1
|
Wu G, Zhou Y, Cao S, Wu Y, Wang T, Zhang Y, Wang X, Song Y, Yang R, Du Z. Unveiling the dance of evolution: Pla-mediated cleavage of Ymt modulates the virulence dynamics of Yersinia pestis. mBio 2024; 15:e0107524. [PMID: 38958447 PMCID: PMC11323527 DOI: 10.1128/mbio.01075-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 05/29/2024] [Indexed: 07/04/2024] Open
Abstract
Yersinia pestis has recently evolved into a highly lethal flea-borne pathogen through the pseudogenization of extensive genes and the acquisition of exogenous plasmids. Particularly noteworthy are the newly acquired pPCP1 and pMT1 plasmids, which encode the virulence determinants Pla and Yersinia murine toxin (Ymt), crucial for subcutaneous infection and survival within flea vector of Y. pestis, respectively. This study reveals that Pla can cleave Ymt at K299 both in vivo and in vitro. Y. pestis expressing YmtK299A displays enhanced in vitro biofilm formation and increased blood survival, indicating significant roles of Pla-mediated Ymt cleavage in these phenotypes. Intriguingly, although both the ancestral form of Pla and the prevalent Pla-I259T variant in modern Y. pestis strains are capable of cleaving Ymt at K299, the cleavage efficiency of Pla-I259T is only half that of the ancestral variant. In subcutaneous infection, mice infected with Δymt::ymt-K299A show significantly prolonged survival compared to those infected with Δymt::ymt. Similarly, infection with Δpla::pla-I259T also results in extended survival compared to Δpla::pla infection. These data demonstrate that the I259T substitution of Pla mitigates the enhanced virulence of Y. pestis in mice caused by Pla-mediated Ymt cleavage, thereby prolonging the survival period of infected animals and potentially conferring advantages on the transmission of Y. pestis to the next host. These findings deepen our understanding of the intricate interplay between two newly acquired plasmids and shed light on the positive selection of the Pla-I259T mutation, providing new insights into the virulence dynamics and transmission mechanisms of Y. pestis. IMPORTANCE The emergence of Y. pestis as a highly lethal pathogen is driven by extensive gene pseudogenization and acquisition of exogenous plasmids pPCP1 and pMT1. However, the interplay between these two plasmids during evolution remains largely unexplored. Our study reveals intricate interactions between Ymt and Pla, two crucial virulence determinants encoded on these plasmids. Pla-mediated cleavage of Ymt significantly decreases Y. pestis survival in mouse blood and enhances its virulence in mice. The prevalent Pla-I259T variant in modern strains displays reduced Ymt cleavage, thereby extending the survival of infected animals and potentially increasing strain transmissibility. Our findings shed light on the nuanced evolution of Y. pestis, wherein reduced cleavage efficiency is a positive selection force, shaping the pathogen's natural trajectory.
Collapse
Affiliation(s)
- Gengshan Wu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yazhou Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Shiyang Cao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yarong Wu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Tong Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yu Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Xiaoyi Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yajun Song
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Ruifu Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Zongmin Du
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| |
Collapse
|
2
|
Scheller D, Becker F, Wimbert A, Meggers D, Pienkoß S, Twittenhoff C, Knoke LR, Leichert LI, Narberhaus F. The oxidative stress response, in particular the katY gene, is temperature-regulated in Yersinia pseudotuberculosis. PLoS Genet 2023; 19:e1010669. [PMID: 37428814 PMCID: PMC10358904 DOI: 10.1371/journal.pgen.1010669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 06/12/2023] [Indexed: 07/12/2023] Open
Abstract
Pathogenic bacteria, such as Yersinia pseudotuberculosis encounter reactive oxygen species (ROS) as one of the first lines of defense in the mammalian host. In return, the bacteria react by mounting an oxidative stress response. Previous global RNA structure probing studies provided evidence for temperature-modulated RNA structures in the 5'-untranslated region (5'-UTR) of various oxidative stress response transcripts, suggesting that opening of these RNA thermometer (RNAT) structures at host-body temperature relieves translational repression. Here, we systematically analyzed the transcriptional and translational regulation of ROS defense genes by RNA-sequencing, qRT-PCR, translational reporter gene fusions, enzymatic RNA structure probing and toeprinting assays. Transcription of four ROS defense genes was upregulated at 37°C. The trxA gene is transcribed into two mRNA isoforms, of which the most abundant short one contains a functional RNAT. Biochemical assays validated temperature-responsive RNAT-like structures in the 5'-UTRs of sodB, sodC and katA. However, they barely conferred translational repression in Y. pseudotuberculosis at 25°C suggesting partially open structures available to the ribosome in the living cell. Around the translation initiation region of katY we discovered a novel, highly efficient RNAT that was primarily responsible for massive induction of KatY at 37°C. By phenotypic characterization of catalase mutants and through fluorometric real-time measurements of the redox-sensitive roGFP2-Orp1 reporter in these strains, we revealed KatA as the primary H2O2 scavenger. Consistent with the upregulation of katY, we observed an improved protection of Y. pseudotuberculosis at 37°C. Our findings suggest a multilayered regulation of the oxidative stress response in Yersinia and an important role of RNAT-controlled katY expression at host body temperature.
Collapse
Affiliation(s)
- Daniel Scheller
- Ruhr University Bochum, Faculty of Biology and Biotechnology, Microbial Biology, Bochum, Germany
| | - Franziska Becker
- Ruhr University Bochum, Faculty of Biology and Biotechnology, Microbial Biology, Bochum, Germany
| | - Andrea Wimbert
- Ruhr University Bochum, Faculty of Biology and Biotechnology, Microbial Biology, Bochum, Germany
| | - Dominik Meggers
- Ruhr University Bochum, Faculty of Biology and Biotechnology, Microbial Biology, Bochum, Germany
| | - Stephan Pienkoß
- Ruhr University Bochum, Faculty of Biology and Biotechnology, Microbial Biology, Bochum, Germany
| | - Christian Twittenhoff
- Ruhr University Bochum, Faculty of Biology and Biotechnology, Microbial Biology, Bochum, Germany
| | - Lisa R Knoke
- Ruhr University Bochum, Faculty of Medicine, Institute of Biochemistry and Pathobiochemistry, Microbial Biochemistry, Bochum, Germany
| | - Lars I Leichert
- Ruhr University Bochum, Faculty of Medicine, Institute of Biochemistry and Pathobiochemistry, Microbial Biochemistry, Bochum, Germany
| | - Franz Narberhaus
- Ruhr University Bochum, Faculty of Biology and Biotechnology, Microbial Biology, Bochum, Germany
| |
Collapse
|
3
|
Cao S, Chen Y, Yan Y, Zhu S, Tan Y, Wang T, Song Y, Deng H, Yang R, Du Z. Secretome and Comparative Proteomics of Yersinia pestis Identify Two Novel E3 Ubiquitin Ligases That Contribute to Plague Virulence. Mol Cell Proteomics 2021; 20:100066. [PMID: 33631294 PMCID: PMC7994543 DOI: 10.1016/j.mcpro.2021.100066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 02/12/2021] [Indexed: 11/21/2022] Open
Abstract
Plague is a zoonotic disease that primarily infects rodents via fleabite. Transmission from flea to host niches requires rapid adaption of Yersinia pestis to the outer environments to establish infection. Here, quantitative proteome and secretome analyses of Y. pestis grown under conditions mimicking the two typical niches, i.e., the mammalian host (Mh) and the flea vector (Fv), were performed to understand the adaption strategies of this deadly pathogen. A secretome of Y. pestis containing 308 proteins has been identified using TMT-labeling mass spectrometry analysis. Although some proteins are known to be secreted, such as the type III secretion substrates, PsaA and F1 antigen, most of them were found to be secretory proteins for the first time. Comparative proteomic analysis showed that membrane proteins, chaperonins and stress response proteins are significantly upregulated under the Mh condition, among which the previously uncharacterized proteins YP_3416∼YP_3418 are remarkable because they cannot only be secreted but also translocated into HeLa cells by Y. pestis. We further demonstrated that the purified YP_3416 and YP_3418 exhibited E3 ubiquitin ligase activity in in vitro ubiquitination assay and yp_3416∼3418 deletion mutant of Y. pestis showed significant virulence attenuation in mice. Taken together, our results represent the first Y. pestis secretome, which will promote the better understanding of Y. pestis pathogenesis, as well as the development of new strategies for treatment and prevention of plague.
Collapse
Affiliation(s)
- Shiyang Cao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yuling Chen
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yanfeng Yan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Songbiao Zhu
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yafang Tan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Tong Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yajun Song
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Haiteng Deng
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China.
| | - Ruifu Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China.
| | - Zongmin Du
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China.
| |
Collapse
|
4
|
Yersinia pestis Plasminogen Activator. Biomolecules 2020; 10:biom10111554. [PMID: 33202679 PMCID: PMC7696990 DOI: 10.3390/biom10111554] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/12/2020] [Accepted: 11/12/2020] [Indexed: 12/18/2022] Open
Abstract
The Gram-negative bacterium Yersinia pestis causes plague, a fatal flea-borne anthropozoonosis, which can progress to aerosol-transmitted pneumonia. Y. pestis overcomes the innate immunity of its host thanks to many pathogenicity factors, including plasminogen activator, Pla. This factor is a broad-spectrum outer membrane protease also acting as adhesin and invasin. Y. pestis uses Pla adhesion and proteolytic capacity to manipulate the fibrinolytic cascade and immune system to produce bacteremia necessary for pathogen transmission via fleabite or aerosols. Because of microevolution, Y. pestis invasiveness has increased significantly after a single amino-acid substitution (I259T) in Pla of one of the oldest Y. pestis phylogenetic groups. This mutation caused a better ability to activate plasminogen. In paradox with its fibrinolytic activity, Pla cleaves and inactivates the tissue factor pathway inhibitor (TFPI), a key inhibitor of the coagulation cascade. This function in the plague remains enigmatic. Pla (or pla) had been used as a specific marker of Y. pestis, but its solitary detection is no longer valid as this gene is present in other species of Enterobacteriaceae. Though recovering hosts generate anti-Pla antibodies, Pla is not a good subunit vaccine. However, its deletion increases the safety of attenuated Y. pestis strains, providing a means to generate a safe live plague vaccine.
