1
|
Ramesh M, Behra PRK, Pettersson BMF, Dasgupta S, Kirsebom LA. Age-Dependent Pleomorphism in Mycobacterium monacense Cultures. Microorganisms 2025; 13:475. [PMID: 40142368 PMCID: PMC11946739 DOI: 10.3390/microorganisms13030475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/07/2025] [Accepted: 02/10/2025] [Indexed: 03/28/2025] Open
Abstract
Changes in cell shape have been shown to be an integral part of the mycobacterial life cycle; however, systematic investigations into its patterns of pleomorphic behaviour in connection with stages or conditions of growth are scarce. We have studied the complete growth cycle of Mycobacterium monacense cultures, a Non-Tuberculous Mycobacterium (NTM), in solid as well as in liquid media. We provide data showing changes in cell shape from rod to coccoid and occurrence of refractive cells ranging from Phase Grey to phase Bright (PGB) in appearance upon ageing. Changes in cell shape could be correlated to the bi-phasic nature of the growth curves for M. monacense (and the NTM Mycobacterium boenickei) as measured by the absorbance of liquid cultures while growth measured by colony-forming units (CFU) on solid media showed a uniform exponential growth. Based on the complete M. monacense genome we identified genes involved in cell morphology, and analyses of their mRNA levels revealed changes at different stages of growth. One gene, dnaK_3 (encoding a chaperone), showed significantly increased transcript levels in stationary phase cells relative to exponentially growing cells. Based on protein domain architecture, we identified that the DnaK_3 N-terminus domain is an MreB-like homolog. Endogenous overexpression of M. monacense dnaK_3 in M. monacense was unsuccessful (appears to be lethal) while exogenous overexpression in Mycobacterium marinum resulted in morphological changes with an impact on the frequency of appearance of PGB cells. However, the introduction of an anti-sense "gene" targeting the M. marinum dnaK_3 did not show significant effects. Using dnaK_3-lacZ reporter constructs we also provide data suggesting that the morphological differences could be due to differences in the regulation of dnaK_3 in the two species. Together these data suggest that, although its regulation may vary between mycobacterial species, the dnaK_3 might have a direct or indirect role in the processes influencing mycobacterial cell shape.
Collapse
Affiliation(s)
| | | | | | | | - Leif A. Kirsebom
- Department of Cell and Molecular Biology, Biomedical Centre, Box 596, SE-751 24 Uppsala, Sweden; (M.R.); (P.R.K.B.); (B.M.F.P.); (S.D.)
| |
Collapse
|
2
|
An Y, Ni R, Zhuang L, Yang L, Ye Z, Li L, Parkkila S, Aspatwar A, Gong W. Tuberculosis vaccines and therapeutic drug: challenges and future directions. MOLECULAR BIOMEDICINE 2025; 6:4. [PMID: 39841361 PMCID: PMC11754781 DOI: 10.1186/s43556-024-00243-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/06/2024] [Accepted: 12/24/2024] [Indexed: 01/23/2025] Open
Abstract
Tuberculosis (TB) remains a prominent global health challenge, with the World Health Organization documenting over 1 million annual fatalities. Despite the deployment of the Bacille Calmette-Guérin (BCG) vaccine and available therapeutic agents, the escalation of drug-resistant Mycobacterium tuberculosis strains underscores the pressing need for more efficacious vaccines and treatments. This review meticulously maps out the contemporary landscape of TB vaccine development, with a focus on antigen identification, clinical trial progress, and the obstacles and future trajectories in vaccine research. We spotlight innovative approaches, such as multi-antigen vaccines and mRNA technology platforms. Furthermore, the review delves into current TB therapeutics, particularly for multidrug-resistant tuberculosis (MDR-TB), exploring promising agents like bedaquiline (BDQ) and delamanid (DLM), as well as the potential of host-directed therapies. The hurdles in TB vaccine and therapeutic development encompass overcoming antigen diversity, enhancing vaccine effectiveness across diverse populations, and advancing novel vaccine platforms. Future initiatives emphasize combinatorial strategies, the development of anti-TB compounds targeting novel pathways, and personalized medicine for TB treatment and prevention. Despite notable advances, persistent challenges such as diagnostic failures and protracted treatment regimens continue to impede progress. This work aims to steer future research endeavors toward groundbreaking TB vaccines and therapeutic agents, providing crucial insights for enhancing TB prevention and treatment strategies.
Collapse
Affiliation(s)
- Yajing An
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, 17#Heishanhu Road, Haidian District, Beijing, 100091, China
- Graduate School, Hebei North University, Zhangjiakou, 075000, Hebei, China
| | - Ruizi Ni
- Graduate School, Hebei North University, Zhangjiakou, 075000, Hebei, China
| | - Li Zhuang
- Graduate School, Hebei North University, Zhangjiakou, 075000, Hebei, China
| | - Ling Yang
- Graduate School, Hebei North University, Zhangjiakou, 075000, Hebei, China
| | - Zhaoyang Ye
- Graduate School, Hebei North University, Zhangjiakou, 075000, Hebei, China
| | - Linsheng Li
- Graduate School, Hebei North University, Zhangjiakou, 075000, Hebei, China
| | - Seppo Parkkila
- Faculty of Medicine and Health Technology, Tampere University, 33014, Tampere, Finland
- Department of Clinical Chemistry, Fimlab Laboratories PLC, Tampere, Finland
| | - Ashok Aspatwar
- Faculty of Medicine and Health Technology, Tampere University, 33014, Tampere, Finland.
| | - Wenping Gong
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, 17#Heishanhu Road, Haidian District, Beijing, 100091, China.
| |
Collapse
|
3
|
Teng JLL, Tang Y, Wong SSY, Yeung ML, Cai JP, Chen C, Chan E, Fong JYH, Au-Yeung RKH, Xiong L, Lau TCK, Lau SKP, Woo PCY. Mycolyltransferase is important for biofilm formation and pathogenesis of Tsukamurella keratitis. Emerg Microbes Infect 2024; 13:2373317. [PMID: 38934251 PMCID: PMC11229725 DOI: 10.1080/22221751.2024.2373317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/22/2024] [Indexed: 06/28/2024]
Abstract
Tsukamurella, a group of multi-drug resistant, Gram-positive, aerobic, and partially acid-fast bacteria, are emerging causes of bacterial conjunctivitis and keratitis. However, the pathogenesis of Tsukamurella keratitis is largely unknown. To address this, we used New Zealand White rabbits to develop the first eye infection model and conducted in vitro tests to study the pathogenesis mechanisms of Tsukamurella. There is increasing evidence that biofilms play a significant role in ocular infections, leading us to hypothesize that biofilm formation is crucial for effective Tsukamurella infection. In order to look for potential candidate genes which are important in biofilm formation and Tsukamurella keratitis. We performed genome sequencing of two ocular isolates, T. pulmonis-PW1004 and T. tyrosinosolvens-PW899, to identify potential virulence factors. Through in vitro and in vivo studies, we characterized their biological roles in mediating Tsukamurella keratitis. Our findings confirmed that Tsukamurella is an ocular pathogen by fulfilling Koch's postulates, and using genome sequence data, we identified tmytC, encoding a mycolyltransferase, as a crucial gene in biofilm formation and causing Tsukamurella keratitis in the rabbit model. This is the first report demonstrating the novel role of mycolyltransferase in causing ocular infections. Overall, our findings contribute to a better understanding of Tsukamurella pathogenesis and provide a potential target for treatment. Specific inhibitors targeting TmytC could serve as an effective treatment option for Tsukamurella infections.
Collapse
Affiliation(s)
- Jade Lee-Lee Teng
- Faculty of Dentistry, The University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, People’s Republic of China
| | - Ying Tang
- Faculty of Dentistry, The University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, People’s Republic of China
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, People’s Republic of China
| | - Samson Sai-Yin Wong
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, People’s Republic of China
| | - Man Lung Yeung
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, People’s Republic of China
- State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, People’s Republic of China
- Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, People’s Republic of China
- Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, People’s Republic of China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, Hong Kong, People’s Republic of China
| | - Jian-Pao Cai
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, People’s Republic of China
| | - Chen Chen
- Beijing Ditan Hospital, Capital Medical University, Beijing Key Laboratory of Emerging infectious Diseases, Beijing, People’s Republic of China
| | - Elaine Chan
- Faculty of Dentistry, The University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, People’s Republic of China
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, People’s Republic of China
| | - Jordan Yik-Hei Fong
- Faculty of Dentistry, The University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, People’s Republic of China
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, People’s Republic of China
| | - Rex Kwok-Him Au-Yeung
- Department of Pathology, The University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, People’s Republic of China
| | - Lifeng Xiong
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, People’s Republic of China
| | - Terrence Chi-Kong Lau
- Department of Biomedical Sciences, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, People’s Republic of China
| | - Susanna Kar-Pui Lau
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, People’s Republic of China
| | - Patrick Chiu-Yat Woo
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, People’s Republic of China
- Doctoral Program in Translational Medicine and Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
- The iEGG and Animal Biotechnology Research Center, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
4
|
Patel RR, Arun PP, Singh SK, Singh M. Mycobacterial biofilms: Understanding the genetic factors playing significant role in pathogenesis, resistance and diagnosis. Life Sci 2024; 351:122778. [PMID: 38879157 DOI: 10.1016/j.lfs.2024.122778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 05/25/2024] [Accepted: 06/04/2024] [Indexed: 07/03/2024]
Abstract
Even though the genus Mycobacterium is a diverse group consisting of a majority of environmental bacteria known as non-tuberculous mycobacteria (NTM), it also contains some of the deadliest pathogens (Mycobacterium tuberculosis) in history associated with chronic disease called tuberculosis (TB). Formation of biofilm is one of the unique strategies employed by mycobacteria to enhance their ability to survive in hostile conditions. Biofilm formation by Mycobacterium species is an emerging area of research with significant implications for understanding its pathogenesis and treatment of related infections, specifically TB. This review provides an overview of the biofilm-forming abilities of different species of Mycobacterium and the genetic factors influencing biofilm formation with a detailed focus on M. tuberculosis. Biofilm-mediated resistance is a significant challenge as it can limit antibiotic penetration and promote the survival of dormant mycobacterial cells. Key genetic factors promoting biofilm formation have been explored such as the mmpL genes involved in lipid transport and cell wall integrity as well as the groEL gene essential for mature biofilm formation. Additionally, biofilm-mediated antibiotic resistance and pathogenesis highlighting the specific niches, sites of infection along with the possible mechanisms of biofilm dissemination have been discussed. Furthermore, drug targets within mycobacterial biofilm and their role as potential biomarkers in the development of rapid diagnostic tools have been highlighted. The review summarises the current understanding of the complex nature of Mycobacterium biofilm and its clinical implications, paving the way for advancements in the field of disease diagnosis, management and treatment against its multi-drug resistant species.
Collapse
Affiliation(s)
- Ritu Raj Patel
- Department of Medicinal Chemistry, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Pandey Priya Arun
- Department of Medicinal Chemistry, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Sudhir Kumar Singh
- Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Meenakshi Singh
- Department of Medicinal Chemistry, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
5
|
Yang Y, Chen YZ, Xia T. Optimizing antigen selection for the development of tuberculosis vaccines. CELL INSIGHT 2024; 3:100163. [PMID: 38572176 PMCID: PMC10987857 DOI: 10.1016/j.cellin.2024.100163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 03/08/2024] [Accepted: 03/11/2024] [Indexed: 04/05/2024]
Abstract
Tuberculosis (TB) remains a prevalent global infectious disease caused by genetically closely related tubercle bacilli in Mycobacterium tuberculosis complex (MTBC). For a century, the Bacillus Calmette-Guérin (BCG) vaccine has been the primary preventive measure against TB. While it effectively protects against extrapulmonary forms of pediatric TB, it lacks consistent efficacy in providing protection against pulmonary TB in adults. Consequently, the exploration and development of novel TB vaccines, capable of providing broad protection to populations, have consistently constituted a prominent area of interest in medical research. This article presents a concise overview of the novel TB vaccines currently undergoing clinical trials, discussing their classification, protective efficacy, immunogenicity, advantages, and limitations. In vaccine development, the careful selection of antigens that can induce strong and diverse specific immune responses is essential. Therefore, we have summarized the molecular characteristics, biological function, immunogenicity, and relevant studies associated with the chosen antigens for TB vaccines. These insights gained from vaccines and immunogenic proteins will inform the development of novel mycobacterial vaccines, particularly mRNA vaccines, for effective TB control.
