1
|
Hamidi M, Nagarajan SN, Ravikumar V, Gueguen-Chaignon V, Laguri C, Freton C, Mijakovic I, Simorre JP, Ravaud S, Grangeasse C. The juxtamembrane domain of StkP is phosphorylated and influences cell division in Streptococcus pneumoniae. mBio 2025; 16:e0379924. [PMID: 40197031 PMCID: PMC12077195 DOI: 10.1128/mbio.03799-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Accepted: 03/07/2025] [Indexed: 04/09/2025] Open
Abstract
Eukaryotic-like membrane Ser/Thr protein kinases play a pivotal role in different aspects of bacterial physiology. In contrast to the diversity of their extracellular domains, their cytoplasmic catalytic domains are highly conserved. However, the function of a long juxtamembrane domain (JMD), which connects the catalytic domain to the transmembrane helix, remains elusive. In this study, we investigated the function of the JMD of the Ser/Thr protein kinase StkP in the cell division of Streptococcus pneumoniae. We observed that the deletion of the JMD affected the ability of StkP to phosphorylate some of its endogenous substrates, thereby resulting in significant cell morphogenesis defects. Furthermore, multiple threonine residues were identified as being phosphorylated in the JMD. To investigate the functional significance of these phosphorylation sites, we conducted an integrative analysis, combining structural biology, proteomics, and bacterial cell imaging. Our results revealed that the phosphorylation of the JMD did not perturb the phosphorylation of StkP substrates. However, we observed that it modulated the timing of StkP localization to the division septum and the dynamics of cell constriction. We further demonstrated that phosphorylation of the JMD facilitated the recruitment of several cell division proteins, suggesting that it is required to assemble the division machinery at the division septum. In conclusion, this study demonstrates that the function of the JMD of StkP is modulated by phosphorylation and is critical for the cell division of S. pneumoniae. These observations may serve as a model for understanding the regulatory function of other bacterial Ser/Thr protein kinases.IMPORTANCEHow bacterial serine/threonine protein kinases are activated remains highly debated. In particular, models rely on the observations made with their eukaryotic counterparts, and only a few studies have investigated the molecular activation mechanism of bacterial serine/threonine protein kinases. This is particularly the case with regard to the juxtamembrane domain (JMD), which is proposed to contribute to kinase activation in numerous eukaryotic kinases. This study demonstrates that the juxtamembrane domain is likely not essential for the activation of the serine/threonine protein kinase StkP of S. pneumoniae. Rather, our findings reveal that it is required for cell division, where its phosphorylation affects the assembly of the division machinery at the division septum. These observations allow us to assign a function to the JMD in StkP-mediated regulation of pneumococcal cell division, thereby providing a new avenue for understanding the contribution of membrane serine/threonine protein kinases in the physiology of other bacteria.
Collapse
Affiliation(s)
- Mélisse Hamidi
- Molecular Microbiology and Structural Biochemistry, UMR 5086, Université Claude Bernard Lyon 1, CNRS, Lyon, Auvergne-Rhône-Alpes, France
| | - Sathya Narayanan Nagarajan
- Molecular Microbiology and Structural Biochemistry, UMR 5086, Université Claude Bernard Lyon 1, CNRS, Lyon, Auvergne-Rhône-Alpes, France
| | - Vaishnavi Ravikumar
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Västra Götaland County, Sweden
| | - Virginie Gueguen-Chaignon
- Protein Science Facility, CNRS UAR3444, INSERM US8, Université Claude Bernard Lyon 1, Ecole Normale Supérieur de Lyon, Lyon, Auvergne-Rhône-Alpes, France
| | - Cédric Laguri
- Institut de Biologie Structurale, CEA, CNRS UMR 5075, Université Grenoble Alpes, Grenoble, Auvergne-Rhône-Alpes, France
| | - Céline Freton
- Molecular Microbiology and Structural Biochemistry, UMR 5086, Université Claude Bernard Lyon 1, CNRS, Lyon, Auvergne-Rhône-Alpes, France
| | - Ivan Mijakovic
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Västra Götaland County, Sweden
| | - Jean-Pierre Simorre
- Institut de Biologie Structurale, CEA, CNRS UMR 5075, Université Grenoble Alpes, Grenoble, Auvergne-Rhône-Alpes, France
| | - Stéphanie Ravaud
- Molecular Microbiology and Structural Biochemistry, UMR 5086, Université Claude Bernard Lyon 1, CNRS, Lyon, Auvergne-Rhône-Alpes, France
| | - Christophe Grangeasse
- Molecular Microbiology and Structural Biochemistry, UMR 5086, Université Claude Bernard Lyon 1, CNRS, Lyon, Auvergne-Rhône-Alpes, France
| |
Collapse
|
2
|
Alípio AF, Bárria C, Pobre V, Matos AR, Prata SC, Amblar M, Arraiano CM, Domingues S. RNase R Affects the Level of Fatty Acid Biosynthesis Transcripts Leading to Changes in membrane Fluidity. J Mol Biol 2024; 436:168711. [PMID: 39019106 DOI: 10.1016/j.jmb.2024.168711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 07/10/2024] [Accepted: 07/10/2024] [Indexed: 07/19/2024]
Abstract
Previous studies on RNase R have highlighted significant effects of this ribonuclease in several processes of Streptococcus pneumoniae biology. In this work we show that elimination of RNase R results in overexpression of most of genes encoding the components of type II fatty acid biosynthesis (FASII) cluster. We demonstrate that RNase R is implicated in the turnover of most of transcripts from this pathway, affecting the outcome of the whole FASII cluster, and ultimately leading to changes in the membrane fatty acid composition. Our results show that the membrane of the deleted strain contains higher proportion of unsaturated and long-chained fatty acids than the membrane of the wild type strain. These alterations render the RNase R mutant more prone to membrane lipid peroxidation and are likely the reason for the increased sensitivity of this strain to detergent lysis and to the action of the bacteriocin nisin. Reprogramming of membrane fluidity is an adaptative cell response crucial for bacterial survival in constantly changing environmental conditions. The data presented here is suggestive of a role for RNase R in the composition of S. pneumoniae membrane, with strong impact on pneumococci adaptation to different stress situations.
Collapse
Affiliation(s)
- André Filipe Alípio
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Cátia Bárria
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal.
| | - Vânia Pobre
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Ana Rita Matos
- BioISI - Biosystems and Integrative Sciences Institute, Environmental and Molecular Plant Physiology Laboratory, Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Sara Carrera Prata
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Mónica Amblar
- Unidad de Patología Molecular del Neumococo, Centro Nacional de Microbiología, Instituto de Salud Carlos III. Majadahonda, Madrid 28220, Spain
| | - Cecília Maria Arraiano
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Susana Domingues
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal.
| |
Collapse
|
3
|
Majdi C, Meffre P, Benfodda Z. Recent advances in the development of bacterial response regulators inhibitors as antibacterial and/or antibiotic adjuvant agent: A new approach to combat bacterial resistance. Bioorg Chem 2024; 150:107606. [PMID: 38968903 DOI: 10.1016/j.bioorg.2024.107606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/21/2024] [Accepted: 06/28/2024] [Indexed: 07/07/2024]
Abstract
The number of new antibacterial agents currently being discovered is insufficient to combat bacterial resistance. It is extremely challenging to find new antibiotics and to introduce them to the pharmaceutical market. Therefore, special attention must be given to find new strategies to combat bacterial resistance and prevent bacteria from developing resistance. Two-component system is a transduction system and the most prevalent mechanism employed by bacteria to respond to environmental changes. This signaling system consists of a membrane sensor histidine kinase that perceives environmental stimuli and a response regulator which acts as a transcription factor. The approach consisting of developing response regulators inhibitors with antibacterial activity or antibiotic adjuvant activity is a novel approach that has never been previously reviewed. In this review we report for the first time, the importance of targeting response regulators and summarizing all existing studies carried out from 2008 until now on response regulators inhibitors as antibacterial agents or / and antibiotic adjuvants. Moreover, we describe the antibacterial activity and/or antibiotic adjuvants activity against the studied bacterial strains and the mechanism of different response regulator inhibitors when it's possible.
