1
|
Baltz RH. Regulation of daptomycin biosynthesis in Streptomyces roseosporus: new insights from genomic analysis and synthetic biology to accelerate lipopeptide discovery and commercial production. Nat Prod Rep 2024; 41:1895-1914. [PMID: 39279757 DOI: 10.1039/d4np00024b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
Covering 2005-2024Daptomycin is a clinically important antibiotic that treats Gram-positive infections of skin and skin structure, bacteremia, and right-sided endocarditis, including those caused by methicillin-resistant Staphylococcus aureus (MRSA). Daptomycin is now generic, and many companies are involved in manufacturing and commercializing this life-saving medicine. There has been much recent interest in improving the daptomycin fermentation of Streptomyces roseosporus by mutagenesis, metabolic engineering, and synthetic biology methods. The genome sequences of two strains discovered and developed at Eli Lilly and Company, a wild-type low-producer and a high-producer induced by N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) mutagenesis, are available for comparitive studies. DNA sequence analysis of the daptomycin biosynthetic gene clusters (BGCs) from these strains indicates that the high producer has two mutations in a large promoter region that drives the transcription of a giant multicistronic mRNA that includes all nine genes involved in daptomycin biosynthesis. The locations of translational start and stop codons strongly suggest that all nine genes are translationally coupled by overlapping stop and start codons or by 70S ribosome scanning. This report also reviews recent studies on this promoter region that have identified at least ten positive or negative regulatory genes suitable to manipulate by metabolic engineering, synthetic biology and focused mutagenesis for strain improvement. Improvements in daptomycin production will also enable high-level production of novel lipopeptide antibiotics identified by genome mining and combinatorial biosynthesis, and accelerate clinical and commercial development of superior lipopeptide antibiotics.
Collapse
Affiliation(s)
- Richard H Baltz
- CognoGen Biotechnology Consulting, 7757 Uliva Way, Sarasota, FL 34238, USA.
| |
Collapse
|
2
|
Huang Y, Zou K, Qing T, Feng B, Zhang P. Metagenomics and metatranscriptomics analyses of antibiotic synthesis in activated sludge. ENVIRONMENTAL RESEARCH 2022; 213:113741. [PMID: 35750126 DOI: 10.1016/j.envres.2022.113741] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/23/2022] [Accepted: 06/18/2022] [Indexed: 06/15/2023]
Abstract
The generic of antibiotics is considered to be a main reason for the generation of antibiotic resistance genes (ARGs) in wastewater treatment plants (WWTPs). However, little has been reported about the antibiotic biosynthesis by activated sludge. In this study, the distribution and expression of antibiotic biosynthetic genes (ABGs) in the floc sludge and biofilm from two WWTPs were deciphered using metagenomics and metatranscriptomics. The results showed that 2% of the community were in general well-linked to antibiotic production, indicating a non-negligible antibiotic synthetic ability of WWTPs. 93 ABGs belonging to 26 antibiotics were determined, among which aminoglycosides, β-lactams, ansamycins, peptides, macrolides were majority. The relative abundances of detected ABGs had a large interval, ranging from 0.000006% to 0.042%. The predominant antibiotic types of synthetic genes with higher relative expression levels were monobactams, penicillin & cephalosporins and streptomycin, primarily belonging to β-lactams and aminoglycosides. The hypothetical synthetic pathways of streptomycin synthesis and penicillin & cephalosporin synthesis were proposed. And the coexistence of ABGs and ARGs for these two antibiotics was also pronounced in activated sludge from meta-omics data. These findings for the first time demonstrated the antibiotic synthetic potential in activated sludges, revealing new sources of antibiotics and resistance genes in WWTPs, and thereby aggravating environmental pollution.
Collapse
Affiliation(s)
- Yu Huang
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China
| | - Kui Zou
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China
| | - Taiping Qing
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China
| | - Bo Feng
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China
| | - Peng Zhang
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China.
| |
Collapse
|
3
|
Abstract
The Streptomyces clavuligerus genome consists in a linear chromosome of about 6.7 Mb and four plasmids (pSCL1 to pSCL4), the latter one of 1.8 Mb. Deletion of pSCL4, results in viable mutants with high instability in the chromosome arms, which may lead to chromosome circularisation. Transcriptomic and proteomic studies comparing different mutants with the wild-type strain improved our knowledge on the biosynthesis and regulation of clavulanic acid, cephamycin C and holomycin. Additional knowledge has been obtained on the SARP-type CcaR activator and the network of connections with other regulators (Brp, AreB, AdpA, BldG, RelA) controlling ccaR expression. The transcriptional pattern of the cephamycin and clavulanic acid clusters is supported by the binding of CcaR to different promoters and confirmed that ClaR is a CcaR-dependent activator that controls the late steps of clavulanic biosynthesis. Metabolomic studies allowed the detection of new metabolites produced by S. clavuligerus such as naringenin, desferroxamines, several N-acyl tunicamycins, the terpenes carveol and cuminyl alcohol or bafilomycin J. Heterologous expression of S. clavuligerus terpene synthases resulted in the formation of no less than 15 different terpenes, although none of them was detected in S. clavuligerus culture broth. In summary, application of the Omic tools results in a better understanding of the molecular biology of S. clavuligerus, that allows the use of this strain as an industrial actinobacterial platform and helps to improve CA production.
Collapse
Affiliation(s)
- Paloma Liras
- Microbiology Section. Department of Molecular Biology University of León, León 24071. Spain
| | - Juan F Martín
- Microbiology Section. Department of Molecular Biology University of León, León 24071. Spain
| |
Collapse
|
4
|
Enhancing Ristomycin A Production by Overexpression of ParB-Like StrR Family Regulators Controlling the Biosynthesis Genes. Appl Environ Microbiol 2021; 87:e0106621. [PMID: 34505824 DOI: 10.1128/aem.01066-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Amycolatopsis sp. strain TNS106 harbors a ristomycin-biosynthetic gene cluster (asr) in its genome and produces ristomycin A. Deletion of the sole cluster-situated StrR family regulatory gene, asrR, abolished ristomycin A production and the transcription of the asr genes orf5 to orf39. The ristomycin A fermentation titer in Amycolatopsis sp. strain TNS106 was dramatically improved by overexpression of asrR and a heterologous StrR family regulatory gene, bbr, from the balhimycin-biosynthetic gene cluster (BGC) utilizing strong promoters and multiple gene copies. Ristomycin A production was improved by approximately 60-fold, resulting in a fermentation titer of 4.01 g/liter in flask culture, in one of the engineered strains. Overexpression of AsrR and Bbr upregulated transcription of tested asr biosynthetic genes, indicating that these asr genes were positively regulated by AsrR and Bbr. However, only the promoter region of the asrR operon and the intergenic region upstream of orf12 were bound by AsrR and Bbr in gel retardation assays, suggesting that AsrR and Bbr directly regulated the asrR operon and probably orf12 to orf14 but no other asr biosynthetic genes. Further assays with synthetic short probes showed that AsrR and Bbr specifically bound not only probes containing the canonical inverted repeats but also a probe with only one 7-bp element of the inverted repeats in its native context. AsrR and Bbr have an N-terminal ParB-like domain and a central winged helix-turn-helix DNA-binding domain. Site-directed mutations indicated that the N-terminal ParB-like domain was involved in activation of ristomycin A biosynthesis and did not affect the DNA-binding activity of AsrR and Bbr. IMPORTANCE This study showed that overexpression of either a native StrR family regulator (AsrR) or a heterologous StrR family regulator (Bbr) dramatically improved ristomycin A production by increasing the transcription of biosynthetic genes directly or indirectly. The conserved ParB-like domain of AsrR and Bbr was demonstrated to be involved in the regulation of asr BGC expression. These findings provide new insights into the mechanism of StrR family regulators in the regulation of glycopeptide antibiotic biosynthesis. Furthermore, the regulator overexpression plasmids constructed in this study could serve as valuable tools for strain improvement and genome mining for new glycopeptide antibiotics. In addition, ristomycin A is a type III glycopeptide antibiotic clinically used as a diagnostic reagent due to its side effects. The overproduction strains engineered in this study are ideal materials for industrial production of ristomycin A.
Collapse
|
5
|
Interplay between Nucleoid-Associated Proteins and Transcription Factors in Controlling Specialized Metabolism in Streptomyces. mBio 2021; 12:e0107721. [PMID: 34311581 PMCID: PMC8406272 DOI: 10.1128/mbio.01077-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Lsr2 is a small nucleoid-associated protein found throughout the actinobacteria. Lsr2 functions similarly to the well-studied H-NS, in that it preferentially binds AT-rich sequences and represses gene expression. In Streptomyces venezuelae, Lsr2 represses the expression of many specialized metabolic clusters, including the chloramphenicol antibiotic biosynthetic gene cluster, and deleting lsr2 leads to significant upregulation of chloramphenicol cluster expression. We show here that Lsr2 likely exerts its repressive effects on the chloramphenicol cluster by polymerizing along the chromosome and by bridging sites within and adjacent to the chloramphenicol cluster. CmlR is a known activator of the chloramphenicol cluster, but expression of its associated gene is not upregulated in an lsr2 mutant strain. We demonstrate that CmlR is essential for chloramphenicol production, and further reveal that CmlR functions to “countersilence” Lsr2’s repressive effects by recruiting RNA polymerase and enhancing transcription, with RNA polymerase effectively clearing bound Lsr2 from the chloramphenicol cluster DNA. Our results provide insight into the interplay between opposing regulatory proteins that govern antibiotic production in S. venezuelae, which could be exploited to maximize the production of bioactive natural products in other systems.
Collapse
|
6
|
van Bergeijk DA, Terlouw BR, Medema MH, van Wezel GP. Ecology and genomics of Actinobacteria: new concepts for natural product discovery. Nat Rev Microbiol 2020; 18:546-558. [DOI: 10.1038/s41579-020-0379-y] [Citation(s) in RCA: 217] [Impact Index Per Article: 43.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2020] [Indexed: 01/09/2023]
|
7
|
Bhattarai K, Bastola R, Baral B. Antibiotic drug discovery: Challenges and perspectives in the light of emerging antibiotic resistance. ADVANCES IN GENETICS 2020; 105:229-292. [PMID: 32560788 DOI: 10.1016/bs.adgen.2019.12.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Amid a rising threat of antimicrobial resistance in a global scenario, our huge investments and high-throughput technologies injected for rejuvenating the key therapeutic scaffolds to suppress these rising superbugs has been diminishing severely. This has grasped world-wide attention, with increased consideration being given to the discovery of new chemical entities. Research has now proven that the relatively tiny and simpler microbes possess enhanced capability of generating novel and diverse chemical constituents with huge therapeutic leads. The usage of these beneficial organisms could help in producing new chemical scaffolds that govern the power to suppress the spread of obnoxious superbugs. Here in this review, we have explicitly focused on several appealing strategies employed for the generation of new chemical scaffolds. Also, efforts on providing novel insights on some of the unresolved questions in the production of metabolites, metabolic profiling and also the serendipity of getting "hit molecules" have been rigorously discussed. However, we are highly aware that biosynthetic pathway of different classes of secondary metabolites and their biosynthetic route is a vast topic, thus we have avoided discussion on this topic.