Collapse
Affiliation(s)
- Yang Yang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Yi-Zhen Chen
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Tian Xia
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, 730046, China
| |
Collapse
|
6
|
Kado T, Akbary Z, Motooka D, Sparks IL, Melzer ES, Nakamura S, Rojas ER, Morita YS, Siegrist MS. A cell wall synthase accelerates plasma membrane partitioning in mycobacteria. eLife 2023; 12:e81924. [PMID: 37665120 PMCID: PMC10547480 DOI: 10.7554/elife.81924] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 09/02/2023] [Indexed: 09/05/2023] Open
Abstract
Lateral partitioning of proteins and lipids shapes membrane function. In model membranes, partitioning can be influenced both by bilayer-intrinsic factors like molecular composition and by bilayer-extrinsic factors such as interactions with other membranes and solid supports. While cellular membranes can departition in response to bilayer-intrinsic or -extrinsic disruptions, the mechanisms by which they partition de novo are largely unknown. The plasma membrane of Mycobacterium smegmatis spatially and biochemically departitions in response to the fluidizing agent benzyl alcohol, then repartitions upon fluidizer washout. By screening for mutants that are sensitive to benzyl alcohol, we show that the bifunctional cell wall synthase PonA2 promotes membrane partitioning and cell growth during recovery from benzyl alcohol exposure. PonA2's role in membrane repartitioning and regrowth depends solely on its conserved transglycosylase domain. Active cell wall polymerization promotes de novo membrane partitioning and the completed cell wall polymer helps to maintain membrane partitioning. Our work highlights the complexity of membrane-cell wall interactions and establishes a facile model system for departitioning and repartitioning cellular membranes.
Collapse
Affiliation(s)
- Takehiro Kado
- Department of Microbiology, University of Massachusetts AmherstAmherstUnited States
| | - Zarina Akbary
- Department of Biology, New York UniversityNew YorkUnited States
| | - Daisuke Motooka
- Department of Infection Metagenomics, Research Institute for Microbial Diseases, Osaka UniversityOsakaJapan
| | - Ian L Sparks
- Department of Microbiology, University of Massachusetts AmherstAmherstUnited States
| | - Emily S Melzer
- Department of Microbiology, University of Massachusetts AmherstAmherstUnited States
| | - Shota Nakamura
- Department of Infection Metagenomics, Research Institute for Microbial Diseases, Osaka UniversityOsakaJapan
| | - Enrique R Rojas
- Department of Biology, New York UniversityNew YorkUnited States
| | - Yasu S Morita
- Department of Microbiology, University of Massachusetts AmherstAmherstUnited States
- Molecular and Cellular Graduate Program, University of Massachusetts AmherstAmherstUnited States
| | - M Sloan Siegrist
- Department of Microbiology, University of Massachusetts AmherstAmherstUnited States
- Molecular and Cellular Graduate Program, University of Massachusetts AmherstAmherstUnited States
| |
Collapse
|
7
|
Miotto P, Sorrentino R, De Giorgi S, Provvedi R, Cirillo DM, Manganelli R. Transcriptional regulation and drug resistance in Mycobacterium tuberculosis. Front Cell Infect Microbiol 2022; 12:990312. [PMID: 36118045 PMCID: PMC9480834 DOI: 10.3389/fcimb.2022.990312] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 08/11/2022] [Indexed: 11/13/2022] Open
Abstract
Bacterial drug resistance is one of the major challenges to present and future human health, as the continuous selection of multidrug resistant bacteria poses at serious risk the possibility to treat infectious diseases in the near future. One of the infection at higher risk to become incurable is tuberculosis, due to the few drugs available in the market against Mycobacterium tuberculosis. Drug resistance in this species is usually due to point mutations in the drug target or in proteins required to activate prodrugs. However, another interesting and underexplored aspect of bacterial physiology with important impact on drug susceptibility is represented by the changes in transcriptional regulation following drug exposure. The main regulators involved in this phenomenon in M. tuberculosis are the sigma factors, and regulators belonging to the WhiB, GntR, XRE, Mar and TetR families. Better understanding the impact of these regulators in survival to drug treatment might contribute to identify new drug targets and/or to design new strategies of intervention.
Collapse
Affiliation(s)
- Paolo Miotto
- Emerging Bacterial Pathogens Unit, Div. of Immunology, Transplantation and Infectious Diseases IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Rita Sorrentino
- Emerging Bacterial Pathogens Unit, Div. of Immunology, Transplantation and Infectious Diseases IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Stefano De Giorgi
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | | | - Daniela Maria Cirillo
- Emerging Bacterial Pathogens Unit, Div. of Immunology, Transplantation and Infectious Diseases IRCCS San Raffaele Scientific Institute, Milano, Italy
| | | |
Collapse
|
8
|
Xiong LB, Liu HH, Song L, Dong MM, Ke J, Liu YJ, Liu K, Zhao M, Wang FQ, Wei DZ. Improving the biotransformation efficiency of soybean phytosterols in Mycolicibacterium neoaurum by the combined deletion of fbpC3 and embC in cell envelope synthesis. Synth Syst Biotechnol 2021; 7:453-459. [PMID: 34938904 PMCID: PMC8654695 DOI: 10.1016/j.synbio.2021.11.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/27/2021] [Accepted: 11/24/2021] [Indexed: 11/18/2022] Open
Abstract
Biotransformation of soybean phytosterols into 9α-hydroxy-4-androstene-3,17-dione (9-OHAD) by mycobacteria is the core step in the synthesis of adrenocortical hormone. However, the low permeability of the dense cell envelope largely inhibits the overall conversion efficiency of phytosterols. The antigen 85 (Ag85) complex encoded by fbpA, fbpB, and fbpC was proposed as the key factor in the combined catalysis of mycoloyl for producing mycolyl-arabinogalactan (m-AG) and trehalose dimycolate (TDM) in mycobacterial cell envelope. Herein, we confirmed that fbpC3 was essential for the biotransformation of trehalose monomycolate (TMM) to TDM in Mycolicibacterium neoaurum. The deficiency of this gene raised the cell permeability, thereby enhancing the steroid uptake and utilization. The 9-OHAD yield in the fbpC3-deficient 9-OHAD-producing strain was increased by 21.3%. Moreover, the combined deletion of fbpC3 and embC further increased the 9-OHAD yield compared to the single deletion of fbpC3. Finally, after 96 h of bioconversion in industrial resting cells, the 9-OHAD yield of 11.2 g/L was achieved from 20 g/L phytosterols and the productivity reached 0.116 g/L/h. In summary, this study suggested the critical role of the fbpC3 gene in the synthesis of TDM in M. neoaurum and verified the feasibility of improving the bioconversion efficiency of phytosterols through the cell envelope engineering strategy.
Collapse
Affiliation(s)
- Liang-Bin Xiong
- Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, 201800, PR China
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, PR China
- Huawei Safety Evaluation & Medical Research (Shanghai) Co., Ltd., Shanghai, 201206, PR China
| | - Hao-Hao Liu
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Lu Song
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Miao-Miao Dong
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Jie Ke
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Yong-Jun Liu
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Ke Liu
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Ming Zhao
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, PR China
- Corresponding author.
| | - Feng-Qing Wang
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, PR China
- Huawei Safety Evaluation & Medical Research (Shanghai) Co., Ltd., Shanghai, 201206, PR China
- Corresponding author. State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, PR China.
| | - Dong-Zhi Wei
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, PR China
| |
Collapse
|
9
|
He L, Yan X, Dai K, Wen X, Cao S, Huang X, Wu R, Zhao Q, Huang Y, Yan Q, Ma X, Han X, Wen Y. Comparative transcriptome analysis reveals that deletion of CheY influences gene expressions of ABC transports and metabolism in Haemophilus parasuis. Funct Integr Genomics 2021; 21:695-707. [PMID: 34676472 DOI: 10.1007/s10142-021-00800-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 04/20/2021] [Accepted: 08/01/2021] [Indexed: 11/28/2022]
Abstract
Haemophilus (Glaesserella) parasuis is a commensal bacterium that causes Glässer's disease (GD) in swine. As a global transcriptional factor, CheY regulates the expression of hundreds of genes in H. parasuis. In this study, we measured changes in gene expression at the whole transcriptome level using RNAseq. We identified 2058 co-expressed genes, and found 624 differentially expressed genes (q < 0.05) in ΔcheY and SC1401. Several important GO annotations and signaling pathways were identified. RNA-seq results were assembled according to the reference genome, compared with the annotated gene model, and 12 new transcriptional regions were found. Finally, q-PCR results validated the RNA-seq results with 8 randomly selected genes. The present study indicated that CheY is mainly involved in the regulation of ABC transport, oxidative phosphorylation, and β-Lactam resistance. We draw the regulatory network of CheY, which offers greater insight into the regulatory mechanism of CheY in H.parasuis.
Collapse
Affiliation(s)
- Lvqin He
- Technology Department, Experimental Animal Center, Southwest Medical University, Luzhou, China
| | - Xuefeng Yan
- Technology Department, Southwest Medical University, Luzhou, China
| | - Ke Dai
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xintian Wen
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Sanjie Cao
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xiaobo Huang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Rui Wu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qin Zhao
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yong Huang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qigui Yan
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xiaoping Ma
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xinfeng Han
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yiping Wen
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.
| |
Collapse
|
10
|
The Pup-Proteasome System Protects Mycobacteria from Antimicrobial Antifolates. Antimicrob Agents Chemother 2021; 65:AAC.01967-20. [PMID: 33468462 DOI: 10.1128/aac.01967-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 12/30/2020] [Indexed: 12/21/2022] Open
Abstract
Protein turnover via the Pup-proteasome system (PPS) is essential for nitric oxide resistance and virulence of Mycobacterium tuberculosis, the causative agent of tuberculosis. Our study revealed components of PPS as novel determinants of intrinsic antifolate resistance in both M. tuberculosis and nonpathogenic M. smegmatis The lack of expression of the prokaryotic ubiquitin-like protein (Pup) or the ligase, PafA, responsible for ligating Pup to its protein targets, enhanced antifolate susceptibility in M. smegmatis Cross-species expression of M. tuberculosis homologs restored wild-type resistance to M. smegmatis proteasomal mutants. Targeted deletion of prcA and prcB, encoding the structural components of the PPS proteolytic core, similarly resulted in reduced antifolate resistance. Furthermore, sulfonamides were synergistic with acidified nitrite, and the synergy against mycobacteria was enhanced in the absence of proteasomal activity. In M. tuberculosis, targeted mutagenesis followed by genetic complementation of mpa, encoding the regulatory subunit responsible for translocating pupylated proteins to the proteolytic core, demonstrated a similar function of PPS in antifolate resistance. The overexpression of dihydrofolate reductase, responsible for the reduction of dihydrofolate to tetrahydrofolate, or disruption of the Lonely Guy gene, responsible for PPS-controlled production of cytokinins, abolished PPS-mediated antifolate sensitivity. Together, our results show that PPS protects mycobacteria from antimicrobial antifolates via regulating both folate reduction and cytokinin production.
Collapse
|
11
|
Saxena S, Spaink HP, Forn-Cuní G. Drug Resistance in Nontuberculous Mycobacteria: Mechanisms and Models. BIOLOGY 2021; 10:biology10020096. [PMID: 33573039 PMCID: PMC7911849 DOI: 10.3390/biology10020096] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 02/07/2023]
Abstract
The genus Mycobacteria comprises a multitude of species known to cause serious disease in humans, including Mycobacterium tuberculosis and M. leprae, the responsible agents for tuberculosis and leprosy, respectively. In addition, there is a worldwide spike in the number of infections caused by a mixed group of species such as the M. avium, M. abscessus and M. ulcerans complexes, collectively called nontuberculous mycobacteria (NTMs). The situation is forecasted to worsen because, like tuberculosis, NTMs either naturally possess or are developing high resistance against conventional antibiotics. It is, therefore, important to implement and develop models that allow us to effectively examine the fundamental questions of NTM virulence, as well as to apply them for the discovery of new and improved therapies. This literature review will focus on the known molecular mechanisms behind drug resistance in NTM and the current models that may be used to test new effective antimicrobial therapies.
Collapse
|
12
|
Sebastian J, Nair RR, Swaminath S, Ajitkumar P. Mycobacterium tuberculosis Cells Surviving in the Continued Presence of Bactericidal Concentrations of Rifampicin in vitro Develop Negatively Charged Thickened Capsular Outer Layer That Restricts Permeability to the Antibiotic. Front Microbiol 2020; 11:554795. [PMID: 33391194 PMCID: PMC7773709 DOI: 10.3389/fmicb.2020.554795] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 11/27/2020] [Indexed: 12/18/2022] Open
Abstract
Majority of the cells in the bacterial populations exposed to lethal concentrations of antibiotics for prolonged duration succumbs to the antibiotics' sterilizing activity. The remaining cells survive by diverse mechanisms that include reduced permeability of the antibiotics. However, in the cells surviving in the continued presence of lethal concentrations of antibiotics, it is not known whether any cell surface alterations occur that in turn may reduce permeability of the antibiotics. Here we report the presence of a highly negatively charged, hydrophilic, thickened capsular outer layer (TCOL) on a small proportion of the rifampicin surviving population (RSP) of Mycobacterium tuberculosis (Mtb) cells upon prolonged continuous exposure to bactericidal concentrations of rifampicin in vitro. The TCOL reduced the intracellular entry of 5-carboxyfluorescein-rifampicin (5-FAM-rifampicin), a fluorochrome-conjugated rifampicin permeability probe of negligible bacteriocidal activity but comparable properties. Gentle mechanical removal of the TCOL enabled significant increase in the 5-FAM-rifampicin permeability. Zeta potential measurements of the cells' surface charge and hexadecane assay for cell surface hydrophobicity showed that the TCOL imparted high negative charge and polar nature to the cells' surface. Flow cytometry using the MLP and RSP cells, stained with calcofluor white, which specifically binds glucose/mannose units in β (1 → 4) or β (1 → 3) linkages, revealed the presence of lower content of polysaccharides containing such residues in the TCOL. GC-MS analyses of the TCOL and the normal capsular outer layer (NCOL) of MLP cells showed elevated levels of α-D-glucopyranoside, mannose, arabinose, galactose, and their derivatives in the TCOL, indicating the presence of high content of polysaccharides with these residues. We hypothesize that the significantly high thickness and the elevated negative charge of the TCOL might have functioned as a physical barrier restricting the permeability of the relatively non-polar rifampicin. This might have reduced intracellular rifampicin concentration enabling the cells' survival in the continued presence of high doses of rifampicin. In the context of our earlier report on the de novo emergence of rifampicin-resistant genetic mutants of Mtb from the population surviving under lethal doses of the antibiotic, the present findings attain clinical significance if a subpopulation of the tubercle bacilli in tuberculosis patients possesses TCOL.