Collapse
|
4
|
Mishra A, Chakraborty S, Jaiswal TP, Bhattacharjee S, Kesarwani S, Mishra AK, Singh SS. Untangling the adaptive strategies of thermophilic bacterium Anoxybacillus rupiensis TPH1 under low temperature. Extremophiles 2024; 28:31. [PMID: 39020126 DOI: 10.1007/s00792-024-01346-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 06/10/2024] [Indexed: 07/19/2024]
Abstract
The present study investigates the low temperature tolerance strategies of thermophilic bacterium Anoxybacillus rupiensis TPH1, which grows optimally at 55 °C , by subjecting it to a temperature down-shift of 10 °C (45 °C) for 4 and 6 h followed by studying its growth, morphophysiological, molecular and proteomic responses. Results suggested that although TPH1 experienced increased growth inhibition, ROS production, protein oxidation and membrane disruption after 4 h of incubation at 45 °C yet maintained its DNA integrity and cellular structure through the increased expression of DNA damage repair and cell envelop synthesizing proteins and also progressively alleviated growth inhibition by 20% within two hours i.e., 6 h, by inducing the expression of antioxidative enzymes, production of unsaturated fatty acids, capsular and released exopolysaccharides and forming biofilm along with chemotaxis proteins. Conclusively, the adaptation of Anoxybacillus rupiensis TPH1 to lower temperature is mainly mediated by the synthesis of large numbers of defense proteins and exopolysaccharide rich biofilm formation.
Collapse
Affiliation(s)
- Aditi Mishra
- Laboratory of Cyanobacterial Systematics and Stress Biology, Department of Botany, Banaras Hindu University, Varanasi, India
| | - Sindhunath Chakraborty
- Laboratory of Microbial Genetics, Department of Botany, Banaras Hindu University, Varanasi, India
| | - Tameshwar Prasad Jaiswal
- Laboratory of Cyanobacterial Systematics and Stress Biology, Department of Botany, Banaras Hindu University, Varanasi, India
| | - Samujjal Bhattacharjee
- Laboratory of Microbial Genetics, Department of Botany, Banaras Hindu University, Varanasi, India
| | - Shreya Kesarwani
- Laboratory of Cyanobacterial Systematics and Stress Biology, Department of Botany, Banaras Hindu University, Varanasi, India
| | - Arun Kumar Mishra
- Laboratory of Microbial Genetics, Department of Botany, Banaras Hindu University, Varanasi, India
| | - Satya Shila Singh
- Laboratory of Cyanobacterial Systematics and Stress Biology, Department of Botany, Banaras Hindu University, Varanasi, India.
| |
Collapse
|
5
|
Freeman CD, Hansen T, Urbauer R, Wilkinson BJ, Singh VK, Hines KM. Defective pgsA contributes to increased membrane fluidity and cell wall thickening in Staphylococcus aureus with high-level daptomycin resistance. mSphere 2024; 9:e0011524. [PMID: 38752757 PMCID: PMC11332330 DOI: 10.1128/msphere.00115-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/17/2024] [Indexed: 05/28/2024] Open
Abstract
Daptomycin is a membrane-targeting last-resort antimicrobial therapeutic for the treatment of infections caused by methicillin- and/or vancomycin-resistant Staphylococcus aureus. In the rare event of failed daptomycin therapy, the source of resistance is often attributable to mutations directly within the membrane phospholipid biosynthetic pathway of S. aureus or in the regulatory systems that control cell envelope response and membrane homeostasis. Here we describe the structural changes to the cell envelope in a daptomycin-resistant isolate of S. aureus strain N315 that has acquired mutations in the genes most commonly reported associated with daptomycin resistance: mprF, yycG, and pgsA. In addition to the decreased phosphatidylglycerol (PG) levels that are the hallmark of daptomycin resistance, the mutant with high-level daptomycin resistance had increased branched-chain fatty acids (BCFAs) in its membrane lipids, increased membrane fluidity, and increased cell wall thickness. However, the successful utilization of isotope-labeled straight-chain fatty acids (SCFAs) in lipid synthesis suggested that the aberrant BCFA:SCFA ratio arose from upstream alteration in fatty acid synthesis rather than a structural preference in PgsA. Transcriptomics studies revealed that expression of pyruvate dehydrogenase (pdhB) was suppressed in the daptomycin-resistant isolate, which is known to increase BCFA levels. While complementation with an additional copy of pdhB had no effect, complementation of the pgsA mutation resulted in increased PG formation, reduction in cell wall thickness, restoration of normal BCFA levels, and increased daptomycin susceptibility. Collectively, these results demonstrate that pgsA contributes to daptomycin resistance through its influence on membrane fluidity and cell wall thickness, in addition to phosphatidylglycerol levels. IMPORTANCE The cationic lipopeptide antimicrobial daptomycin has become an essential tool for combating infections with Staphylococcus aureus that display reduced susceptibility to β-lactams or vancomycin. Since daptomycin's activity is based on interaction with the negatively charged membrane of S. aureus, routes to daptomycin-resistance occur through mutations in the lipid biosynthetic pathway surrounding phosphatidylglycerols and the regulatory systems that control cell envelope homeostasis. Therefore, there are many avenues to achieve daptomycin resistance and several different, and sometimes contradictory, phenotypes of daptomycin-resistant S. aureus, including both increased and decreased cell wall thickness and membrane fluidity. This study is significant because it demonstrates the unexpected influence of a lipid biosynthesis gene, pgsA, on membrane fluidity and cell wall thickness in S. aureus with high-level daptomycin resistance.