Collapse
Affiliation(s)
- Keshab Bhattarai
- University of Tübingen, Tübingen, Germany; Center for Natural and Applied Sciences (CENAS), Kathmandu, Nepal
| | - Rina Bastola
- Spinal Cord Injury Association-Nepal (SCIAN), Pokhara, Nepal
| | - Bikash Baral
- Spinal Cord Injury Association-Nepal (SCIAN), Pokhara, Nepal.
| |
Collapse
|
8
|
He J, Wei X, Yang Z, Li Y, Ju J, Ma J. Characterization of Regulatory and Transporter Genes in the Biosynthesis of Anti-Tuberculosis Ilamycins and Production in a Heterologous Host. Mar Drugs 2020; 18:md18040216. [PMID: 32316457 PMCID: PMC7230496 DOI: 10.3390/md18040216] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/12/2020] [Accepted: 04/14/2020] [Indexed: 12/18/2022] Open
Abstract
Ilamycins are cyclopeptides with novel structures that have been isolated from different Actinomycetes. They showed strong anti-tuberculosis activity and could serve as important anti-tuberculosis drug leads. The functions of the pre-tailoring and the post-tailoring genes in the biosynthesis of ilamycins have been elucidated, but the functions of the regulatory and transporter genes remain elusive. We reported herein the functions of four genes in ilamycin biosynthetic gene cluster (ila BGC) including two regulatory genes (ilaA and ilaB) and two transporter genes (ilaJ and ilaK) and the heterologous expression of ila BGC. The IlaA and IlaB were unambiguously shown to be negative and positive regulator of ilamycins biosynthesis, respectively. Consistent with these roles, inactivation of ilaA and ilaB (independent of each other) was shown to enhance and abolish the production of ilamycins, respectively. Total yields of ilamycins were enhanced 3.0-fold and 1.9-fold by inactivation of ilaA and overexpression of ilaB compared to those of in the Streptomyces atratus SCSIO ZH16, respectively. In addition, the ila BGC was successfully expressed in Streptomyces coelicolor M1152, which indicated that all biosynthetic elements for the construction of ilamycins were included in the PAC7A6. These results not only lay a foundation for further exploration of ilamycins, but also provide the genetic elements for synthetic biology.
Collapse
Affiliation(s)
- Jianqiao He
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (J.H.); (X.W.); (Z.Y.); (Y.L.); (J.J.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Wei
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (J.H.); (X.W.); (Z.Y.); (Y.L.); (J.J.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhijie Yang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (J.H.); (X.W.); (Z.Y.); (Y.L.); (J.J.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Li
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (J.H.); (X.W.); (Z.Y.); (Y.L.); (J.J.)
| | - Jianhua Ju
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (J.H.); (X.W.); (Z.Y.); (Y.L.); (J.J.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 510301, China
| | - Junying Ma
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (J.H.); (X.W.); (Z.Y.); (Y.L.); (J.J.)
- Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 510301, China
- Correspondence: ; Tel.: +(86)20-34066449
| |
Collapse
|
9
|
Zhao G, Yao S, Rothchild KW, Liu T, Liu Y, Lian J, He H, Ryan KS, Du Y. The Biosynthetic Gene Cluster of Pyrazomycin—A C‐Nucleoside Antibiotic with a Rare Pyrazole Moiety. Chembiochem 2019; 21:644-649. [DOI: 10.1002/cbic.201900449] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Indexed: 12/22/2022]
Affiliation(s)
- Guiyun Zhao
- Institute of Pharmaceutical Biotechnology and The First Affiliated HospitalZhejiang University School of Medicine 866 Yuhangtang Road Hangzhou 310058 P. R. China
| | - Shunyu Yao
- Institute of Pharmaceutical Biotechnology and The First Affiliated HospitalZhejiang University School of Medicine 866 Yuhangtang Road Hangzhou 310058 P. R. China
| | - Kristina W. Rothchild
- Department of ChemistryThe University of British Columbia 2036 Main Mall Vancouver BC V6T 1Z1 Canada
| | - Tengfei Liu
- Institute of Biological Engineering, College of Chemical and Biological EngineeringZhejiang University 38 Zheda Road Hangzhou 310027 P. R. China
| | - Yu Liu
- College of Life SciencesZhejiang University 866 Yuhangtang Road Hangzhou 310058 P. R. China
| | - Jiazhang Lian
- Institute of Biological Engineering, College of Chemical and Biological EngineeringZhejiang University 38 Zheda Road Hangzhou 310027 P. R. China
| | - Hai‐Yan He
- Department of ChemistryThe University of British Columbia 2036 Main Mall Vancouver BC V6T 1Z1 Canada
| | - Katherine S. Ryan
- Department of ChemistryThe University of British Columbia 2036 Main Mall Vancouver BC V6T 1Z1 Canada
| | - Yi‐Ling Du
- Institute of Pharmaceutical Biotechnology and The First Affiliated HospitalZhejiang University School of Medicine 866 Yuhangtang Road Hangzhou 310058 P. R. China
| |
Collapse
|
10
|
Kang Y, Wang Y, Hou B, Wang R, Ye J, Zhu X, Wu H, Zhang H. AdpAlin, a Pleiotropic Transcriptional Regulator, Is Involved in the Cascade Regulation of Lincomycin Biosynthesis in Streptomyces lincolnensis. Front Microbiol 2019; 10. [DOI: doi.org/10.3389/fmicb.2019.02428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2023] Open
|
11
|
Kang Y, Wang Y, Hou B, Wang R, Ye J, Zhu X, Wu H, Zhang H. AdpA lin, a Pleiotropic Transcriptional Regulator, Is Involved in the Cascade Regulation of Lincomycin Biosynthesis in Streptomyces lincolnensis. Front Microbiol 2019; 10:2428. [PMID: 31708899 PMCID: PMC6819324 DOI: 10.3389/fmicb.2019.02428] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 10/08/2019] [Indexed: 11/13/2022] Open
Abstract
Lincomycin is one of the most important antibiotics in clinical practice. To further understand the regulatory mechanism on lincomycin biosynthesis, we investigated a pleiotropic transcriptional regulator AdpAlin in the lincomycin producer Streptomyces lincolnensis NRRL 2936. Deletion of adpA lin (which generated ΔadpA lin ) interrupted lincomycin biosynthesis and impaired the morphological differentiation. We also found that putative AdpA binding sites were unusually scattered in the promoters of all the 8 putative operons in the lincomycin biosynthetic gene cluster (BGC). In ΔadpA lin , transcript levels of structural genes in 8 putative operons were decreased with varying degrees, and electrophoretic mobility shift assays (EMSAs) confirmed that AdpAlin activated the overall putative operons via directly binding to their promoter regions. Thus, we speculated that the entire lincomycin biosynthesis is under the control of AdpAlin. Besides, AdpAlin participated in lincomycin biosynthesis by binding to the promoter of lmbU which encoded a cluster sited regulator (CSR) LmbU of lincomycin biosynthesis. Results of qRT-PCR and catechol dioxygenase activity assay showed that AdpAlin activated the transcription of lmbU. In addition, AdpAlin activated the transcription of the bldA by binding to its promoter, suggesting that AdpAlin indirectly participated in lincomycin biosynthesis and morphological differentiation. Uncommon but understandable, AdpAlin auto-activated its own transcription via binding to its own promoter region. In conclusion, we provided a molecular mechanism around the effect of AdpAlin on lincomycin biosynthesis in S. lincolnensis, and revealed a cascade regulation of lincomycin biosynthesis by AdpAlin, LmbU, and BldA.
Collapse
Affiliation(s)
- Yajing Kang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Yingying Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Bingbing Hou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.,Department of Applied Biology, East China University of Science and Technology, Shanghai, China
| | - Ruida Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Jiang Ye
- Department of Applied Biology, East China University of Science and Technology, Shanghai, China
| | - Xiaoyu Zhu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Haizhen Wu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.,Department of Applied Biology, East China University of Science and Technology, Shanghai, China
| | - Huizhan Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.,Department of Applied Biology, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
12
|
van der Heul HU, Bilyk BL, McDowall KJ, Seipke RF, van Wezel GP. Regulation of antibiotic production in Actinobacteria: new perspectives from the post-genomic era. Nat Prod Rep 2019; 35:575-604. [PMID: 29721572 DOI: 10.1039/c8np00012c] [Citation(s) in RCA: 155] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Covering: 2000 to 2018 The antimicrobial activity of many of their natural products has brought prominence to the Streptomycetaceae, a family of Gram-positive bacteria that inhabit both soil and aquatic sediments. In the natural environment, antimicrobial compounds are likely to limit the growth of competitors, thereby offering a selective advantage to the producer, in particular when nutrients become limited and the developmental programme leading to spores commences. The study of the control of this secondary metabolism continues to offer insights into its integration with a complex lifecycle that takes multiple cues from the environment and primary metabolism. Such information can then be harnessed to devise laboratory screening conditions to discover compounds with new or improved clinical value. Here we provide an update of the review we published in NPR in 2011. Besides providing the essential background, we focus on recent developments in our understanding of the underlying regulatory networks, ecological triggers of natural product biosynthesis, contributions from comparative genomics and approaches to awaken the biosynthesis of otherwise silent or cryptic natural products. In addition, we highlight recent discoveries on the control of antibiotic production in other Actinobacteria, which have gained considerable attention since the start of the genomics revolution. New technologies that have the potential to produce a step change in our understanding of the regulation of secondary metabolism are also described.
Collapse
|
13
|
Wei J, He L, Niu G. Regulation of antibiotic biosynthesis in actinomycetes: Perspectives and challenges. Synth Syst Biotechnol 2018; 3:229-235. [PMID: 30417136 PMCID: PMC6215055 DOI: 10.1016/j.synbio.2018.10.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/27/2018] [Accepted: 10/17/2018] [Indexed: 02/08/2023] Open
Abstract
Actinomycetes are the main sources of antibiotics. The onset and level of production of each antibiotic is subject to complex control by multi-level regulators. These regulators exert their functions at hierarchical levels. At the lower level, cluster-situated regulators (CSRs) directly control the transcription of neighboring genes within the gene cluster. Higher-level pleiotropic and global regulators exert their functions mainly through modulating the transcription of CSRs. Advances in understanding of the regulation of antibiotic biosynthesis in actinomycetes have inspired us to engineer these regulators for strain improvement and antibiotic discovery.
Collapse
Affiliation(s)
- Junhong Wei
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China
| | - Lang He
- Biotechnology Research Center, Southwest University, Chongqing, 400715, China.,Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Guoqing Niu
- Biotechnology Research Center, Southwest University, Chongqing, 400715, China.,Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| |
Collapse
|
14
|
Yu P, Bu QT, Tang YL, Mao XM, Li YQ. Bidirectional Regulation of AdpA ch in Controlling the Expression of scnRI and scnRII in the Natamycin Biosynthesis of Streptomyces chattanoogensis L10. Front Microbiol 2018; 9:316. [PMID: 29551998 PMCID: PMC5840217 DOI: 10.3389/fmicb.2018.00316] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 02/09/2018] [Indexed: 11/13/2022] Open
Abstract
AdpA, an AraC/XylS family protein, had been proved as a key regulator for secondary metabolism and morphological differentiation in Streptomyces griseus. Here, we identify AdpAch, an ortholog of AdpA, as a "higher level" pleiotropic regulator of natamycin biosynthesis with bidirectional regulatory ability in Streptomyces chattanoogensis L10. DNase I footprinting revealed six AdpAch-binding sites in the scnRI-scnRII intergenic region. Further analysis using the xylE reporter gene fused to the scnRI-scnRII intergenic region of mutated binding sites demonstrated that the expression of scnRI and scnRII was under the control of AdpAch. AdpAch showed a bi-stable regulatory ability where it firstly binds to the Site C and Site D to activate the transcription of the two pathway-specific genes, scnRI and scnRII, and then binds to other sites where it acts as an inhibitor. When Site A and Site F were mutated in vivo, the production of natamycin was increased by 21% and 25%, respectively. These findings indicated an autoregulatory mechanism where AdpAch serves as a master switch with bidirectional regulation for natamycin biosynthesis.
Collapse
Affiliation(s)
- Pin Yu
- Institute of Pharmaceutical Biotechnology, Zhejiang University, Hangzhou, China.,Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou, China.,College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Qing-Ting Bu
- Institute of Pharmaceutical Biotechnology, Zhejiang University, Hangzhou, China.,Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou, China
| | - Yi-Li Tang
- Institute of Pharmaceutical Biotechnology, Zhejiang University, Hangzhou, China.,Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou, China
| | - Xu-Ming Mao
- Institute of Pharmaceutical Biotechnology, Zhejiang University, Hangzhou, China.,Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou, China
| | - Yong-Quan Li
- Institute of Pharmaceutical Biotechnology, Zhejiang University, Hangzhou, China.,Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou, China
| |
Collapse
|
15
|
Guzmán-Trampe S, Ceapa CD, Manzo-Ruiz M, Sánchez S. Synthetic biology era: Improving antibiotic’s world. Biochem Pharmacol 2017; 134:99-113. [DOI: 10.1016/j.bcp.2017.01.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 01/26/2017] [Indexed: 12/12/2022]
|
16
|
Crnovčić I, Rückert C, Semsary S, Lang M, Kalinowski J, Keller U. Genetic interrelations in the actinomycin biosynthetic gene clusters of Streptomyces antibioticus IMRU 3720 and Streptomyces chrysomallus ATCC11523, producers of actinomycin X and actinomycin C. Adv Appl Bioinform Chem 2017; 10:29-46. [PMID: 28435299 PMCID: PMC5391158 DOI: 10.2147/aabc.s117707] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Sequencing the actinomycin (acm) biosynthetic gene cluster of Streptomyces antibioticus IMRU 3720, which produces actinomycin X (Acm X), revealed 20 genes organized into a highly similar framework as in the bi-armed acm C biosynthetic gene cluster of Streptomyces chrysomallus but without an attached additional extra arm of orthologues as in the latter. Curiously, the extra arm of the S. chrysomallus gene cluster turned out to perfectly match the single arm of the S. antibioticus gene cluster in the same order of orthologues including the the presence of two pseudogenes, scacmM and scacmN, encoding a cytochrome P450 and its ferredoxin, respectively. Orthologues of the latter genes were both missing in the principal arm of the S. chrysomallus acm C gene cluster. All orthologues of the extra arm showed a G +C-contents different from that of their counterparts in the principal arm. Moreover, the similarities of translation products from the extra arm were all higher to the corresponding translation products of orthologue genes from the S. antibioticus acm X gene cluster than to those encoded by the principal arm of their own gene cluster. This suggests that the duplicated structure of the S. chrysomallus acm C biosynthetic gene cluster evolved from previous fusion between two one-armed acm gene clusters each from a different genetic background. However, while scacmM and scacmN in the extra arm of the S. chrysomallus acm C gene cluster are mutated and therefore are non-functional, their orthologues saacmM and saacmN in the S. antibioticus acm C gene cluster show no defects seemingly encoding active enzymes with functions specific for Acm X biosynthesis. Both acm biosynthetic gene clusters lack a kynurenine-3-monooxygenase gene necessary for biosynthesis of 3-hydroxy-4-methylanthranilic acid, the building block of the Acm chromophore, which suggests participation of a genome-encoded relevant monooxygenase during Acm biosynthesis in both S. chrysomallus and S. antibioticus.
Collapse
Affiliation(s)
- Ivana Crnovčić
- Institut für Chemie, Technische Universität Berlin, Berlin-Charlottenburg
| | - Christian Rückert
- Technology Platform Genomics, Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Siamak Semsary
- Institut für Chemie, Technische Universität Berlin, Berlin-Charlottenburg
| | - Manuel Lang
- Institut für Chemie, Technische Universität Berlin, Berlin-Charlottenburg
| | - Jörn Kalinowski
- Technology Platform Genomics, Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Ullrich Keller
- Institut für Chemie, Technische Universität Berlin, Berlin-Charlottenburg
| |
Collapse
|
17
|
Ishigaki Y, Akanuma G, Yoshida M, Horinouchi S, Kosono S, Ohnishi Y. Protein acetylation involved in streptomycin biosynthesis in Streptomyces griseus. J Proteomics 2016; 155:63-72. [PMID: 28034645 DOI: 10.1016/j.jprot.2016.12.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 12/03/2016] [Accepted: 12/16/2016] [Indexed: 12/25/2022]
Abstract
Protein acetylation, the reversible addition of an acetyl group to lysine residues, is a protein post-translational modification ubiquitous in living cells. Although the involvement of protein acetylation in the regulation of primary metabolism has been revealed, the function of protein acetylation is largely unknown in secondary metabolism. Here, we characterized protein acetylation in Streptomyces griseus, a streptomycin producer. Protein acetylation was induced in the stationary and sporulation phases in liquid and solid cultures, respectively, in S. griseus. By comprehensive acetylome analysis, we identified 134 acetylated proteins with 162 specific acetylated sites. Acetylation was found in proteins related to primary metabolism and translation, as in other bacteria. However, StrM, a deoxysugar epimerase involved in streptomycin biosynthesis, was identified as a highly acetylated protein by 2-DE-based proteomic analysis. The Lys70 residue, which is critical for the enzymatic activity of StrM, was the major acetylation site. Thus, acetylation of Lys70 was presumed to abolish enzymatic activity of StrM. In accordance with this notion, an S. griseus mutant producing the acetylation-mimic K70Q StrM hardly produced streptomycin, though the K70Q mutation apparently decreased the stability of StrM. A putative lysine acetyltransferase (KAT) SGR1683 in S. griseus, as well as the Escherichia coli KAT YfiQ, acetylated Lys70 of StrM in vitro. Furthermore, absolute quantification analysis estimated that 13% of StrM molecules were acetylated in mycelium grown in solid culture for 3days. These results indicate that StrM acetylation is of biological significance. We propose that StrM acetylation functions as a limiter of streptomycin biosynthesis in S. griseus. BIOLOGICAL SIGNIFICANCE Protein acetylation has been extensively studied not only in eukaryotes, but also in prokaryotes. The acetylome has been analyzed in more than 14 bacterial species. Here, by comprehensive acetylome analysis, we showed that acetylation was found in proteins related to primary metabolism and translation in Streptomyces griseus, similarly to other bacteria. However, five proteins involved in secondary metabolism were also identified as acetylated proteins; these proteins are enzymes in the biosynthesis of streptomycin (StrB1 and StrS), grixazone (GriF), a nonribosomal peptide (NRPS1-2), and a siderophore (AlcC). Additionally, StrM in streptomycin biosynthesis was identified as a highly acetylated protein by 2-DE-based proteomic analysis; approximately 13% of StrM molecules were acetylated. The acetylation occurs at Lys70 to abolish the enzymatic activity of StrM, suggesting that StrM acetylation functions as a limiter of streptomycin biosynthesis in S. griseus. This is the first detailed analysis of protein acetylation of an enzyme involved in secondary metabolism.
Collapse
Affiliation(s)
- Yuji Ishigaki
- Department of Biotechnology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Genki Akanuma
- Department of Biotechnology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Minoru Yoshida
- Department of Biotechnology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan; Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Sueharu Horinouchi
- Department of Biotechnology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Saori Kosono
- Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Biological Research Center, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan.
| | - Yasuo Ohnishi
- Department of Biotechnology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan.
| |
Collapse
|
18
|
Niu G, Chater KF, Tian Y, Zhang J, Tan H. Specialised metabolites regulating antibiotic biosynthesis in Streptomyces spp. FEMS Microbiol Rev 2016; 40:554-73. [PMID: 27288284 DOI: 10.1093/femsre/fuw012] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2016] [Indexed: 12/11/2022] Open
Abstract
Streptomyces bacteria are the major source of antibiotics and other secondary metabolites. Various environmental and physiological conditions affect the onset and level of production of each antibiotic by influencing concentrations of the ligands for conserved global regulatory proteins. In addition, as reviewed here, well-known autoregulators such as γ-butyrolactones, themselves products of secondary metabolism, accumulate late in growth to concentrations allowing their effective interaction with cognate binding proteins, in a necessary prelude to antibiotic biosynthesis. Most autoregulator binding proteins target the conserved global regulatory gene adpA, and/or regulatory genes for 'cluster-situated regulators' (CSRs) linked to antibiotic biosynthetic gene clusters. It now appears that some CSRs bind intermediates and end products of antibiotic biosynthesis, with regulatory effects interwoven with those of autoregulators. These ligands can exert cross-pathway effects within producers of more than one antibiotic, and when excreted into the extracellular environment may have population-wide effects on production, and mediate interactions with neighbouring microorganisms in natural communities, influencing speciation. Greater understanding of these autoregulatory and cross-regulatory activities may aid the discovery of new signalling molecules and their use in activating cryptic antibiotic biosynthetic pathways.
Collapse
Affiliation(s)
- Guoqing Niu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Keith F Chater
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, UK
| | - Yuqing Tian
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jihui Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Huarong Tan
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
19
|
Takano H, Toriumi N, Hirata M, Amano T, Ohya T, Shimada R, Kusada H, Amano SI, Matsuda KI, Beppu T, Ueda K. An ABC transporter involved in the control of streptomycin production in Streptomyces griseus. FEMS Microbiol Lett 2016; 363:fnw149. [PMID: 27268270 DOI: 10.1093/femsle/fnw149] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/28/2016] [Indexed: 01/24/2023] Open
Abstract
We screened for a gene that inhibits streptomycin production in Streptomyces griseus when it is introduced on a high-copy-number plasmid pIJ702, and obtained a plasmid pKM545. The introduction of pKM545 abolished streptomycin production on all media tested including YMP-sugar and Nutrient broth. S1 protection analysis demonstrated that the introduction of this plasmid downregulated the transcriptional activity of the promoter preceding strR, the pathway-specific transcriptional regulator for streptomycin biosynthesis. The 2.8-kb BamHI fragment cloned onto pKM545 contained two coding sequences SGR_5442 and 5443. These coding sequences and the two downstream ones (SGR_5444 and 5445) constituted a possible operon structure designated to be rspABCD (regulation of streptomycin production). RspB and RspC exhibited a marked similarity with an ATP-binding domain and a membrane-associating domain of an ABC-2 type transporter, respectively, suggesting that the Rsp proteins comprise a membrane exporter. The gene cluster consisting of the rsp operon and the upstream divergent small coding sequence (SGR_5441) was widely distributed to Streptomyces genome. An rspB mutant of S. griseus produced 3-fold streptomycin of the parental strain in YMP liquid medium. The evidence implies that the Rsp translocator is involved in the export of a substance that specifies the expression level of streptomycin biosynthesis genes in S. griseus.
Collapse
Affiliation(s)
- Hideaki Takano
- Life Science Research Center, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa 252-0880, Japan
| | - Naoe Toriumi
- Life Science Research Center, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa 252-0880, Japan
| | - Mariko Hirata
- Life Science Research Center, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa 252-0880, Japan
| | - Taisuke Amano
- Life Science Research Center, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa 252-0880, Japan
| | - Takaaki Ohya
- Life Science Research Center, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa 252-0880, Japan
| | - Reona Shimada
- Life Science Research Center, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa 252-0880, Japan
| | - Hiroyuki Kusada
- Life Science Research Center, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa 252-0880, Japan
| | - Sho-Ichi Amano
- Life Science Research Center, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa 252-0880, Japan
| | - Ko-Ichi Matsuda
- Life Science Research Center, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa 252-0880, Japan
| | - Teruhiko Beppu
- Life Science Research Center, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa 252-0880, Japan
| | - Kenji Ueda
- Life Science Research Center, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa 252-0880, Japan
| |
Collapse
|
20
|
Barka EA, Vatsa P, Sanchez L, Gaveau-Vaillant N, Jacquard C, Meier-Kolthoff JP, Klenk HP, Clément C, Ouhdouch Y, van Wezel GP. Taxonomy, Physiology, and Natural Products of Actinobacteria. Microbiol Mol Biol Rev 2016; 80:1-43. [PMID: 26609051 PMCID: PMC4711186 DOI: 10.1128/mmbr.00019-15] [Citation(s) in RCA: 1045] [Impact Index Per Article: 116.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Actinobacteria are Gram-positive bacteria with high G+C DNA content that constitute one of the largest bacterial phyla, and they are ubiquitously distributed in both aquatic and terrestrial ecosystems. Many Actinobacteria have a mycelial lifestyle and undergo complex morphological differentiation. They also have an extensive secondary metabolism and produce about two-thirds of all naturally derived antibiotics in current clinical use, as well as many anticancer, anthelmintic, and antifungal compounds. Consequently, these bacteria are of major importance for biotechnology, medicine, and agriculture. Actinobacteria play diverse roles in their associations with various higher organisms, since their members have adopted different lifestyles, and the phylum includes pathogens (notably, species of Corynebacterium, Mycobacterium, Nocardia, Propionibacterium, and Tropheryma), soil inhabitants (e.g., Micromonospora and Streptomyces species), plant commensals (e.g., Frankia spp.), and gastrointestinal commensals (Bifidobacterium spp.). Actinobacteria also play an important role as symbionts and as pathogens in plant-associated microbial communities. This review presents an update on the biology of this important bacterial phylum.
Collapse
Affiliation(s)
- Essaid Ait Barka
- Laboratoire de Stress, Défenses et Reproduction des Plantes, Unité de Recherche Vignes et Vins de Champagne, UFR Sciences, UPRES EA 4707, Université de Reims Champagne-Ardenne, Reims, France
| | - Parul Vatsa
- Laboratoire de Stress, Défenses et Reproduction des Plantes, Unité de Recherche Vignes et Vins de Champagne, UFR Sciences, UPRES EA 4707, Université de Reims Champagne-Ardenne, Reims, France
| | - Lisa Sanchez
- Laboratoire de Stress, Défenses et Reproduction des Plantes, Unité de Recherche Vignes et Vins de Champagne, UFR Sciences, UPRES EA 4707, Université de Reims Champagne-Ardenne, Reims, France
| | - Nathalie Gaveau-Vaillant
- Laboratoire de Stress, Défenses et Reproduction des Plantes, Unité de Recherche Vignes et Vins de Champagne, UFR Sciences, UPRES EA 4707, Université de Reims Champagne-Ardenne, Reims, France
| | - Cedric Jacquard
- Laboratoire de Stress, Défenses et Reproduction des Plantes, Unité de Recherche Vignes et Vins de Champagne, UFR Sciences, UPRES EA 4707, Université de Reims Champagne-Ardenne, Reims, France
| | | | - Hans-Peter Klenk
- School of Biology, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Christophe Clément
- Laboratoire de Stress, Défenses et Reproduction des Plantes, Unité de Recherche Vignes et Vins de Champagne, UFR Sciences, UPRES EA 4707, Université de Reims Champagne-Ardenne, Reims, France
| | - Yder Ouhdouch
- Faculté de Sciences Semlalia, Université Cadi Ayyad, Laboratoire de Biologie et de Biotechnologie des Microorganismes, Marrakesh, Morocco
| | - Gilles P van Wezel
- Molecular Biotechnology, Institute of Biology, Sylvius Laboratories, Leiden University, Leiden, The Netherlands
| |
Collapse
|
21
|
Zhu C, Kang Q, Bai L, Cheng L, Deng Z. Identification and engineering of regulation-related genes toward improved kasugamycin production. Appl Microbiol Biotechnol 2015; 100:1811-1821. [PMID: 26521251 DOI: 10.1007/s00253-015-7082-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 10/06/2015] [Accepted: 10/12/2015] [Indexed: 10/22/2022]
Abstract
Kasugamycin, produced by Streptomyces kasugaensis and Streptomyces microaureus, is an important amino-glycoside family antibiotic and widely used for veterinary and agricultural applications. In the left flanking region of the previously reported kasugamycin gene cluster, four additional genes (two-component system kasW and kasX, MerR-family kasV, and isoprenylcysteine carboxyl methyltransferase kasS) were identified both in the low-yielding S. kasugaensis BCRC12349 and high-yielding S. microaureus XM301. Deletion of regulatory gene kasT abolished kasugamycin production, and its overexpression in BCRC12349 resulted in an increased titer by 186 %. Deletion of kasW, kasX, kasV, and kasS improved kasugamycin production by 12, 19, 194, and 22 %, respectively. qRT-PCR analysis demonstrated that the transcription of kas genes was significantly increased in all the four mutants. Similar gene inactivation was performed in the high-yielding strain S. microaureus XM301. As expected, the deletion of kasW/X resulted in a 58 % increase of the yield from 6 to 9.5 g/L. However, the deletion of kasV and over-expression of kasT had no obvious effect, and the disruption of kasS surprisingly decreased kasugamycin production. In addition, trans-complementation of the kasS mutant with a TTA codon-mutated kasS increased the kasugamycin yield by 20 %. A much higher transcription of kas genes was detected in the high-yielding XM301 than in the low-yielding BCRC12349, which may partially account for the discrepancy of gene inactivation effects between them. Our work not only generated engineered strains with improved kasugamycin yield, but also pointed out that different strategies on manipulating regulatory-related genes should be considered for low-yielding or high-yielding strains.
Collapse
Affiliation(s)
- Chenchen Zhu
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Qianjin Kang
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Linquan Bai
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
| | - Lin Cheng
- School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, People's Republic of China.
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.,School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, People's Republic of China
| |
Collapse
|
22
|
Zhu XM, Hackl S, Thaker MN, Kalan L, Weber C, Urgast DS, Krupp EM, Brewer A, Vanner S, Szawiola A, Yim G, Feldmann J, Bechthold A, Wright GD, Zechel DL. Biosynthesis of the Fluorinated Natural Product Nucleocidin inStreptomyces calvusIs Dependent on thebldA-Specified Leu-tRNAUUAMolecule. Chembiochem 2015; 16:2498-506. [DOI: 10.1002/cbic.201500402] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Indexed: 11/10/2022]
Affiliation(s)
- Xi Ming Zhu
- Department of Chemistry; Queen's University; Chernoff Hall 90 Bader Lane Kingston Ontario K7L 3N6 Canada
| | - Stefanie Hackl
- Department of Pharmaceutical Biology and Biotechnology; Institute of Pharmaceutical Sciences; Albert-Ludwigs-Universität Freiburg; Stefan-Meier-Strasse 19 79104 Freiburg Germany
| | - Maulik N. Thaker
- Michael G. DeGroote Institute for Infectious Disease Research; McMaster University; 1200 Main Street West Hamilton Ontario L8N 3Z5 Canada
| | - Lindsay Kalan
- Michael G. DeGroote Institute for Infectious Disease Research; McMaster University; 1200 Main Street West Hamilton Ontario L8N 3Z5 Canada
| | - Claudia Weber
- Trace Element Speciation Laboratory; Department of Chemistry; University of Aberdeen; Aberdeen AB24 3UE UK
| | - Dagmar S. Urgast
- Trace Element Speciation Laboratory; Department of Chemistry; University of Aberdeen; Aberdeen AB24 3UE UK
| | - Eva M. Krupp
- Trace Element Speciation Laboratory; Department of Chemistry; University of Aberdeen; Aberdeen AB24 3UE UK
| | - Alyssa Brewer
- Department of Chemistry; Queen's University; Chernoff Hall 90 Bader Lane Kingston Ontario K7L 3N6 Canada
| | - Stephanie Vanner
- Department of Chemistry; Queen's University; Chernoff Hall 90 Bader Lane Kingston Ontario K7L 3N6 Canada
| | - Anjuli Szawiola
- Department of Chemistry; Queen's University; Chernoff Hall 90 Bader Lane Kingston Ontario K7L 3N6 Canada
| | - Grace Yim
- Michael G. DeGroote Institute for Infectious Disease Research; McMaster University; 1200 Main Street West Hamilton Ontario L8N 3Z5 Canada
| | - Jörg Feldmann
- Trace Element Speciation Laboratory; Department of Chemistry; University of Aberdeen; Aberdeen AB24 3UE UK
| | - Andreas Bechthold
- Department of Pharmaceutical Biology and Biotechnology; Institute of Pharmaceutical Sciences; Albert-Ludwigs-Universität Freiburg; Stefan-Meier-Strasse 19 79104 Freiburg Germany
| | - Gerard D. Wright
- Michael G. DeGroote Institute for Infectious Disease Research; McMaster University; 1200 Main Street West Hamilton Ontario L8N 3Z5 Canada
| | - David L. Zechel
- Department of Chemistry; Queen's University; Chernoff Hall 90 Bader Lane Kingston Ontario K7L 3N6 Canada
| |
Collapse
|
23
|
Genetic manipulation of secondary metabolite biosynthesis for improved production in Streptomyces and other actinomycetes. J Ind Microbiol Biotechnol 2015; 43:343-70. [PMID: 26364200 DOI: 10.1007/s10295-015-1682-x] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 08/28/2015] [Indexed: 12/18/2022]
Abstract
Actinomycetes continue to be important sources for the discovery of secondary metabolites for applications in human medicine, animal health, and crop protection. With the maturation of actinomycete genome mining as a robust approach to identify new and novel cryptic secondary metabolite gene clusters, it is critical to continue developing methods to activate and enhance secondary metabolite biosynthesis for discovery, development, and large-scale manufacturing. This review covers recent reports on promising new approaches and further validations or technical improvements of existing approaches to strain improvement applicable to a wide range of Streptomyces species and other actinomycetes.
Collapse
|
24
|
Metabolic profiling as a tool for prioritizing antimicrobial compounds. J Ind Microbiol Biotechnol 2015; 43:299-312. [PMID: 26335567 PMCID: PMC4752588 DOI: 10.1007/s10295-015-1666-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 07/25/2015] [Indexed: 11/29/2022]
Abstract
Metabolomics is an analytical technique that allows scientists to globally profile low molecular weight metabolites between samples in a medium- or high-throughput environment. Different biological samples are statistically analyzed and correlated to a bioactivity of interest, highlighting differentially produced compounds as potential biomarkers. Here, we review NMR- and MS-based metabolomics as technologies to facilitate the identification of novel antimicrobial natural products from microbial sources. Approaches to elicit the production of poorly expressed (cryptic) molecules are thereby a key to allow statistical analysis of samples to identify bioactive markers, while connection of compounds to their biosynthetic gene cluster is a determining step in elucidating the biosynthetic pathway and allows downstream process optimization and upscaling. The review focuses on approaches built around NMR-based metabolomics, which enables efficient dereplication and guided fractionation of (antimicrobial) compounds.
Collapse
|
25
|
Rui Z, Ye M, Wang S, Fujikawa K, Akerele B, Aung M, Floss HG, Zhang W, Yu TW. Insights into a divergent phenazine biosynthetic pathway governed by a plasmid-born esmeraldin gene cluster. ACTA ACUST UNITED AC 2014; 19:1116-25. [PMID: 22999880 DOI: 10.1016/j.chembiol.2012.07.025] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Revised: 07/20/2012] [Accepted: 07/24/2012] [Indexed: 11/25/2022]
Abstract
Phenazine-type metabolites arise from either phenazine-1-carboxylic acid (PCA) or phenazine-1,6-dicarboxylic acid (PDC). Although the biosynthesis of PCA has been studied extensively, PDC assembly remains unclear. Esmeraldins and saphenamycin, the PDC originated products, are antimicrobial and antitumor metabolites isolated from Streptomyces antibioticus Tü 2706. Herein, the esmeraldin biosynthetic gene cluster was identified on a dispensable giant plasmid. Twenty-four putative esm genes were characterized by bioinformatics, mutagenesis, genetic complementation, and functional protein expressions. Unlike enzymes involved in PCA biosynthesis, EsmA1 and EsmA2 together decisively promoted the PDC yield. The resulting PDC underwent a series of conversions to give 6-acetylphenazine-1-carboxylic acid, saphenic acid, and saphenamycin through a unique one-carbon extension by EsmB1-B5, a keto reduction by EsmC, and an esterification by EsmD1-D3, the atypical polyketide sythases, respectively. Two transcriptional regulators, EsmT1 and EsmT2, are required for esmeraldin production.
Collapse
Affiliation(s)
- Zhe Rui
- Department of Biological Science, Louisiana State University, Baton Rouge, LA 70803, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Nakano C, Tezuka T, Horinouchi S, Ohnishi Y. Identification of the SGR6065 gene product as a sesquiterpene cyclase involved in (+)-epicubenol biosynthesis in Streptomyces griseus. J Antibiot (Tokyo) 2012; 65:551-8. [PMID: 22872183 DOI: 10.1038/ja.2012.68] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Recent bacterial genome sequencing projects have shown the presence of many putative sesquiterpene cyclase (SC) genes, especially in the Gram-positive, filamentous bacterial genus Streptomyces. We describe here the characterization of a SC gene (SGR6065, named gecA) from Streptomyces griseus. Overexpression of gecA in Streptomyces lividans produced a sesquiterpene, which was isolated and determined to be (+)-epicubenol using spectroscopic analyses. The N-terminal histidine-tagged GecA protein was produced in Escherichia coli. Incubation of the recombinant GecA protein with farnesyl diphosphate (FPP) yielded (+)-epicubenol as the major product. The K(m) value for FPP and the k(cat) value for (+)-epicubenol formation were calculated to be 254 ± 7.1 nM and 0.026 ± 0.001 s(-1), respectively. The k(cat)/K(m) value (0.10 s(-1) μM(-1)) was broadly comparable to those reported for known bacterial SCs. (+)-Epicubenol was detected in the crude cell lysate of wild-type S. griseus, but not in a gecA-knockout mutant, indicating that GecA is a genuine (+)-epicubenol synthase. Although (+)-epicubenol synthases have been previously purified and characterized from the liverwort Heteroscyphus planus and Streptomyces sp. LL-B7, no (+)-epicubenol synthase gene has been cloned to date. The gecA gene is thus the first example of an (+)-epicubenol synthase-encoding gene. (+)-Epicubenol production was not controlled by the microbial hormone A-factor that induces morphological differentiation and production of several secondary metabolites in S. griseus.
Collapse
Affiliation(s)
- Chiaki Nakano
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | | | | | | |
Collapse
|
27
|
Bibb MJ, Domonkos A, Chandra G, Buttner MJ. Expression of the chaplin and rodlin hydrophobic sheath proteins in Streptomyces venezuelae is controlled by σ(BldN) and a cognate anti-sigma factor, RsbN. Mol Microbiol 2012; 84:1033-49. [PMID: 22582857 DOI: 10.1111/j.1365-2958.2012.08070.x] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The chaplin and rodlin proteins together constitute the major components of the hydrophobic sheath that coats the aerial hyphae and spores in Streptomyces, and mutants lacking the chaplins are unable to erect aerial hyphae and differentiate on minimal media. We have gained insight into the developmental regulation of the chaplin (chp) and rodlin (rdl) genes by exploiting a new model species, Streptomyces venezuelae, which sporulates in liquid culture. Using microarrays, the chaplin and rodlin genes were found to be highly induced during submerged sporulation in a bldN-dependent manner. Using σ(BldN) ChIP-chip, we show that this dependence arises because the chaplin and rodlin genes are direct biochemical targets of σ(BldN) . sven3186 (here named rsbN for regulator of sigma BldN), the gene lying immediately downstream of bldN, was also identified as a target of σ(BldN) . Disruption of rsbN causes precocious sporulation and biochemical experiments demonstrate that RsbN functions as a σ(BldN) -specific anti-sigma factor.
Collapse
Affiliation(s)
- Maureen J Bibb
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Colney Lane, Norwich NR4 7UH, UK.
| | | | | | | |
Collapse
|
28
|
Enhancing macrolide production in Streptomyces by coexpressing three heterologous genes. Enzyme Microb Technol 2012; 50:5-9. [DOI: 10.1016/j.enzmictec.2011.09.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Revised: 09/28/2011] [Accepted: 09/28/2011] [Indexed: 11/19/2022]
|
29
|
Higo A, Horinouchi S, Ohnishi Y. Strict regulation of morphological differentiation and secondary metabolism by a positive feedback loop between two global regulators AdpA and BldA in Streptomyces griseus. Mol Microbiol 2011; 81:1607-22. [PMID: 21883521 DOI: 10.1111/j.1365-2958.2011.07795.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
AdpA is a global transcriptional regulator that is induced by the microbial hormone A-factor and activates many genes required for morphological differentiation and secondary metabolism in Streptomyces griseus. We confirmed that the regulatory tRNA gene bldA was required for translation of TTA-containing adpA. We also demonstrated that AdpA bound two sites upstream of the bldA promoter and activated transcription of bldA. Thus, we revealed a unique positive feedback loop between AdpA and BldA in S. griseus. Forced expression of bldA in an A-factor-deficient mutant resulted in the partial restoration of aerial mycelium formation and streptomycin production, suggesting that the positive feedback loop could prevent premature transcriptional activation of the AdpA-target genes in the wild-type strain. We revealed that the morphological defect of the bldA mutant could be attributed mainly to the TTA codons of only two genes: adpA and amfR. amfR encodes a transcriptional activator essential for aerial mycelium formation and is a member of the AdpA regulon. Thus, amfR is regulated by a feedforward mechanism involving AdpA and BldA. We concluded that the central regulatory unit composed of AdpA and BldA plays important roles in the initiation of morphological differentiation and secondary metabolism triggered by A-factor.
Collapse
Affiliation(s)
- Akiyoshi Higo
- Department of Biotechnology, Graduate School of Agriculture and Life Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | |
Collapse
|
30
|
van Wezel GP, McDowall KJ. The regulation of the secondary metabolism of Streptomyces: new links and experimental advances. Nat Prod Rep 2011; 28:1311-33. [PMID: 21611665 DOI: 10.1039/c1np00003a] [Citation(s) in RCA: 323] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Streptomycetes and other actinobacteria are renowned as a rich source of natural products of clinical, agricultural and biotechnological value. They are being mined with renewed vigour, supported by genome sequencing efforts, which have revealed a coding capacity for secondary metabolites in vast excess of expectations that were based on the detection of antibiotic activities under standard laboratory conditions. Here we review what is known about the control of production of so-called secondary metabolites in streptomycetes, with an emphasis on examples where details of the underlying regulatory mechanisms are known. Intriguing links between nutritional regulators, primary and secondary metabolism and morphological development are discussed, and new data are included on the carbon control of development and antibiotic production, and on aspects of the regulation of the biosynthesis of microbial hormones. Given the tide of antibiotic resistance emerging in pathogens, this review is peppered with approaches that may expand the screening of streptomycetes for new antibiotics by awakening expression of cryptic antibiotic biosynthetic genes. New technologies are also described that have potential to greatly further our understanding of gene regulation in what is an area fertile for discovery and exploitation
Collapse
|
31
|
Pan Y, Liu G, Yang H, Tian Y, Tan H. The pleiotropic regulator AdpA-L directly controls the pathway-specific activator of nikkomycin biosynthesis in Streptomyces ansochromogenes. Mol Microbiol 2010; 72:710-23. [PMID: 19400773 DOI: 10.1111/j.1365-2958.2009.06681.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The nikkomycin-producing strain Streptomyces ansochromogenes has a homologue (adpA-L) of the key pleiotropic Streptomyces regulatory gene adpA. Gene disruption and genetic complementation revealed that adpA-L was required for both nikkomycin biosynthesis and morphological differentiation. Transcriptional analysis suggested that the transcription of sanG, the specific activator gene for nikkomycin biosynthesis, was dependent on AdpA-L. In gel-shift and DNase 1 footprinting assays, the purified His(6)-tagged recombinant AdpA-L protein bound the upstream region of sanG at five sites, which are spread over more than one kilobase of DNA and most of which is inside the transcribed region. A consensus AdpA-L-binding sequence, 5'-TGGCNNVWHN-3' (V: C, A or G; W: A or T; H: A, T or C; N: any nucleotide) was found in these binding sites. Transcriptional analysis of sanG carrying mutated AdpA-L binding sites showed that transcription of sanG was eliminated when site I was mutated and its trascription was decreased when site V was mutated, whereas it was increased when the binding sites II, III or IV were mutated. Meanwhile, nikkomycin production of the mutated site III strain was enhanced comparing with the wild-type strain as control. This work highlights a new level of complexity in the regulation of nikkomycin biosynthesis.
Collapse
Affiliation(s)
- Yuanyuan Pan
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Science, Beijing, China
| | | | | | | | | |
Collapse
|
32
|
Lopez-Garcia MT, Santamarta I, Liras P. Morphological differentiation and clavulanic acid formation are affected in a Streptomyces clavuligerus adpA-deleted mutant. Microbiology (Reading) 2010; 156:2354-2365. [DOI: 10.1099/mic.0.035956-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
33
|
Genome-minimized Streptomyces host for the heterologous expression of secondary metabolism. Proc Natl Acad Sci U S A 2010; 107:2646-51. [PMID: 20133795 DOI: 10.1073/pnas.0914833107] [Citation(s) in RCA: 397] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To construct a versatile model host for heterologous expression of genes encoding secondary metabolite biosynthesis, the genome of the industrial microorganism Streptomyces avermitilis was systematically deleted to remove nonessential genes. A region of more than 1.4 Mb was deleted stepwise from the 9.02-Mb S. avermitilis linear chromosome to generate a series of defined deletion mutants, corresponding to 83.12-81.46% of the wild-type chromosome, that did not produce any of the major endogenous secondary metabolites found in the parent strain. The suitability of the mutants as hosts for efficient production of foreign metabolites was shown by heterologous expression of three different exogenous biosynthetic gene clusters encoding the biosynthesis of streptomycin (from S. griseus Institute for Fermentation, Osaka [IFO] 13350), cephamycin C (from S. clavuligerus American type culture collection (ATCC) 27064), and pladienolide (from S. platensis Mer-11107). Both streptomycin and cephamycin C were efficiently produced by individual transformants at levels higher than those of the native-producing species. Although pladienolide was not produced by a deletion mutant transformed with the corresponding intact biosynthetic gene cluster, production of the macrolide was enabled by introduction of an extra copy of the regulatory gene pldR expressed under control of an alternative promoter. Another mutant optimized for terpenoid production efficiently produced the plant terpenoid intermediate, amorpha-4,11-diene, by introduction of a synthetic gene optimized for Streptomyces codon usage. These findings highlight the strength and flexibility of engineered S. avermitilis as a model host for heterologous gene expression, resulting in the production of exogenous natural and unnatural metabolites.
Collapse
|
34
|
Laskaris P, Tolba S, Calvo-Bado L, Wellington EM, Wellington L. Coevolution of antibiotic production and counter-resistance in soil bacteria. Environ Microbiol 2010; 12:783-96. [PMID: 20067498 DOI: 10.1111/j.1462-2920.2009.02125.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
We present evidence for the coexistence and coevolution of antibiotic resistance and biosynthesis genes in soil bacteria. The distribution of the streptomycin (strA) and viomycin (vph) resistance genes was examined in Streptomyces isolates. strA and vph were found either within a biosynthetic gene cluster or independently. Streptomyces griseus strains possessing the streptomycin cluster formed part of a clonal complex. All S. griseus strains possessing solely strA belonged to two clades; both were closely related to the streptomycin producers. Other more distantly related S. griseus strains did not contain strA. S. griseus strains with only vph also formed two clades, but they were more distantly related to the producers and to one another. The expression of the strA gene was constitutive in a resistance-only strain whereas streptomycin producers showed peak strA expression in late log phase that correlates with the switch on of streptomycin biosynthesis. While there is evidence that antibiotics have diverse roles in nature, our data clearly support the coevolution of resistance in the presence of antibiotic biosynthetic capability within closely related soil dwelling bacteria. This reinforces the view that, for some antibiotics at least, the primary role is one of antibiosis during competition in soil for resources.
Collapse
Affiliation(s)
- Paris Laskaris
- Department of Biological Sciences, University of Warwick, Coventry, UK
| | | | | | | | | |
Collapse
|
35
|
Dangel V, Härle J, Goerke C, Wolz C, Gust B, Pernodet JL, Heide L. Transcriptional regulation of the novobiocin biosynthetic gene cluster. MICROBIOLOGY-SGM 2009; 155:4025-4035. [PMID: 19762445 DOI: 10.1099/mic.0.032649-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The aminocoumarin antibiotic novobiocin is a gyrase inhibitor formed by a Streptomyces strain. The biosynthetic gene cluster of novobiocin spans 23.4 kb and contains 20 coding sequences, among them the two regulatory genes novE and novG. We investigated the location of transcriptional promoters within this cluster by insertion of transcriptional terminator cassettes and RT-PCR analysis of the resulting mutants. The cluster was found to contain eight DNA regions with promoter activity. The regulatory protein NovG binds to a previously identified binding site within the promoter region located upstream of novH, but apparently not to any of the other seven promoters. Quantitative real-time PCR was used to compare the number of transcripts in a strain carrying an intact novobiocin cluster with strains carrying mutated clusters. Both in-frame deletion of the regulatory gene novG and insertion of a terminator cassette into the biosynthetic gene novH led to a strong reduction of the number of transcripts of the genes located between novH and novW. This suggested that these 16 biosynthetic genes form a single operon. Three internal promoters are located within this operon but appear to be of minor importance, if any, under our experimental conditions. Transcription of novG was found to depend on the presence of NovE, suggesting that the two regulatory genes, novE and novG, act in a cascade-like mechanism. The resistance gene gyrB(R), encoding an aminocoumarin-resistant gyrase B subunit, may initially be co-transcribed with the genes from novH to novW. However, when the gyrase inhibitor novobiocin accumulates in the cultures, gyrB(R) is transcribed from its own promoter. Previous work has suggested that this promoter is controlled by the superhelical density of chromosomal DNA.
Collapse
Affiliation(s)
- Volker Dangel
- Pharmaceutical Biology, Pharmaceutical Institute, Eberhard-Karls-Universität Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Johannes Härle
- Pharmaceutical Biology, Pharmaceutical Institute, Eberhard-Karls-Universität Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Christiane Goerke
- Institute for Medical Microbiology and Hygiene, Universitätsklinikum Tübingen, Elfriede-Aulhorn-Strasse 6, 72076 Tübingen, Germany
| | - Christiane Wolz
- Institute for Medical Microbiology and Hygiene, Universitätsklinikum Tübingen, Elfriede-Aulhorn-Strasse 6, 72076 Tübingen, Germany
| | - Bertolt Gust
- Pharmaceutical Biology, Pharmaceutical Institute, Eberhard-Karls-Universität Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Jean-Luc Pernodet
- Univ. Paris-Sud 11, CNRS, UMR 8621, Institut de Génétique et Microbiologie, 91405 Orsay Cedex, France
| | - Lutz Heide
- Pharmaceutical Biology, Pharmaceutical Institute, Eberhard-Karls-Universität Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| |
Collapse
|
36
|
Ajith VK, Prasad R. A novel protein that binds to dnrN-dnrO intergenic region of Streptomyces peucetius purified by DNA affinity capture has dihydrolipoamide dehydrogenase activity. Protein Expr Purif 2009; 67:132-8. [PMID: 19481152 DOI: 10.1016/j.pep.2009.05.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2009] [Revised: 05/11/2009] [Accepted: 05/21/2009] [Indexed: 11/26/2022]
Abstract
An antitumour chemotherapeutic, daunorubicin (DNR), produced by Streptomyces peucetius exhibits cytotoxic activity through topoisomerase-mediated interaction with DNA, thereby inhibiting DNA replication and repair and RNA and protein synthesis. It is synthesized by the type II polyketide pathway. Understanding molecular mechanisms that drive expression of antibiotic biosynthetic genes in response to diverse signals and chemical inducers is of considerable interest. Intergenic DNA between regulatory genes dnrN and dnrO of DNR biosynthesis pathway in S. peucetius has a promoter for transcription of dnrN in one strand and three promoters in the opposite strand for dnrO. Studies have shown that DnrO binds to a specific sequence in this region to activate transcription of dnrN. In the present study, using biotinylated intergenic DNA in combination with streptavidin magnetic beads, we have purified a protein that binds to this target sequence. The protein has been characterized by nano LC ESI MS/MS mass spectrometry. Sequence similarity searches for effective identification of protein by genome databases comparisons led to identification of a sequence-specific DNA binding protein that exhibits dihydrolipoamide dehydrogenase (DLDH) activity suggesting that this protein may be involved in regulation of DNR biosynthesis.
Collapse
Affiliation(s)
- Vasantha Kumar Ajith
- Department of Genetic Engineering, School of Biotechnology, Madurai Kamaraj University, Madurai 625 021, India.
| | | |
Collapse
|
37
|
Hara H, Ohnishi Y, Horinouchi S. DNA microarray analysis of global gene regulation by A-factor in Streptomyces griseus. MICROBIOLOGY-SGM 2009; 155:2197-2210. [PMID: 19389771 DOI: 10.1099/mic.0.027862-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A-factor (2-isocapryloyl-3R-hydroxymethyl-gamma-butyrolactone) is a microbial hormone that triggers morphological differentiation and secondary metabolism in Streptomyces griseus. The effects of A-factor on global gene expression were determined by DNA microarray analysis of transcriptomes obtained with the A-factor-deficient mutant DeltaafsA. A-factor was added at a concentration of 25 ng ml(-1) to mutant DeltaafsA at the middle of the exponential growth phase, and RNA samples were prepared from the cells grown after A-factor addition for a further 5, 15 and 30 min, and 1, 2, 4, 8 and 12 h. The effects of A-factor on transcription of all protein-coding genes of S. griseus were evaluated by comparison of the transcriptomes with those obtained from cells grown in the absence of A-factor. Analysis of variance among the transcriptomes revealed that 477 genes, which were dispersed throughout the chromosome, were differentially expressed during the 12 h after addition of A-factor, when evaluated by specific criteria. Quality threshold clustering analysis with regard to putative polycistronic transcriptional units and levels of upregulation predicted that 152 genes belonging to 74 transcriptional units were probable A-factor-inducible genes. Competitive electrophoretic mobility shift assays using DNA fragments including putative promoter regions of these 74 transcriptional units suggested that AdpA bound 37 regions to activate 72 genes in total. Many of these A-factor-inducible genes encoded proteins of unknown function, suggesting that the A-factor regulatory cascade of S. griseus affects gene expression at a specific time point more profoundly than expected.
Collapse
Affiliation(s)
- Hirofumi Hara
- Department of Biotechnology, Graduate School of Agriculture and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yasuo Ohnishi
- Department of Biotechnology, Graduate School of Agriculture and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Sueharu Horinouchi
- Department of Biotechnology, Graduate School of Agriculture and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
38
|
Wang L, Hu Y, Zhang Y, Wang S, Cui Z, Bao Y, Jiang W, Hong B. Role of sgcR3 in positive regulation of enediyne antibiotic C-1027 production of Streptomyces globisporus C-1027. BMC Microbiol 2009; 9:14. [PMID: 19159491 PMCID: PMC2657911 DOI: 10.1186/1471-2180-9-14] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2008] [Accepted: 01/22/2009] [Indexed: 12/03/2022] Open
Abstract
Background C-1027, produced by Streptomyces globisporus C-1027, is one of the most potent antitumoral agents. The biosynthetic gene cluster of C-1027, previously cloned and sequenced, contains at least three putative regulatory genes, i.e. sgcR1, sgcR2 and sgcR3. The predicted gene products of these genes share sequence similarities to StrR, regulators of AraC/XylS family and TylR. The purpose of this study was to investigate the role of sgcR3 in C-1027 biosynthesis. Results Overexpression of sgcR3 in S. globisporus C-1027 resulted in a 30–40% increase in C-1027 production. Consistent with this, disruption of sgcR3 abolished C-1027 production. Complementation of the sgcR3-disrupted strain R3KO with intact sgcR3 gene could restore C-1027 production. The results from real time RT-PCR analysis in R3KO mutant and wild type strain indicated that not only transcripts of biosynthetic structural genes such as sgcA1 and sgcC4, but also putative regulatory genes, sgcR1 and sgcR2, were significantly decreased in R3KO mutant. The cross-complementation studies showed that sgcR1R2 could functionally complement sgcR3 disruption in trans. Purified N-terminal His10-tagged SgcR3 showed specific DNA-binding activity to the promoter region of sgcR1R2. Conclusion The role of SgcR3 has been proved to be a positive regulator of C-1027 biosynthesis in S. globisporus C-1027. SgcR3 occupies a higher level than SgcR1 and SgcR2 in the regulatory hierarchy that controls C-1027 production and activates the transcription of sgcR1 and sgcR2 by binding directly to the promoter region of sgcR1R2.
Collapse
Affiliation(s)
- Lifei Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
|
40
|
Flärdh K, Buttner MJ. Streptomyces morphogenetics: dissecting differentiation in a filamentous bacterium. Nat Rev Microbiol 2009; 7:36-49. [PMID: 19079351 DOI: 10.1038/nrmicro1968] [Citation(s) in RCA: 467] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
During the life cycle of the filamentous bacteria Streptomyces, morphological differentiation is closely integrated with fundamental growth and cell-cycle processes, as well as with truly complex multicellular behaviour that involves hormone-like extracellular signalling and coordination with an extraordinarily diverse secondary metabolism. Not only are the bacterial cytoskeleton and the machineries for cell-wall assembly, cell division and chromosome segregation reorganized during sporulation, but the developmental programme of these fascinating organisms also has many unusual elements, including the formation of a sporulating aerial mycelium and the production of a surfactant peptide and a hydrophobic sheath that allow cells to escape from the surface tension of the growth medium.
Collapse
Affiliation(s)
- Klas Flärdh
- Department of Cell and Organism Biology, Lund University, Lund, Sweden.
| | | |
Collapse
|
41
|
Hirano S, Tanaka K, Ohnishi Y, Horinouchi S. Conditionally positive effect of the TetR-family transcriptional regulator AtrA on streptomycin production by Streptomyces griseus. MICROBIOLOGY-SGM 2008; 154:905-914. [PMID: 18310036 DOI: 10.1099/mic.0.2007/014381-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
AtrA, a transcriptional activator for actII-ORF4, encoding the pathway-specific transcriptional activator of the actinorhodin biosynthetic gene cluster in Streptomyces coelicolor A3(2), has been shown to bind the region upstream from the promoter of strR, encoding the pathway-specific transcriptional activator of the streptomycin biosynthetic gene cluster in Streptomyces griseus [Uguru et al. (2005) Mol Microbiol 58, 131-150]. The atrA orthologue (atrA-g) in S. griseus was constitutively transcribed throughout growth from a promoter located about 250 nt upstream of the translational start codon, as determined by S1 nuclease mapping. DNase I footprinting showed that histidine-tagged AtrA-g bound an inverted repeat located upstream of strR at positions -117 to -142 relative to the transcriptional start point of strR as +1. This AtrA-g-binding site was between two AdpA-binding sites at approximately nucleotide positions -270 and -50. AdpA is a central transcriptional activator in the A-factor regulatory cascade and essential for the transcription of strR. AtrA-g and AdpA simultaneously bound the respective binding sites. In contrast to AdpA, AtrA-g was non-essential for strR transcription; an atrA-g-disrupted strain produced streptomycin on routine agar media to the same extent as the wild-type strain. However, the atrA-g-disrupted strain tended to produce a smaller amount of streptomycin than the wild-type strain under some conditions, for example, on Bennett agar containing 1 % maltose and on a minimal medium. Therefore, AtrA-g had a conditionally positive effect on streptomycin production, as a tuner, probably by enhancing the AdpA-dependent transcriptional activation of strR in a still unknown manner.
Collapse
Affiliation(s)
- Setsu Hirano
- Department of Biotechnology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Katsuyuki Tanaka
- Department of Biotechnology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yasuo Ohnishi
- Department of Biotechnology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Sueharu Horinouchi
- Department of Biotechnology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
42
|
Xu D, Kwon HJ, Suh JW. S-Adenosylmethionine induces BldH and activates secondary metabolism by involving the TTA-codon control of bldH expression in Streptomyces lividans. Arch Microbiol 2007; 189:419-26. [PMID: 18084741 DOI: 10.1007/s00203-007-0336-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2007] [Revised: 11/11/2007] [Accepted: 11/21/2007] [Indexed: 10/22/2022]
Abstract
In the present study, a mechanism for S-adenosylmethionine (SAM) to promote secondary metabolism was characterized in terms of bldH sl) expression in Streptomyces lividans. A previous study demonstrated that SAM, on application at 2 microM, induces the transcription of the strR promoter (strRp), which originates from Streptomyces griseus, in S. lividans. An inactivation study verified that bldH sl is essential to strRp transcription in S. lividans and it was demonstrated that the effects of SAM on the induction of strRp activity, on the transcription of redZ and actII-orf4, and on antibiotic production were compromised when the unique leucine TTA-codon of bldH sl was changed to TTG. Western blot analysis revealed that SAM supplementation enhances the expression of bldH sl when the TTA-codon was intact but not when the TTG replacement was provided. This study validates the involvement of BldH sl in the potentiating effect of SAM on the antibiotic production and substantiates that SAM controls the expression of bldH sl through the TTA-codon control in translating bldH mRNA. It is argued here that the intracellular SAM-level modulates the maturation of bldA, which encodes the UUA-codon tRNA and controls secondary metabolism in S. lividans.
Collapse
Affiliation(s)
- Delin Xu
- Department of Biological Science, Institute of Bioscience and Biotechnology, Myongji University, San 38-2 Namdong, Yongin, 449-728, South Korea
| | | | | |
Collapse
|
43
|
Horinouchi S, Beppu T. Hormonal control by A-factor of morphological development and secondary metabolism in Streptomyces. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2007; 83:277-295. [PMID: 24367152 PMCID: PMC3859367 DOI: 10.2183/pjab/83.277] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2007] [Accepted: 10/25/2007] [Indexed: 06/03/2023]
Abstract
Streptomyces griseus, a well-known industrial producer of streptomycin, is a member of the genus Streptomyces, which shows a complex life cycle resembling that of fungi. A-factor, a C13 γ-butyrolactone compound, was discovered as a self-regulatory factor or a bacterial hormone to induce morphological differentiation and production of secondary metabolites, including streptomycin, in this organism. Accumulating evidence has revealed an A-factor-triggered signal cascade, which is composed of several key steps or components. These include: (i) AfsA catalyzing a crucial step of A-factor biosynthesis, (ii) the A-factor-specific receptor (ArpA), which acts as a transcriptional repressor for adpA, (iii) adpA, a sole target of ArpA, which encodes a global transcriptional activator AdpA, and (iv) a variety of members of the AdpA regulon, a set of the genes regulated by AdpA. A-factor is biosynthesized via five reaction steps, in which AfsA catalyzes acyl transfer between a β-ketoacyl-acyl carrier protein and the hydroxyl group of dihydroxyacetone phosphate. The receptor ArpA, belonging to the TetR family, is a homodimer, each subunit of which contains a helix-turn-helix DNA-binding motif and an A-factor-binding pocket. The three-dimensional structure and conformational change upon binding A-factor are elucidated, on the basis of X-ray crystallography of CprB, an ArpA homologue. AdpA, belonging to the AraC/XylS transcriptional activator family, binds operators upstream from the promoters of a variety of the target genes and activates their transcription, thus forming the AdpA regulon. Members of the AdpA regulon includes the pathway-specific transcriptional activator gene strR that activates the whole streptomycin biosynthesis gene cluster, in addition to a number of genes that direct the multiple cellular functions required for cellular differentiation in a concerted manner. A variety of A-factor homologues as well as homologues of afsA/arpA are distributed widely among Streptomyces, indicating the significant role of this type of molecular signaling in the ecosystem and evolutional processes.
Collapse
Affiliation(s)
- Sueharu Horinouchi
- Department of Biotechnology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo,
Japan
| | - Teruhiko Beppu
- Advanced Research Institute for the Science and Humanities, Nihon University, Tokyo,
Japan
| |
Collapse
|
44
|
Shawky RM, Puk O, Wietzorrek A, Pelzer S, Takano E, Wohlleben W, Stegmann E. The border sequence of the balhimycin biosynthesis gene cluster from Amycolatopsis balhimycina contains bbr, encoding a StrR-like pathway-specific regulator. J Mol Microbiol Biotechnol 2007; 13:76-88. [PMID: 17693715 DOI: 10.1159/000103599] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Balhimycin, produced by the actinomycete Amycolatopsis balhimycina DSM5908, is a glycopeptide antibiotic highly similar to vancomycin, the antibiotic of 'last resort' used for the treatment of resistant Gram-positive pathogenic bacteria. Partial sequence of the balhimycin biosynthesis gene cluster was previously reported. In this work, cosmids which overlap the region of the characterized gene cluster were isolated and sequenced. At the 'left' end of the cluster, genes were identified which are involved in balhimycin biosynthesis, transport, resistance and regulation. The 'right' end border is defined by a putative 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase (dahp) gene. The proximate gene is similar to a type I polyketide synthase gene of the rifamycin producer Amycolatopsis mediterranei indicating that another biosynthesis gene cluster might be located directly next to the balhimycin gene cluster. The newly identified StrR-like pathway-specific regulator, Bbr, was characterized to be a DNA-binding protein and may have a role in balhimycin biosynthesis. Purified N-terminally His-tagged Bbr shows specific DNA-binding to five promoter regions within the gene cluster. By in silico analysis and by comparison of the DNA sequences binding Bbr, conserved inverted repeat sequences for the Bbr-binding site are proposed. The putative Bbr consensus sequence differs from that published for StrR.
Collapse
Affiliation(s)
- Riham M Shawky
- Eberhard-Karls-Universität Tübingen, Mikrobiologisches Institut, Lehrstuhl für Mikrobiologie/Biotechnologie, Tübingen, Germany
| | | | | | | | | | | | | |
Collapse
|
45
|
Birkó Z, Bialek S, Buzás K, Szájli E, Traag BA, Medzihradszky KF, Rigali S, Vijgenboom E, Penyige A, Kele Z, van Wezel GP, Biró S. The Secreted Signaling Protein Factor C Triggers the A-factor Response Regulon in Streptomyces griseus. Mol Cell Proteomics 2007; 6:1248-56. [PMID: 17376769 DOI: 10.1074/mcp.m600367-mcp200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Members of the prokaryotic genus Streptomyces produce over 60% of all known antibiotics and a wide range of industrial enzymes. A leading theme in microbiology is which signals are received and transmitted by these organisms to trigger the onset of morphological differentiation and antibiotic production. The small gamma-butyrolactone A-factor is an important autoregulatory signaling molecule in streptomycetes, and A-factor mutants are blocked in development and antibiotic production. In this study we showed that heterologous expression of the 324-amino acid secreted regulatory protein Factor C resulted in restoration of development and enhanced antibiotic production of an A-factor-deficient bald mutant of Streptomyces griseus, although the parental strain lacks an facC gene. Proteome analysis showed that in the facC transformant the production of several secreted proteins that belong to the A-factor regulon was restored. HPLC-MS/MS analysis indicated that this was due to restoration of A-factor production to wild-type levels in the transformant. This indicates a connection between two highly divergent types of signaling molecules and possible interplay between their regulatory networks.
Collapse
Affiliation(s)
- Zsuzsanna Birkó
- Department of Human Genetics, Faculty of Medicine, Medical and Health Science Center, University of Debrecen, Nagyerdei körút 98, H-4032 Debrecen, Hungary
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Higashi T, Iwasaki Y, Ohnishi Y, Horinouchi S. A-factor and phosphate depletion signals are transmitted to the grixazone biosynthesis genes via the pathway-specific transcriptional activator GriR. J Bacteriol 2007; 189:3515-24. [PMID: 17337580 PMCID: PMC1855879 DOI: 10.1128/jb.00055-07] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Grixazone (GX), which is a diffusible yellow pigment containing a phenoxazinone chromophore, is one of the secondary metabolites under the control of A-factor (2-isocapryloyl-3R-hydroxymethyl-gamma-butyrolactone) in Streptomyces griseus. GX production is also induced by phosphate starvation. The whole biosynthesis gene cluster for GX was cloned and characterized. The gene cluster consisting of 13 genes contained six transcriptional units, griT, griSR, griR, griAB, griCDEFG, and griJIH. During cultivation in a phosphate-depleted medium, the six promoters were activated in the order (i) griR, (ii) griC and griJ, and (iii) griT, griS, and griA. Disruption of griR, which encodes a SARP family transcriptional regulator, abolished the transcriptional activation of all other genes in the cluster. In addition, ectopic expression of griR from a constitutively active promoter resulted in GX overproduction even in the absence of AdpA, a key transcriptional activator in the A-factor regulatory cascade, and in the presence of phosphate at a high concentration. GriR monomers bound direct repeat sequences in the griC and griJ promoters in a cooperative manner. Therefore, the early active genes (griCDEFG and griJIH), all of which, except for griG (which encodes a transporter-like protein), encode the GX biosynthesis enzymes, were directly activated by GriR. The transcription of griR was greatly reduced in the presence of phosphate at a high concentration and was hardly detected in the absence of AdpA. These findings showed that both A-factor and phosphate depletion signals were required for griR transcription and both signals were transmitted to the GX biosynthesis genes solely via the griR promoter.
Collapse
Affiliation(s)
- Tatsuichiro Higashi
- Department of Biotechnology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | |
Collapse
|
47
|
Zhao J, Wen Y, Chen Z, Song Y, Li J. An adpA homologue in Streptomyces avermitilis is involved in regulation of morphogenesis and melanogenesis. ACTA ACUST UNITED AC 2007. [DOI: 10.1007/s11434-007-0105-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
48
|
Flatt PM, Mahmud T. Biosynthesis of aminocyclitol-aminoglycoside antibiotics and related compounds. Nat Prod Rep 2006; 24:358-92. [PMID: 17390001 DOI: 10.1039/b603816f] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review covers the biosynthesis of aminocyclitol-aminoglycoside antibiotics and related compounds, particularly from the molecular genetic perspectives. 195 references are cited.
Collapse
Affiliation(s)
- Patricia M Flatt
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR 97331-3507, USA
| | | |
Collapse
|
49
|
Hong B, Phornphisutthimas S, Tilley E, Baumberg S, McDowall KJ. Streptomycin production by Streptomyces griseus can be modulated by a mechanism not associated with change in the adpA component of the A-factor cascade. Biotechnol Lett 2006; 29:57-64. [PMID: 17120093 DOI: 10.1007/s10529-006-9216-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2006] [Accepted: 09/18/2006] [Indexed: 10/23/2022]
Abstract
In Streptomyces coelicolor, AtrA is an activator of transcription of the actinorhodin cluster-situated regulator gene actII-ORF4. In previous work, we showed that S. coelicolor AtrA binds in vitro to the promoter of S. griseus strR, the streptomycin cluster-situated regulator. We show here that S. griseus carries a single close homologue of atrA and that expression of S. coelicolor AtrA in S. griseus causes a DNA binding-dependent reduction in streptomycin production and in the mRNA levels of strR and genes of streptomycin biosynthesis. However, there is no effect on the level of the mRNA of adpA, which is the only transcription factor that has so far been characterised for strR. The adpA gene is directly regulated by ArpA, the receptor protein for the gamma-butyrolactone signalling molecule A-factor. Therefore, to our knowledge, our results provide the first in vivo evidence that A-factor-ArpA-AdpA-StrR regulatory cascade represents only part of the full complexity of regulation of streptomycin biosynthesis in S. griseus. The potential biotechnological application of our findings is discussed.
Collapse
Affiliation(s)
- Bin Hong
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Beijing, China
| | | | | | | | | |
Collapse
|
50
|
Hirano S, Kato JY, Ohnishi Y, Horinouchi S. Control of the Streptomyces Subtilisin inhibitor gene by AdpA in the A-factor regulatory cascade in Streptomyces griseus. J Bacteriol 2006; 188:6207-16. [PMID: 16923887 PMCID: PMC1595390 DOI: 10.1128/jb.00662-06] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AdpA in the A-factor regulatory cascade in Streptomyces griseus activates a number of genes required for secondary metabolism and morphological differentiation, forming an AdpA regulon. The Streptomyces subtilisin inhibitor (SSI) gene, sgiA, in S. griseus was transcribed in response to AdpA, showing that sgiA is a member of the AdpA regulon. AdpA bound a single site upstream of the sgiA promoter at approximately position -70 with respect to its transcriptional start point. Mutational analysis of the AdpA-binding site showed that the AdpA-binding site was essential for transcriptional activation. Mutants in which sgiA was disrupted had higher trypsin, chymotrypsin, metalloendopeptidase, and total protease activities than the wild-type strain, which showed that SgiA modulated the activities of these extracellularly produced proteases. Because a number of genes encoding chymotrypsins, trypsins, and metalloendopeptidases, most of which are SSI-sensitive proteases, are also under the control of AdpA, the A-factor regulatory cascade was thought to play a crucial role in modulating the extracellular protease activities by triggering simultaneous production of the proteases and their inhibitor at a specific timing during growth. Mutants in which sgiA was disrupted grew normally and formed aerial hyphae and spores with the same time course as the wild-type strain. However, exogenous addition of purified SgiA to substrate mycelium grown on agar medium resulted in a delay in aerial mycelium formation, indicating that SgiA is involved in aerial hypha formation in conjunction with proteases.
Collapse
Affiliation(s)
- Setsu Hirano
- Department of Biotechnology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | |
Collapse
|