Collapse
Affiliation(s)
- Jees Sebastian
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
| | - Rashmi Ravindran Nair
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
| | - Sharmada Swaminath
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
| | | |
Collapse
|
13
|
Goossens SN, Sampson SL, Van Rie A. Mechanisms of Drug-Induced Tolerance in Mycobacterium tuberculosis. Clin Microbiol Rev 2020; 34:e00141-20. [PMID: 33055230 PMCID: PMC7566895 DOI: 10.1128/cmr.00141-20] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Successful treatment of tuberculosis (TB) can be hampered by Mycobacterium tuberculosis populations that are temporarily able to survive antibiotic pressure in the absence of drug resistance-conferring mutations, a phenomenon termed drug tolerance. We summarize findings on M. tuberculosis tolerance published in the past 20 years. Key M. tuberculosis responses to drug pressure are reduced growth rates, metabolic shifting, and the promotion of efflux pump activity. Metabolic shifts upon drug pressure mainly occur in M. tuberculosis's lipid metabolism and redox homeostasis, with reduced tricarboxylic acid cycle activity in favor of lipid anabolism. Increased lipid anabolism plays a role in cell wall thickening, which reduces sensitivity to most TB drugs. In addition to these general mechanisms, drug-specific mechanisms have been described. Upon isoniazid exposure, M. tuberculosis reprograms several pathways associated with mycolic acid biosynthesis. Upon rifampicin exposure, M. tuberculosis upregulates the expression of its drug target rpoB Upon bedaquiline exposure, ATP synthesis is stimulated, and the transcription factors Rv0324 and Rv0880 are activated. A better understanding of M. tuberculosis's responses to drug pressure will be important for the development of novel agents that prevent the development of drug tolerance following treatment initiation. Such agents could then contribute to novel TB treatment-shortening strategies.
Collapse
Affiliation(s)
- Sander N Goossens
- Family Medicine and Population Health (FAMPOP), Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium
| | - Samantha L Sampson
- DSI/NRF Centre of Excellence for Biomedical Tuberculosis Research/SA MRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Annelies Van Rie
- Family Medicine and Population Health (FAMPOP), Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
14
|
Adewumi AT, Elrashedy A, Soremekun OS, Ajadi MB, Soliman MES. Weak spots inhibition in the Mycobacterium tuberculosis antigen 85C target for antitubercular drug design through selective irreversible covalent inhibitor-SER124. J Biomol Struct Dyn 2020; 40:2934-2954. [PMID: 33155529 DOI: 10.1080/07391102.2020.1844061] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Mycobacterium tuberculosis (Mtb) encoded secreted antigen 85 enzymes (Ag85A/Ag85B/Ag85C) play that critical roles in the virulence, survival and drug-resistant TB of the pathogen. Ag85 proteins are potential antitubercular drug targets because they are essential in the catalytic synthesis of trehalose moieties and mycolic acid attachment to the Mtb cell wall. Recently, experimental protocols led to the discovery of a selective covalent Ag85 inhibitor, β-isomer monocyclic enolphosphorus Cycliphostin (CyC8β) compound, which targets the Ag85 serine 124 to exhibit a promising therapeutic activity. For the first time, our study unravelled the structural features among Mtb Ag85C homologs and motions and dynamics of Ag85C when the CyC8β bound covalently and in open model conformations to the protein using bioinformatics tools and integrated Molecular dynamics simulations. Comparative Ag85C sequence analysis revealed conserved regions; 70% active site, 90% Adeniyi loop L1 and 50% loop L2, which acts as a switch between open and closed conformations. The average C-α atoms RMSD (2.05 Å) and RMSF (0.9 Å) revealed instability and high induced flexibility in the CyC8β covalent-bound compared to the apo and open model systems, which displayed more stability and lower fluctuations. DSSP showed structural transitions of α-helices to bend and loops to 310-helices in the bound systems. SASA of CyC8β covalent bound showed active site hydrophobic residues exposure to huge solvent. Therefore, these findings present the potential opportunity hotspots in Ag85C protein that would aid the structure-based design of novel chemical entities capable of resulting in potent antitubercular drugs.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Adeniyi T Adewumi
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Ahmed Elrashedy
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Opeyemi S Soremekun
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Mary B Ajadi
- Department of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Mahmoud E S Soliman
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
15
|
Alhuwaymil ZS, Al-Araj IQM, Al Dulayymi AR, Jones A, Gates PJ, Valero-Guillén PL, Baird MS, Al Dulayymi JR. Mycobacterium alvei (ω-1)-methoxy mycolic acids: Absolute stereochemistry and synthesis. Chem Phys Lipids 2020; 233:104977. [PMID: 32961166 DOI: 10.1016/j.chemphyslip.2020.104977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/24/2020] [Accepted: 09/14/2020] [Indexed: 11/28/2022]
Abstract
Cells of Mycobacterium alvei are known to contain a unique set of mycolic acids with a (ω-1)-methoxy group; although the various enzymes in the biosynthesis of other types of mycolic acid have been widely studied, the biosynthetic route to this substituent is unclear. We now define the stereochemistry of the (ω-1)-methoxy fragment as R, and describe the synthesis of a major R-(ω-1)-methoxy-mycolic acid and its sugar esters, and of two natural M. alvei diene mycolic acids.
Collapse
Affiliation(s)
- Zamzam S Alhuwaymil
- School of Natural Sciences, Bangor University, Bangor, Gwynedd, LL57 2UW, UK
| | | | - Ahmad R Al Dulayymi
- School of Natural Sciences, Bangor University, Bangor, Gwynedd, LL57 2UW, UK
| | - Alison Jones
- School of Natural Sciences, Bangor University, Bangor, Gwynedd, LL57 2UW, UK
| | - Paul J Gates
- School of Chemistry, Bristol University, Bristol, BS8 1TS, UK
| | - Pedro L Valero-Guillén
- Departamento de Genética y Microbiología, Facultad de Medicina, Universidad de Murcia, Spain, Instituto Murciano de Investigación Biosanitaria (IMIB), Spain
| | - Mark S Baird
- School of Chemistry, Bangor University, Bangor, Gwynedd, LL57 2UW, UK
| | | |
Collapse
|
16
|
Sefidi-Heris Y, Jahangiri A, Mokhtarzadeh A, Shahbazi MA, Khalili S, Baradaran B, Mosafer J, Baghbanzadeh A, Hejazi M, Hashemzaei M, Hamblin MR, Santos HA. Recent progress in the design of DNA vaccines against tuberculosis. Drug Discov Today 2020; 25:S1359-6446(20)30345-7. [PMID: 32927065 DOI: 10.1016/j.drudis.2020.09.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/31/2020] [Accepted: 09/04/2020] [Indexed: 12/12/2022]
Abstract
Current tuberculosis (TB) vaccines have some disadvantages and many efforts have been undertaken to produce effective TB vaccines. As a result of their advantages, DNA vaccines are promising future vaccine candidates. This review focuses on the design and delivery of novel DNA-based vaccines against TB.
Collapse
Affiliation(s)
- Youssof Sefidi-Heris
- Department of Biology, College of Sciences, Shiraz University, 7146713565, Shiraz, Iran
| | - Abolfazl Jahangiri
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, 193955487, Tehran, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, 5166614731, Tabriz, Iran.
| | - Mohammad-Ali Shahbazi
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki FI-00014, Finland; Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC), Zanjan University of Medical Sciences, 45139-56184 Zanjan, Iran.
| | - Saeed Khalili
- Department of Biology Sciences, Faculty of Sciences, Shahid Rajaee Teacher Training University, 1678815811, Tehran, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, 5166614731, Tabriz, Iran
| | - Jafar Mosafer
- Research Center of Advanced Technologies in Medicine, Torbat Heydariyeh University of Medical Sciences, 9516915169, Torbat Heydariyeh, Iran; Nanotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, 9196773117, Mashhad, Iran
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, 5166614731, Tabriz, Iran
| | - Maryam Hejazi
- Immunology Research Center, Tabriz University of Medical Sciences, 5166614731, Tabriz, Iran
| | - Mahmoud Hashemzaei
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Zabol University of Medical Sciences, 9861615881, Zabol, Iran
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA; Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa.
| | - Hélder A Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki FI-00014, Finland; Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki FI-00014, Finland.
| |
Collapse
|
17
|
Abstract
Understanding how Mycobacterium tuberculosis survives during antibiotic treatment is necessary to rationally devise more effective tuberculosis (TB) chemotherapy regimens. Using genome-wide mutant fitness profiling and the mouse model of TB, we identified genes that alter antibiotic efficacy specifically in the infection environment and associated several of these genes with natural genetic variants found in drug-resistant clinical isolates. These data suggest strategies for synergistic therapies that accelerate bacterial clearance, and they identify mechanisms of adaptation to drug exposure that could influence treatment outcome. Effective tuberculosis treatment requires at least 6 months of combination therapy. Alterations in the physiological state of the bacterium during infection are thought to reduce drug efficacy and prolong the necessary treatment period, but the nature of these adaptations remain incompletely defined. To identify specific bacterial functions that limit drug effects during infection, we employed a comprehensive genetic screening approach to identify mutants with altered susceptibility to the first-line antibiotics in the mouse model. We identified many mutations that increase the rate of bacterial clearance, suggesting new strategies for accelerating therapy. In addition, the drug-specific effects of these mutations suggested that different antibiotics are limited by distinct factors. Rifampin efficacy is inferred to be limited by cellular permeability, whereas isoniazid is preferentially affected by replication rate. Many mutations that altered bacterial clearance in the mouse model did not have an obvious effect on drug susceptibility using in vitro assays, indicating that these chemical-genetic interactions tend to be specific to the in vivo environment. This observation suggested that a wide variety of natural genetic variants could influence drug efficacy in vivo without altering behavior in standard drug-susceptibility tests. Indeed, mutations in a number of the genes identified in our study are enriched in drug-resistant clinical isolates, identifying genetic variants that may influence treatment outcome. Together, these observations suggest new avenues for improving therapy, as well as the mechanisms of genetic adaptations that limit it. IMPORTANCE Understanding how Mycobacterium tuberculosis survives during antibiotic treatment is necessary to rationally devise more effective tuberculosis (TB) chemotherapy regimens. Using genome-wide mutant fitness profiling and the mouse model of TB, we identified genes that alter antibiotic efficacy specifically in the infection environment and associated several of these genes with natural genetic variants found in drug-resistant clinical isolates. These data suggest strategies for synergistic therapies that accelerate bacterial clearance, and they identify mechanisms of adaptation to drug exposure that could influence treatment outcome.
Collapse
|
18
|
Features of the biochemistry of Mycobacterium smegmatis, as a possible model for Mycobacterium tuberculosis. J Infect Public Health 2020; 13:1255-1264. [PMID: 32674978 DOI: 10.1016/j.jiph.2020.06.023] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 05/28/2020] [Accepted: 06/17/2020] [Indexed: 12/13/2022] Open
Abstract
An alternate host for mycobacteria is Mycobacterium smegmatis which is used frequently. It is a directly budding eco-friendly organism not emulated as human infection. It is mainly useful for the investigation of various microorganisms in the sort of Mycobacteria in cell culture laboratories. Some Mycobacterium species groups that is normal, unsafe ailments, likely to Mycobacterium leprae, Mycobacterium tuberculosis and Mycobacterium bovis. At present, various laboratories are clean and culture this type of species to make an opinion that fascinating route of harmful Mycobacteria. This publication provides aggregate data on cell shape, genome studies, ecology, pathology and utilization of M. smegmatis.