Collapse
Affiliation(s)
| | - Tayte Hansen
- Department of Microbiology and Immunology, A.T. Still University of Health Sciences, Kirksville, Missouri, USA
| | - Ramona Urbauer
- Department of Chemistry, University of Georgia, Athens, Georgia, USA
| | - Brian J. Wilkinson
- School of Biological Sciences, Illinois State University, Normal, Illinois, USA
| | - Vineet K. Singh
- Department of Microbiology and Immunology, A.T. Still University of Health Sciences, Kirksville, Missouri, USA
| | - Kelly M. Hines
- Department of Chemistry, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
6
|
Pettersen JS, Nielsen FD, Andreassen PR, Møller-Jensen J, Jørgensen M. A comprehensive analysis of pneumococcal two-component system regulatory networks. NAR Genom Bioinform 2024; 6:lqae039. [PMID: 38650915 PMCID: PMC11034029 DOI: 10.1093/nargab/lqae039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/04/2024] [Accepted: 04/12/2024] [Indexed: 04/25/2024] Open
Abstract
Two-component systems are key signal-transduction systems that enable bacteria to respond to a wide variety of environmental stimuli. The human pathogen, Streptococcus pneumoniae (pneumococcus) encodes 13 two-component systems and a single orphan response regulator, most of which are significant for pneumococcal pathogenicity. Mapping the regulatory networks governed by these systems is key to understand pneumococcal host adaptation. Here we employ a novel bioinformatic approach to predict the regulons of each two-component system based on publicly available whole-genome sequencing data. By employing pangenome-wide association studies (panGWAS) to predict genotype-genotype associations for each two-component system, we predicted regulon genes of 11 of the pneumococcal two-component systems. Through validation via next-generation RNA-sequencing on response regulator overexpression mutants, several top candidate genes predicted by the panGWAS analysis were confirmed as regulon genes. The present study presents novel details on multiple pneumococcal two-component systems, including an expansion of regulons, identification of candidate response regulator binding motifs, and identification of candidate response regulator-regulated small non-coding RNAs. We also demonstrate a use for panGWAS as a complementary tool in target gene identification via identification of genotype-to-genotype links. Expanding our knowledge on two-component systems in pathogens is crucial to understanding how these bacteria sense and respond to their host environment, which could prove useful in future drug development.
Collapse
Affiliation(s)
- Jens Sivkær Pettersen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Flemming Damgaard Nielsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
- Department of Clinical Microbiology, Odense University Hospital, Odense, Denmark
| | | | - Jakob Møller-Jensen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Mikkel Girke Jørgensen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
7
|
Lux J, Sánchez García L, Chaparro Fernández P, Laloli L, Licheri MF, Gallay C, Hermans PWM, Croucher NJ, Veening JW, Dijkman R, Straume D, Hathaway LJ. AmiA and AliA peptide ligands, found in Klebsiella pneumoniae, are imported into pneumococci and alter the transcriptome. Sci Rep 2024; 14:12416. [PMID: 38816440 PMCID: PMC11139975 DOI: 10.1038/s41598-024-63217-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 05/27/2024] [Indexed: 06/01/2024] Open
Abstract
Klebsiella pneumoniae releases the peptides AKTIKITQTR and FNEMQPIVDRQ, which bind the pneumococcal proteins AmiA and AliA respectively, two substrate-binding proteins of the ABC transporter Ami-AliA/AliB oligopeptide permease. Exposure to these peptides alters pneumococcal phenotypes such as growth. Using a mutant in which a permease domain of the transporter was disrupted, by growth analysis and epifluorescence microscopy, we confirmed peptide uptake via the Ami permease and intracellular location in the pneumococcus. By RNA-sequencing we found that the peptides modulated expression of genes involved in metabolism, as pathways affected were mostly associated with energy or synthesis and transport of amino acids. Both peptides downregulated expression of genes involved in branched-chain amino acid metabolism and the Ami permease; and upregulated fatty acid biosynthesis genes but differed in their regulation of genes involved in purine and pyrimidine biosynthesis. The transcriptomic changes are consistent with growth suppression by peptide treatment. The peptides inhibited growth of pneumococcal isolates of serotypes 3, 8, 9N, 12F and 19A, currently prevalent in Switzerland, and caused no detectable toxic effect to primary human airway epithelial cells. We conclude that pneumococci take up K. pneumoniae peptides from the environment via binding and transport through the Ami permease. This changes gene expression resulting in altered phenotypes, particularly reduced growth.
Collapse
Affiliation(s)
- Janine Lux
- Institute for Infectious Diseases, Faculty of Medicine, University of Bern, Friedbühlstrasse 25, CH-3001, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Lucía Sánchez García
- Institute for Infectious Diseases, Faculty of Medicine, University of Bern, Friedbühlstrasse 25, CH-3001, Bern, Switzerland
| | - Patricia Chaparro Fernández
- Institute for Infectious Diseases, Faculty of Medicine, University of Bern, Friedbühlstrasse 25, CH-3001, Bern, Switzerland
| | - Laura Laloli
- Institute for Infectious Diseases, Faculty of Medicine, University of Bern, Friedbühlstrasse 25, CH-3001, Bern, Switzerland
| | - Manon F Licheri
- Institute for Infectious Diseases, Faculty of Medicine, University of Bern, Friedbühlstrasse 25, CH-3001, Bern, Switzerland
| | - Clement Gallay
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Peter W M Hermans
- Julius Centre for Health Sciences and Primary Care, University Medical Centre Utrecht (UMCU), Utrecht, The Netherlands
| | - Nicholas J Croucher
- MRC Centre for Global Infectious Disease Analysis, White City Campus, Imperial College London, Sir Michael Uren Hub, London, UK
| | - Jan-Willem Veening
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Ronald Dijkman
- Institute for Infectious Diseases, Faculty of Medicine, University of Bern, Friedbühlstrasse 25, CH-3001, Bern, Switzerland
- Multidisciplinary Center for Infectious Diseases, University of Bern, Bern, Switzerland
- Microscopy Imaging Centre (MIC), Theodor Kocher Institute, University of Bern, Bern, Switzerland
- European Virus Bioinformatics Center, Jena, Germany
| | - Daniel Straume
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, 1430, Ås, Norway
| | - Lucy J Hathaway
- Institute for Infectious Diseases, Faculty of Medicine, University of Bern, Friedbühlstrasse 25, CH-3001, Bern, Switzerland.
| |
Collapse
|
8
|
Freeman CD, Hansen T, Urbauer R, Wilkinson BJ, Singh VK, Hines KM. Defective pgsA contributes to increased membrane fluidity and cell wall thickening in S. aureus with high-level daptomycin resistance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.04.11.536441. [PMID: 37090586 PMCID: PMC10120677 DOI: 10.1101/2023.04.11.536441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Daptomycin is a membrane-targeting last-resort antimicrobial therapeutic for the treatment of infections caused by methicillin- and/or vancomycin-resistant Staphylococcus aureus. In the rare event of failed daptomycin therapy, the source of resistance is often attributable to mutations directly within the membrane phospholipid biosynthetic pathway of S. aureus or in the regulatory systems that control cell envelope response and membrane homeostasis. Here we describe the structural changes to the cell envelope in a daptomycin-resistant isolate of S. aureus strain N315 that has acquired mutations in the genes most commonly reported associated with daptomycin-resistance: mprF, yycG, and pgsA. In addition to the decreased phosphatidylglycerol (PG) levels that are the hallmark of daptomycin-resistance, the mutant with high-level daptomycin resistance had increased branched-chain fatty acids (BCFAs) in its membrane lipids, increased membrane fluidity, and increased cell wall thickness. However, the successful utilization of isotope-labeled straight-chain fatty acids (SCFAs) in lipid synthesis suggested that the aberrant BCFA:SCFA ratio arose from upstream alteration in fatty acid synthesis rather than a structural preference in PgsA. RT-qPCR studies revealed that expression of pyruvate dehydrogenase (pdhB) was suppressed in the daptomycin-resistant isolate, which is known to increase BCFA levels. While complementation with an additional copy of pdhB had no effect, complementation of the pgsA mutation resulted in increased PG formation, reduction in cell wall thickness, restoration of normal BCFA levels, and increased daptomycin susceptibility. Collectively, these results demonstrate that pgsA contributes to daptomycin resistance through its influence on membrane fluidity and cell wall thickness, in addition to phosphatidylglycerol levels.