Collapse
|
5
|
Gautam A, Muhie S, Chakraborty N, Hoke A, Donohue D, Miller SA, Hammamieh R, Jett M. Metabolomic analyses reveal lipid abnormalities and hepatic dysfunction in non-human primate model for Yersinia pestis. Metabolomics 2018; 15:2. [PMID: 30830480 PMCID: PMC6311182 DOI: 10.1007/s11306-018-1457-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 12/04/2018] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Pneumonic plague is caused by the aerosolized form of Yersinia pestis and is a highly virulent infection with complex clinical consequences, and without treatment, the fatality rate approaches 100%. The exact mechanisms of disease progression are unclear, with limited work done using metabolite profiling to study disease progression. OBJECTIVE The aim of this pilot study was to profile the plasma metabolomics in an animal model of Y. pestis infection. METHODS In this study, African Green monkeys were challenged with the highly virulent, aerosolized Y. pestis strain CO92, and untargeted metabolomics profiling of plasma was performed using liquid and gas chromatography with mass spectrometry. RESULTS At early time points post-exposure, we found significant increases in polyunsaturated, long chain fatty acid metabolites with p values ranging from as low as 0.000001 (ratio = 1.94) for the metabolite eicosapentaenoate to 0.04 (ratio = 1.36) for the metabolite adrenate when compared to time-matched controls. Multiple acyl carnitines metabolites were increased at earlier time points and could be a result of fatty acid oxidation defects with p values ranging from as low as 0.00001 (ratio = 2.95) for the metabolite octanoylcarnitine to 0.04 (ratio = 1.33) for metabolite deoxycarnitine when compared to time-matched controls. Dicarboxylic acids are important metabolic products of fatty acids oxidation, and when compared to time matched controls, were higher at earlier time points where metabolite tetradecanedioate has a ratio of 4.09 with significant p value of 0.000002 and adipate with a ratio of 1.12 and p value of 0.004. The metabolites from lysolipids (with significant p values ranging from 0.00006 for 1-oleoylglycerophosphoethanolamine to 0.04 for 1-stearoylglycerophosphoethanolamine and a ratio of 0.47 and 0.78, respectively) and bile acid metabolism (with significant p values ranging from 0.02 for cholate to 0.04 for deoxycholate and a ratio of 0.39 and 0.66, respectively) pathways were significantly lower compared to their time-matched controls during the entire course of infection. Metabolite levels from amino acid pathways were disrupted, and a few from the leucine, isoleucine and valine pathway were significantly higher (p values ranging from 0.002 to 0.04 and ratios ranging from 1.3 to 1.5, respectively), whereas metabolites from the urea cycle, arginine and proline pathways were significantly lower (p values ranging from 0.00008 to 0.02 and ratios ranging from 0.5 to 0.7, respectively) during the course of infection. CONCLUSIONS The involvement of several lipid pathways post-infection suggested activation of pathways linked to inflammation and oxidative stress. Metabolite data further showed increased energy demand, and multiple metabolites indicated potential hepatic dysfunction. Integration of blood metabolomics and transcriptomics data identified linoleate as a core metabolite with cross-talk with multiple genes from various time points. Collectively, the data from this study provided new insights into the mechanisms of Y. pestis pathogenesis that may aid in development of therapeutics.
Collapse
Affiliation(s)
- Aarti Gautam
- US Army Center for Environmental Health Research, 568 Doughten Drive, Fort Detrick, MD, 21702, USA
| | - Seid Muhie
- US Army Center for Environmental Health Research, 568 Doughten Drive, Fort Detrick, MD, 21702, USA
- The Geneva Foundation, Fort Detrick, MD, USA
| | - Nabarun Chakraborty
- US Army Center for Environmental Health Research, 568 Doughten Drive, Fort Detrick, MD, 21702, USA
- The Geneva Foundation, Fort Detrick, MD, USA
| | - Allison Hoke
- US Army Center for Environmental Health Research, 568 Doughten Drive, Fort Detrick, MD, 21702, USA
- The Geneva Foundation, Fort Detrick, MD, USA
| | - Duncan Donohue
- US Army Center for Environmental Health Research, 568 Doughten Drive, Fort Detrick, MD, 21702, USA
- The Geneva Foundation, Fort Detrick, MD, USA
| | - Stacy Ann Miller
- US Army Center for Environmental Health Research, 568 Doughten Drive, Fort Detrick, MD, 21702, USA
- The Geneva Foundation, Fort Detrick, MD, USA
| | - Rasha Hammamieh
- US Army Center for Environmental Health Research, 568 Doughten Drive, Fort Detrick, MD, 21702, USA
| | - Marti Jett
- US Army Center for Environmental Health Research, 568 Doughten Drive, Fort Detrick, MD, 21702, USA.
| |
Collapse
|
6
|
Merkley ED, Sego LH, Lin A, Leiser OP, Kaiser BLD, Adkins JN, Keim PS, Wagner DM, Kreuzer HW. Protein abundances can distinguish between naturally-occurring and laboratory strains of Yersinia pestis, the causative agent of plague. PLoS One 2017; 12:e0183478. [PMID: 28854255 PMCID: PMC5576697 DOI: 10.1371/journal.pone.0183478] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 08/05/2017] [Indexed: 11/19/2022] Open
Abstract
The rapid pace of bacterial evolution enables organisms to adapt to the laboratory environment with repeated passage and thus diverge from naturally-occurring environmental ("wild") strains. Distinguishing wild and laboratory strains is clearly important for biodefense and bioforensics; however, DNA sequence data alone has thus far not provided a clear signature, perhaps due to lack of understanding of how diverse genome changes lead to convergent phenotypes, difficulty in detecting certain types of mutations, or perhaps because some adaptive modifications are epigenetic. Monitoring protein abundance, a molecular measure of phenotype, can overcome some of these difficulties. We have assembled a collection of Yersinia pestis proteomics datasets from our own published and unpublished work, and from a proteomics data archive, and demonstrated that protein abundance data can clearly distinguish laboratory-adapted from wild. We developed a lasso logistic regression classifier that uses binary (presence/absence) or quantitative protein abundance measures to predict whether a sample is laboratory-adapted or wild that proved to be ~98% accurate, as judged by replicated 10-fold cross-validation. Protein features selected by the classifier accord well with our previous study of laboratory adaptation in Y. pestis. The input data was derived from a variety of unrelated experiments and contained significant confounding variables. We show that the classifier is robust with respect to these variables. The methodology is able to discover signatures for laboratory facility and culture medium that are largely independent of the signature of laboratory adaptation. Going beyond our previous laboratory evolution study, this work suggests that proteomic differences between laboratory-adapted and wild Y. pestis are general, potentially pointing to a process that could apply to other species as well. Additionally, we show that proteomics datasets (even archived data collected for different purposes) contain the information necessary to distinguish wild and laboratory samples. This work has clear applications in biomarker detection as well as biodefense.
Collapse
Affiliation(s)
- Eric D. Merkley
- Chemical and Biological Signature Sciences, Pacific Northwest National Laboratory, Richland, Washington, United States of America
- * E-mail:
| | - Landon H. Sego
- Applied Statistics and Computational Modeling, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Andy Lin
- Chemical and Biological Signature Sciences, Pacific Northwest National Laboratory, Richland, Washington, United States of America
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Owen P. Leiser
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Brooke L. Deatherage Kaiser
- Chemical and Biological Signature Sciences, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Joshua N. Adkins
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Paul S. Keim
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - David M. Wagner
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Helen W. Kreuzer
- Chemical and Biological Signature Sciences, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| |
Collapse
|
7
|
Senior NJ, Sasidharan K, Saint RJ, Scott AE, Sarkar-Tyson M, Ireland PM, Bullifent HL, Rong Yang Z, Moore K, Oyston PCF, Atkins TP, Atkins HS, Soyer OS, Titball RW. An integrated computational-experimental approach reveals Yersinia pestis genes essential across a narrow or a broad range of environmental conditions. BMC Microbiol 2017; 17:163. [PMID: 28732479 PMCID: PMC5521123 DOI: 10.1186/s12866-017-1073-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 07/17/2017] [Indexed: 01/07/2023] Open
Abstract
Background The World Health Organization has categorized plague as a re-emerging disease and the potential for Yersinia pestis to also be used as a bioweapon makes the identification of new drug targets against this pathogen a priority. Environmental temperature is a key signal which regulates virulence of the bacterium. The bacterium normally grows outside the human host at 28 °C. Therefore, understanding the mechanisms that the bacterium used to adapt to a mammalian host at 37 °C is central to the development of vaccines or drugs for the prevention or treatment of human disease. Results Using a library of over 1 million Y. pestis CO92 random mutants and transposon-directed insertion site sequencing, we identified 530 essential genes when the bacteria were cultured at 28 °C. When the library of mutants was subsequently cultured at 37 °C we identified 19 genes that were essential at 37 °C but not at 28 °C, including genes which encode proteins that play a role in enabling functioning of the type III secretion and in DNA replication and maintenance. Using genome-scale metabolic network reconstruction we showed that growth conditions profoundly influence the physiology of the bacterium, and by combining computational and experimental approaches we were able to identify 54 genes that are essential under a broad range of conditions. Conclusions Using an integrated computational-experimental approach we identify genes which are required for growth at 37 °C and under a broad range of environments may be the best targets for the development of new interventions to prevent or treat plague in humans. Electronic supplementary material The online version of this article (doi:10.1186/s12866-017-1073-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nicola J Senior
- College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4SB, UK
| | - Kalesh Sasidharan
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Richard J Saint
- Defence Science Technology Laboratory, Porton Down, Salisbury, SP4 OJQ, UK
| | - Andrew E Scott
- Defence Science Technology Laboratory, Porton Down, Salisbury, SP4 OJQ, UK
| | - Mitali Sarkar-Tyson
- Defence Science Technology Laboratory, Porton Down, Salisbury, SP4 OJQ, UK.,Marshall Centre for Infectious Disease Research and Training, School of Pathology and Laboratory Medicine, University of Western Australia, Perth, WA, 6009, Australia
| | - Philip M Ireland
- Defence Science Technology Laboratory, Porton Down, Salisbury, SP4 OJQ, UK
| | - Helen L Bullifent
- Defence Science Technology Laboratory, Porton Down, Salisbury, SP4 OJQ, UK
| | - Z Rong Yang
- College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4SB, UK
| | - Karen Moore
- College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4SB, UK
| | - Petra C F Oyston
- Defence Science Technology Laboratory, Porton Down, Salisbury, SP4 OJQ, UK
| | - Timothy P Atkins
- College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4SB, UK.,Defence Science Technology Laboratory, Porton Down, Salisbury, SP4 OJQ, UK
| | - Helen S Atkins
- College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4SB, UK.,Defence Science Technology Laboratory, Porton Down, Salisbury, SP4 OJQ, UK
| | - Orkun S Soyer
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Richard W Titball
- College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4SB, UK.
| |
Collapse
|
8
|
Moreira LM, Soares MR, Facincani AP, Ferreira CB, Ferreira RM, Ferro MIT, Gozzo FC, Felestrino ÉB, Assis RAB, Garcia CCM, Setubal JC, Ferro JA, de Oliveira JCF. Proteomics-based identification of differentially abundant proteins reveals adaptation mechanisms of Xanthomonas citri subsp. citri during Citrus sinensis infection. BMC Microbiol 2017; 17:155. [PMID: 28693412 PMCID: PMC5504864 DOI: 10.1186/s12866-017-1063-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 07/01/2017] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Xanthomonas citri subsp. citri (Xac) is the causal agent of citrus canker. A proteomic analysis under in planta infectious and non-infectious conditions was conducted in order to increase our knowledge about the adaptive process of Xac during infection. RESULTS For that, a 2D-based proteomic analysis of Xac at 1, 3 and 5 days after inoculation, in comparison to Xac growth in NB media was carried out and followed by MALDI-TOF-TOF identification of 124 unique differentially abundant proteins. Among them, 79 correspond to up-regulated proteins in at least one of the three stages of infection. Our results indicate an important role of proteins related to biofilm synthesis, lipopolysaccharides biosynthesis, and iron uptake and metabolism as possible modulators of plant innate immunity, and revealed an intricate network of proteins involved in reactive oxygen species adaptation during Plants` Oxidative Burst response. We also identified proteins previously unknown to be involved in Xac-Citrus interaction, including the hypothetical protein XAC3981. A mutant strain for this gene has proved to be non-pathogenic in respect to classical symptoms of citrus canker induced in compatible plants. CONCLUSIONS This is the first time that a protein repertoire is shown to be active and working in an integrated manner during the infection process in a compatible host, pointing to an elaborate mechanism for adaptation of Xac once inside the plant.
Collapse
Affiliation(s)
- Leandro M Moreira
- Departamento de Ciências Biológicas (DECBI), Instituto de Ciências Exatas e Biológicas (ICEB), Universidade Federal de Ouro Preto (UFOP), Ouro Preto, MG, Brazil. .,Núcleo de Pesquisas em Ciências Biológicas (NUPEB), Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil.
| | - Márcia R Soares
- Departamento de Bioquímica (DBq), Instituto de Química (IQ), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Agda P Facincani
- Faculdade de Ciências Agrárias e Veterinárias de Jaboticabal, UNESP - Universidade Estadual Paulista, Departamento de Tecnologia, Jaboticabal, SP, Brazil.
| | - Cristiano B Ferreira
- Faculdade de Ciências Agrárias e Veterinárias de Jaboticabal, UNESP - Universidade Estadual Paulista, Departamento de Tecnologia, Jaboticabal, SP, Brazil
| | - Rafael M Ferreira
- Faculdade de Ciências Agrárias e Veterinárias de Jaboticabal, UNESP - Universidade Estadual Paulista, Departamento de Tecnologia, Jaboticabal, SP, Brazil
| | - Maria I T Ferro
- Faculdade de Ciências Agrárias e Veterinárias de Jaboticabal, UNESP - Universidade Estadual Paulista, Departamento de Tecnologia, Jaboticabal, SP, Brazil
| | - Fábio C Gozzo
- Instituto de Química, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Érica B Felestrino
- Núcleo de Pesquisas em Ciências Biológicas (NUPEB), Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
| | - Renata A B Assis
- Núcleo de Pesquisas em Ciências Biológicas (NUPEB), Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
| | - Camila Carrião M Garcia
- Departamento de Ciências Biológicas (DECBI), Instituto de Ciências Exatas e Biológicas (ICEB), Universidade Federal de Ouro Preto (UFOP), Ouro Preto, MG, Brazil.,Núcleo de Pesquisas em Ciências Biológicas (NUPEB), Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
| | - João C Setubal
- Departamento de Bioquímica (DB), Instituto de Química (IQ), Universidade de São Paulo (USP), São Paulo, SP, Brazil.,Biocomplexity Institute, Virginia Tech, Blacksburg, VA, USA
| | - Jesus A Ferro
- Faculdade de Ciências Agrárias e Veterinárias de Jaboticabal, UNESP - Universidade Estadual Paulista, Departamento de Tecnologia, Jaboticabal, SP, Brazil
| | - Julio C F de Oliveira
- Departamento de Ciências Biológicas (DCB), Universidade Federal de São Paulo (UNIFESP), Diadema, SP, Brazil
| |
Collapse
|
9
|
Chauhan N, Wrobel A, Skurnik M, Leo JC. Yersinia adhesins: An arsenal for infection. Proteomics Clin Appl 2016; 10:949-963. [PMID: 27068449 DOI: 10.1002/prca.201600012] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 03/14/2016] [Accepted: 04/06/2016] [Indexed: 11/09/2022]
Abstract
The Yersiniae are a group of Gram-negative coccobacilli inhabiting a wide range of habitats. The genus harbors three recognized human pathogens: Y. enterocolitica and Y. pseudotuberculosis, which both cause gastrointestinal disease, and Y. pestis, the causative agent of plague. These three organisms have served as models for a number of aspects of infection biology, including adhesion, immune evasion, evolution of pathogenic traits, and retracing the course of ancient pandemics. The virulence of the pathogenic Yersiniae is heavily dependent on a number of adhesin molecules. Some of these, such as the Yersinia adhesin A and invasin of the enteropathogenic species, and the pH 6 antigen of Y. pestis, have been extensively studied. However, genomic sequencing has uncovered a host of other adhesins present in these organisms, the functions of which are only starting to be investigated. Here, we review the current state of knowledge on the adhesin molecules present in the Yersiniae, and their functions and putative roles in the infection process.
Collapse
Affiliation(s)
- Nandini Chauhan
- Evolution and Genetics, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Agnieszka Wrobel
- Evolution and Genetics, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Mikael Skurnik
- Department of Bacteriology and Immunology, Medicum, Research Programs Unit, Immunobiology, University of Helsinki, Helsinki, Finland.,Central Hospital Laboratory Diagnostics, Helsinki University, Helsinki, Finland
| | - Jack C Leo
- Evolution and Genetics, Department of Biosciences, University of Oslo, Oslo, Norway.
| |
Collapse
|
10
|
Chen S, Thompson KM, Francis MS. Environmental Regulation of Yersinia Pathophysiology. Front Cell Infect Microbiol 2016; 6:25. [PMID: 26973818 PMCID: PMC4773443 DOI: 10.3389/fcimb.2016.00025] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 02/15/2016] [Indexed: 12/26/2022] Open
Abstract
Hallmarks of Yersinia pathogenesis include the ability to form biofilms on surfaces, the ability to establish close contact with eukaryotic target cells and the ability to hijack eukaryotic cell signaling and take over control of strategic cellular processes. Many of these virulence traits are already well-described. However, of equal importance is knowledge of both confined and global regulatory networks that collaborate together to dictate spatial and temporal control of virulence gene expression. This review has the purpose to incorporate historical observations with new discoveries to provide molecular insight into how some of these regulatory mechanisms respond rapidly to environmental flux to govern tight control of virulence gene expression by pathogenic Yersinia.
Collapse
Affiliation(s)
- Shiyun Chen
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences Wuhan, China
| | - Karl M Thompson
- Department of Microbiology, College of Medicine, Howard University Washington, DC, USA
| | - Matthew S Francis
- Umeå Centre for Microbial Research, Umeå UniversityUmeå, Sweden; Department of Molecular Biology, Umeå UniversityUmeå, Sweden
| |
Collapse
|
11
|
Nieckarz M, Raczkowska A, Dębski J, Kistowski M, Dadlez M, Heesemann J, Rossier O, Brzostek K. Impact of OmpR on the membrane proteome of Yersinia enterocolitica in different environments: repression of major adhesin YadA and heme receptor HemR. Environ Microbiol 2016; 18:997-1021. [PMID: 26627632 DOI: 10.1111/1462-2920.13165] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 11/26/2015] [Accepted: 11/29/2015] [Indexed: 01/22/2023]
Abstract
Enteropathogenic Yersinia enterocolitica is able to grow within or outside the mammalian host. Previous transcriptomic studies have indicated that the regulator OmpR plays a role in the expression of hundreds of genes in enterobacteria. Here, we have examined the impact of OmpR on the production of Y. enterocolitica membrane proteins upon changes in temperature, osmolarity and pH. Proteomic analysis indicated that the loss of OmpR affects the production of 120 proteins, a third of which are involved in uptake/transport, including several that participate in iron or heme acquisition. A set of proteins associated with virulence was also affected. The influence of OmpR on the abundance of adhesin YadA and heme receptor HemR was examined in more detail. OmpR was found to repress YadA production and bind to the yadA promoter, suggesting a direct regulatory effect. In contrast, the repression of hemR expression by OmpR appears to be indirect. These findings provide new insights into the role of OmpR in remodelling the cell surface and the adaptation of Y. enterocolitica to different environmental niches, including the host.
Collapse
Affiliation(s)
- Marta Nieckarz
- Department of Applied Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Ilji Miecznikowa 1, Warsaw, 02-096, Poland
| | - Adrianna Raczkowska
- Department of Applied Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Ilji Miecznikowa 1, Warsaw, 02-096, Poland
| | - Janusz Dębski
- Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, Warsaw, 02-106, Poland
| | - Michał Kistowski
- Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, Warsaw, 02-106, Poland
| | - Michał Dadlez
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawińskiego 5a, Warsaw, 02-106, Poland.,Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, Warsaw, 02-106, Poland
| | - Jürgen Heesemann
- Max von Pettenkofer Institute for Hygiene and Medical Microbiology, Ludwig Maximilians University, Pettenkoferstrasse 9a, Munich, 80336, Germany
| | - Ombeline Rossier
- Max von Pettenkofer Institute for Hygiene and Medical Microbiology, Ludwig Maximilians University, Pettenkoferstrasse 9a, Munich, 80336, Germany
| | - Katarzyna Brzostek
- Department of Applied Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Ilji Miecznikowa 1, Warsaw, 02-096, Poland
| |
Collapse
|
12
|
Yang R, Motin VL. Yersinia pestis in the Age of Big Data. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 918:257-272. [PMID: 27722866 DOI: 10.1007/978-94-024-0890-4_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
Abstract
As omics-driven technologies developed rapidly, genomics, transcriptomics, proteomics, metabolomics and other omics-based data have been accumulated in unprecedented speed. Omics-driven big data in biology have changed our way of research. "Big science" has promoted our understanding of biology in a holistic overview that is impossibly achieved by traditional hypothesis-driven research. In this chapter, we gave an overview of omics-driven research on Y. pestis, provided a way of thinking on Yersinia pestis research in the age of big data, and made some suggestions to integrate omics-based data for systems understanding of Y. pestis.
Collapse
Affiliation(s)
- Ruifu Yang
- Beijing Institute of Microbiology and Epidemiology, No. Dongdajie, Fengtai, Beijing, 100071, China.
| | - Vladimir L Motin
- Departments of Pathology and Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| |
Collapse
|
13
|
Nozadze M, Zhgenti E, Meparishvili M, Tsverava L, Kiguradze T, Chanturia G, Babuadze G, Kekelidze M, Bakanidze L, Shutkova T, Imnadze P, Francesconi SC, Obiso R, Solomonia R. Comparative Proteomic Studies of Yersinia pestis Strains Isolated from Natural Foci in the Republic of Georgia. Front Public Health 2015; 3:239. [PMID: 26528469 PMCID: PMC4607876 DOI: 10.3389/fpubh.2015.00239] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 10/02/2015] [Indexed: 11/18/2022] Open
Abstract
Yersinia pestis, the causative agent of plague, is a highly virulent bacterium responsible for millions of human deaths throughout history. In the last decade, two natural plague foci have been described in the Republic of Georgia from which dozens of Y. pestis strains have been isolated. Analyses indicate that there are genetic differences between these strains, but it is not known if these differences are also reflected in protein expression. We chose four strains of Y. pestis (1390, 1853, 2944, and 8787) from the National Center for Disease Control and Public Health collection for proteomic studies based on neighbor-joining tree genetic analysis and geographical loci of strain origin. Proteomic expression was analyzed using two-dimensional gel electrophoresis and mass spectrometry. Select Y. pestis strains were grown under different physiological conditions and their proteomes were compared: (1) 28°C without calcium; (2) 28°C with calcium; (3) 37°C without calcium; and (4) 37°C with calcium. Candidate proteins were identified and the differences in expression of F1 antigen, tellurium-resistance protein, and outer membrane protein C, porin were validated by Western blotting. The in vitro cytotoxicity activity of these strains was also compared. The results indicate that protein expression and cytotoxic activities differ significantly among the studied strains; these differences could contribute to variations in essential physiological functions in these strains.
Collapse
Affiliation(s)
- Maia Nozadze
- Institute of Chemical Biology, Ilia State University , Tbilisi , Georgia ; I.Beritashvili Center for Experimental Biomedicine , Tbilisi , Georgia
| | - Ekaterine Zhgenti
- Institute of Chemical Biology, Ilia State University , Tbilisi , Georgia ; National Center for Disease Control , Tbilisi , Georgia
| | - Maia Meparishvili
- I.Beritashvili Center for Experimental Biomedicine , Tbilisi , Georgia
| | - Lia Tsverava
- I.Beritashvili Center for Experimental Biomedicine , Tbilisi , Georgia
| | - Tamar Kiguradze
- I.Beritashvili Center for Experimental Biomedicine , Tbilisi , Georgia
| | | | | | | | | | | | - Paata Imnadze
- National Center for Disease Control , Tbilisi , Georgia
| | | | - Richard Obiso
- Attimo Research and Development , Blacksburg, VA , USA
| | - Revaz Solomonia
- Institute of Chemical Biology, Ilia State University , Tbilisi , Georgia ; I.Beritashvili Center for Experimental Biomedicine , Tbilisi , Georgia
| |
Collapse
|
14
|
Craney A, Romesberg FE. The inhibition of type I bacterial signal peptidase: Biological consequences and therapeutic potential. Bioorg Med Chem Lett 2015; 25:4761-4766. [PMID: 26276537 DOI: 10.1016/j.bmcl.2015.07.072] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 07/16/2015] [Accepted: 07/21/2015] [Indexed: 01/05/2023]
Abstract
The general secretory pathway has long been regarded as a potential antibiotic drug target. In particular, bacterial type I signal peptidase (SPase) is emerging as a strong candidate for therapeutic use. In this review, we focus on the information gained from the use of SPase inhibitors as probes of prokaryote biology. A thorough understanding of the consequences of SPase inhibition and the mechanisms of resistance that arise are essential to the success of SPase as an antibiotic target. In addition to the role of SPase in processing secreted proteins, the use of SPase inhibitors has elucidated a previously unknown function for SPase in regulating cleavage events of membrane proteins.
Collapse
Affiliation(s)
- Arryn Craney
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Floyd E Romesberg
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| |
Collapse
|
15
|
Origins of Yersinia pestis sensitivity to the arylomycin antibiotics and the inhibition of type I signal peptidase. Antimicrob Agents Chemother 2015; 59:3887-98. [PMID: 25896690 DOI: 10.1128/aac.00181-15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 04/10/2015] [Indexed: 02/04/2023] Open
Abstract
Yersinia pestis is the etiologic agent of the plague. Reports of Y. pestis strains that are resistant to each of the currently approved first-line and prophylactic treatments point to the urgent need to develop novel antibiotics with activity against the pathogen. We previously reported that Y. pestis strain KIM6+, unlike most Enterobacteriaceae, is susceptible to the arylomycins, a novel class of natural-product lipopeptide antibiotics that inhibit signal peptidase I (SPase). In this study, we show that the arylomycin activity is conserved against a broad range of Y. pestis strains and confirm that it results from the inhibition of SPase. We next investigated the origins of this unique arylomycin sensitivity and found that it does not result from an increased affinity of the Y. pestis SPase for the antibiotic and that alterations to each component of the Y. pestis lipopolysaccharide-O antigen, core, and lipid A-make at most only a small contribution. Instead, the origins of the sensitivity can be traced to an increased dependence on SPase activity that results from high levels of protein secretion under physiological conditions. These results highlight the potential of targeting protein secretion in cases where there is a heavy reliance on this process and also have implications for the development of the arylomycins as an antibiotic with activity against Y. pestis and potentially other Gram-negative pathogens.
Collapse
|
16
|
Combinational deletion of three membrane protein-encoding genes highly attenuates yersinia pestis while retaining immunogenicity in a mouse model of pneumonic plague. Infect Immun 2015; 83:1318-38. [PMID: 25605764 DOI: 10.1128/iai.02778-14] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Previously, we showed that deletion of genes encoding Braun lipoprotein (Lpp) and MsbB attenuated Yersinia pestis CO92 in mouse and rat models of bubonic and pneumonic plague. While Lpp activates Toll-like receptor 2, the MsbB acyltransferase modifies lipopolysaccharide. Here, we deleted the ail gene (encoding the attachment-invasion locus) from wild-type (WT) strain CO92 or its lpp single and Δlpp ΔmsbB double mutants. While the Δail single mutant was minimally attenuated compared to the WT bacterium in a mouse model of pneumonic plague, the Δlpp Δail double mutant and the Δlpp ΔmsbB Δail triple mutant were increasingly attenuated, with the latter being unable to kill mice at a 50% lethal dose (LD50) equivalent to 6,800 LD50s of WT CO92. The mutant-infected animals developed balanced TH1- and TH2-based immune responses based on antibody isotyping. The triple mutant was cleared from mouse organs rapidly, with concurrent decreases in the production of various cytokines and histopathological lesions. When surviving animals infected with increasing doses of the triple mutant were subsequently challenged on day 24 with the bioluminescent WT CO92 strain (20 to 28 LD50s), 40 to 70% of the mice survived, with efficient clearing of the invading pathogen, as visualized in real time by in vivo imaging. The rapid clearance of the triple mutant, compared to that of WT CO92, from animals was related to the decreased adherence and invasion of human-derived HeLa and A549 alveolar epithelial cells and to its inability to survive intracellularly in these cells as well as in MH-S murine alveolar and primary human macrophages. An early burst of cytokine production in macrophages elicited by the triple mutant compared to WT CO92 and the mutant's sensitivity to the bactericidal effect of human serum would further augment bacterial clearance. Together, deletion of the ail gene from the Δlpp ΔmsbB double mutant severely attenuated Y. pestis CO92 to evoke pneumonic plague in a mouse model while retaining the required immunogenicity needed for subsequent protection against infection.
Collapse
|
17
|
Heroven AK, Dersch P. Coregulation of host-adapted metabolism and virulence by pathogenic yersiniae. Front Cell Infect Microbiol 2014; 4:146. [PMID: 25368845 PMCID: PMC4202721 DOI: 10.3389/fcimb.2014.00146] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 09/30/2014] [Indexed: 01/07/2023] Open
Abstract
Deciphering the principles how pathogenic bacteria adapt their metabolism to a specific host microenvironment is critical for understanding bacterial pathogenesis. The enteric pathogenic Yersinia species Yersinia pseudotuberculosis and Yersinia enterocolitica and the causative agent of plague, Yersinia pestis, are able to survive in a large variety of environmental reservoirs (e.g., soil, plants, insects) as well as warm-blooded animals (e.g., rodents, pigs, humans) with a particular preference for lymphatic tissues. In order to manage rapidly changing environmental conditions and interbacterial competition, Yersinia senses the nutritional composition during the course of an infection by special molecular devices, integrates this information and adapts its metabolism accordingly. In addition, nutrient availability has an impact on expression of virulence genes in response to C-sources, demonstrating a tight link between the pathogenicity of yersiniae and utilization of nutrients. Recent studies revealed that global regulatory factors such as the cAMP receptor protein (Crp) and the carbon storage regulator (Csr) system are part of a large network of transcriptional and posttranscriptional control strategies adjusting metabolic changes and virulence in response to temperature, ion and nutrient availability. Gained knowledge about the specific metabolic requirements and the correlation between metabolic and virulence gene expression that enable efficient host colonization led to the identification of new potential antimicrobial targets.
Collapse
Affiliation(s)
- Ann Kathrin Heroven
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Institut für Mikrobiology, Technische Universität Braunschweig Braunschweig, Germany
| | - Petra Dersch
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Institut für Mikrobiology, Technische Universität Braunschweig Braunschweig, Germany
| |
Collapse
|
18
|
Petriccione M, Salzano AM, Di Cecco I, Scaloni A, Scortichini M. Proteomic analysis of the Actinidia deliciosa leaf apoplast during biotrophic colonization by Pseudomonas syringae pv. actinidiae. J Proteomics 2014; 101:43-62. [DOI: 10.1016/j.jprot.2014.01.030] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 01/20/2014] [Accepted: 01/29/2014] [Indexed: 11/25/2022]
|
19
|
Posttranscriptional regulation of the Yersinia pestis cyclic AMP receptor protein Crp and impact on virulence. mBio 2014; 5:e01038-13. [PMID: 24520064 PMCID: PMC3950509 DOI: 10.1128/mbio.01038-13] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The cyclic AMP receptor protein (Crp) is a transcriptional regulator that controls the expression of numerous bacterial genes, usually in response to environmental conditions and particularly by sensing the availability of carbon. In the plague pathogen Yersinia pestis, Crp regulates the expression of multiple virulence factors, including components of the type III secretion system and the plasminogen activator protease Pla. The regulation of Crp itself, however, is distinctly different from that found in the well-studied Escherichia coli system. Here, we show that at physiological temperatures, the synthesis of Crp in Y. pestis is positively regulated at the posttranscriptional level. The loss of the small RNA chaperone Hfq results in decreased Crp protein levels but not in steady-state Crp transcript levels, and this regulatory effect occurs within the 5′ untranslated region (UTR) of the Crp mRNA. The posttranscriptional activation of Crp synthesis is required for the expression of pla, and decoupling crp from Hfq through the use of an exogenously controlled promoter and 5′ UTR increases Pla protein levels as well as partially rescues the growth defect associated with the loss of Hfq. Finally, we show that both Hfq and the posttranscriptional regulation of Crp contribute to the virulence of Y. pestis during pneumonic plague. The Hfq-dependent, posttranscriptional regulation of Crp may be specific to Yersinia species, and thus our data help explain the dramatic growth and virulence defects associated with the loss of Hfq in Y. pestis. The Crp protein is a major transcriptional regulator in bacteria, and its synthesis is tightly controlled to avoid inappropriate induction of the Crp regulon. In this report, we provide the first evidence of Crp regulation in an Hfq-dependent manner at the posttranscriptional level. Our discovery that the synthesis of Crp in Yersinia pestis is Hfq dependent adds an additional layer of regulation to catabolite repression in this bacterium. Our work provides a mechanism by which the plague pathogen links not just the sensing of glucose or other carbon sources but also other signals that influence Crp abundance via the expression of small RNAs to the induction of the Crp regulon. In turn, this allows Y. pestis to fine-tune Crp levels to optimize virulence gene expression during plague infection and may allow the bacterium to adapt to its unique environmental niches.
Collapse
|
20
|
Identification of secreted bacterial proteins by noncanonical amino acid tagging. Proc Natl Acad Sci U S A 2013; 111:433-8. [PMID: 24347637 DOI: 10.1073/pnas.1301740111] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Pathogenic microbes have evolved complex secretion systems to deliver virulence factors into host cells. Identification of these factors is critical for understanding the infection process. We report a powerful and versatile approach to the selective labeling and identification of secreted pathogen proteins. Selective labeling of microbial proteins is accomplished via translational incorporation of azidonorleucine (Anl), a methionine surrogate that requires a mutant form of the methionyl-tRNA synthetase for activation. Secreted pathogen proteins containing Anl can be tagged by azide-alkyne cycloaddition and enriched by affinity purification. Application of the method to analysis of the type III secretion system of the human pathogen Yersinia enterocolitica enabled efficient identification of secreted proteins, identification of distinct secretion profiles for intracellular and extracellular bacteria, and determination of the order of substrate injection into host cells. This approach should be widely useful for the identification of virulence factors in microbial pathogens and the development of potential new targets for antimicrobial therapy.
Collapse
|
21
|
Uittenbogaard AM, Myers-Morales T, Gorman AA, Welsh E, Wulff C, Hinnebusch BJ, Korhonen TK, Straley SC. Temperature-dependence of yadBC phenotypes in Yersinia pestis. MICROBIOLOGY-SGM 2013; 160:396-405. [PMID: 24222617 DOI: 10.1099/mic.0.073205-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
YadB and YadC are putative trimeric autotransporters present only in the plague bacterium Yersinia pestis and its evolutionary predecessor, Yersinia pseudotuberculosis. Previously, yadBC was found to promote invasion of epithelioid cells by Y. pestis grown at 37 °C. In this study, we found that yadBC also promotes uptake of 37 °C-grown Y. pestis by mouse monocyte/macrophage cells. We tested whether yadBC might be required for lethality of the systemic stage of plague in which the bacteria would be pre-adapted to mammalian body temperature before colonizing internal organs and found no requirement for early colonization or growth over 3 days. We tested the hypothesis that YadB and YadC function on ambient temperature-grown Y. pestis in the flea vector or soon after infection of the dermis in bubonic plague. We found that yadBC did not promote uptake by monocyte/macrophage cells if the bacteria were grown at 28 °C, nor was there a role of yadBC in colonization of fleas by Y. pestis grown at 21 °C. However, the presence of yadBC did promote recoverability of the bacteria from infected skin for 28 °C-grown Y. pestis. Furthermore, the gene for the proinflammatory chemokine CXCL1 was upregulated in expression if the infecting Y. pestis lacked yadBC but not if yadBC was present. Also, yadBC was not required for recoverability if the bacteria were grown at 37 °C. These findings imply that thermally induced virulence properties dominate over effects of yadBC during plague but that yadBC has a unique function early after transmission of Y. pestis to skin.
Collapse
Affiliation(s)
- Annette M Uittenbogaard
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY 40536-0298, USA
| | - Tanya Myers-Morales
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY 40536-0298, USA
| | - Amanda A Gorman
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY 40536-0298, USA
| | - Erin Welsh
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY 40536-0298, USA
| | - Christine Wulff
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY 40536-0298, USA
| | - B Joseph Hinnebusch
- Laboratory of Zoonotic Pathogens, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Timo K Korhonen
- Division of General Microbiology, Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - Susan C Straley
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY 40536-0298, USA
| |
Collapse
|
22
|
Rivas A, Pina-Pérez M, Rodriguez-Vargas S, Zuñiga M, Martinez A, Rodrigo D. Sublethally damaged cells of Escherichia coli by Pulsed Electric Fields: The chance of transformation and proteomic assays. Food Res Int 2013. [DOI: 10.1016/j.foodres.2013.01.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
23
|
Korhonen TK, Haiko J, Laakkonen L, Järvinen HM, Westerlund-Wikström B. Fibrinolytic and coagulative activities of Yersinia pestis. Front Cell Infect Microbiol 2013; 3:35. [PMID: 23898467 PMCID: PMC3724046 DOI: 10.3389/fcimb.2013.00035] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2012] [Accepted: 07/09/2013] [Indexed: 12/18/2022] Open
Abstract
The outer membrane protease Pla belongs to the omptin protease family spread by horizontal gene transfer into Gram-negative bacteria that infect animals or plants. Pla has adapted to support the life style of the plague bacterium Yersinia pestis. Pla has a β-barrel fold with 10 membrane-spanning β strands and five surface loops, and the barrel surface contains bound lipopolysaccharide (LPS) that is critical for the conformation and the activity of Pla. The biological activity of Pla is influenced by the structure of the surface loops around the active site groove and by temperature-induced LPS modifications. Several of the putative virulence-related functions documented for Pla in vitro address control of the human hemostatic system, i.e., coagulation and fibrinolysis. Pla activates human plasminogen to the serine protease plasmin and activates the physiological plasminogen activator urokinase. Pla also inactivates the protease inhibitors alpha-2-antiplasmin and plasminogen activator inhibitor 1 (PAI-1) and prevents the activation of thrombin-activatable fibrinolysis inhibitor (TAFI). These functions enhance uncontrolled fibrinolysis which is thought to improve Y. pestis dissemination and survival in the mammalian host, and lowered fibrin(ogen) deposition has indeed been observed in mice infected with Pla-positive Y. pestis. However, Pla also inactivates an anticoagulant, the tissue factor (TF) pathway inhibitor, which should increase fibrin formation and clotting. Thus, Pla and Y. pestis have complex interactions with the hemostatic system. Y. pestis modifies its LPS upon transfer to the mammalian host and we hypothesize that the contrasting biological activities of Pla in coagulation and fibrinolysis are influenced by LPS changes during infection.
Collapse
Affiliation(s)
- Timo K Korhonen
- General Microbiology, Department of Biosciences, University of Helsinki Helsinki, Finland.
| | | | | | | | | |
Collapse
|
24
|
Lawrenz MB, Pennington J, Miller VL. Acquisition of omptin reveals cryptic virulence function of autotransporter YapE in Yersinia pestis. Mol Microbiol 2013; 89:276-87. [PMID: 23701256 DOI: 10.1111/mmi.12273] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2013] [Indexed: 02/02/2023]
Abstract
Autotransporters, the largest family of secreted proteins in Gram-negative bacteria, perform a variety of functions, including adherence, cytotoxicity and immune evasion. In Yersinia pestis the autotransporter YapE has adhesive properties and contributes to disease in the mouse model of bubonic plague. Here, we demonstrate that omptin cleavage of Y. pestis YapE is required to mediate bacterial aggregation and adherence to eukaryotic cells. We demonstrate that omptin cleavage is specific for the Y. pestis and Y. pseudotuberculosis YapE orthologues but is not conserved in the Yersinia enterocolitica protein. We also show that cleavage of YapE occurs in Y. pestis but not in the enteric Yersinia species, and requires the omptin Pla (plasminogen activator protease), which is encoded on the Y. pestis-specific plasmid pPCP1. Together, these data show that post-translation modification of YapE appears to be specific to Y. pestis, was acquired along with the acquisition of pPCP1 during the divergence of Y. pestis from Y. pseudotuberculosis, and are the first evidence of a novel mechanism to regulate bacterial adherence.
Collapse
Affiliation(s)
- Matthew B Lawrenz
- Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY, USA.
| | | | | |
Collapse
|
25
|
Larson MA, Ding SJ, Slater SR, Hanway A, Bartling AM, Fey PD, Lockridge O, Francesconi SC, Hinrichs SH. Application of chromosomal DNA and protein targeting for the identification ofYersinia pestis. Proteomics Clin Appl 2013; 7:416-23. [DOI: 10.1002/prca.201200092] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 11/12/2012] [Accepted: 12/01/2012] [Indexed: 01/05/2023]
Affiliation(s)
- Marilynn A. Larson
- Department of Pathology and Microbiology; University of Nebraska Medical Center; Omaha; NE; USA
| | - Shi-Jian Ding
- Department of Pathology and Microbiology; University of Nebraska Medical Center; Omaha; NE; USA
| | - Shawn R. Slater
- Department of Pathology and Microbiology; University of Nebraska Medical Center; Omaha; NE; USA
| | - Anna Hanway
- Department of Pathology and Microbiology; University of Nebraska Medical Center; Omaha; NE; USA
| | - Amanda M. Bartling
- Department of Pathology and Microbiology; University of Nebraska Medical Center; Omaha; NE; USA
| | - Paul D. Fey
- Department of Pathology and Microbiology; University of Nebraska Medical Center; Omaha; NE; USA
| | - Oksana Lockridge
- Eppley Institute; University of Nebraska Medical Center; Omaha; NE; USA
| | | | - Steven H. Hinrichs
- Department of Pathology and Microbiology; University of Nebraska Medical Center; Omaha; NE; USA
| |
Collapse
|
26
|
Abstract
Synthesis of Escherichia coli LpxL, which transfers a secondary laurate chain to the 2' position of lipid A, in Yersinia pestis produced bisphosphoryl hexa-acylated lipid A at 37°C, leading to significant attenuation of virulence. Our previous observations also indicated that strain χ10015(pCD1Ap) (ΔlpxP32::P(lpxL) lpxL) stimulated a strong inflammatory reaction but sickened mice before recovery and retained virulence via intranasal (i.n.) infection. The development of live, attenuated Y. pestis vaccines may be facilitated by detoxification of its lipopolysaccharide (LPS). Heterologous expression of the lipid A 1-phosphatase, LpxE, from Francisella tularensis in Y. pestis yields predominantly 1-dephosphorylated lipid A, as confirmed by mass spectrometry. Results indicated that expression of LpxE on top of LpxL provided no significant reduction in virulence of Y. pestis in mice when it was administered i.n. but actually reduced the 50% lethal dose (LD(50)) by 3 orders of magnitude when the strain was administered subcutaneously (s.c.). Additionally, LpxE synthesis in wild-type Y. pestis KIM6+(pCD1Ap) led to slight attenuation by s.c. inoculation but no virulence change by i.n. inoculation in mice. In contrast to Salmonella enterica, expression of LpxE does not attenuate the virulence of Y. pestis.
Collapse
|
27
|
Yang R, Du Z, Han Y, Zhou L, Song Y, Zhou D, Cui Y. Omics strategies for revealing Yersinia pestis virulence. Front Cell Infect Microbiol 2012; 2:157. [PMID: 23248778 PMCID: PMC3521224 DOI: 10.3389/fcimb.2012.00157] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 11/27/2012] [Indexed: 01/12/2023] Open
Abstract
Omics has remarkably changed the way we investigate and understand life. Omics differs from traditional hypothesis-driven research because it is a discovery-driven approach. Mass datasets produced from omics-based studies require experts from different fields to reveal the salient features behind these data. In this review, we summarize omics-driven studies to reveal the virulence features of Yersinia pestis through genomics, trascriptomics, proteomics, interactomics, etc. These studies serve as foundations for further hypothesis-driven research and help us gain insight into Y. pestis pathogenesis.
Collapse
Affiliation(s)
- Ruifu Yang
- Beijing Institute of Microbiology and Epidemiology Beijing, China.
| | | | | | | | | | | | | |
Collapse
|
28
|
Navid A, Almaas E. Genome-level transcription data of Yersinia pestis analyzed with a new metabolic constraint-based approach. BMC SYSTEMS BIOLOGY 2012; 6:150. [PMID: 23216785 PMCID: PMC3572438 DOI: 10.1186/1752-0509-6-150] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 11/28/2012] [Indexed: 01/14/2023]
Abstract
Background Constraint-based computational approaches, such as flux balance analysis (FBA), have proven successful in modeling genome-level metabolic behavior for conditions where a set of simple cellular objectives can be clearly articulated. Recently, the necessity to expand the current range of constraint-based methods to incorporate high-throughput experimental data has been acknowledged by the proposal of several methods. However, these methods have rarely been used to address cellular metabolic responses to some relevant perturbations such as antimicrobial or temperature-induced stress. Here, we present a new method for combining gene-expression data with FBA (GX-FBA) that allows modeling of genome-level metabolic response to a broad range of environmental perturbations within a constraint-based framework. The method uses mRNA expression data to guide hierarchical regulation of cellular metabolism subject to the interconnectivity of the metabolic network. Results We applied GX-FBA to a genome-scale model of metabolism in the gram negative bacterium Yersinia pestis and analyzed its metabolic response to (i) variations in temperature known to induce virulence, and (ii) antibiotic stress. Without imposition of any a priori behavioral constraints, our results show strong agreement with reported phenotypes. Our analyses also lead to novel insights into how Y. pestis uses metabolic adjustments to counter different forms of stress. Conclusions Comparisons of GX-FBA predicted metabolic states with fluxomic measurements and different reported post-stress phenotypes suggest that mass conservation constraints and network connectivity can be an effective representative of metabolic flux regulation in constraint-based models. We believe that our approach will be of aid in the in silico evaluation of cellular goals under different conditions and can be used for a variety of analyses such as identification of potential drug targets and their action.
Collapse
Affiliation(s)
- Ali Navid
- Biosciences & Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA 94550-0808, USA.
| | | |
Collapse
|
29
|
Wang Y, Goodwin DC. Integral role of the I'-helix in the function of the "inactive" C-terminal domain of catalase-peroxidase (KatG). BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2012; 1834:362-71. [PMID: 23084782 DOI: 10.1016/j.bbapap.2012.08.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 07/31/2012] [Accepted: 08/02/2012] [Indexed: 11/19/2022]
Abstract
Catalase-peroxidases (KatGs) have two peroxidase-like domains. The N-terminal domain contains the heme-dependent, bifunctional active site. Though the C-terminal domain lacks the ability to bind heme or directly catalyze any reaction, it has been proposed to serve as a platform to direct the folding of the N-terminal domain. Toward such a purpose, its I'-helix is highly conserved and appears at the interface between the two domains. Single and multiple substitution variants targeting highly conserved residues of the I'-helix were generated for intact KatG as well as the stand-alone C-terminal domain (KatG(C)). Single variants of intact KatG produced only subtle variations in spectroscopic and catalytic properties of the enzyme. However, the double and quadruple variants showed substantial increases in hexa-coordinate low-spin heme and diminished enzyme activity, similar to that observed for the N-terminal domain on its own (KatG(N)). The analogous variants of KatG(C) showed a much more profound loss of function as evaluated by their ability to return KatG(N) to its active conformation. All of the single variants showed a substantial decrease in the rate and extent of KatG(N) reactivation, but with two substitutions, KatG(C) completely lost its capacity for the reactivation of KatG(N). These results suggest that the I'-helix is central to direct structural adjustments in the adjacent N-terminal domain and supports the hypothesis that the C-terminal domain serves as a platform to direct N-terminal domain conformation and bifunctionality.
Collapse
Affiliation(s)
- Yu Wang
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849-5312, USA
| | | |
Collapse
|
30
|
Tonietto A, Petriz BA, Araújo WC, Mehta A, Magalhães BS, Franco OL. Comparative proteomics between natural Microcystis isolates with a focus on microcystin synthesis. Proteome Sci 2012; 10:38. [PMID: 22676507 PMCID: PMC3522533 DOI: 10.1186/1477-5956-10-38] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 05/09/2012] [Indexed: 11/10/2022] Open
Abstract
UNLABELLED BACKGROUND Microcystis aeruginosa is a species of cyanobacteria commonly found in a number of countries and frequently related to animal poisoning episodes due to its capacity to produce the cyanotoxin known as microcystin. Despite vast literature on microcystin structures and their deleterious effects, little is known about its synthesis by cyanobacteria. Therefore, this study used proteomic tools to compare two M. aeruginosa strains, contrasting them for microcystin production. RESULTS 2-DE gels were performed and 30 differential protein spots were chosen. Among them, 11 protein spots were unique in the toxin producing strain and 8 in the non-toxin producing strain, and 14 protein spots were shown on both 2-DE gels but expressed differently in intensity. Around 57% of the tandem mass spectrometry identified proteins were related to energy metabolism, with these proteins being up-regulated in the toxin producing strain. CONCLUSIONS These data suggest that the presence of higher quantities of metabolic enzymes could be related to microcystin metabolism in comparison to the non-toxin producing strain. Moreover, it was suggested that the production of microcystin could also be related to other proteins than those directly involved in its production, such as the enzymes involved in the Calvin cycle and glycolysis.
Collapse
Affiliation(s)
- Angela Tonietto
- Centro de Análises Proteômicas e Bioquímicas, Universidade Católica de Brasília, Pós Graduação em Ciências Genômicas e Biotecnologia, SGAN 916 Norte Av, W5, Brasília, DF, Brazil.
| | | | | | | | | | | |
Collapse
|
31
|
A proteome reference map and virulence factors analysis of Yersinia pestis 91001. J Proteomics 2012; 75:894-907. [DOI: 10.1016/j.jprot.2011.10.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Revised: 09/27/2011] [Accepted: 10/08/2011] [Indexed: 01/06/2023]
|
32
|
Li B, Tan Y, Guo J, Cui B, Wang Z, Wang H, Zhou L, Guo Z, Zhu Z, Du Z, Yang R. Use of protein microarray to identify gene expression changes ofYersinia pestisat different temperatures. Can J Microbiol 2011; 57:287-94. [DOI: 10.1139/w11-007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Yersinia pestis is a bacterium that is transmitted between fleas, which have a body temperature of 26 °C, and mammalian hosts, which have a body temperature of 37 °C. To adapt to the temperature shift, phenotype variations, including virulence, occur. In this study, an antigen microarray including 218 proteins of Y. pestis was used to evaluate antibody responses in a pooled plague serum that was unadsorbed, adsorbed by Y. pestis cultivated at 26 °C, or adsorbed by Y. pestis cultivated at 26 and 37 °C to identify protein expression changes during the temperature shift. We identified 12 proteins as being expressed at 37 °C but not at 26 °C, or expressed at significantly higher levels at 37 °C than at 26 °C. The antibodies against 7 proteins in the serum adsorbed by Y. pestis cultivated at 26 and 37 °C remained positive, suggesting that they were not expressed on the surface of Y. pestis in LB broth in vitro or specifically expressed in vivo. This study proved that protein microarray and antibody profiling comprise a promising technique for monitoring gene expression at the protein level and for better understanding pathogenicity, to find new vaccine targets against plague.
Collapse
Affiliation(s)
- Bei Li
- Taihe Hospital, Hubei Medical University, Shiyan, Hubei Province 442000, China
- Laboratory of Analytical Microbiology, State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Yafang Tan
- Laboratory of Analytical Microbiology, State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Jingyu Guo
- Laboratory of Analytical Microbiology, State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Baizhong Cui
- Qinghai Institute for Endemic Diseases Prevention and Control, Xining, Qinghai Province 811602, China
| | - Zuyun Wang
- Qinghai Institute for Endemic Diseases Prevention and Control, Xining, Qinghai Province 811602, China
| | - Hu Wang
- Qinghai Institute for Endemic Diseases Prevention and Control, Xining, Qinghai Province 811602, China
| | - Lei Zhou
- Laboratory of Analytical Microbiology, State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Zhaobiao Guo
- Laboratory of Analytical Microbiology, State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Ziwen Zhu
- Laboratory of Analytical Microbiology, State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Zongmin Du
- Laboratory of Analytical Microbiology, State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Ruifu Yang
- Laboratory of Analytical Microbiology, State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Beijing 100071, China
| |
Collapse
|
33
|
Septic shock and nonpulmonary organ dysfunction in pneumonic plague: The role of Yersinia pestis pCD1− vs. pgm− virulence factors. Crit Care Med 2010; 38:1574-83. [DOI: 10.1097/ccm.0b013e3181de8ace] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
34
|
Abstract
Type VI secretion systems (T6SS) are macromolecular, transenvelope machines encoded within the genomes of most Gram-negative bacteria, including plant, animal, and human pathogens, as well as soil and environmental isolates. T6SS are involved in a broad variety of functions: from pathogenesis to biofilm formation and stress sensing. This large array of functions is reflected by a vast diversity of regulatory mechanisms: repression by histone-like proteins and regulation by quorum sensing, transcriptional factors, two-component systems, alternative sigma factors, or small regulatory RNAs. Finally, T6SS may be produced in an inactive state and are turned on through the action of a posttranslational cascade involving phosphorylation and subunit recruitment. The current data reviewed here highlight how T6SS have been integrated into existing regulatory networks and how the expression of the T6SS loci is precisely modulated to adapt T6SS production to the specific needs of individual bacteria.
Collapse
|
35
|
Temperature-induced changes in the lipopolysaccharide of Yersinia pestis affect plasminogen activation by the pla surface protease. Infect Immun 2010; 78:2644-52. [PMID: 20368351 DOI: 10.1128/iai.01329-09] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The Pla surface protease of Yersinia pestis activates human plasminogen and is a central virulence factor in bubonic and pneumonic plague. Pla is a transmembrane beta-barrel protein and member of the omptin family of outer membrane proteases which require bound lipopolysaccharide (LPS) to be proteolytically active. Plasminogen activation and autoprocessing of Pla were dramatically higher in Y. pestis cells grown at 37 degrees C than in cells grown at 20 degrees C; the difference in enzymatic activity by far exceeded the increase in the cellular content of the Pla protein. Y. pestis modifies its LPS structure in response to growth temperature. We purified His(6)-Pla under denaturing conditions and compared various LPS types for their capacity to enhance plasmin formation by His(6)-Pla solubilized in detergent. Reactivation of His(6)-Pla was higher with Y. pestis LPSs isolated from bacteria grown at 37 degrees C than with LPSs from cells grown at 25 degrees C. Lack of O antigens and the presence of the outer core region as well as a lowered level of acylation in LPS were found to enhance the Pla-LPS interaction. Genetic substitution of arginine 138, which is part of a three-dimensional protein motif for binding to lipid A phosphates, decreased both the enzymatic activity of His(6)-Pla and the amount of Pla in Y. pestis cells, suggesting the importance of the Pla-lipid A phosphate interaction. The temperature-induced changes in LPS are known to help Y. pestis to avoid innate immune responses, and our results strongly suggest that they also potentiate Pla-mediated proteolysis.
Collapse
|
36
|
Windle HJ, Brown PA, Kelleher DP. Proteomics of bacterial pathogenicity: therapeutic implications. Proteomics Clin Appl 2010; 4:215-27. [PMID: 21137045 DOI: 10.1002/prca.200900145] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Revised: 10/13/2009] [Accepted: 10/19/2009] [Indexed: 01/04/2023]
Abstract
Identification of the molecular mechanisms of host-pathogen interaction is becoming a key focus of proteomics. Analysis of these interactions holds promise for significant developments in the identification of new therapeutic strategies to combat infectious diseases, a process that will also benefit parallel improvements in molecular diagnostics, biomarker identification and drug discovery. This review highlights recent advances in functional proteomics initiatives in infectious disease with emphasis on studies undertaken within physiologically relevant parameters that enable identification of the infectious proteome rather than that of the vegetative state. Deciphering the molecular details of what constitutes physiologically relevant host-pathogen interactions remains an underdeveloped aspect of research into infectious disease. The magnitude of this deficit will be largely influenced by the ease with which model systems can be established to investigate such interactions. As the selective pressures exerted by the host on an infecting pathogen are numerous, the adequacy of certain model systems should be considered carefully.
Collapse
Affiliation(s)
- Henry J Windle
- Institute of Molecular Medicine, Trinity College, University of Dublin, Dublin, Ireland.
| | | | | |
Collapse
|
37
|
Robinson JB, Telepnev MV, Zudina IV, Bouyer D, Montenieri JA, Bearden SW, Gage KL, Agar SL, Foltz SM, Chauhan S, Chopra AK, Motin VL. Evaluation of a Yersinia pestis mutant impaired in a thermoregulated type VI-like secretion system in flea, macrophage and murine models. Microb Pathog 2009; 47:243-51. [PMID: 19716410 DOI: 10.1016/j.micpath.2009.08.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Revised: 08/13/2009] [Accepted: 08/18/2009] [Indexed: 11/28/2022]
Abstract
Type VI secretion systems (T6SSs) have been identified recently in several Gram-negative organisms and have been shown to be associated with virulence in some bacterial pathogens. A T6SS of Yersinia pestis CO92 (locus YPO0499-YPO0516) was deleted followed by investigation of the phenotype of this mutation. We observed that this T6SS locus of Y. pestis was preferentially expressed at 26 degrees C in comparison to 37 degrees C suggesting a possible role in the flea cycle. However, we found that the deletion of T6SS locus YPO0499-YPO0516 in Y. pestis CO92 had no effect on the ability of this strain to infect the oriental rat flea, Xenopsylla cheopis. Nevertheless, this mutant displayed increased intracellular numbers in macrophage-like J774.A1 cells after 20 h post-infection for bacterial cells pre-grown at 26 degrees C indicating that expression of this T6SS locus limited intracellular replication in macrophages. In addition, deletion of the YPO0499-YPO0516 locus reduced the uptake by macrophages of the Y. pestis mutant pre-grown at 37 degrees C, suggesting that this T6SS locus has phagocytosis-promoting activity. Further study of the virulence of the T6SS mutant in murine bubonic and inhalation plague models revealed no attenuation in comparison with the parental CO92 strain.
Collapse
Affiliation(s)
- Jennilee B Robinson
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
The role of relA and spoT in Yersinia pestis KIM5 pathogenicity. PLoS One 2009; 4:e6720. [PMID: 19701461 PMCID: PMC2726946 DOI: 10.1371/journal.pone.0006720] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Accepted: 07/20/2009] [Indexed: 01/17/2023] Open
Abstract
The ppGpp molecule is part of a highly conserved regulatory system for mediating the growth response to various environmental conditions. This mechanism may represent a common strategy whereby pathogens such as Yersinia pestis, the causative agent of plague, regulate the virulence gene programs required for invasion, survival and persistence within host cells to match the capacity for growth. The products of the relA and spoT genes carry out ppGpp synthesis. To investigate the role of ppGpp on growth, protein synthesis, gene expression and virulence, we constructed a ΔrelA ΔspoT Y. pestis mutant. The mutant was no longer able to synthesize ppGpp in response to amino acid or carbon starvation, as expected. We also found that it exhibited several novel phenotypes, including a reduced growth rate and autoaggregation at 26°C. In addition, there was a reduction in the level of secretion of key virulence proteins and the mutant was>1,000-fold less virulent than its wild-type parent strain. Mice vaccinated subcutaneously (s.c.) with 2.5×104 CFU of the ΔrelA ΔspoT mutant developed high anti-Y. pestis serum IgG titers, were completely protected against s.c. challenge with 1.5×105 CFU of virulent Y. pestis and partially protected (60% survival) against pulmonary challenge with 2.0×104 CFU of virulent Y. pestis. Our results indicate that ppGpp represents an important virulence determinant in Y. pestis and the ΔrelA ΔspoT mutant strain is a promising vaccine candidate to provide protection against plague.
Collapse
|
39
|
High-throughput identification of new protective antigens from a Yersinia pestis live vaccine by enzyme-linked immunospot assay. Infect Immun 2009; 77:4356-61. [PMID: 19651863 DOI: 10.1128/iai.00242-09] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Yersinia pestis, the plague pathogen, is a facultative intracellular bacterium. Cellular immunity plays important roles in defense against infections. The identification of T-cell targets is critical for the development of effective vaccines against intracellular bacteria; however, the function of cellular immunity in protection from plague was not clearly understood. In this study, 261 genes from Y. pestis were selected on the basis of bioinformatics analysis and previous research results for expression in Escherichia coli BL21(DE3). After purification, 101 proteins were qualified for examination of their abilities to induce the production of gamma interferon in mice immunized with live vaccine EV76 by enzyme-linked immunospot assay. Thirty-four proteins were found to stimulate strong T-cell responses. The protective efficiencies for 24 of them were preliminarily evaluated using a mouse plague model. In addition to LcrV, nine proteins (YPO0606, YPO1914, YPO0612, YPO3119, YPO3047, YPO1377, YPCD1.05c, YPO0420, and YPO3720) may provide partial protection against challenge with a low dose (20 times the 50% lethal dose [20x LD(50)]) of Y. pestis, but only YPO0606 could partially protect mice from infection with Y. pestis at a higher challenge dosage (200x LD(50)). These proteins would be the potential components for Y. pestis vaccine development.
Collapse
|
40
|
Haiko J, Suomalainen M, Ojala T, Lähteenmäki K, Korhonen TK. Invited review: Breaking barriers--attack on innate immune defences by omptin surface proteases of enterobacterial pathogens. Innate Immun 2009; 15:67-80. [PMID: 19318417 DOI: 10.1177/1753425909102559] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The omptin family of Gram-negative bacterial transmembrane aspartic proteases comprises surface proteins with a highly conserved beta-barrel fold but differing biological functions. The omptins OmpT of Escherichia coli, PgtE of Salmonella enterica, and Pla of Yersinia pestis differ in their substrate specificity as well as in control of their expression. Their functional differences are in accordance with the differing pathogenesis of the infections caused by E. coli, Salmonella, and Y. pestis, which suggests that the omptins have adapted to the life-styles of their host species. The omptins Pla and PgtE attack on innate immunity by affecting the plasminogen/plasmin, complement, coagulation, fibrinolysis, and matrix metalloproteinase systems, by inactivating antimicrobial peptides, and by enhancing bacterial adhesiveness and invasiveness. Although the mechanistic details of the functions of Pla and PgtE differ, the outcome is the same: enhanced spread and multiplication of Y. pestis and S. enterica in the host. The omptin OmpT is basically a housekeeping protease but it also degrades cationic antimicrobial peptides and may enhance colonization of E. coli at uroepithelia. The catalytic residues in the omptin molecules are spatially conserved, and the differing polypeptide substrate specificities are dictated by minor sequence variations at regions surrounding the catalytic cleft. For enzymatic activity, omptins require association with lipopolysaccharide on the outer membrane. Modification of lipopolysaccharide by in vivo conditions or by bacterial gene loss has an impact on omptin function. Creation of bacterial surface proteolysis is thus a coordinated function involving several surface structures.
Collapse
Affiliation(s)
- Johanna Haiko
- General Microbiology, Faculty of Biosciences, University of Helsinki, Helsinki, Finland
| | | | | | | | | |
Collapse
|
41
|
Pieper R, Huang ST, Clark DJ, Robinson JM, Alami H, Parmar PP, Suh MJ, Kuntumalla S, Bunai CL, Perry RD, Fleischmann RD, Peterson SN. Integral and peripheral association of proteins and protein complexes with Yersinia pestis inner and outer membranes. Proteome Sci 2009; 7:5. [PMID: 19228400 PMCID: PMC2663777 DOI: 10.1186/1477-5956-7-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2008] [Accepted: 02/19/2009] [Indexed: 11/28/2022] Open
Abstract
Yersinia pestis proteins were sequentially extracted from crude membranes with a high salt buffer (2.5 M NaBr), an alkaline solution (180 mM Na2CO3, pH 11.3) and membrane denaturants (8 M urea, 2 M thiourea and 1% amidosulfobetaine-14). Separation of proteins by 2D gel electrophoresis was followed by identification of more than 600 gene products by MS. Data from differential 2D gel display experiments, comparing protein abundances in cytoplasmic, periplasmic and all three membrane fractions, were used to assign proteins found in the membrane fractions to three protein categories: (i) integral membrane proteins and peripheral membrane proteins with low solubility in aqueous solutions (220 entries); (ii) peripheral membrane proteins with moderate to high solubility in aqueous solutions (127 entries); (iii) cytoplasmic or ribosomal membrane-contaminating proteins (80 entries). Thirty-one proteins were experimentally associated with the outer membrane (OM). Circa 50 proteins thought to be part of membrane-localized, multi-subunit complexes were identified in high Mr fractions of membrane extracts via size exclusion chromatography. This data supported biologically meaningful assignments of many proteins to the membrane periphery. Since only 32 inner membrane (IM) proteins with two or more predicted transmembrane domains (TMDs) were profiled in 2D gels, we resorted to a proteomic analysis by 2D-LC-MS/MS. Ninety-four additional IM proteins with two or more TMDs were identified. The total number of proteins associated with Y. pestis membranes increased to 456 and included representatives of all six beta-barrel OM protein families and 25 distinct IM transporter families.
Collapse
Affiliation(s)
- Rembert Pieper
- J. Craig Venter Institute, 9704 Medical Center Drive, Rockville, Maryland, USA
| | - Shih-Ting Huang
- J. Craig Venter Institute, 9704 Medical Center Drive, Rockville, Maryland, USA
| | - David J Clark
- J. Craig Venter Institute, 9704 Medical Center Drive, Rockville, Maryland, USA
| | - Jeffrey M Robinson
- J. Craig Venter Institute, 9704 Medical Center Drive, Rockville, Maryland, USA
| | - Hamid Alami
- J. Craig Venter Institute, 9704 Medical Center Drive, Rockville, Maryland, USA
| | - Prashanth P Parmar
- J. Craig Venter Institute, 9704 Medical Center Drive, Rockville, Maryland, USA
| | - Moo-Jin Suh
- J. Craig Venter Institute, 9704 Medical Center Drive, Rockville, Maryland, USA
| | - Srilatha Kuntumalla
- J. Craig Venter Institute, 9704 Medical Center Drive, Rockville, Maryland, USA
| | - Christine L Bunai
- J. Craig Venter Institute, 9704 Medical Center Drive, Rockville, Maryland, USA
| | - Robert D Perry
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, Kentucky, USA
| | | | - Scott N Peterson
- J. Craig Venter Institute, 9704 Medical Center Drive, Rockville, Maryland, USA
| |
Collapse
|
42
|
Temperature and growth phase influence the outer-membrane proteome and the expression of a type VI secretion system in Yersinia pestis. Microbiology (Reading) 2009; 155:498-512. [DOI: 10.1099/mic.0.022160-0] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Yersinia pestis cells were grown in vitro at 26 and 37 °C, the ambient temperatures of its flea vector and its mammalian hosts, respectively, and subjected to subcellular fractionation. Abundance changes at 26 vs 37 °C were observed for many outer-membrane (OM) proteins. The cell adhesion protein Ail (y1324) and three putative small β-barrel OM proteins (y1795, y2167 and y4083) were strongly increased at 37 °C. The Ail/Lom family protein y1682 (OmpX) was strongly increased at 26 °C. Several porins and TonB-dependent receptors, which control small molecule transport through the OM, were also altered in abundance in a temperature-dependent manner. These marked differences in the composition of the OM proteome are probably important for the adaptation of Y. pestis to its in vivo life stages. Thirteen proteins that appear to be part of an intact type VI secretion system (T6SS) were identified in membrane fractions of stationary-phase cells grown at 26 °C, but not at 37 °C. The corresponding genes are clustered in the Y. pestis KIM gene locus y3658–y3677. The proteins y3674 and y3675 were particularly abundant and co-fractionated in a M
r range indicative of participation in a multi-subunit complex. The soluble haemolysin-coregulated protein y3673 was even more abundant. Its release into the extracellular medium was triggered by treatment of Y. pestis cells with trypsin. Proteases and other stress-response-inducing factors may constitute environmental cues resulting in the activation of the T6SS in Y. pestis.
Collapse
|
43
|
Boele LCL, Bajramovic JJ, de Vries AMMBC, Voskamp-Visser IAI, Kaman WE, van der Kleij D. Activation of Toll-like receptors and dendritic cells by a broad range of bacterial molecules. Cell Immunol 2009; 255:17-25. [PMID: 18926526 DOI: 10.1016/j.cellimm.2008.09.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2008] [Revised: 08/27/2008] [Accepted: 09/05/2008] [Indexed: 11/29/2022]
Affiliation(s)
- Linda C L Boele
- TNO Defence, Security and Safety, Business Unit Biological and Chemical Protection, Detection and Identification, PO Box 45, 2280AA Rijswijk, The Netherlands
| | | | | | | | | | | |
Collapse
|
44
|
Lippolis JD, Bayles DO, Reinhardt TA. Proteomic Changes in Escherichia coli When Grown in Fresh Milk versus Laboratory Media. J Proteome Res 2008; 8:149-58. [DOI: 10.1021/pr800458v] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- John D. Lippolis
- Periparturient Diseases of Cattle Research Unit, and Bacterial Diseases of Livestock Research Unit, USDA-ARS, National Animal Disease Center, Ames, Iowa 50010
| | - Darrell O. Bayles
- Periparturient Diseases of Cattle Research Unit, and Bacterial Diseases of Livestock Research Unit, USDA-ARS, National Animal Disease Center, Ames, Iowa 50010
| | - Timothy A. Reinhardt
- Periparturient Diseases of Cattle Research Unit, and Bacterial Diseases of Livestock Research Unit, USDA-ARS, National Animal Disease Center, Ames, Iowa 50010
| |
Collapse
|
45
|
Demirev PA, Fenselau C. Mass spectrometry in biodefense. JOURNAL OF MASS SPECTROMETRY : JMS 2008; 43:1441-57. [PMID: 18720458 DOI: 10.1002/jms.1474] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Potential agents for biological attacks include both microorganisms and toxins. In mass spectrometry (MS), rapid identification of potential bioagents is achieved by detecting the masses of unique biomarkers, correlated to each agent. Currently, proteins are the most reliable biomarkers for detection and characterization of both microorganisms and toxins, and MS-based proteomics is particularly well suited for biodefense applications. Confident identification of an organism can be achieved by top-down proteomics following identification of individual protein biomarkers from their tandem mass spectra. In bottom-up proteomics, rapid digestion of intact protein biomarkers is again followed by MS/MS to provide unambiguous bioagent identification and characterization. Bioinformatics obviates the need for culturing and rigorous control of experimental variables to create and use MS fingerprint libraries for various classes of bioweapons. For specific applications, MS methods, instruments and algorithms have also been developed for identification based on biomarkers other than proteins and peptides.
Collapse
Affiliation(s)
- Plamen A Demirev
- Applied Physics Laboratory, Johns Hopkins University, Laurel, MD 20723, USA.
| | | |
Collapse
|
46
|
Robinson RT, Khader SA, Locksley RM, Lien E, Smiley ST, Cooper AM. Yersinia pestis evades TLR4-dependent induction of IL-12(p40)2 by dendritic cells and subsequent cell migration. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2008; 181:5560-7. [PMID: 18832714 PMCID: PMC2640496 DOI: 10.4049/jimmunol.181.8.5560] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
At the temperature of its flea vector (approximately 20-30 degrees C), the causative agent of plague, Yersinia pestis, expresses a profile of genes distinct from those expressed in a mammalian host (37 degrees C). When dendritic cells (DC) are exposed to Y. pestis grown at 26 degrees C (Y. pestis-26 degrees), they secrete copious amounts of IL-12p40 homodimer (IL-12(p40)(2)). In contrast, when DCs are exposed to Y. pestis grown at 37 degrees C (Y. pestis-37 degrees), they transcribe very little IL-12p40, which is secreted as IL-12p40 monomer (IL-12p40). Y. pestis-26 degrees also induces migration of DCs to the homeostatic chemokine CCL19, whereas Y. pestis-37 degrees does not; migratory DCs are positive for IL-12p40 transcription and secrete mostly IL-12(p40)(2); DCs lacking IL-12p40 do not migrate. Expression of acyltransferase LpxL from Escherichia coli in Y. pestis-37 degrees results in the production of a hexa-acylated lipid A, also seen in Y. pestis-26 degrees, rather than tetra-acylated lipid A normally seen in Y. pestis-37 degrees. The LpxL-expressing Y. pestis-37 degrees promotes DC IL-12(p40)(2) production and induction of DC migration. In addition, absence of TLR4 ablates production of IL-12(p40)(2) in DC exposed to Y. pestis-26 degrees. The data demonstrate the molecular pathway by which Y. pestis evades induction of early DC activation as measured by migration and IL-12(p40)(2) production.
Collapse
Affiliation(s)
| | | | - Richard M. Locksley
- Howard Hughes Medical Institute, Department of Medicine and Microbiology & Immunology, University of California, San Francisco, San Francisco, CA
| | - Egil Lien
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA
| | | | - Andrea M. Cooper
- Trudeau Institute, Inc. 154 Algonquin Ave., Saranac Lake NY12983
| |
Collapse
|
47
|
Han Y, Geng J, Qiu Y, Guo Z, Zhou D, Bi Y, Du Z, Song Y, Wang X, Tan Y, Zhu Z, Zhai J, Yang R. Physiological and Regulatory Characterization of KatA and KatY inYersinia pestis. DNA Cell Biol 2008; 27:453-62. [DOI: 10.1089/dna.2007.0657] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Yanping Han
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Jing Geng
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Yefeng Qiu
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Zhaobiao Guo
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Dongsheng Zhou
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Yujing Bi
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Zongmin Du
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Yajun Song
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Xiaoyi Wang
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Yafang Tan
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Ziwen Zhu
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Junhui Zhai
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Ruifu Yang
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| |
Collapse
|
48
|
Pieper R, Huang ST, Clark DJ, Robinson JM, Parmar PP, Alami H, Bunai CL, Perry RD, Fleischmann RD, Peterson SN. Characterizing the dynamic nature of the Yersinia pestis periplasmic proteome in response to nutrient exhaustion and temperature change. Proteomics 2008; 8:1442-58. [PMID: 18383009 DOI: 10.1002/pmic.200700923] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The periplasmic proteome of Yersinia pestis strain KIM6+ was characterized using differential 2-DE display of proteins isolated from several subcellular fractions. Circa 160 proteins were designated as periplasmic, including 62 (putative) solute-binding proteins of ATP-binding cassette (ABC) transporters (SBPs) and 46 (putative) metabolic enzymes. More than 30 SBPs were significantly increased in abundance during stationary phase cell growth, compared to the exponential phase. The data suggest that nutrient exhaustion in the stationary phase triggers cellular responses resulting in the induced expression of numerous ABC transporters, which are responsible for the import of solutes/nutrients. Limited availability of inorganic phosphate (P(i)) also caused dramatic proteomic changes. Nine proteins were functionally linked to the mobilization and import of three small molecules (P(i), phosphonate and glycerol-3-phosphate) and accounted for nearly half of the total protein mass in the periplasm of P(i)-starved cells. When cells were grown at 26 degrees C versus 37 degrees C, corresponding to ambient temperatures in the flea vector and mammalian hosts, respectively, several periplasmic proteins with no known roles in the Y. pestis life cycle were strongly altered in abundance. This included a putative nitrate/sulfonate/bicarbonate-specific SBP (Y1004), encoded by the virulence-associated plasmid pMT1 and increased in abundance at 37 degrees C.
Collapse
|
49
|
Coiras M, Camafeita E, López-Huertas MR, Calvo E, López JA, Alcamí J. Application of proteomics technology for analyzing the interactions between host cells and intracellular infectious agents. Proteomics 2008; 8:852-73. [PMID: 18297655 PMCID: PMC7167661 DOI: 10.1002/pmic.200700664] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Host–pathogen interactions involve protein expression changes within both the host and the pathogen. An understanding of the nature of these interactions provides insight into metabolic processes and critical regulatory events of the host cell as well as into the mechanisms of pathogenesis by infectious microorganisms. Pathogen exposure induces changes in host proteins at many functional levels including cell signaling pathways, protein degradation, cytokines and growth factor production, phagocytosis, apoptosis, and cytoskeletal rearrangement. Since proteins are responsible for the cell biological functions, pathogens have evolved to manipulate the host cell proteome to achieve optimal replication. Intracellular pathogens can also change their proteome to adapt to the host cell and escape from immune surveillance, or can incorporate cellular proteins to invade other cells. Given that the interactions of intracellular infectious agents with host cells are mainly at the protein level, proteomics is the most suitable tool for investigating these interactions. Proteomics is the systematic analysis of proteins, particularly their interactions, modifications, localization and functions, that permits the study of the association between pathogens with their host cells as well as complex interactions such as the host–vector–pathogen interplay. A review on the most relevant proteomic applications used in the study of host–pathogen interactions is presented.
Collapse
Affiliation(s)
- Mayte Coiras
- Unidad de Inmunopatología del SIDA, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
50
|
Novel candidate virulence factors in rice pathogen Xanthomonas oryzae pv. oryzicola as revealed by mutational analysis. Appl Environ Microbiol 2007; 73:8023-7. [PMID: 17981946 DOI: 10.1128/aem.01414-07] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial leaf streak, caused by Xanthomonas oryzae pv. oryzicola, is an important disease of rice. Transposon-mediated mutational analysis of the pathogen with a quantitative assay revealed candidate virulence factors including genes involved in the pathogenesis of other phytopathogenic bacteria, virulence factors of animal pathogens, and genes not previously associated with virulence.
Collapse
|