Collapse
|
19
|
Xiong LB, Liu HH, Zhao M, Liu YJ, Song L, Xie ZY, Xu YX, Wang FQ, Wei DZ. Enhancing the bioconversion of phytosterols to steroidal intermediates by the deficiency of kasB in the cell wall synthesis of Mycobacterium neoaurum. Microb Cell Fact 2020; 19:80. [PMID: 32228591 PMCID: PMC7106593 DOI: 10.1186/s12934-020-01335-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 03/16/2020] [Indexed: 02/02/2023] Open
Abstract
Background The bioconversion of phytosterols into high value-added steroidal intermediates, including the 9α-hydroxy-4-androstene-3,17-dione (9-OHAD) and 22-hydroxy-23,24-bisnorchol-4-ene-3-one (4-HBC), is the cornerstone in steroid pharmaceutical industry. However, the low transportation efficiency of hydrophobic substrates into mycobacterial cells severely limits the transformation. In this study, a robust and stable modification of the cell wall in M. neoaurum strain strikingly enhanced the cell permeability for the high production of steroids. Results The deletion of the nonessential kasB, encoding a β-ketoacyl-acyl carrier protein synthase, led to a disturbed proportion of mycolic acids (MAs), which is one of the most important components in the cell wall of Mycobacterium neoaurum ATCC 25795. The determination of cell permeability displayed about two times improvement in the kasB-deficient strain than that of the wild type M. neoaurum. Thus, the deficiency of kasB in the 9-OHAD-producing strain resulted in a significant increase of 137.7% in the yield of 9α-hydroxy-4-androstene-3,17-dione (9-OHAD). Ultimately, the 9-OHAD productivity in an industrial used resting cell system was reached 0.1135 g/L/h (10.9 g/L 9-OHAD from 20 g/L phytosterol) and the conversion time was shortened by 33%. In addition, a similar self-enhancement effect (34.5%) was realized in the 22-hydroxy-23,24-bisnorchol-4-ene-3-one (4-HBC) producing strain. Conclusions The modification of kasB resulted in a meaningful change in the cell wall mycolic acids. Deletion of the kasB gene remarkably improved the cell permeability, leading to a self-enhancement of the steroidal intermediate conversion. The results showed a high efficiency and feasibility of this construction strategy.
Collapse
Affiliation(s)
- Liang-Bin Xiong
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China.,State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Hao-Hao Liu
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Ming Zhao
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Yong-Jun Liu
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Lu Song
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Zhi-Yong Xie
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Yi-Xin Xu
- College of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Feng-Qing Wang
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, China.
| | - Dong-Zhi Wei
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
20
|
Abstract
The control of tuberculosis (TB) is hampered by the emergence of multidrug-resistant (MDR) Mycobacterium tuberculosis (Mtb) strains, defined as resistant to at least isoniazid and rifampin, the two bactericidal drugs essential for the treatment of the disease. Due to the worldwide estimate of almost half a million incident cases of MDR/rifampin-resistant TB, it is important to continuously update the knowledge on the mechanisms involved in the development of this phenomenon. Clinical, biological and microbiological reasons account for the generation of resistance, including: (i) nonadherence of patients to their therapy, and/or errors of physicians in therapy management, (ii) complexity and poor vascularization of granulomatous lesions, which obstruct drug distribution to some sites, resulting in resistance development, (iii) intrinsic drug resistance of tubercle bacilli, (iv) formation of non-replicating, drug-tolerant bacilli inside the granulomas, (v) development of mutations in Mtb genes, which are the most important molecular mechanisms of resistance. This review provides a comprehensive overview of these issues, and releases up-dated information on the therapeutic strategies recently endorsed and recommended by the World Health Organization to facilitate the clinical and microbiological management of drug-resistant TB at the global level, with attention also to the most recent diagnostic methods.
Collapse
|
21
|
Trutneva KA, Shleeva MO, Demina GR, Vostroknutova GN, Kaprelyans AS. One-Year Old Dormant, "Non-culturable" Mycobacterium tuberculosis Preserves Significantly Diverse Protein Profile. Front Cell Infect Microbiol 2020; 10:26. [PMID: 32117801 PMCID: PMC7025520 DOI: 10.3389/fcimb.2020.00026] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 01/15/2020] [Indexed: 12/15/2022] Open
Abstract
For adaptation to stressful conditions, Mycobacterium tuberculosis (Mtb) is prone to transit to a dormant, non-replicative state, which is believed to be the basis of the latent form of tuberculosis infection. Dormant bacteria persist in the host for a long period without multiplication, cannot be detected from biological samples by microbiological methods, however, their "non-culturable" state is reversible. Mechanisms supporting very long capacity of mycobacteria for resuscitation and further multiplication after prolonged survival in a dormant phase remain unclear. Using methods of 2D electrophoresis and MALDI-TOF analysis, in this study we characterized changes in the proteomic profile of Mtb stored for more than a year as dormant, non-replicating cells with a negligible metabolic activity, full resistance to antibiotics, and altered morphology (ovoid forms). Despite some protein degradation, the proteome of 1-year-old dormant mycobacteria retained numerous intact proteins. Their protein profile differed profoundly from that of metabolically active cells, but was similar to the proteome of the 4-month-old dormant bacteria. Such protein stability is likely to be due to the presence of a significant number of enzymes involved in the protection from oxidative stress (katG/Rv1908, sodA/Rv3846, sodC/Rv0432, bpoC/Rv0554), as well as chaperones (dnaJ1/Rv0352, htpG/Rv2299, groEL2/Rv0440, dnaK/Rv0350, groES/Rv3418, groEL1/Rv3417, HtpG/Rv2299c, hspX/Rv2031), and DNA-stabilizing proteins. In addition, dormant cells proteome contains enzymes involved in specific metabolic pathways (glycolytic reactions, shortened TCA cycle, degradative processes) potentially providing a low-level metabolism, or these proteins could be "frozen" for usage in the reactivation process before biosynthetic processes start. The observed stability of proteins in a dormant state could be a basis for the long-term preservation of Mtb cell vitality and hence for latent tuberculosis.
Collapse
Affiliation(s)
- Kseniya A Trutneva
- Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, A.N. Bach Institute of Biochemistry, Moscow, Russia
| | - Margarita O Shleeva
- Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, A.N. Bach Institute of Biochemistry, Moscow, Russia
| | - Galina R Demina
- Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, A.N. Bach Institute of Biochemistry, Moscow, Russia
| | - Galina N Vostroknutova
- Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, A.N. Bach Institute of Biochemistry, Moscow, Russia
| | - Arseny S Kaprelyans
- Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, A.N. Bach Institute of Biochemistry, Moscow, Russia
| |
Collapse
|
22
|
Dulberger CL, Rubin EJ, Boutte CC. The mycobacterial cell envelope - a moving target. Nat Rev Microbiol 2019; 18:47-59. [PMID: 31728063 DOI: 10.1038/s41579-019-0273-7] [Citation(s) in RCA: 200] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2019] [Indexed: 01/12/2023]
Abstract
Mycobacterium tuberculosis, the leading cause of death due to infection, has a dynamic and immunomodulatory cell envelope. The cell envelope structurally and functionally varies across the length of the cell and during the infection process. This variability allows the bacterium to manipulate the human immune system, tolerate antibiotic treatment and adapt to the variable host environment. Much of what we know about the mycobacterial cell envelope has been gleaned from model actinobacterial species, or model conditions such as growth in vitro, in macrophages and in the mouse. In this Review, we combine data from different experimental systems to build a model of the dynamics of the mycobacterial cell envelope across space and time. We describe the regulatory pathways that control metabolism of the cell wall and surface lipids in M. tuberculosis during growth and stasis, and speculate about how this regulation might affect antibiotic susceptibility and interactions with the immune system.
Collapse
Affiliation(s)
- Charles L Dulberger
- Department of Molecular and Cellular Biology, Harvard University, Boston, MA, USA.,Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Eric J Rubin
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA.,Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Cara C Boutte
- Department of Biology, University of Texas at Arlington, Arlington, TX, USA.
| |
Collapse
|
23
|
Jakkala K, Ajitkumar P. Hypoxic Non-replicating Persistent Mycobacterium tuberculosis Develops Thickened Outer Layer That Helps in Restricting Rifampicin Entry. Front Microbiol 2019; 10:2339. [PMID: 31681204 PMCID: PMC6797554 DOI: 10.3389/fmicb.2019.02339] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 09/25/2019] [Indexed: 01/25/2023] Open
Abstract
Bacteria undergo adaptive morphological changes to survive under stress conditions. The present work documents the morphological changes in Mycobacterium tuberculosis (Mtb) cells cultured under hypoxic condition using Wayne’s in vitro hypoxia model involving non-replicating persistence stages 1 and 2 (NRP stage 1 and NRP stage 2) and reveals their physiological significance. Transmission electron microscopy of the NRP stage 2 cells showed uneven but thick outer layer (TOL), unlike the evenly thin outer layer of the actively growing mid-log phase (MLP) cells. On the contrary, the saprophytic Mycobacterium smegmatis NRP stage 2 cells lacked TOL. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) of the Mtb NRP stage 2 cells confirmed the rough uneven surface unlike the smooth surface of the MLP cells. Zeta potential measurements showed high negative charge on the surface of NRP stage 2 cells and polysaccharide specific calcofluor white (CFW) staining of the cells revealed high content of polysaccharide in the TOL. This observation was supported by the real-time PCR data showing high levels of expression of the genes involved in the synthesis of sugars, such as trehalose, mannose and others, which are implicated in polysaccharide synthesis. Experiments to understand the physiological significance of the TOL revealed restricted entry of the biologically low-active 5-carboxyfluorescein-rifampicin (5-FAM-RIF), at concentrations equivalent to microbicidal concentrations of the unconjugated biologically active rifampicin, into the NRP stage 2 cells, unlike in the MLP cells. Further, as expected, mechanical removal of the TOL by mild bead beating or release of the NRP stage 2 cells from hypoxia into normoxia in fresh growth medium also significantly increased 5-FAM-RIF permeability into the NRP stage 2 cells to an extent comparable to that into the MLP cells. Taken together, these observations revealed that Mtb cells under hypoxia develop TOL that helps in restricting rifampicin entry, thereby conferring rifampicin tolerance.
Collapse
Affiliation(s)
- Kishor Jakkala
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
| | | |
Collapse
|
24
|
Liu XX, Shen MJ, Liu WB, Ye BC. Transcriptional and post-translational regulation of AccD6 in Mycobacterium smegmatis. FEMS Microbiol Lett 2019; 365:4953417. [PMID: 29590418 DOI: 10.1093/femsle/fny074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 03/23/2018] [Indexed: 12/12/2022] Open
Abstract
AccD6 is an important component of acetyl-CoA/propionyl-CoA carboxylase, which acts as a key role in mycolic acid synthesis and short chain fatty acyl-coenzyme A metabolism. In this study, we demonstrated that AccD6 of Mycobacterium smegmatis associates with AccA3 (α subunit of acetyl-CoA carboxylase, MSMEG_1807) and AccE (ε subunit, MSMEG_1812) to form the acetyl-CoA (propionyl-CoA) carboxylase. Results showed that the MSMEG_4331 subunit is a regulator that interacts with the promoter region of accD6 to inhibit its transcription. Transcription of accD6 was reduced by 50% in the mutant M. smegmatis strain overexpressing MSMEG_4331. Moreover, the activity of AccD6 was inhibited by acylation (such as acetylation and propionylation). These results demonstrate that AccD6 of M. smegmatis is regulated at both the transcriptional and post-translational levels. Our findings highlight the novel regulatory mechanism underlying mycolic acid biosynthesis in mycobacteria.
Collapse
Affiliation(s)
- Xin-Xin Liu
- Lab of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Meilong Rd. 130, Shanghai 200237, China
| | - Meng-Jia Shen
- Lab of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Meilong Rd. 130, Shanghai 200237, China
| | - Wei-Bing Liu
- Lab of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Meilong Rd. 130, Shanghai 200237, China
| | - Bang-Ce Ye
- Lab of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Meilong Rd. 130, Shanghai 200237, China.,School of Chemistry and Chemical Engineering, Shihezi University, Xinjiang, China
| |
Collapse
|
25
|
Fiolek TJ, Banahene N, Kavunja HW, Holmes NJ, Rylski AK, Pohane AA, Siegrist MS, Swarts BM. Engineering the Mycomembrane of Live Mycobacteria with an Expanded Set of Trehalose Monomycolate Analogues. Chembiochem 2019; 20:1282-1291. [PMID: 30589191 PMCID: PMC6614877 DOI: 10.1002/cbic.201800687] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Indexed: 01/20/2023]
Abstract
Mycobacteria and related organisms in the Corynebacterineae suborder are characterized by a distinctive outer membrane referred to as the mycomembrane. Biosynthesis of the mycomembrane occurs through an essential process called mycoloylation, which involves antigen 85 (Ag85)-catalyzed transfer of mycolic acids from the mycoloyl donor trehalose monomycolate (TMM) to acceptor carbohydrates and, in some organisms, proteins. We recently described an alkyne-modified TMM analogue (O-AlkTMM-C7) which, in conjunction with click chemistry, acted as a chemical reporter for mycoloylation in intact cells and allowed metabolic labeling of mycoloylated components of the mycomembrane. Here, we describe the synthesis and evaluation of a toolbox of TMM-based reporters bearing alkyne, azide, trans-cyclooctene, and fluorescent tags. These compounds gave further insight into the substrate tolerance of mycoloyltransferases (e.g., Ag85s) in a cellular context and they provide significantly expanded experimental versatility by allowing one- or two-step cell labeling, live cell labeling, and rapid cell labeling via tetrazine ligation. Such capabilities will facilitate research on mycomembrane composition, biosynthesis, and dynamics. Moreover, because TMM is exclusively metabolized by Corynebacterineae, the described probes may be valuable for the specific detection and cell-surface engineering of Mycobacterium tuberculosis and related pathogens. We also performed experiments to establish the dependence of probe incorporation on mycoloyltransferase activity, results from which suggested that cellular labeling is a function not only of metabolic incorporation (and likely removal) pathway(s), but also accessibility across the envelope. Thus, whole-cell labeling experiments with TMM reporters should be carefully designed and interpreted when envelope permeability may be compromised. On the other hand, this property of TMM reporters can potentially be exploited as a convenient way to probe changes in envelope integrity and permeability, facilitating drug development studies.
Collapse
Affiliation(s)
- Taylor J Fiolek
- Department of Chemistry and Biochemistry, Central Michigan University, 1200 S. Franklin St., Mount Pleasant, MI, 48859, USA
| | - Nicholas Banahene
- Department of Chemistry and Biochemistry, Central Michigan University, 1200 S. Franklin St., Mount Pleasant, MI, 48859, USA
| | - Herbert W Kavunja
- Department of Chemistry and Biochemistry, Central Michigan University, 1200 S. Franklin St., Mount Pleasant, MI, 48859, USA
| | - Nathan J Holmes
- Department of Chemistry and Biochemistry, Central Michigan University, 1200 S. Franklin St., Mount Pleasant, MI, 48859, USA
| | - Adrian K Rylski
- Department of Chemistry and Biochemistry, Central Michigan University, 1200 S. Franklin St., Mount Pleasant, MI, 48859, USA
| | - Amol Arunrao Pohane
- Department of Microbiology, University of Massachusetts, 639 N. Pleasant Street, Amherst, MA, 01003, USA
| | - M Sloan Siegrist
- Department of Microbiology, University of Massachusetts, 639 N. Pleasant Street, Amherst, MA, 01003, USA
| | - Benjamin M Swarts
- Department of Chemistry and Biochemistry, Central Michigan University, 1200 S. Franklin St., Mount Pleasant, MI, 48859, USA
| |
Collapse
|
26
|
Sankhe K, Khan T, Bhavsar C, Momin M, Omri A. Selective drug deposition in lungs through pulmonary drug delivery system for effective management of drug-resistant TB. Expert Opin Drug Deliv 2019; 16:525-538. [PMID: 31007100 DOI: 10.1080/17425247.2019.1609937] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
INTRODUCTION The emergence of multidrug-resistant tuberculosis (MDR-TB) and extensively drug-resistant tuberculosis (XDR-TB) is a major health issue and continues to be a global health concern. Despite significant advancements in treatment modalities, ~1.6 million deaths worldwide occur due to TB infection. This is because of tuberculosis reservoirs in the alveoli making it a challenge for the formulation scientist to target this. AREAS COVERED This review recent investigations on the forefront of pulmonary drug delivery for managing MDR-TB and XDR-TB. Novel delivery systems like liposomes, niosomes, employing carbohydrate, and -coated molecules via conjugation to selectively deliver the drugs to the lung TB reservoir via pulmonary administration are discussed. EXPERT OPINION Poor patient adherence to treatment due to side effects and extended therapeutic regimen leads to drug-resistant TB. Thus, it is essential to design novel strategies this issue by developing new chemical entities and/or new delivery systems for delivery to the lungs, consequently reducing the side effects, the frequency and the duration of treatment. Delivery of drugs to enhance the efficacy of new/existing anti-TB drugs to overcome the resistance and enhance patient compliance is underway.
Collapse
Affiliation(s)
- Kaksha Sankhe
- a Department of Pharm Chem and QA , SVKM's Dr. Bhanuben Nanavati College of Pharmacy , Mumbai , India
| | - Tabassum Khan
- a Department of Pharm Chem and QA , SVKM's Dr. Bhanuben Nanavati College of Pharmacy , Mumbai , India
| | - Chintan Bhavsar
- b Department of Pharmaceutics , SVKM's Dr. Bhanuben Nanavati College of Pharmacy , Mumbai , India
| | - Munira Momin
- b Department of Pharmaceutics , SVKM's Dr. Bhanuben Nanavati College of Pharmacy , Mumbai , India
| | - Abdelwahab Omri
- c Department of Chemistry & Biochemistry , Laurentian University , Sudbury , Canada
| |
Collapse
|
27
|
Gong Z, Li H, Cai Y, Stojkoska A, Xie J. Biology of MarR family transcription factors and implications for targets of antibiotics against tuberculosis. J Cell Physiol 2019; 234:19237-19248. [PMID: 31012115 DOI: 10.1002/jcp.28720] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 04/03/2019] [Accepted: 04/10/2019] [Indexed: 12/12/2022]
Abstract
The emergence of multidrug resistant (MDR) Mycobacterium tuberculosis strains and increased incidence of HIV coinfection fueled the difficulty in controlling tuberculosis (TB). MarR (multiple antibiotic resistance regulator) family transcription factors can regulate marRAB operon and are involved in resistance to multiple environmental stresses. We have summarized the structure, function, distribution, and regulation of the MarR family proteins, as well as their implications for novel targets for antibiotics, especially for tuberculosis.
Collapse
Affiliation(s)
- Zhen Gong
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Hui Li
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Yuhua Cai
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Andrea Stojkoska
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Jianping Xie
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| |
Collapse
|
28
|
An integrated quantitative proteomic and metabolomics approach to reveal the negative regulation mechanism of LamB in antibiotics resistance. J Proteomics 2019; 194:148-159. [DOI: 10.1016/j.jprot.2018.11.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 11/13/2018] [Accepted: 11/28/2018] [Indexed: 01/01/2023]
|
29
|
Tran T, Bonham AJ, Chan ED, Honda JR. A paucity of knowledge regarding nontuberculous mycobacterial lipids compared to the tubercle bacillus. Tuberculosis (Edinb) 2019; 115:96-107. [PMID: 30948183 DOI: 10.1016/j.tube.2019.02.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 01/29/2019] [Accepted: 02/25/2019] [Indexed: 10/27/2022]
Abstract
All mycobacteria, including nontuberculous mycobacteria (NTM), synthesize an array of lipids including phosphatidylinositol mannosides (PIM), lipomannan (LM), and lipoarabinomannan (LAM). While absent from Mycobacterium tuberculosis (M. tb), glycopeptidolipids (GPL) are critical to the biology of NTM. M. tb and some NTM also synthesize trehalose-containing glycolipids and phenolic glycolipids (PGL), key membrane constituents with essential roles in metabolism. While lipids facilitate immune evasion, they also induce host immunity against tuberculosis. However, much less is known about the significance of NTM-derived PIM, LM, LAM, GPL, trehalose-containing glycolipids, and PGL as virulence factors, warranting further investigation. While culling the scientific literature on NTM lipids, it's evident that such studies were relatively few in number with the overwhelming majority of prior work dedicated to understanding lipids from the saprophyte Mycobacterium smegmatis. The identification and functional analysis of immune reactive NTM-derived lipids remain challenging, but such work is likely to yield a greater understanding of the pathogenesis of NTM lung disease. In this review, we juxtapose the vast literature of what is currently known regarding M. tb lipids to the lesser number of studies for comparable NTM lipids. But because GPL is the most widely recognized NTM lipid, we highlight its role in disease pathogenesis.
Collapse
Affiliation(s)
- Tru Tran
- Department of Integrative Biology, University of Colorado Denver, Campus Box 171, PO Box 173364, Denver, CO, 80217-3364, USA.
| | - Andrew J Bonham
- Department of Chemistry, Metropolitan State University of Denver, Campus Box 52, P.O. Box 173362, Denver, CO, 80217-3362, USA.
| | - Edward D Chan
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA; Department of Medicine, Denver Veterans Affairs Medical Center, Denver, CO, USA; Academic Affairs, National Jewish Health, 1400 Jackson St. Neustadt D509, Denver, CO, 80206, USA.
| | - Jennifer R Honda
- Department of Biomedical Research and the Center for Genes, Environment, and Health, National Jewish Health, Denver, CO, USA.
| |
Collapse
|
30
|
Kuyukina MS, Ivshina IB. Production of Trehalolipid Biosurfactants by Rhodococcus. BIOLOGY OF RHODOCOCCUS 2019. [DOI: 10.1007/978-3-030-11461-9_10] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
31
|
Nieto R LM, Mehaffy C, Islam MN, Fitzgerald B, Belisle J, Prenni J, Dobos K. Biochemical Characterization of Isoniazid-resistant Mycobacterium tuberculosis: Can the Analysis of Clonal Strains Reveal Novel Targetable Pathways? Mol Cell Proteomics 2018; 17:1685-1701. [PMID: 29844232 DOI: 10.1074/mcp.ra118.000821] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Indexed: 01/01/2023] Open
Abstract
Tuberculosis (TB) continues to be an important public health threat worldwide, due in part to drug resistant Mycobacterium tuberculosis (Mtb) strains. The United States recently reported a shortage of isoniazid (INH), which could drive higher INH resistance rates. Changes in the Mtb proteome before and after acquisition of INH resistance in a clean genetic background remain understudied and may elucidate alternate drug targets. Here, we focused on Mtb clonal strains to characterize the consequences of INH resistance on mycobacterial metabolism. Proteomic analysis was conducted by liquid-chromatography tandem mass spectrometry (LC-MS/MS) of cellular and secreted fractions, followed by a normalized spectral counting (NSAF) analysis (data are available via ProteomeXchange with identifier PXD009549). Two different Mtb clonal pairs representing a specific genetic lineage (one clinical and one generated in the laboratory) but sharing a katG mutation associated with INH resistance, were used in our analysis. Overall, we found 26 Mtb proteins with altered abundances after acquisition of INH resistance across both Mtb genetic lineages studied. These proteins were involved in ATP synthesis, lipid metabolism, regulatory events, and virulence, detoxification, and adaptation processes. Proteomic findings were validated by Western blotting analyses whenever possible. Mycolic acid (MA) analysis through LC/MS in the clonal Mtb pairs did not reveal a common trend in the alteration of these fatty acids across both INHr strains but revealed a significant reduction in levels of the two more abundant α-MA features in the clinical INHr strain. Interestingly, the clinical clonal pair demonstrated more variation in the abundance of the proteins involved in the FAS II pathway. Together, the proteomic and lipidomic data highlight the identification of potential drug targets such as alternative lipid biosynthetic pathways that may be exploited to combat clinically relevant Mtb INHr strains.
Collapse
Affiliation(s)
| | | | - M Nurul Islam
- From the ‡Department of Microbiology, Immunology and Pathology
| | | | - John Belisle
- From the ‡Department of Microbiology, Immunology and Pathology
| | - Jessica Prenni
- §Proteomics and Metabolomics Facility, Colorado State University, Fort Collins, CO
| | - Karen Dobos
- From the ‡Department of Microbiology, Immunology and Pathology,
| |
Collapse
|
32
|
Abstract
Cell elongation occurs primarily at the mycobacterial cell poles, but the molecular mechanisms governing this spatial regulation remain elusive. We recently reported the presence of an intracellular membrane domain (IMD) that was spatially segregated from the conventional plasma membrane in Mycobacterium smegmatis. The IMD is enriched in the polar region of actively elongating cells and houses many essential enzymes involved in envelope biosynthesis, suggesting its role in spatially restricted elongation at the cell poles. Here, we examined reorganization of the IMD when the cells are no longer elongating. To monitor the IMD, we used a previously established reporter strain expressing fluorescent IMD markers and grew it to the stationary growth phase or exposed the cells to nutrient starvation. In both cases, the IMD was delocalized from the cell pole and distributed along the sidewall. Importantly, the IMD could still be isolated biochemically by density gradient fractionation, indicating its maintenance as a membrane domain. Chemical and genetic inhibition of peptidoglycan biosynthesis led to the delocalization of the IMD, suggesting the suppression of peptidoglycan biosynthesis as a trigger of spatial IMD rearrangement. Starved cells with a delocalized IMD can resume growth upon nutrient repletion, and polar enrichment of the IMD coincides with the initiation of cell elongation. These data reveal that the IMD is a membrane domain with the unprecedented capability of subcellular repositioning in response to the physiological conditions of the mycobacterial cell. Mycobacteria include medically important species, such as the human tuberculosis pathogen Mycobacterium tuberculosis. The highly impermeable cell envelope is a hallmark of these microbes, and its biosynthesis is a proven chemotherapeutic target. Despite the accumulating knowledge regarding the biosynthesis of individual envelope components, the regulatory mechanisms behind the coordinated synthesis of the complex cell envelope remain elusive. We previously reported the presence of a metabolically active membrane domain enriched in the elongating poles of actively growing mycobacteria. However, the spatiotemporal dynamics of the membrane domain in response to stress have not been examined. Here, we show that the membrane domain is spatially reorganized when growth is inhibited in the stationary growth phase, under nutrient starvation, or in response to perturbation of peptidoglycan biosynthesis. Our results suggest that mycobacteria have a mechanism to spatiotemporally coordinate the membrane domain in response to metabolic needs under different growth conditions.
Collapse
|
33
|
Viljoen A, Richard M, Nguyen PC, Fourquet P, Camoin L, Paudal RR, Gnawali GR, Spilling CD, Cavalier JF, Canaan S, Blaise M, Kremer L. Cyclipostins and cyclophostin analogs inhibit the antigen 85C from Mycobacterium tuberculosis both in vitro and in vivo. J Biol Chem 2018; 293:2755-2769. [PMID: 29301937 DOI: 10.1074/jbc.ra117.000760] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 12/05/2017] [Indexed: 12/27/2022] Open
Abstract
An increasing prevalence of cases of drug-resistant tuberculosis requires the development of more efficacious chemotherapies. We previously reported the discovery of a new class of cyclipostins and cyclophostin (CyC) analogs exhibiting potent activity against Mycobacterium tuberculosis both in vitro and in infected macrophages. Competitive labeling/enrichment assays combined with MS have identified several serine or cysteine enzymes in lipid and cell wall metabolism as putative targets of these CyC compounds. These targets included members of the antigen 85 (Ag85) complex (i.e. Ag85A, Ag85B, and Ag85C), responsible for biosynthesis of trehalose dimycolate and mycolylation of arabinogalactan. Herein, we used biochemical and structural approaches to validate the Ag85 complex as a pharmacological target of the CyC analogs. We found that CyC7β, CyC8β, and CyC17 bind covalently to the catalytic Ser124 residue in Ag85C; inhibit mycolyltransferase activity (i.e. the transfer of a fatty acid molecule onto trehalose); and reduce triacylglycerol synthase activity, a property previously attributed to Ag85A. Supporting these results, an X-ray structure of Ag85C in complex with CyC8β disclosed that this inhibitor occupies Ag85C's substrate-binding pocket. Importantly, metabolic labeling of M. tuberculosis cultures revealed that the CyC compounds impair both trehalose dimycolate synthesis and mycolylation of arabinogalactan. Overall, our study provides compelling evidence that CyC analogs can inhibit the activity of the Ag85 complex in vitro and in mycobacteria, opening the door to a new strategy for inhibiting Ag85. The high-resolution crystal structure obtained will further guide the rational optimization of new CyC scaffolds with greater specificity and potency against M. tuberculosis.
Collapse
Affiliation(s)
- Albertus Viljoen
- Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS UMR9004, 34293 Montpellier, France
| | - Matthias Richard
- Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS UMR9004, 34293 Montpellier, France
| | - Phuong Chi Nguyen
- Aix-Marseille Université, CNRS, EIPL, IMM FR3479, 13009 Marseille, France; Aix-Marseille Université, CNRS, LISM, IMM FR3479, 13009 Marseille, France
| | - Patrick Fourquet
- Aix Marseille Université, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille Protéomique, 13009 Marseille, France
| | - Luc Camoin
- Aix Marseille Université, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille Protéomique, 13009 Marseille, France
| | - Rishi R Paudal
- Department of Chemistry and Biochemistry, University of Missouri, St. Louis, Missouri 63121
| | - Giri R Gnawali
- Department of Chemistry and Biochemistry, University of Missouri, St. Louis, Missouri 63121
| | - Christopher D Spilling
- Department of Chemistry and Biochemistry, University of Missouri, St. Louis, Missouri 63121
| | - Jean-François Cavalier
- Aix-Marseille Université, CNRS, EIPL, IMM FR3479, 13009 Marseille, France; Aix-Marseille Université, CNRS, LISM, IMM FR3479, 13009 Marseille, France
| | - Stéphane Canaan
- Aix-Marseille Université, CNRS, EIPL, IMM FR3479, 13009 Marseille, France; Aix-Marseille Université, CNRS, LISM, IMM FR3479, 13009 Marseille, France
| | - Mickael Blaise
- Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS UMR9004, 34293 Montpellier, France.
| | - Laurent Kremer
- Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS UMR9004, 34293 Montpellier, France; INSERM, IRIM, 34293 Montpellier, France.
| |
Collapse
|
34
|
Burian J, Thompson CJ. Regulatory genes coordinating antibiotic-induced changes in promoter activity and early transcriptional termination of the mycobacterial intrinsic resistance gene whiB7. Mol Microbiol 2017; 107:402-415. [DOI: 10.1111/mmi.13890] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 11/22/2017] [Accepted: 11/30/2017] [Indexed: 01/30/2023]
Affiliation(s)
- Ján Burian
- Department of Microbiology and Immunology and the Centre for Tuberculosis Research; University of British Columbia; Vancouver V6T 1Z3 Canada
| | - Charles J. Thompson
- Department of Microbiology and Immunology and the Centre for Tuberculosis Research; University of British Columbia; Vancouver V6T 1Z3 Canada
| |
Collapse
|
35
|
Lehmann J, Cheng TY, Aggarwal A, Park AS, Zeiler E, Raju RM, Akopian T, Kandror O, Sacchettini JC, Moody DB, Rubin EJ, Sieber SA. An Antibacterial β-Lactone Kills Mycobacterium tuberculosis by Disrupting Mycolic Acid Biosynthesis. Angew Chem Int Ed Engl 2017; 57:348-353. [PMID: 29067779 DOI: 10.1002/anie.201709365] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 10/17/2017] [Indexed: 12/31/2022]
Abstract
The spread of antibiotic resistance is a major challenge for the treatment of Mycobacterium tuberculosis infections. In addition, the efficacy of drugs is often limited by the restricted permeability of the mycomembrane. Frontline antibiotics inhibit mycomembrane biosynthesis, leading to rapid cell death. Inspired by this mechanism, we exploited β-lactones as putative mycolic acid mimics to block serine hydrolases involved in their biosynthesis. Among a collection of β-lactones, we found one hit with potent anti-mycobacterial and bactericidal activity. Chemical proteomics using an alkynylated probe identified Pks13 and Ag85 serine hydrolases as major targets. Validation through enzyme assays and customized 13 C metabolite profiling showed that both targets are functionally impaired by the β-lactone. Co-administration with front-line antibiotics enhanced the potency against M. tuberculosis by more than 100-fold, thus demonstrating the therapeutic potential of targeting mycomembrane biosynthesis serine hydrolases.
Collapse
Affiliation(s)
- Johannes Lehmann
- Center for Integrated Protein Science Department of Chemistry, Technische Universität München, Lichtenbergstraße 4, 85747, Garching, Germany.,Division of Immunology and Infectious Diseases, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Tan-Yun Cheng
- Department of Medicine, Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Anup Aggarwal
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
| | - Annie S Park
- Division of Immunology and Infectious Diseases, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Evelyn Zeiler
- Center for Integrated Protein Science Department of Chemistry, Technische Universität München, Lichtenbergstraße 4, 85747, Garching, Germany
| | - Ravikiran M Raju
- Division of Immunology and Infectious Diseases, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Tatos Akopian
- Division of Immunology and Infectious Diseases, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Olga Kandror
- Division of Immunology and Infectious Diseases, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - James C Sacchettini
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
| | - D Branch Moody
- Department of Medicine, Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Eric J Rubin
- Division of Immunology and Infectious Diseases, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Stephan A Sieber
- Center for Integrated Protein Science Department of Chemistry, Technische Universität München, Lichtenbergstraße 4, 85747, Garching, Germany
| |
Collapse
|
36
|
Lehmann J, Cheng TY, Aggarwal A, Park AS, Zeiler E, Raju RM, Akopian T, Kandror O, Sacchettini JC, Moody DB, Rubin EJ, Sieber SA. Ein antibakterielles β-Lacton bekämpft Mycobacterium tuberculosis
durch Infiltration der Mykolsäurebiosynthese. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201709365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Johannes Lehmann
- Center for Integrated Protein Science, Fakultät für Chemie; Technische Universität München; Lichtenbergstraße 4 85747 Garching Deutschland
- Division of Immunology and Infectious Diseases; Harvard TH Chan School of Public Health; Boston MA USA
| | - Tan-Yun Cheng
- Department of Medicine; Division of Rheumatology, Immunology and Allergy; Brigham and Women's Hospital; Harvard Medical School; Boston MA USA
| | - Anup Aggarwal
- Department of Biochemistry and Biophysics; Texas A&M University; College Station TX USA
| | - Annie S. Park
- Division of Immunology and Infectious Diseases; Harvard TH Chan School of Public Health; Boston MA USA
| | - Evelyn Zeiler
- Center for Integrated Protein Science, Fakultät für Chemie; Technische Universität München; Lichtenbergstraße 4 85747 Garching Deutschland
| | - Ravikiran M. Raju
- Division of Immunology and Infectious Diseases; Harvard TH Chan School of Public Health; Boston MA USA
| | - Tatos Akopian
- Division of Immunology and Infectious Diseases; Harvard TH Chan School of Public Health; Boston MA USA
| | - Olga Kandror
- Division of Immunology and Infectious Diseases; Harvard TH Chan School of Public Health; Boston MA USA
| | - James C. Sacchettini
- Department of Biochemistry and Biophysics; Texas A&M University; College Station TX USA
| | - D. Branch Moody
- Department of Medicine; Division of Rheumatology, Immunology and Allergy; Brigham and Women's Hospital; Harvard Medical School; Boston MA USA
| | - Eric J. Rubin
- Division of Immunology and Infectious Diseases; Harvard TH Chan School of Public Health; Boston MA USA
| | - Stephan A. Sieber
- Center for Integrated Protein Science, Fakultät für Chemie; Technische Universität München; Lichtenbergstraße 4 85747 Garching Deutschland
| |
Collapse
|
37
|
Sharma D, Bisht D. Secretory Proteome Analysis of Streptomycin-Resistant Mycobacterium tuberculosis Clinical Isolates. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2017; 22:1229-1238. [PMID: 28314116 DOI: 10.1177/2472555217698428] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Tuberculosis still remains one of the most fatal infectious diseases. Streptomycin (SM) is the drug of choice, especially for patients with multidrug-resistant tuberculosis or category II patients, because it targets the protein synthesis machinery by interacting with steps of translation. Several mechanisms have been proposed to explain the resistance, but our knowledge is inadequate. Secretome often plays an important role in pathogenesis and is considered an attractive reservoir for the development of novel diagnostic markers and targets. In this study, we analyze the secretory proteins of streptomycin-resistant Mycobacterium tuberculosis isolates by 2-dimensional gel electrophoresis-matrix assisted laser desorption/ionization-time-of-flight mass spectrometry and bioinformatic tools. Fifteen overexpressed proteins were identified in a resistant isolate that belonged to various categories such as virulence/detoxification/adaptation, intermediary metabolism and respiration, and conserved hypotheticals. Among them, Rv1860, Rv1980c, Rv2140c, Rv1636, and Rv1926c were proteins of an undefined role. Molecular docking of these proteins with SM showed that it binds to their conserved domains and suggests that these might neutralize/compensate the effect of the drug. The interactome also suggests that overexpressed proteins along with their interactive partner might be involved in M. tuberculosis virulence and resistance. The cumulative effect of these overexpressed proteins could involve SM resistance, and these might be used as diagnostic markers or potential drug targets.
Collapse
Affiliation(s)
- Divakar Sharma
- 1 Department of Biochemistry, National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Tajganj, Agra, India
| | - Deepa Bisht
- 1 Department of Biochemistry, National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Tajganj, Agra, India
| |
Collapse
|
38
|
Antagonism between Front-Line Antibiotics Clarithromycin and Amikacin in the Treatment of Mycobacterium abscessus Infections Is Mediated by the whiB7 Gene. Antimicrob Agents Chemother 2017; 61:AAC.01353-17. [PMID: 28874379 PMCID: PMC5655113 DOI: 10.1128/aac.01353-17] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 08/21/2017] [Indexed: 11/24/2022] Open
Abstract
Combinations of antibiotics, each individually effective against Mycobacterium abscessus, are routinely coadministered based on the concept that this minimizes the spread of antibiotic resistance. However, our in vitro data contradict this assumption and instead document antagonistic interactions between two antibiotics (clarithromycin and amikacin) used to treat M. abscessus infections. Clinically relevant concentrations of clarithromycin induced increased resistance to both amikacin and itself. The induction of resistance was dependent on whiB7, a transcriptional activator of intrinsic antibiotic resistance that is induced by exposure to many different antibiotics. In M. abscessus, the deletion of whiB7 (MAB_3508c) resulted in increased sensitivity to a broad range of antibiotics. WhiB7 was required for transcriptional activation of genes that confer resistance to three commonly used anti-M. abscessus drugs: clarithromycin, amikacin, and tigecycline. The whiB7-dependent gene that conferred macrolide resistance was identified as erm(41) (MAB_2297), which encodes a ribosomal methyltransferase. The whiB7-dependent gene contributing to amikacin resistance was eis2 (MAB_4532c), which encodes a Gcn5-related N-acetyltransferase (GNAT). Transcription of whiB7 and the resistance genes in its regulon was inducible by subinhibitory concentrations of clarithromycin but not by amikacin. Thus, exposure to clarithromycin, or likely any whiB7-inducing antibiotic, may antagonize the activities of amikacin and other drugs. This has important implications for the management of M. abscessus infections, both in cystic fibrosis (CF) and non-CF patients.
Collapse
|
39
|
Identification of Mycobacterial Genes Involved in Antibiotic Sensitivity: Implications for the Treatment of Tuberculosis with β-Lactam-Containing Regimens. Antimicrob Agents Chemother 2017; 61:AAC.00425-17. [PMID: 28438925 DOI: 10.1128/aac.00425-17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 04/09/2017] [Indexed: 12/25/2022] Open
Abstract
In a Mycobacterium smegmatis mutant library screen, transposon mutants with insertions in fhaA, dprE2, rpsT, and parA displayed hypersusceptibility to antibiotics, including the β-lactams meropenem, ampicillin, amoxicillin, and cefotaxime. Sub-MIC levels of octoclothepin, a psychotic drug inhibiting ParA, phenocopied the parA insertion and enhanced the bactericidal activity of meropenem against Mycobacterium tuberculosis in combination with clavulanate. Our study identifies novel factors associated with antibiotic resistance, with implications in repurposing β-lactams for tuberculosis treatment.
Collapse
|
40
|
Xiong LB, Liu HH, Xu LQ, Sun WJ, Wang FQ, Wei DZ. Improving the production of 22-hydroxy-23,24-bisnorchol-4-ene-3-one from sterols in Mycobacterium neoaurum by increasing cell permeability and modifying multiple genes. Microb Cell Fact 2017; 16:89. [PMID: 28532497 PMCID: PMC5440992 DOI: 10.1186/s12934-017-0705-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 05/15/2017] [Indexed: 12/04/2022] Open
Abstract
Background The strategy of modifying the sterol catabolism pathway in mycobacteria has been adopted to produce steroidal pharmaceutical intermediates, such as 22-hydroxy-23,24-bisnorchol-4-ene-3-one (4-HBC), which is used to synthesize various steroids in the industry. However, the productivity is not desirable due to some inherent problems, including the unsatisfactory uptake rate and the low metabolic efficiency of sterols. The compact cell envelope of mycobacteria is a main barrier for the uptake of sterols. In this study, a combined strategy of improving the cell envelope permeability as well as the intracellular sterol metabolism efficiency was investigated to increase the productivity of 4-HBC. Results MmpL3, encoding a transmembrane transporter of trehalose monomycolate, is an important gene influencing the assembly of mycobacterial cell envelope. The disruption of mmpL3 in Mycobacterium neoaurum ATCC 25795 significantly enhanced the cell permeability by 23.4% and the consumption capacity of sterols by 15.6%. Therefore, the inactivation of mmpL3 was performed in a 4-HBC-producing strain derived from the wild type M. neoaurum and the 4-HBC production in the engineered strain was increased by 24.7%. Subsequently, to enhance the metabolic efficiency of sterols, four key genes, choM1, choM2, cyp125, and fadA5, involved in the sterol conversion pathway were individually overexpressed in the engineered mmpL3-deficient strain. The production of 4-HBC displayed the increases of 18.5, 8.9, 14.5, and 12.1%, respectively. Then, the more efficient genes (choM1, cyp125, and fadA5) were co-overexpressed in the engineered mmpL3-deficient strain, and the productivity of 4-HBC was ultimately increased by 20.3% (0.0633 g/L/h, 7.59 g/L 4-HBC from 20 g/L phytosterol) compared with its original productivity (0.0526 g/L/h, 6.31 g/L 4-HBC from 20 g/L phytosterol) in an industrial resting cell bio-transformation system. Conclusions Increasing cell permeability combined with the co-overexpression of the key genes (cyp125, choM1, and fadA5) involved in the conversion pathway of sterol to 4-HBC was effective to enhance the productivity of 4-HBC. The strategy might also be useful for the conversion of sterol to other steroidal intermediates by mycobacteria. Electronic supplementary material The online version of this article (doi:10.1186/s12934-017-0705-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Liang-Bin Xiong
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Hao-Hao Liu
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Li-Qin Xu
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Wan-Ju Sun
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Feng-Qing Wang
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China.
| | - Dong-Zhi Wei
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
41
|
Touchette MH, Van Vlack ER, Bai L, Kim J, Cognetta AB, Previti ML, Backus KM, Martin DW, Cravatt BF, Seeliger JC. A Screen for Protein-Protein Interactions in Live Mycobacteria Reveals a Functional Link between the Virulence-Associated Lipid Transporter LprG and the Mycolyltransferase Antigen 85A. ACS Infect Dis 2017; 3:336-348. [PMID: 28276676 DOI: 10.1021/acsinfecdis.6b00179] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Outer membrane lipids in pathogenic mycobacteria are important for virulence and survival. Although the biosynthesis of these lipids has been extensively studied, mechanisms responsible for their assembly in the outer membrane are not understood. In the study of Gram-negative outer membrane assembly, protein-protein interactions define transport mechanisms, but analogous interactions have not been explored in mycobacteria. Here we identified interactions with the lipid transport protein LprG. Using site-specific photo-cross-linking in live mycobacteria, we mapped three major interaction interfaces within LprG. We went on to identify proteins that cross-link at the entrance to the lipid binding pocket, an area likely relevant to LprG transport function. We verified LprG site-specific interactions with two hits, the conserved lipoproteins LppK and LppI. We further showed that LprG interacts physically and functionally with the mycolyltransferase Ag85A, as loss of either protein leads to similar defects in cell growth and mycolylation. Overall, our results support a model in which protein interactions coordinate multiple pathways in outer membrane biogenesis and connect lipid biosynthesis to transport.
Collapse
Affiliation(s)
- Megan H. Touchette
- Department of Pharmacological Sciences, Stony Brook University, Stony
Brook, New York 11794, United States
| | - Erik R. Van Vlack
- Department of Chemistry, Stony Brook University, Stony
Brook, New York 11790, United States
| | - Lu Bai
- Department of Chemistry, Stony Brook University, Stony
Brook, New York 11790, United States
| | - Jia Kim
- Department of Pharmacological Sciences, Stony Brook University, Stony
Brook, New York 11794, United States
| | - Armand B. Cognetta
- Department of Chemical Physiology, The
Skaggs Institute for Chemical Biology, The Scripps Research Institute, La
Jolla, California 92037, United States
| | - Mary L. Previti
- Department of Pharmacological Sciences, Stony Brook University, Stony
Brook, New York 11794, United States
| | - Keriann M. Backus
- Department of Chemical Physiology, The
Skaggs Institute for Chemical Biology, The Scripps Research Institute, La
Jolla, California 92037, United States
| | - Dwight W. Martin
- Department of Medicine, Stony Brook University, Stony
Brook, New York 11794, United States
- Proteomics Center, Stony Brook University, Stony
Brook, New York 11794, United States
| | - Benjamin F. Cravatt
- Department of Chemical Physiology, The
Skaggs Institute for Chemical Biology, The Scripps Research Institute, La
Jolla, California 92037, United States
| | - Jessica C. Seeliger
- Department of Pharmacological Sciences, Stony Brook University, Stony
Brook, New York 11794, United States
| |
Collapse
|
42
|
Nasiri MJ, Haeili M, Ghazi M, Goudarzi H, Pormohammad A, Imani Fooladi AA, Feizabadi MM. New Insights in to the Intrinsic and Acquired Drug Resistance Mechanisms in Mycobacteria. Front Microbiol 2017; 8:681. [PMID: 28487675 PMCID: PMC5403904 DOI: 10.3389/fmicb.2017.00681] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 04/04/2017] [Indexed: 01/25/2023] Open
Abstract
Infectious diseases caused by clinically important Mycobacteria continue to be an important public health problem worldwide primarily due to emergence of drug resistance crisis. In recent years, the control of tuberculosis (TB), the disease caused by Mycobacterium tuberculosis (MTB), is hampered by the emergence of multidrug resistance (MDR), defined as resistance to at least isoniazid (INH) and rifampicin (RIF), two key drugs in the treatment of the disease. Despite the availability of curative anti-TB therapy, inappropriate and inadequate treatment has allowed MTB to acquire resistance to the most important anti-TB drugs. Likewise, for most mycobacteria other than MTB, the outcome of drug treatment is poor and is likely related to the high levels of antibiotic resistance. Thus, a better knowledge of the underlying mechanisms of drug resistance in mycobacteria could aid not only to select the best therapeutic options but also to develop novel drugs that can overwhelm the existing resistance mechanisms. In this article, we review the distinctive mechanisms of antibiotic resistance in mycobacteria.
Collapse
Affiliation(s)
- Mohammad J. Nasiri
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical SciencesTehran, Iran
| | - Mehri Haeili
- Department of Biology, Faculty of Natural Sciences, University of TabrizTabriz, Iran
| | - Mona Ghazi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical SciencesTehran, Iran
| | - Hossein Goudarzi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical SciencesTehran, Iran
| | - Ali Pormohammad
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical SciencesTehran, Iran
| | - Abbas A. Imani Fooladi
- Applied Microbiology Research Center, Baqiyatallah University of Medical SciencesTehran, Iran
| | - Mohammad M. Feizabadi
- Department of Microbiology, School of Medicine, Tehran University of Medical SciencesTehran, Iran
- Thoracic Research Center, Imam Khomeini Hospital, Tehran University of Medical SciencesTehran, Iran
| |
Collapse
|
43
|
Faille A, Gavalda S, Slama N, Lherbet C, Maveyraud L, Guillet V, Laval F, Quémard A, Mourey L, Pedelacq JD. Insights into Substrate Modification by Dehydratases from Type I Polyketide Synthases. J Mol Biol 2017; 429:1554-1569. [PMID: 28377293 DOI: 10.1016/j.jmb.2017.03.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 03/21/2017] [Accepted: 03/27/2017] [Indexed: 02/04/2023]
Abstract
Dehydration reactions play a crucial role in the de novo biosynthesis of fatty acids and a wide range of pharmacologically active polyketide natural products with strong emphasis on human medicine. The type I polyketide synthase PpsC from Mycobacterium tuberculosis catalyzes key biosynthetic steps of lipid virulence factors phthiocerol dimycocerosates and phenolic glycolipids. Given the insolubility of the natural C28-C30 fatty acyl substrate of the PpsC dehydratase (DH) domain, we investigated its structure-function relationships in the presence of shorter surrogate substrates. Since most enzymes belonging to the (R)-specific enoyl hydratase/hydroxyacyl dehydratase family conduct the reverse hydration reaction in vitro, we have determined the X-ray structures of the PpsC DH domain, both unliganded (apo) and in complex with trans-but-2-enoyl-CoA or trans-dodec-2-enoyl-CoA derivatives. This study provides for the first time a snapshot of dehydratase-ligand interactions following a hydration reaction. Our structural analysis allowed us to identify residues essential for substrate binding and activity. The structural comparison of the two complexes also sheds light on the need for long acyl chains for this dehydratase to carry out its function, consistent with both its in vitro catalytic behavior and the physiological role of the PpsC enzyme.
Collapse
Affiliation(s)
- Alexandre Faille
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, 31077 Toulouse Cedex 04, France
| | - Sabine Gavalda
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, 31077 Toulouse Cedex 04, France
| | - Nawel Slama
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, 31077 Toulouse Cedex 04, France
| | | | - Laurent Maveyraud
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, 31077 Toulouse Cedex 04, France
| | - Valérie Guillet
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, 31077 Toulouse Cedex 04, France
| | - Françoise Laval
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, 31077 Toulouse Cedex 04, France
| | - Annaïk Quémard
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, 31077 Toulouse Cedex 04, France
| | - Lionel Mourey
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, 31077 Toulouse Cedex 04, France.
| | - Jean-Denis Pedelacq
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, 31077 Toulouse Cedex 04, France.
| |
Collapse
|
44
|
Methylfolate Trap Promotes Bacterial Thymineless Death by Sulfa Drugs. PLoS Pathog 2016; 12:e1005949. [PMID: 27760199 PMCID: PMC5070874 DOI: 10.1371/journal.ppat.1005949] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 09/22/2016] [Indexed: 01/16/2023] Open
Abstract
The methylfolate trap, a metabolic blockage associated with anemia, neural tube defects, Alzheimer’s dementia, cardiovascular diseases, and cancer, was discovered in the 1960s, linking the metabolism of folate, vitamin B12, methionine and homocysteine. However, the existence or physiological significance of this phenomenon has been unknown in bacteria, which synthesize folate de novo. Here we identify the methylfolate trap as a novel determinant of the bacterial intrinsic death by sulfonamides, antibiotics that block de novo folate synthesis. Genetic mutagenesis, chemical complementation, and metabolomic profiling revealed trap-mediated metabolic imbalances, which induced thymineless death, a phenomenon in which rapidly growing cells succumb to thymine starvation. Restriction of B12 bioavailability, required for preventing trap formation, using an “antivitamin B12” molecule, sensitized intracellular bacteria to sulfonamides. Since boosting the bactericidal activity of sulfonamides through methylfolate trap induction can be achieved in Gram-negative bacteria and mycobacteria, it represents a novel strategy to render these pathogens more susceptible to existing sulfonamides. Sulfonamides were the first agents to successfully treat bacterial infections, but their use later declined due to the emergence of resistant organisms. Restoration of these drugs may be achieved through inactivation of molecular mechanisms responsible for resistance. A chemo-genomic screen first identified 50 chromosomal loci representing the whole-genome antifolate resistance determinants in Mycobacterium smegmatis. Interestingly, many determinants resembled components of the methylfolate trap, a metabolic blockage exclusively described in mammalian cells. Targeted mutagenesis, genetic and chemical complementation, followed by chemical analyses established the methylfolate trap as a novel mechanism of sulfonamide sensitivity, ubiquitously present in mycobacteria and Gram-negative bacterial pathogens. Furthermore, metabolomic analyses revealed trap-mediated interruptions in folate and related metabolic pathways. These metabolic imbalances induced thymineless death, which was reversible with exogenous thymine supplementation. Chemical restriction of vitamin B12, an important molecule required for prevention of the methylfolate trap, sensitized intracellular bacteria to sulfonamides. Thus, pharmaceutical promotion of the methylfolate trap represents a novel folate antagonistic strategy to render pathogenic bacteria more susceptible to available, clinically approved sulfonamides.
Collapse
|
45
|
Dautin N, de Sousa-d'Auria C, Constantinesco-Becker F, Labarre C, Oberto J, Li de la Sierra-Gallay I, Dietrich C, Issa H, Houssin C, Bayan N. Mycoloyltransferases: A large and major family of enzymes shaping the cell envelope of Corynebacteriales. Biochim Biophys Acta Gen Subj 2016; 1861:3581-3592. [PMID: 27345499 DOI: 10.1016/j.bbagen.2016.06.020] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 06/15/2016] [Accepted: 06/16/2016] [Indexed: 12/31/2022]
Abstract
Mycobacterium and Corynebacterium are important genera of the Corynebacteriales order, the members of which are characterized by an atypical diderm cell envelope. Indeed the cytoplasmic membrane of these bacteria is surrounded by a thick mycolic acid-arabinogalactan-peptidoglycan (mAGP) covalent polymer. The mycolic acid-containing part of this complex associates with other lipids (mainly trehalose monomycolate (TMM) and trehalose dimycolate (TDM)) to form an outer membrane. The metabolism of mycolates in the cell envelope is governed by esterases called mycoloyltransferases that catalyze the transfer of mycoloyl chains from TMM to another TMM molecule or to other acceptors such as the terminal arabinoses of arabinogalactan or specific polypeptides. In this review we present an overview of this family of Corynebacteriales enzymes, starting with their expression, localization, structure and activity to finally discuss their putative functions in the cell. In addition, we show that Corynebacteriales possess multiple mycoloyltransferases encoding genes in their genome. The reason for this multiplicity is not known, as their function in mycolates biogenesis appear to be only partially redundant. It is thus possible that, in some species living in specific environments, some mycoloyltransferases have evolved to gain some new functions. In any case, the few characterized mycoloyltransferases are very important for the bacterial physiology and are also involved in adaptation in the host where they constitute major secreted antigens. Although not discussed in this review, all these functions make them interesting targets for the discovery of new antibiotics and promising vaccines candidates. This article is part of a Special Issue entitled "Science for Life" Guest Editor: Dr. Austen Angell, Dr. Salvatore Magazù and Dr. Federica Migliardo.
Collapse
Affiliation(s)
- Nathalie Dautin
- Molecular Biology of Corynebacteria and Mycobacteria, Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette Cedex, France
| | - Célia de Sousa-d'Auria
- Molecular Biology of Corynebacteria and Mycobacteria, Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette Cedex, France
| | - Florence Constantinesco-Becker
- Molecular Biology of Corynebacteria and Mycobacteria, Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette Cedex, France
| | - Cécile Labarre
- Molecular Biology of Corynebacteria and Mycobacteria, Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette Cedex, France
| | - Jacques Oberto
- Cell Biology of Archaea, Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette Cedex, France
| | - Ines Li de la Sierra-Gallay
- Function and Architecture of Macromolecular Assemblies, Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette Cedex, France
| | - Christiane Dietrich
- Molecular Biology of Corynebacteria and Mycobacteria, Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette Cedex, France
| | - Hanane Issa
- Molecular Biology of Corynebacteria and Mycobacteria, Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette Cedex, France; Faculty of Sciences, Department of Life and Earth Sciences, Holy Spirit University of Kaslik (USEK), Kaslik, B.P. 446, Jounieh, Lebanon
| | - Christine Houssin
- Molecular Biology of Corynebacteria and Mycobacteria, Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette Cedex, France.
| | - Nicolas Bayan
- Molecular Biology of Corynebacteria and Mycobacteria, Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette Cedex, France.
| |
Collapse
|
46
|
Świerzko AS, Bartłomiejczyk MA, Brzostek A, Łukasiewicz J, Michalski M, Dziadek J, Cedzyński M. Mycobacterial antigen 85 complex (Ag85) as a target for ficolins and mannose-binding lectin. Int J Med Microbiol 2016; 306:212-21. [PMID: 27141819 DOI: 10.1016/j.ijmm.2016.04.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 03/07/2016] [Accepted: 04/25/2016] [Indexed: 10/21/2022] Open
Abstract
The pattern recognition molecules (PRMs) able to activate complement via the lectin pathway are suspected to be involved in the interaction between pathogenic Mycobacteria and the host immune response. Recently, we have found strong interactions between 25 and 35kDa mycobacterial cell fractions and mannose-binding lectin (MBL) and ficolins. Here we demonstrate that two biologically important mycobacterial structures, mannosylated lipoarabinomannan (ManLAM) and the antigen 85 (Ag85) complex, induce activation of the lectin pathway of complement. The strong interaction of recombinant MBL with purified ManLAM was confirmed, but no binding of recombinant ficolins (ficolin-1, -2, -3) with this structure was observed. Interestingly, all PRMs tested reacted with the mycobacterial antigen 85 (Ag85) complex. Based on the use of specific inhibitors (mannan for MBL, acetylated bovine serum albumin for ficolin-1 and -2, Hafnia alvei PCM 1200 lipopolysaccharide for ficolin-3), we concluded that carbohydrate-recognition (MBL) and fibrinogen-like domains (ficolins) were involved in these interactions. Our results indicate that the mycobacterial antigen 85 complex is a target for ficolins and MBL. Furthermore, those PRMs also bound to fibronectin and therefore might influence the Ag85 complex-dependent interaction of Mycobacterium with the extracellular matrix.
Collapse
Affiliation(s)
- Anna S Świerzko
- Laboratory of Immunobiology of Infections, Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, 93-232 Lodz, Poland
| | - Marcin A Bartłomiejczyk
- Laboratory of Immunobiology of Infections, Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, 93-232 Lodz, Poland
| | - Anna Brzostek
- Laboratory of Mycobacterium Genetics and Physiology, Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, 93-232 Lodz, Poland
| | - Jolanta Łukasiewicz
- Department of Immunochemistry, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, R. Weigla 12, 53-114 Wroclaw, Poland
| | - Mateusz Michalski
- Laboratory of Immunobiology of Infections, Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, 93-232 Lodz, Poland
| | - Jarosław Dziadek
- Laboratory of Mycobacterium Genetics and Physiology, Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, 93-232 Lodz, Poland
| | - Maciej Cedzyński
- Laboratory of Immunobiology of Infections, Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, 93-232 Lodz, Poland.
| |
Collapse
|
47
|
Nguyen L. Antibiotic resistance mechanisms in M. tuberculosis: an update. Arch Toxicol 2016; 90:1585-604. [PMID: 27161440 DOI: 10.1007/s00204-016-1727-6] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 04/27/2016] [Indexed: 12/16/2022]
Abstract
Treatment of tuberculosis (TB) has been a therapeutic challenge because of not only the naturally high resistance level of Mycobacterium tuberculosis to antibiotics but also the newly acquired mutations that confer further resistance. Currently standardized regimens require patients to daily ingest up to four drugs under direct observation of a healthcare worker for a period of 6-9 months. Although they are quite effective in treating drug susceptible TB, these lengthy treatments often lead to patient non-adherence, which catalyzes for the emergence of M. tuberculosis strains that are increasingly resistant to the few available anti-TB drugs. The rapid evolution of M. tuberculosis, from mono-drug-resistant to multiple drug-resistant, extensively drug-resistant and most recently totally drug-resistant strains, is threatening to make TB once again an untreatable disease if new therapeutic options do not soon become available. Here, I discuss the molecular mechanisms by which M. tuberculosis confers its profound resistance to antibiotics. This knowledge may help in developing novel strategies for weakening drug resistance, thus enhancing the potency of available antibiotics against both drug susceptible and resistant M. tuberculosis strains.
Collapse
Affiliation(s)
- Liem Nguyen
- Department of Molecular Biology and Microbiology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA.
| |
Collapse
|
48
|
Abstract
This article summarizes what is currently known of the structures, physiological roles, involvement in pathogenicity, and biogenesis of a variety of noncovalently bound cell envelope lipids and glycoconjugates of Mycobacterium tuberculosis and other Mycobacterium species. Topics addressed in this article include phospholipids; phosphatidylinositol mannosides; triglycerides; isoprenoids and related compounds (polyprenyl phosphate, menaquinones, carotenoids, noncarotenoid cyclic isoprenoids); acyltrehaloses (lipooligosaccharides, trehalose mono- and di-mycolates, sulfolipids, di- and poly-acyltrehaloses); mannosyl-beta-1-phosphomycoketides; glycopeptidolipids; phthiocerol dimycocerosates, para-hydroxybenzoic acids, and phenolic glycolipids; mycobactins; mycolactones; and capsular polysaccharides.
Collapse
|
49
|
Thanna S, Sucheck SJ. Targeting the trehalose utilization pathways of Mycobacterium tuberculosis. MEDCHEMCOMM 2015; 7:69-85. [PMID: 26941930 PMCID: PMC4770839 DOI: 10.1039/c5md00376h] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tuberculosis (TB) is an epidemic disease and the growing burden of multidrug-resistant (MDR) TB world wide underlines the need to discover new drugs to treat the disease. Mycobacterium tuberculosis (Mtb) is the etiological agent of most cases of TB. Mtb is difficult to treat, in part, due to the presence of a sturdy hydrophobic barrier that prevents penetration of drugs through the cell wall. Mtb can also survive in a non-replicative state for long periods of time avoiding the action of common antibiotics. Trehalose is an essential metabolite in mycobacteria since it plays key roles in cell wall synthesis, transport of cell wall glycolipids, and energy storage. It is also known for its stress protective roles such as: protection from desiccation, freezing, starvation and osmotic stress in bacteria. In this review we discuss the drug discovery efforts against enzymes involved in the trehalose utilization pathways (TUPs) and their likelihood of becoming drug targets.
Collapse
Affiliation(s)
- Sandeep Thanna
- Department of Chemistry and Biochemistry, The University of Toledo, 2801 W. Bancroft Street, MS602, Toledo, OH, USA 43606
| | - Steven J. Sucheck
- Department of Chemistry and Biochemistry, The University of Toledo, 2801 W. Bancroft Street, MS602, Toledo, OH, USA 43606
| |
Collapse
|
50
|
Viswanathan G, Joshi SV, Sridhar A, Dutta S, Raghunand TR. Identifying novel mycobacterial stress associated genes using a random mutagenesis screen in Mycobacterium smegmatis. Gene 2015. [PMID: 26211627 DOI: 10.1016/j.gene.2015.07.063] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Cell envelope associated components of Mycobacterium tuberculosis (M.tb) have been implicated in stress response, immune modulation and in vivo survival of the pathogen. Although many such factors have been identified, there is a large disparity between the number of genes predicted to be involved in functions linked to the envelope and those described in the literature. To identify and characterise novel stress related factors associated with the mycobacterial cell envelope, we isolated colony morphotype mutants of Mycobacterium smegmatis (M. smegmatis), based on the hypothesis that mutants with unusual colony morphology may have defects in the biosynthesis of cell envelope components. On testing their susceptibility to stress conditions relevant to M.tb physiology, multiple mutants were found to be sensitive to Isoniazid, Diamide and H2O2, indicative of altered permeability due to changes in cell envelope composition. Two mutants showed defects in biofilm formation implying possible roles for the target genes in antibiotic tolerance and/or virulence. These assays identified novel stress associated roles for several mycobacterial genes including sahH, tatB and aceE. Complementation analysis of selected mutants with the M. smegmatis genes and their M.tb homologues showed phenotypic restoration, validating their link to the observed phenotypes. A mutant carrying an insertion in fhaA encoding a forkhead associated domain containing protein, showed reduced survival in THP-1 macrophages, providing in vivo validation to this screen. Taken together, these results suggest that the M.tb homologues of a majority of the identified genes may play significant roles in the pathogenesis of tuberculosis.
Collapse
Affiliation(s)
| | - Shrilaxmi V Joshi
- CSIR - Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, India
| | - Aditi Sridhar
- CSIR - Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, India
| | - Sayantanee Dutta
- CSIR - Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, India
| | | |
Collapse
|