Collapse
Affiliation(s)
| | - Tayte Hansen
- Department of Microbiology and Immunology, A.T. Still University of Health Sciences, Kirksville, MO, USA
| | - Ramona Urbauer
- Department of Chemistry, University of Georgia, Athens, GA, USA
| | - Brian J. Wilkinson
- School of Biological Sciences, Illinois State University, Normal, IL, USA
| | - Vineet K. Singh
- Department of Microbiology and Immunology, A.T. Still University of Health Sciences, Kirksville, MO, USA
| | - Kelly M. Hines
- Department of Chemistry, University of Georgia, Athens, GA, USA
| |
Collapse
|
9
|
Xiong Y, Chen Z, Bai B, Peng Y, Liu S, Fang D, Wen Z, Shang Y, Lin Z, Han S, Yu Z. Thiazolopyrimidinone Derivative H5-23 Enhances Daptomycin Activity against Linezolid-Resistant Enterococcus faecalis by Disrupting the Cell Membrane. ACS Infect Dis 2023; 9:2523-2537. [PMID: 38014911 DOI: 10.1021/acsinfecdis.3c00387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
The increasing emergence and dissemination of multidrug-resistant (MDR) Gram-positive pathogens pose a serious threat to global public health. Previous reports have demonstrated that the compound H5-23, which has a thiazolopyrimidinone core structure, exhibited antibacterial activity against Staphylococcus epidermidis in vitro. However, the antibacterial activity in vivo and mechanism of action of H5-23 against MDR bacteria have not been fully studied. In this study, we report that H5-23 has wide-spectrum antibacterial activity against Gram-positive bacteria. When combined with daptomycin (DAP), H5-23 demonstrates enhanced antimicrobial activity, effectively killing both planktonic and persister cells, as well as eradicating biofilm formation by linezolid-resistant Enterococcus faecalis. The development of resistance shows that H5-23 has a low propensity to induce antibiotic resistance compared to that of linezolid in vitro. Mechanistic studies reveal that H5-23 increases membrane permeability and disrupts membrane integrity, resulting in increased production of reactive oxygen species (ROS), metabolic perturbations, and ultimately cell death. Additionally, we demonstrate the synergistic antibacterial effect of H5-23 combined with DAP in a murine model. These findings suggest that H5-23 is a promising antimicrobial agent and provides a potential strategy for enhancing the efficacy of DAP in combating multidrug-resistant E. faecalis.
Collapse
Affiliation(s)
- Yanpeng Xiong
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
- Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen Nanshan People's Hospital and the Sixth Affiliated Hospital of Shenzhen University Medical School, Shenzhen 518052, China
| | - Zhong Chen
- Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen Nanshan People's Hospital and the Sixth Affiliated Hospital of Shenzhen University Medical School, Shenzhen 518052, China
| | - Bing Bai
- Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen Nanshan People's Hospital and the Sixth Affiliated Hospital of Shenzhen University Medical School, Shenzhen 518052, China
| | - Yalan Peng
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Shanghong Liu
- Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen Nanshan People's Hospital and the Sixth Affiliated Hospital of Shenzhen University Medical School, Shenzhen 518052, China
| | - Di Fang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Zewen Wen
- Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen Nanshan People's Hospital and the Sixth Affiliated Hospital of Shenzhen University Medical School, Shenzhen 518052, China
| | - Yongpeng Shang
- Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen Nanshan People's Hospital and the Sixth Affiliated Hospital of Shenzhen University Medical School, Shenzhen 518052, China
| | - Zhiwei Lin
- Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen Nanshan People's Hospital and the Sixth Affiliated Hospital of Shenzhen University Medical School, Shenzhen 518052, China
- Laboratory of Respiratory Disease, People's Hospital of Yangjiang, Yangjiang 529500, China
| | - Shiqing Han
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Zhijian Yu
- Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen Nanshan People's Hospital and the Sixth Affiliated Hospital of Shenzhen University Medical School, Shenzhen 518052, China
| |
Collapse
|
10
|
Kasmawati H, Ruslin R, Arfan A, Sida NA, Saputra DI, Halimah E, Mustarichie R. Antibacterial Potency of an Active Compound from Sansevieria trifasciata Prain: An Integrated In Vitro and In Silico Study. Molecules 2023; 28:6096. [PMID: 37630348 PMCID: PMC10457997 DOI: 10.3390/molecules28166096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Sansevieria trifasciata Prain holds great potential as a valuable asset in pharmaceutical development. In this study, our focus is to explore and assess the antibacterial activity of various components derived from this plant, including extracts, fractions, subfractions, and isolates, explicitly targeting two common bacteria: Escherichia coli and Streptococcus aureus. The isolated compound, identified as a derivative pyridone alkaloid (5-methyl-11-(2-oxopyridin-1(2H)-yl)undecaneperoxoicacid), demonstrates notable antibacterial effects. The extracts, fractions, subfractions, and isolates reveal significant bacterial growth reductions (p < 0.05). The minimum inhibitory concentration (MIC) values for Escherichia coli were 1.95 ppm, 3.9 ppm, 15.62 ppm, and 7.81 ppm, respectively, while the MIC values for Streptococcus aureus were 1.95 ppm, 1.95 ppm, 15.62 ppm, and 7.81 ppm, respectively. Computational analysis showed the isolates' interaction with key residues on the active site of β-ketoacyl-ACP synthase from Escherichia coli and TyrRS from Streptococcus aureus. The findings indicate that the isolates exhibit a strong affinity for specific residues, including His333, Cys163, and Phe392 in β-ketoacyl-ACP synthase, as well as Arg88, His117, Glu160, and Gln213 in TyrRS. Comparative energy calculations using MMPBSA demonstrate the isolates' favorable binding energy (-104,101 kJ/mol for β-ketoacyl-ACP synthase and -81,060 kJ/mol for TyrRS) compared to ciprofloxacin. The elucidated antibacterial activity and molecular interactions of the isolates present valuable knowledge for future in vitro studies, facilitating the development of novel antibacterial agents targeting diverse bacterial strains.
Collapse
Affiliation(s)
- Henny Kasmawati
- Department of Pharmacy, Faculty of Pharmacy, Universitas Halu Oleo, Kendari 93232, Indonesia; (R.R.); (A.A.); (N.A.S.); (D.I.S.)
| | - Ruslin Ruslin
- Department of Pharmacy, Faculty of Pharmacy, Universitas Halu Oleo, Kendari 93232, Indonesia; (R.R.); (A.A.); (N.A.S.); (D.I.S.)
| | - Arfan Arfan
- Department of Pharmacy, Faculty of Pharmacy, Universitas Halu Oleo, Kendari 93232, Indonesia; (R.R.); (A.A.); (N.A.S.); (D.I.S.)
| | - Nurramadhani A. Sida
- Department of Pharmacy, Faculty of Pharmacy, Universitas Halu Oleo, Kendari 93232, Indonesia; (R.R.); (A.A.); (N.A.S.); (D.I.S.)
| | - Dimas Isnu Saputra
- Department of Pharmacy, Faculty of Pharmacy, Universitas Halu Oleo, Kendari 93232, Indonesia; (R.R.); (A.A.); (N.A.S.); (D.I.S.)
| | - Eli Halimah
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Bandung 45363, Indonesia;
| | - Resmi Mustarichie
- Department of Analytical Pharmacy and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Bandung 45363, Indonesia
| |
Collapse
|
11
|
Nguyen AH, Hood KS, Mileykovskaya E, Miller WR, Tran TT. Bacterial cell membranes and their role in daptomycin resistance: A review. Front Mol Biosci 2022; 9:1035574. [PMID: 36452455 PMCID: PMC9702088 DOI: 10.3389/fmolb.2022.1035574] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/26/2022] [Indexed: 11/16/2022] Open
Abstract
Lipids play a major role in bacterial cells. Foremost, lipids are the primary constituents of the cell membrane bilayer, providing structure and separating the cell from the surrounding environment. This makes the lipid bilayer a prime target for antimicrobial peptides and membrane-acting antibiotics such as daptomycin. In response, bacteria have evolved mechanisms by which the membrane can be adapted to resist attack by these antimicrobial compounds. In this review, we focus on the membrane phospholipid changes associated with daptomycin resistance in enterococci, Staphylococcus aureus, and the Viridans group streptococci.
Collapse
Affiliation(s)
- April H. Nguyen
- Center for Infectious Diseases Research, Houston Methodist Research Institute, Houston, TX, United States,Division of Infectious Diseases, Department of Medicine, Houston Methodist Hospital, Houston, TX, United States
| | - Kara S. Hood
- Center for Infectious Diseases Research, Houston Methodist Research Institute, Houston, TX, United States,Division of Infectious Diseases, Department of Medicine, Houston Methodist Hospital, Houston, TX, United States
| | - Eugenia Mileykovskaya
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, United States
| | - William R. Miller
- Center for Infectious Diseases Research, Houston Methodist Research Institute, Houston, TX, United States,Division of Infectious Diseases, Department of Medicine, Houston Methodist Hospital, Houston, TX, United States
| | - Truc T. Tran
- Center for Infectious Diseases Research, Houston Methodist Research Institute, Houston, TX, United States,Division of Infectious Diseases, Department of Medicine, Houston Methodist Hospital, Houston, TX, United States,*Correspondence: Truc T. Tran,
| |
Collapse
|
12
|
Zhang R, Polenakovik H, Barreras Beltran IA, Waalkes A, Salipante SJ, Xu L, Werth BJ. Emergence of Dalbavancin, Vancomycin, and Daptomycin Nonsusceptible Staphylococcus aureus in a Patient Treated With Dalbavancin: Case Report and Isolate Characterization. Clin Infect Dis 2022; 75:1641-1644. [PMID: 35510938 PMCID: PMC10200325 DOI: 10.1093/cid/ciac341] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Indexed: 12/29/2022] Open
Abstract
A patient with end-stage renal disease received 2 doses of dalbavancin for methicillin-resistant Staphylococcus aureus (MRSA) arteriovenous fistula infection and presented 5 weeks later with infective endocarditis secondary to vancomycin, daptomycin, and dalbavancin nonsusceptible MRSA. Resistance was associated with walK and scrA mutations, reduced long-chain lipid content, and reduced membrane fluidity.
Collapse
Affiliation(s)
- Rutan Zhang
- Department of Medicinal Chemistry, University of Washington School of Pharmacy, Seattle, Washington, USA
| | - Hari Polenakovik
- Veterans Affairs Medical Center, Dayton, Ohio, USA
- Department of Medicine, Wright State University Boonshoft School of Medicine, Dayton, Ohio, USA
| | | | - Adam Waalkes
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, USA
| | - Stephen J Salipante
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, USA
| | - Libin Xu
- Department of Medicinal Chemistry, University of Washington School of Pharmacy, Seattle, Washington, USA
| | - Brian J Werth
- Department of Pharmacy, University of Washington School of Pharmacy, Seattle, Washington, USA
| |
Collapse
|
13
|
Chen H, Yu C, Wu H, Li G, Li C, Hong W, Yang X, Wang H, You X. Recent Advances in Histidine Kinase-Targeted Antimicrobial Agents. Front Chem 2022; 10:866392. [PMID: 35860627 PMCID: PMC9289397 DOI: 10.3389/fchem.2022.866392] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 05/16/2022] [Indexed: 11/15/2022] Open
Abstract
The prevalence of antimicrobial-resistant pathogens significantly limited the number of effective antibiotics available clinically, which urgently requires new drug targets to screen, design, and develop novel antibacterial drugs. Two-component system (TCS), which is comprised of a histidine kinase (HK) and a response regulator (RR), is a common mechanism whereby bacteria can sense a range of stimuli and make an appropriate adaptive response. HKs as the sensor part of the bacterial TCS can regulate various processes such as growth, vitality, antibiotic resistance, and virulence, and have been considered as a promising target for antibacterial drugs. In the current review, we highlighted the structural basis and functional importance of bacterial TCS especially HKs as a target in the discovery of new antimicrobials, and summarize the latest research progress of small-molecule HK-inhibitors as potential novel antimicrobial drugs reported in the past decade.
Collapse
Affiliation(s)
- Hongtong Chen
- Laboratory of Pharmacology/Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chengqi Yu
- School of Basic Medical Science, Capital Medical University, Beijing, China
| | - Han Wu
- School of Pharmacy, Minzu University of China, Beijing, China
- Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, China
| | - Guoqing Li
- Laboratory of Pharmacology/Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Congran Li
- Laboratory of Pharmacology/Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei Hong
- Beijing Institute of Collaborative Innovation, Beijing, China
| | - Xinyi Yang
- Laboratory of Pharmacology/Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hao Wang
- School of Pharmacy, Minzu University of China, Beijing, China
- Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, China
- Institute of National Security, Minzu University of China, Beijing, China
| | - Xuefu You
- Laboratory of Pharmacology/Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
14
|
FabT, a Bacterial Transcriptional Repressor That Limits Futile Fatty Acid Biosynthesis. Microbiol Mol Biol Rev 2022; 86:e0002922. [PMID: 35726719 DOI: 10.1128/mmbr.00029-22] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phospholipids are vital membrane constituents that determine cell functions and interactions with the environment. For bacterial pathogens, rapid adjustment of phospholipid composition to changing conditions during infection can be crucial for growth and survival. Fatty acid synthesis (FASII) regulators are central to this process. This review puts the spotlight on FabT, a MarR-family regulator of FASII characterized in streptococci, enterococci, and lactococci. Roles of FabT in virulence, as reported in mouse and nonhuman primate infection models, will be discussed. We present FabT structure, the FabT regulon, and changes in FabT regulation according to growth conditions. A unique feature of FabT concerns its modulation by an unconventional corepressor, acyl-acyl-carrier protein (ACP). Some bacteria express two ACP proteins, which are distinguished by their interactions with endogenous or exogenous fatty acid sources, one of which causes strong FabT repression. This system seems to allow preferred use of environmental fatty acids, thereby saving energy by limiting futile FASII activity. Control of fabT expression and FabT activity link various metabolic pathways to FASII. The various physiological consequences of FabT loss summarized here suggest that FabT has potential as a narrow range therapeutic target.
Collapse
|
15
|
Kong L, Su M, Sang J, Huang S, Wang M, Cai Y, Xie M, Wu J, Wang S, Foster SJ, Zhang J, Han A. The W-Acidic Motif of Histidine Kinase WalK Is Required for Signaling and Transcriptional Regulation in Streptococcus mutans. Front Microbiol 2022; 13:820089. [PMID: 35558126 PMCID: PMC9087282 DOI: 10.3389/fmicb.2022.820089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/14/2022] [Indexed: 02/05/2023] Open
Abstract
In Streptococcus mutans, we find that the histidine kinase WalK possesses the longest C-terminal tail (CTT) among all 14 TCSs, and this tail plays a key role in the interaction of WalK with its response regulator WalR. We demonstrate that the intrinsically disordered CTT is characterized by a conserved tryptophan residue surrounded by acidic amino acids. Mutation in the tryptophan not only disrupts the stable interaction, but also impairs the efficient phosphotransferase and phosphatase activities of WalRK. In addition, the tryptophan is important for WalK to compete with DNA containing a WalR binding motif for the WalR interaction. We further show that the tryptophan is important for in vivo transcriptional regulation and bacterial biofilm formation by S. mutans. Moreover, Staphylococcus aureus WalK also has a characteristic CTT, albeit relatively shorter, with a conserved W-acidic motif, that is required for the WalRK interaction in vitro. Together, these data reveal that the W-acidic motif of WalK is indispensable for its interaction with WalR, thereby playing a key role in the WalRK-dependent signal transduction, transcriptional regulation and biofilm formation.
Collapse
Affiliation(s)
- Lingyuan Kong
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Mingyang Su
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Jiayan Sang
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Shanshan Huang
- Department of Clinical Laboratory, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Min Wang
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Yongfei Cai
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Mingquan Xie
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Jun Wu
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Shida Wang
- State Key Laboratory for Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Simon J Foster
- Department of Molecular Biology and Biotechnology, The Florey Institute, The University of Sheffield, Sheffield, United Kingdom
| | - Jiaqin Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Aidong Han
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| |
Collapse
|
16
|
Deng X, Zhang C, Chen J, Shi Y, Ma X, Wang Y, Wang Z, Yu Z, Zheng J, Chen Z. Antibacterial and anti-biofilm activities of histidine kinase YycG inhibitors against Streptococcus agalactiae. J Antibiot (Tokyo) 2021; 74:874-883. [PMID: 34489569 DOI: 10.1038/s41429-021-00475-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/09/2021] [Accepted: 08/16/2021] [Indexed: 02/08/2023]
Abstract
This study aims to investigate the antibacterial and anti-biofilm activities of YycG inhibitors H2-60 and H2-81 against Streptococcus agalactiae. A total of 118 nonduplicate S. agalactiae clinical isolates were collected, and the minimal inhibitory concentrations (MICs) of H2-60 and H2-81 were determined. H2-60 and H2-81 inhibit biofilm formation of S. agalactiae were detected by crystal violet staining, and against established biofilms of S. agalactiae were observed by confocal laser scanning microscope. Inhibitory effect of H2-60 and H2-81 on the phosphorylation activity of the HisKA domain of YycG' protein was measured. The MIC50/MIC90 was 3.13/6.25 μM for H2-60 and 6.25/12.5 μM for H2-81 against S. agalactiae, respectively. S. agalactiae planktonic cells can be decreased by H2-60 or H2-81 for more than 3 × log10 CFU ml-1 after 24 h treatment. Biofilm formation of 8 S. agalactiae strains (strong biofilm producers) was significantly reduced after treated with 1/4 × MIC of H2-60 or H2-81 for 24 h. H2-60 and H2-81 could reduce 45.79% and 29.56% of the adherent cells in the established biofilm of S. agalactiae after 72 h treatment, respectively. H2-60 combined with daptomycin reduced 83.63% of the adherent cells in the established biofilm of S. agalactiae, which was significantly better than that of H2-60 (45.79%) or daptomycin (55.07%) alone. The half maximal inhibitory concentrations (IC50) were 35.6 μM for H2-60 and 46.3 μM for H2-81 against the HisKA domain of YycG' protein. In conclusion, YycG inhibitors H2-60 and H2-81 exhibit excellent antibacterial and anti-biofilm activities against S. agalactiae.
Collapse
Affiliation(s)
- Xiangbin Deng
- Department of Infectious Diseases and the Key Lab of Endogenous Infection, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China.,Department of Infectious Diseases and the Key Lab of Endogenous Infection, Shenzhen Nanshan People's Hospital and The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Chaoqin Zhang
- Department of Infectious Diseases and the Key Lab of Endogenous Infection, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China.,Department of Infectious Diseases and the Key Lab of Endogenous Infection, Shenzhen Nanshan People's Hospital and The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Junwen Chen
- Department of Infectious Diseases and the Key Lab of Endogenous Infection, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China.,Department of Infectious Diseases and the Key Lab of Endogenous Infection, Shenzhen Nanshan People's Hospital and The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Yiyi Shi
- Department of Infectious Diseases and the Key Lab of Endogenous Infection, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China.,Department of Infectious Diseases and the Key Lab of Endogenous Infection, Shenzhen Nanshan People's Hospital and The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Xiaoyu Ma
- Department of Infectious Diseases and the Key Lab of Endogenous Infection, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China.,Department of Infectious Diseases and the Key Lab of Endogenous Infection, Shenzhen Nanshan People's Hospital and The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Yu Wang
- Department of Infectious Diseases and the Key Lab of Endogenous Infection, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China.,Department of Infectious Diseases and the Key Lab of Endogenous Infection, Shenzhen Nanshan People's Hospital and The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Zhanwen Wang
- Department of Infectious Diseases and the Key Lab of Endogenous Infection, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China.,Department of Infectious Diseases and the Key Lab of Endogenous Infection, Shenzhen Nanshan People's Hospital and The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Zhijian Yu
- Department of Infectious Diseases and the Key Lab of Endogenous Infection, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China.,Department of Infectious Diseases and the Key Lab of Endogenous Infection, Shenzhen Nanshan People's Hospital and The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China.,Quality Control Center of Hospital Infection management of Shenzhen, Guang Dong Medical University, Shenzhen, China
| | - Jinxin Zheng
- Department of Infectious Diseases and the Key Lab of Endogenous Infection, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China. .,Department of Infectious Diseases and the Key Lab of Endogenous Infection, Shenzhen Nanshan People's Hospital and The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China. .,Quality Control Center of Hospital Infection management of Shenzhen, Guang Dong Medical University, Shenzhen, China.
| | - Zhong Chen
- Department of Infectious Diseases and the Key Lab of Endogenous Infection, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China. .,Department of Infectious Diseases and the Key Lab of Endogenous Infection, Shenzhen Nanshan People's Hospital and The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China. .,Quality Control Center of Hospital Infection management of Shenzhen, Guang Dong Medical University, Shenzhen, China.
| |
Collapse
|
17
|
Abstract
Membrane lipid homeostasis is required for bacteria to survive in a spectrum of host environments. This homeostasis is achieved by regulation of fatty acid chain length and of the ratio of unsaturated to saturated fatty acids. In the pathogen Streptococcus pneumoniae, fatty acid biosynthesis is carried out by a cluster of fatty acid biosynthesis (fab) genes (FASII locus) whose expression is controlled by the FabT repressor. Encoded immediately downstream of the FASII locus is BriC, a competence-induced, cell-cell communication peptide that promotes biofilm development as well as nasopharyngeal colonization in a murine model of pneumococcal carriage. Here, we demonstrate that briC is cotranscribed with genes of the fab gene cluster and that a reduction of briC levels, caused by decoupling its transcription from fab gene cluster, negatively affects biofilm development. BriC elevates fabT transcription, which is predicted to alter the balance of unsaturated and saturated fatty acids produced by the pathway. We find that briC inactivation results in a decreased production of unsaturated fatty acids. This affects the membrane properties by decreasing the abundance of di-unsaturated phosphatidylglycerol molecular species. We propose that the link between BriC, FabT, and phospholipid composition contributes to the ability of S. pneumoniae to alter membrane homeostasis in response to the production of a quorum-sensing peptide. IMPORTANCE Adaptation of bacteria to their host environment is a key component of colonization and pathogenesis. As an essential component of bacterial membranes, fatty acid composition contributes to host adaptation. Similarly, cell-cell communication, which enables population level responses, also contributes to host adaptation. While much is known about the pathways that control the biosynthesis of fatty acids, many questions remain regarding regulation of these pathways and consequently the factors that affect the balance between unsaturated and saturated fatty acids. We find that BriC, a cell-cell communication peptide implicated in biofilm regulation and colonization, both is influenced by a fatty acid biosynthesis pathway and affects this same pathway. This study identifies a link between cell-cell communication, fatty acid composition, and biofilms and, in doing so, suggests that these pathways are integrated into the networks that control pneumococcal colonization and host adaptation.
Collapse
|
18
|
Gomez-Arrebola C, Solano C, Lasa I. Regulation of gene expression by non-phosphorylated response regulators. Int Microbiol 2021; 24:521-529. [PMID: 33987704 DOI: 10.1007/s10123-021-00180-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/21/2021] [Accepted: 04/26/2021] [Indexed: 12/26/2022]
Abstract
Two-component systems (TCSs) are a prominent sensory system in bacteria. A prototypical TCS comprises a membrane-bound sensor histidine kinase (HK) responsible for sensing the signal and a cytoplasmic response regulator (RR) that controls target gene expression. Signal binding activates a phosphotransfer cascade from the HK to the RR. As a result, the phosphorylated RR undergoes a conformational change that leads to activation of the response. Growing experimental evidence indicates that unphosphorylated RRs may also have regulatory functions, and thus, the classical view that the RR is only active when it is phosphorylated needs to be revisited. In this review, we highlight the most recent findings showing that RRs in the non-phosphorylated state control critical bacterial processes that range from secretion of factors to the host, antibiotic resistance, iron transport, stress response, and cell-wall metabolism to biofilm development.
Collapse
Affiliation(s)
- Carmen Gomez-Arrebola
- Laboratory of Microbial Pathogenesis, Navarrabiomed-Universidad Pública de Navarra (UPNA)-Complejo Hospitalario de Navarra (CHN), IdiSNA, Irunlarrea 3, 31008, Pamplona, Navarra, Spain
| | - Cristina Solano
- Laboratory of Microbial Pathogenesis, Navarrabiomed-Universidad Pública de Navarra (UPNA)-Complejo Hospitalario de Navarra (CHN), IdiSNA, Irunlarrea 3, 31008, Pamplona, Navarra, Spain
| | - Iñigo Lasa
- Laboratory of Microbial Pathogenesis, Navarrabiomed-Universidad Pública de Navarra (UPNA)-Complejo Hospitalario de Navarra (CHN), IdiSNA, Irunlarrea 3, 31008, Pamplona, Navarra, Spain.
| |
Collapse
|
19
|
Pei X, Liu M, Zhou H, Fan H. Screening for phagocytosis resistance-related genes via a transposon mutant library of Streptococcus suis serotype 2. Virulence 2021; 11:825-838. [PMID: 32614642 PMCID: PMC7567436 DOI: 10.1080/21505594.2020.1782088] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Streptococcus suis serotype 2 (SS2) is a serious zoonotic pathogen which causes symptoms of streptococcal toxic shock syndrome (STSS) and septicemia; these symptoms suggest that SS2 may have evade innate immunity. Phagocytosis is an important innate immunity process where phagocytosed pathogens are killed by lysosome enzymes, reactive oxygen, and nitrogen species, and acidic environments in macrophages following engulfment. A previously constructed mutant SS2 library was screened, revealing 13 mutant strains with decreased phagocytic resistance. Through inverse PCR, the transposon insertion sites were determined. Through bioinformatic analysis, the 13 disrupted genes were identified as Cps2F, 3 genes belonging to ABC transporters, WalR, TehB, rpiA, S-transferase encoding gene, prs, HsdM, GNAT family N-acetyltransferase encoding gene, proB, and upstream region of DnaK. Except for the capsular polysaccharide biosynthesis associated Cps2F, the other genes had not been linked to a role in anti-phagocytosis. The survival ability in macrophages and whole blood of randomly picked mutant strains were significantly impaired compared with wild-type ZY05719. The virulence of the mutant strains was also attenuated in a mouse infection model. In the WalR mutant, the transcription of HP1065 decreased significantly compared with wild-type strain, indicating WalR might regulated HP1065 expression and contribute to the anti-phagocytosis of SS2. In conclusion, we identified 13 genes that influenced the phagocytosis resistant ability of SS2, and many of these genes have not been reported to be associated with resistance to phagocytosis. Our work provides novel insight into resistance to phagocytosis, and furthers our understanding of the pathogenesis mechanism of SS2.
Collapse
Affiliation(s)
- Xiaomeng Pei
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University , Nanjing, China
| | - Mingxing Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University , Nanjing, China
| | - Hong Zhou
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University , Nanjing, China
| | - Hongjie Fan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University , Nanjing, China.,Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University , Yangzhou, China
| |
Collapse
|
20
|
The Bactericidal Fatty Acid Mimetic 2CCA-1 Selectively Targets Pneumococcal Extracellular Polyunsaturated Fatty Acid Metabolism. mBio 2020; 11:mBio.03027-20. [PMID: 33323510 PMCID: PMC7773995 DOI: 10.1128/mbio.03027-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Fatty acid biosynthesis is an attractive antibiotic target, as it affects the supply of membrane phospholipid building blocks. In Streptococcus pneumoniae, it is not sufficient to target only the endogenous fatty acid synthesis machinery, as uptake of host fatty acids may bypass this inhibition. Streptococcus pneumoniae, a major cause of pneumonia, sepsis, and meningitis worldwide, has the nasopharynges of small children as its main ecological niche. Depletion of pneumococci from this niche would reduce the disease burden and could be achieved using small molecules with narrow-spectrum antibacterial activity. We identified the alkylated dicyclohexyl carboxylic acid 2CCA-1 as a potent inducer of autolysin-mediated lysis of S. pneumoniae, while having low activity against Staphylococcus aureus. 2CCA-1-resistant strains were found to have inactivating mutations in fakB3, known to be required for uptake of host polyunsaturated fatty acids, as well as through inactivation of the transcriptional regulator gene fabT, vital for endogenous, de novo fatty acid synthesis regulation. Structure activity relationship exploration revealed that, besides the central dicyclohexyl group, the fatty acid-like structural features of 2CCA-1 were essential for its activity. The lysis-inducing activity of 2CCA-1 was considerably more potent than that of free fatty acids and required growing bacteria, suggesting that 2CCA-1 needs to be metabolized to exert its antimicrobial activity. Total lipid analysis of 2CCA-1 treated bacteria identified unique masses that were modeled to 2CCA-1 containing lysophosphatidic and phosphatidic acid in wild-type but not in fakB3 mutant bacteria. This suggests that 2CCA-1 is metabolized as a fatty acid via FakB3 and utilized as a phospholipid building block, leading to accumulation of toxic phospholipid species. Analysis of FabT-mediated fakB3 expression elucidates how the pneumococcus could ensure membrane homeostasis and concurrent economic use of host-derived fatty acids.
Collapse
|
21
|
Neville SL, Eijkelkamp BA, Lothian A, Paton JC, Roberts BR, Rosch JW, McDevitt CA. Cadmium stress dictates central carbon flux and alters membrane composition in Streptococcus pneumoniae. Commun Biol 2020; 3:694. [PMID: 33214631 PMCID: PMC7678824 DOI: 10.1038/s42003-020-01417-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 10/23/2020] [Indexed: 12/12/2022] Open
Abstract
Metal ion homeostasis is essential for all forms of life. However, the breadth of intracellular impacts that arise upon dysregulation of metal ion homeostasis remain to be elucidated. Here, we used cadmium, a non-physiological metal ion, to investigate how the bacterial pathogen, Streptococcus pneumoniae, resists metal ion stress and dyshomeostasis. By combining transcriptomics, metabolomics and metalloproteomics, we reveal that cadmium stress dysregulates numerous essential cellular pathways including central carbon metabolism, lipid membrane biogenesis and homeostasis, and capsule production at the transcriptional and/or functional level. Despite the breadth of cellular pathways susceptible to metal intoxication, we show that S. pneumoniae is able to maintain viability by utilizing cellular pathways that are predominately metal-independent, such as the pentose phosphate pathway to maintain energy production. Collectively, this work provides insight into the cellular processes impacted by cadmium and how resistance to metal ion toxicity is achieved in S. pneumoniae. Neville et al. investigate how Streptococcus pneumoniae mitigates metal ion stress. Despite cadmium induced dysregulation of central carbon metabolism and lipid membrane homeostasis, they find that S. pneumoniae can remain viable by selectively utilizing predominately metal-independent cellular pathways. This study provides insights into how bacteria overcome metal ion toxicity.
Collapse
Affiliation(s)
- Stephanie L Neville
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia.
| | - Bart A Eijkelkamp
- College of Science and Engineering, Flinders University, Bedford Park, SA, Australia
| | - Amber Lothian
- Melbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - James C Paton
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA, Australia
| | - Blaine R Roberts
- Melbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia.,Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Jason W Rosch
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Christopher A McDevitt
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
22
|
Werth BJ, Ashford NK, Penewit K, Waalkes A, Holmes EA, Ross DH, Shen T, Hines KM, Salipante SJ, Xu L. Dalbavancin exposure in vitro selects for dalbavancin-non-susceptible and vancomycin-intermediate strains of methicillin-resistant Staphylococcus aureus. Clin Microbiol Infect 2020; 27:910.e1-910.e8. [PMID: 32866650 DOI: 10.1016/j.cmi.2020.08.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 08/13/2020] [Accepted: 08/21/2020] [Indexed: 12/11/2022]
Abstract
OBJECTIVES Dalbavancin is a lipoglycopeptide active against methicillin-resistant Staphylococcus aureus (MRSA). Its long half-life (8.5-16 days) allows for once-weekly or single-dose treatments but could prolong the mutant selection window, promoting resistance and cross-resistance to related antimicrobials such as vancomycin. The objective of this study was to evaluate the capacity of post-distributional pharmacokinetic exposures of dalbavancin to select for resistance and cross-resistance in MRSA. METHODS We simulated average, post-distributional exposures of single-dose (1500 mg) dalbavancin (fCmax 9.9 μg/mL, β-elimination t1/2 204 h) in an in vitro pharmacokinetic/pharmacodynamic (PK/PD) model for 28 days (672 h) against five MRSA strains and one methicillin-susceptible strain (MSSA). Samples were collected at least daily, and surviving colonies were enumerated and screened for resistance on drug-free and dalbavancin-supplemented medium respectively. Isolates from resistance screening plates were subjected to whole-genome sequencing (WGS) and susceptibly testing against dalbavancin, vancomycin, daptomycin, and six β-lactams with varying penicillin-binding protein (PBP) affinities. RESULTS Dalbavancin was bactericidal against most strains for days 1-4 before regrowth of less susceptible subpopulations occurred. Isolates with eight-fold increases in dalbavancin MIC were detected as early as day 4 but increased 64-128-fold in all models by day 28. Vancomycin and daptomycin MICs increased 4-16-fold, exceeding the susceptibly breakpoints for both antibiotics; β-lactam MICs generally decreased by two-to eight-fold, suggesting a dalbavancin-β-lactam seesaw effect, but increased by eight-fold or more in certain isolates. Resistant isolates carried mutations in a variety of genes, most commonly walKR, apt, stp1, and atl. CONCLUSIONS In our in vitro system, post-distributional dalbavancin exposures selected for stable mutants with reduced susceptibility to dalbavancin, vancomycin, and daptomycin, and generally increased susceptibility to β-lactams in all strains of MRSA tested. The clinical significance of these findings remains unclear, but created an opportunity to genotype a unique collection of dalbavancin-resistant strains for the first time. Mutations involved genes previously associated with vancomycin intermediate susceptibility and daptomycin non-susceptibility, most commonly walKR-associated genes.
Collapse
Affiliation(s)
- Brian J Werth
- Department of Pharmacy, School of Pharmacy, University of Washington, Seattle, WA, USA.
| | - Nathaniel K Ashford
- Department of Pharmacy, School of Pharmacy, University of Washington, Seattle, WA, USA
| | - Kelsi Penewit
- Department of Laboratory Medicine, School of Pharmacy, University of Washington, Seattle, WA, USA
| | - Adam Waalkes
- Department of Laboratory Medicine, School of Pharmacy, University of Washington, