae. BMC Genomics 2018; 19:767. [PMID: 30352553 PMCID: PMC6199787 DOI: 10.1186/s12864-018-5136-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 10/01/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Small RNAs (sRNAs) are noncoding molecules that regulate different cellular activities in several bacteria. The role of sRNAs in gene expression regulation is poorly characterized in the etiological agent of porcine enzootic pneumonia Mycoplasma hyopneumoniae. We performed a global analysis of the sRNAs, sRNA target genes and regulatory elements previously identified in their genome and analyzed the expression of some sRNAs and their target genes by quantitative RT-PCR (qPCR) in three different culture conditions. RESULTS Seven of the 145 sRNA target genes are organized as monocistronic genes (mCs) while the other 138 sRNA target genes are organized into transcriptional units (TU). The identification of transcriptional regulatory elements (promoter motif, DNA repeat sequence or intrinsic terminator) was verified in 116 of the 145 sRNA target genes. Moreover, the 29 sRNA target genes without regulatory elements revealed the presence of at least one regulatory element in the boundaries of the TU or in other internal genes of the TU. We verified that 16 sRNAs showed differential expression, seven in heat shock condition and 14 in oxidative stress condition. Analysis of the differential expression of the sRNA target genes showed that the tested sRNAs possibly regulate gene expression. The sRNA target genes were up- or down-regulated possibly in response to sRNA only under oxidative stress condition. Moreover, the sRNA target genes are involved in diverse processes of the cell, some of which could be linked to transcription processes and cell homeostasis. CONCLUSION Our results indicate that bacterial sRNAs could regulate a number of targets with various outcomes, and different correlations between the levels of sRNA transcripts and their target gene mRNAs were found, which suggest that the regulation of gene expression via sRNAs may play an important role in mycoplasma.
Collapse
Affiliation(s)
- Tiago Ebert Fritsch
- Centro de Biotecnologia, Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS Brazil
| | - Franciele Maboni Siqueira
- Centro de Biotecnologia, Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS Brazil
| | - Irene Silveira Schrank
- Centro de Biotecnologia, Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS Brazil
- Departamento de Biologia Molecular e Biotecnologia – Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves 9500, P. 43421, C.P. 15005, CEP, Porto Alegre, RS 91501-970 Brazil
| |
Collapse
|
41
|
Evidence for Multidrug Resistance in Nonpathogenic Mycoplasma Species Isolated from South African Poultry. Appl Environ Microbiol 2018; 84:AEM.01660-18. [PMID: 30171000 DOI: 10.1128/aem.01660-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 08/23/2018] [Indexed: 01/26/2023] Open
Abstract
One hundred seventy-eight mycoplasma strains isolated from South African poultry flocks between 2003 and 2015 were identified by full-genome sequencing and phylogenetic analysis of the 16S rRNA gene and were classified as follows: Mycoplasma gallisepticum (25%), M. gallinarum (25%), M. gallinaceum, (23%), M. pullorum (14%), M. synoviae (10%), and M. iners (3%), as well as one Acheoplasma laidlawii strain (1%). MIC testing was performed on the axenic samples, and numerous strains of each species were resistant to either chlortetracycline or tylosin or both, with variable sensitivity to enrofloxacin. The strains of all species tested remained sensitive to tiamulin, except for one M. gallinaceum sample that demonstrated intermediate sensitivity. The mutation of A to G at position 2059 (A2059G) in the 23S rRNA gene, which is associated with macrolide resistance, was found in the South African M. gallisepticum and M. synoviae strains, as well as a clear correlation between macrolide resistance in M. gallinarum and M. gallinaceum and mutations G354A and G748A in the L4 ribosomal protein and 23S rRNA gene, respectively. No correlation between resistance and point mutations in the genes studied could be found for M. pullorum Only a few strains were resistant to enrofloxacin, apart from one M. synoviae strain with point mutation D420N, which has been associated with quinolone resistance, and no other known markers for quinolone resistance were found in this study. Proportionally more antimicrobial-resistant strains were detected in M. gallinaceum, M. gallinarum, and M. pullorum than in M. gallisepticum and M. synoviae Of concern, three M. gallinaceum strains showed multidrug resistance to chlortetracycline, tylosin, and oxytetracycline.IMPORTANCE Nonpathogenic poultry Mycoplasma species are often overlooked due to their lesser impact on poultry health and production compared to the OIE-listed pathogenic strains M. gallisepticum and M. synoviae The use of antimicrobials as in-feed growth promoters and for the control of mycoplasmosis is common in poultry production across the world. Here, we provide evidence that certain nonpathogenic Mycoplasma species are acquiring multidrug resistance traits. This would have significant implications if these species, for which no vaccines are applied, are able to transfer their antibiotic resistance genes to other mycoplasmas and bacteria that may enter the human food chain.
Collapse
|
42
|
Beier LS, Siqueira FM, Schrank IS. Evaluation of growth and gene expression of Mycoplasma hyopneumoniae and Mycoplasma hyorhinis in defined medium. Mol Biol Rep 2018; 45:2469-2479. [DOI: 10.1007/s11033-018-4413-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 10/01/2018] [Indexed: 12/17/2022]
|
43
|
Leal Zimmer FMDA, Paludo GP, Moura H, Barr JR, Ferreira HB. Differential secretome profiling of a swine tracheal cell line infected with mycoplasmas of the swine respiratory tract. J Proteomics 2018; 192:147-159. [PMID: 30176387 DOI: 10.1016/j.jprot.2018.08.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 08/06/2018] [Accepted: 08/29/2018] [Indexed: 12/22/2022]
Abstract
Mycoplasma hyopneumoniae and Mycoplasma flocculare are genetically similar. However, M. hyopneumoniae causes porcine enzootic pneumonia, while M. flocculare is a commensal bacterium. M. hyopneumoniae and M. flocculare do not penetrate their host cells, and secreted proteins are important for bacterium-host interplay. Thus, the secretomes of a swine trachea cell line (NPTr) infected with M. hyopneumoniae 7448 (a pathogenic strain), M. hyopneumoniae J (a non-pathogenic strain) and M. flocculare were compared to shed light in bacterium-host interactions. Medium from the cultures was collected, and secreted proteins were identified by a LC-MS/MS. Overall numbers of identified host and bacterial proteins were, respectively, 488 and 58, for NPTr/M. hyopneumoniae 7448; 371 and 67, for NPTr/M. hyopneumoniae J; and 203 and 81, for NPTr/M. flocculare. The swine cells revealed different secretion profiles in response to the infection with each M. hyopneumoniae strain or with M. flocculare. DAMPs and extracellular proteasome proteins, secreted in response to cell injury and death, were secreted by NPTr cells infected with M. hyopneumoniae 7448. All three mycoplasmas secreted virulence factors during NPTr infection, but M. hyopneumoniae 7448 secreted higher number of adhesins and hypothetical proteins, that may be related with pathogenicity. SIGNIFICANCE: The enzootic pneumonia caused by mycoplasmas of swine respiratory tract has economic loss consequences in pig industry due to antibiotic costs and pig weight loss. However, some genetically similar mycoplasmas are pathogenic while others, such as Mycoplasma hyopneumoniae and Mycoplasma flocculare, are non-pathogenic. Here, we conducted an infection assay between swine cells and pathogenic and non-pathogenic mycoplasmas to decipher secreted proteins during host-pathogen interaction. Mycoplasma response to cell infection was also observed. Our study provided new insights on secretion profile of swine cells in response to the infection with pathogenic and non-pathogenic mycoplasmas. It was possible to observe that pathogenic M. hyopneumoniae 7448 secreted known virulence factors and swine cells responded by inducing cell death. Otherwise, M. hyopneumoniae J and M. flocculare, non-pathogenic mycoplasmas, secreted a different profile of virulence factors in response to swine cells. Consequently, swine cells altered their secretome profile, but the changes were not sufficient to cause disease.
Collapse
Affiliation(s)
- Fernanda Munhoz Dos Anjos Leal Zimmer
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, 9500 Porto Alegre, Rio Grande do Sul, Brazil
| | - Gabriela Prado Paludo
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, 9500 Porto Alegre, Rio Grande do Sul, Brazil
| | - Hercules Moura
- Biological Mass Spectrometry Laboratory, Clinical Chemistry Branch, Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - John R Barr
- Biological Mass Spectrometry Laboratory, Clinical Chemistry Branch, Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Henrique Bunselmeyer Ferreira
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, 9500 Porto Alegre, Rio Grande do Sul, Brazil.
| |
Collapse
|
44
|
Garcia-Morante B, Dors A, León-Kempis R, Pérez de Rozas A, Segalés J, Sibila M. Assessment of the in vitro growing dynamics and kinetics of the non-pathogenic J and pathogenic 11 and 232 Mycoplasma hyopneumoniae strains. Vet Res 2018; 49:45. [PMID: 29801517 PMCID: PMC5970506 DOI: 10.1186/s13567-018-0541-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 04/30/2018] [Indexed: 12/17/2022] Open
Abstract
Information on the in vitro growth of pathogenic and non-pathogenic Mycoplasma hyopneumoniae (M. hyopneumoniae) strains is scarce and controversial. Despite its limitations, the colour changing units (CCU) assay is still considered the golden standard titration technique for M. hyopneumoniae culture. Thus, the aims of the present study were: (1) to describe the growth dynamics and kinetics of pathogenic and non-pathogenic M. hyopneumoniae strains, and (2) to monitor the strains’ daily growth by ATP luminometry, CCU, colony forming units (CFU), and DNA quantification by real time quantitative PCR (qPCR) and by fluorescent double-stranded DNA (dsDNA) staining, to evaluate them as putative titration methodologies. The growth of the non-pathogenic J (ATCC®25934™) type strain and the pathogenic 11 (ATCC®25095™) reference strain and 232 strain was modelled by the Gompertz model. Globally, all three-strain cultures showed the same growing phases as well as similar maximal titres within a particular technique, but for CFU. However, the J strain displayed the fastest growing. During the logarithmic phase of growing, CCU, ATP and M. hyopneumoniae copy titres were strongly and linearly associated, and correlation between techniques could be reliably established. In conclusion, real-time culture titration by means of ATP or molecular assays was useful to describe the in vitro growth of the tested strains. Knowledge about the in vitro growth behaviour of a specific strain in a specific medium may provide several advantages, including information about the time required to reach maximal titres by the culture. Noteworthy, the obtained results refers to the three strains used, so extrapolation to other M. hyopneumoniae strains or culture conditions should be made cautiously.
Collapse
Affiliation(s)
- Beatriz Garcia-Morante
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.,Boehringer Ingelheim Veterinary Research Center GmbH & Co. KG (BI VRC), 30559, Hannover, Germany
| | - Arkadius Dors
- Department of Swine Diseases, National Veterinary Research Institute, 24-100, Puławy, Poland
| | - Rocio León-Kempis
- Boehringer Ingelheim Veterinary Research Center GmbH & Co. KG (BI VRC), 30559, Hannover, Germany
| | - Ana Pérez de Rozas
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Joaquim Segalés
- UAB, Centre de Recerca en Sanitat Animal (CReSA, UAB-IRTA), Campus de la, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.,Departament de Sanitati Anatomia Animals, Facultat de Veterinària, UAB, 08193, Bellaterra, Spain
| | - Marina Sibila
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.
| |
Collapse
|
45
|
Fourour S, Fablet C, Tocqueville V, Dorenlor V, Eono F, Eveno E, Kempf I, Marois-Créhan C. A new multiplex real-time TaqMan ® PCR for quantification of Mycoplasma hyopneumoniae, M. hyorhinis and M. flocculare: exploratory epidemiological investigations to research mycoplasmal association in enzootic pneumonia-like lesions in slaughtered pigs. J Appl Microbiol 2018; 125:345-355. [PMID: 29603531 DOI: 10.1111/jam.13770] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 03/14/2018] [Accepted: 03/23/2018] [Indexed: 11/30/2022]
Abstract
AIMS A new multiplex qPCR, targeting Mycoplasma (M.) hyopneumoniae, M. hyorhinis and M. flocculare, was developed and the relationship between detection of those mycoplasma species and the extent of gross pneumonia-like lesions in slaughtered pigs lungs were investigated. METHODS AND RESULTS The multiplex qPCR method targets the p102, p37 and fruA genes and has detection limits of 14, 146 and 16 genome equivalents μl-1 for M. hyopneumoniae, M. hyorhinis and M. flocculare, respectively. In all, 671 lungs were collected and analysed, among them 666 were scored for macroscopic pneumonia and categorized according to the extent of the lesions (no or minor lesions, moderate lesions and extensive lesions). According to results of multiplex qPCR, 59·5% were positive for M. hyopneumoniae, 3·4% for M. hyorhinis and 34·7% for M. flocculare, with on average, 3·1 × 107 , 9·7 × 106 and 5·7 × 106 genome equivalents of mycoplasma ml-1 , respectively. More results showed that no or minor lesions were associated with multiplex qPCR-negative results or qPCR-positive results for M. flocculare. Moderate to extensive lesions were positively correlated with qPCR-positive results for M. hyopneumoniae. Extensive lesions were associated with qPCR-positive results for at least two mycoplasma species (M. hyopneumoniae and M. hyorhinis). CONCLUSION The findings also indicated that M. hyopneumoniae and M. hyorhinis significantly increased the odds for a lung to have macroscopic pneumonia. No relationship was found between the extent of lesions and the mycoplasma genome load. SIGNIFICANCE AND IMPACT OF THE STUDY This new multiplex qPCR appears to be specific, sufficiently sensitive and repeatable. The validation of this method with field samples guarantees its use for field epidemiological investigations, particularly to gain more insight into the aetiology of the porcine respiratory disease complex.
Collapse
Affiliation(s)
- S Fourour
- Ploufragan-Plouzané Laboratory, Mycoplasmology-Bacteriology Unit, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Ploufragan, France.,European University of Brittany-Loire, Rennes, France
| | - C Fablet
- Ploufragan-Plouzané Laboratory, Swine Epidemiology and Welfare Unit, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Ploufragan, France.,European University of Brittany-Loire, Rennes, France
| | - V Tocqueville
- Ploufragan-Plouzané Laboratory, Mycoplasmology-Bacteriology Unit, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Ploufragan, France.,European University of Brittany-Loire, Rennes, France
| | - V Dorenlor
- Ploufragan-Plouzané Laboratory, Swine Epidemiology and Welfare Unit, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Ploufragan, France.,European University of Brittany-Loire, Rennes, France
| | - F Eono
- Ploufragan-Plouzané Laboratory, Swine Epidemiology and Welfare Unit, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Ploufragan, France.,European University of Brittany-Loire, Rennes, France
| | - E Eveno
- Ploufragan-Plouzané Laboratory, Swine Epidemiology and Welfare Unit, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Ploufragan, France.,European University of Brittany-Loire, Rennes, France
| | - I Kempf
- Ploufragan-Plouzané Laboratory, Mycoplasmology-Bacteriology Unit, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Ploufragan, France.,European University of Brittany-Loire, Rennes, France
| | - C Marois-Créhan
- Ploufragan-Plouzané Laboratory, Mycoplasmology-Bacteriology Unit, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Ploufragan, France.,European University of Brittany-Loire, Rennes, France
| |
Collapse
|
46
|
Genome-Wide Analysis of Mycoplasma bovirhinis GS01 Reveals Potential Virulence Factors and Phylogenetic Relationships. G3-GENES GENOMES GENETICS 2018; 8:1417-1424. [PMID: 29602809 PMCID: PMC5940136 DOI: 10.1534/g3.118.200018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Mycoplasma bovirhinis is a significant etiology in bovine pneumonia and mastitis, but our knowledge about the genetic and pathogenic mechanisms of M. bovirhinis is very limited. In this study, we sequenced the complete genome of M. bovirhinis strain GS01 isolated from the nasal swab of pneumonic calves in Gansu, China, and we found that its genome forms a 847,985 bp single circular chromosome with a GC content of 27.57% and with 707 protein-coding genes. The putative virulence determinants of M. bovirhinis were then analyzed. Results showed that three genomic islands and 16 putative virulence genes, including one adhesion gene enolase, seven surface lipoproteins, proteins involved in glycerol metabolism, and cation transporters, might be potential virulence factors. Glycerol and pyruvate metabolic pathways were defective. Comparative analysis revealed remarkable genome variations between GS01 and a recently reported HAZ141_2 strain, and extremely low homology with others mycoplasma species. Phylogenetic analysis demonstrated that M. bovirhinis was most genetically close to M. canis, distant from other bovine Mycoplasma species. Genomic dissection may provide useful information on the pathogenic mechanisms and genetics of M. bovirhinis.
Collapse
|
47
|
Galvao Ferrarini M, Mucha SG, Parrot D, Meiffrein G, Ruggiero Bachega JF, Comte G, Zaha A, Sagot MF. Hydrogen peroxide production and myo-inositol metabolism as important traits for virulence of Mycoplasma hyopneumoniae. Mol Microbiol 2018; 108:683-696. [PMID: 29624763 DOI: 10.1111/mmi.13957] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2018] [Indexed: 01/18/2023]
Abstract
Mycoplasma hyopneumoniae is the causative agent of enzootic pneumonia. In our previous work, we reconstructed the metabolic models of this species along with two other mycoplasmas from the respiratory tract of swine: Mycoplasma hyorhinis, considered less pathogenic but which nonetheless causes disease and Mycoplasma flocculare, a commensal bacterium. We identified metabolic differences that partially explained their different levels of pathogenicity. One important trait was the production of hydrogen peroxide from the glycerol metabolism only in the pathogenic species. Another important feature was a pathway for the metabolism of myo-inositol in M. hyopneumoniae. Here, we tested these traits to understand their relation to the different levels of pathogenicity, comparing not only the species but also pathogenic and attenuated strains of M. hyopneumoniae. Regarding the myo-inositol metabolism, we show that only M. hyopneumoniae assimilated this carbohydrate and remained viable when myo-inositol was the primary energy source. Strikingly, only the two pathogenic strains of M. hyopneumoniae produced hydrogen peroxide in complex medium. We also show that this production was dependent on the presence of glycerol. Although further functional tests are needed, we present in this work two interesting metabolic traits of M. hyopneumoniae that might be directly related to its enhanced virulence.
Collapse
Affiliation(s)
- Mariana Galvao Ferrarini
- ERABLE Team, Institut Nationale de Recherche en Informatique et Automation, Villeurbanne, France.,Laboratoire de Biometrie et Biologie Evolutive, Universite Claude Bernard Lyon 1, Villeurbanne, France.,Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Scheila Gabriele Mucha
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Delphine Parrot
- ERABLE Team, Institut Nationale de Recherche en Informatique et Automation, Villeurbanne, France.,Laboratoire de Biometrie et Biologie Evolutive, Universite Claude Bernard Lyon 1, Villeurbanne, France
| | - Guillaume Meiffrein
- Centre d'Etude des Substances Naturelles, Universite Claude Bernard Lyon 1, Villeurbanne, France
| | - Jose Fernando Ruggiero Bachega
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Departamento de Farmacociencias, Universidade Federal de Ciencias da Saude de Porto Alegre, Porto Alegre, Brazil
| | - Gilles Comte
- Centre d'Etude des Substances Naturelles, Universite Claude Bernard Lyon 1, Villeurbanne, France
| | - Arnaldo Zaha
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Marie-France Sagot
- ERABLE Team, Institut Nationale de Recherche en Informatique et Automation, Villeurbanne, France.,Laboratoire de Biometrie et Biologie Evolutive, Universite Claude Bernard Lyon 1, Villeurbanne, France
| |
Collapse
|
48
|
Zhu L, Shahid MA, Markham J, Browning GF, Noormohammadi AH, Marenda MS. Genome analysis of Mycoplasma synoviae strain MS-H, the most common M. synoviae strain with a worldwide distribution. BMC Genomics 2018; 19:117. [PMID: 29394882 PMCID: PMC5797395 DOI: 10.1186/s12864-018-4501-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 01/28/2018] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND The bacterial pathogen Mycoplasma synoviae can cause subclinical respiratory disease, synovitis, airsacculitis and reproductive tract disease in poultry and is a major cause of economic loss worldwide. The M. synoviae strain MS-H was developed by chemical mutagenesis of an Australian isolate and has been used as a live attenuated vaccine in many countries over the past two decades. As a result it may now be the most prevalent strain of M. synoviae globally. Differentiation of the MS-H vaccine from local field strains is important for epidemiological investigations and is often required for registration of the vaccine. RESULTS The complete genomic sequence of the MS-H strain was determined using a combination of Illumina and Nanopore methods and compared to WVU-1853, the M. synoviae type strain isolated in the USA 30 years before the parent strain of MS-H, and MS53, a more recent isolate from Brazil. The vaccine strain genome had a slightly larger number of pseudogenes than the two other strains and contained a unique 55 kb chromosomal inversion partially affecting a putative genomic island. Variations in gene content were also noted, including a deoxyribose-phosphate aldolase (deoC) fragment and an ATP-dependent DNA helicase gene found only in MS-H. Some of these sequences may have been acquired horizontally from other avian mycoplasma species. CONCLUSIONS MS-H was somewhat more similar to WVU-1853 than to MS53. The genome sequence of MS-H will enable identification of vaccine-specific genetic markers for use as diagnostic and epidemiological tools to better control M. synoviae.
Collapse
Affiliation(s)
- Ling Zhu
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Werribee, VIC 3030 Australia
| | - Muhammad A. Shahid
- Department of Pathobiology, Faculty of Veterinary Sciences, Bahauddin Zakariya University, Multan, Punjab 60800 Pakistan
| | - John Markham
- Department of Electrical and Electronic Engineering, The University of Melbourne, Parkville, VIC 3000 Australia
| | - Glenn F. Browning
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010 Australia
| | - Amir H. Noormohammadi
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Werribee, VIC 3030 Australia
| | - Marc S. Marenda
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Werribee, VIC 3030 Australia
| |
Collapse
|
49
|
Berry IJ, Jarocki VM, Tacchi JL, Raymond BBA, Widjaja M, Padula MP, Djordjevic SP. N-terminomics identifies widespread endoproteolysis and novel methionine excision in a genome-reduced bacterial pathogen. Sci Rep 2017; 7:11063. [PMID: 28894154 PMCID: PMC5593965 DOI: 10.1038/s41598-017-11296-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 08/21/2017] [Indexed: 12/12/2022] Open
Abstract
Proteolytic processing alters protein function. Here we present the first systems-wide analysis of endoproteolysis in the genome-reduced pathogen Mycoplasma hyopneumoniae. 669 N-terminal peptides from 164 proteins were identified, demonstrating that functionally diverse proteins are processed, more than half of which 75 (53%) were accessible on the cell surface. Multiple cleavage sites were characterised, but cleavage with arginine in P1 predominated. Putative functions for a subset of cleaved fragments were assigned by affinity chromatography using heparin, actin, plasminogen and fibronectin as bait. Binding affinity was correlated with the number of cleavages in a protein, indicating that novel binding motifs are exposed, and protein disorder increases, after a cleavage event. Glyceraldehyde 3-phosphate dehydrogenase was used as a model protein to demonstrate this. We define the rules governing methionine excision, show that several aminopeptidases are involved, and propose that through processing, genome-reduced organisms can expand protein function.
Collapse
Affiliation(s)
- Iain J Berry
- The ithree institute, University of Technology Sydney, PO Box 123, Broadway, NSW, 2007, Australia.,Proteomics Core Facility, University of Technology Sydney, PO Box 123, Broadway, NSW, 2007, Australia
| | - Veronica M Jarocki
- The ithree institute, University of Technology Sydney, PO Box 123, Broadway, NSW, 2007, Australia.,Proteomics Core Facility, University of Technology Sydney, PO Box 123, Broadway, NSW, 2007, Australia
| | - Jessica L Tacchi
- The ithree institute, University of Technology Sydney, PO Box 123, Broadway, NSW, 2007, Australia.,Proteomics Core Facility, University of Technology Sydney, PO Box 123, Broadway, NSW, 2007, Australia
| | - Benjamin B A Raymond
- The ithree institute, University of Technology Sydney, PO Box 123, Broadway, NSW, 2007, Australia.,Proteomics Core Facility, University of Technology Sydney, PO Box 123, Broadway, NSW, 2007, Australia
| | - Michael Widjaja
- The ithree institute, University of Technology Sydney, PO Box 123, Broadway, NSW, 2007, Australia.,Proteomics Core Facility, University of Technology Sydney, PO Box 123, Broadway, NSW, 2007, Australia
| | - Matthew P Padula
- The ithree institute, University of Technology Sydney, PO Box 123, Broadway, NSW, 2007, Australia.,Proteomics Core Facility, University of Technology Sydney, PO Box 123, Broadway, NSW, 2007, Australia
| | - Steven P Djordjevic
- The ithree institute, University of Technology Sydney, PO Box 123, Broadway, NSW, 2007, Australia. .,Proteomics Core Facility, University of Technology Sydney, PO Box 123, Broadway, NSW, 2007, Australia.
| |
Collapse
|
50
|
Genome-Wide Analysis of the First Sequenced Mycoplasma capricolum subsp. capripneumoniae Strain M1601. G3-GENES GENOMES GENETICS 2017; 7:2899-2906. [PMID: 28754725 PMCID: PMC5592918 DOI: 10.1534/g3.117.300085] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Mycoplasma capricolum subsp. capripneumoniae (Mccp) is a common pathogen of goats that causes contagious caprine pleuropneumonia. We closed the gap and corrected rRNA operons in the draft genome of Mccp M1601: a strain isolated from an infected goat in a farm in Gansu, China. The genome size of M1601 is 1,016,707 bp with a GC content of 23.67%. We identified 915 genes (occupying 90.27% of the genome), of which 713 are protein-coding genes (excluding 163 pseudogenes). No genomic islands and complete insertion sequences were found in the genome. Putative determinants associated with the organism’s virulence were analyzed, and 26 genes (including one adhesion protein gene, two capsule synthesis gene clusters, two lipoproteins, hemolysin A, ClpB, and proteins involved in pyruvate metabolism and cation transport) were potential virulence factors. In addition, two transporter systems (ATP-binding cassette [ABC] transporters and phosphotransferase) and two secretion systems (Sec and signal recognition particle [SRP] pathways) were observed in the Mccp genome. Genome synteny analysis reveals a good collinear relationship between M1601 and Mccp type strain F38. Phylogenetic analysis based on 11 single-copy core genes of 31 Mycoplasma strains revealed good collinearity between M1601 and Mycoplasma capricolum subsp. capricolum (Mcc) and close relationship among Mycoplasma mycoides cluster strains. Our genome-wide analysis of Mccp M1601 provides helpful information on the pathogenic mechanisms and genetics of Mccp.
Collapse
|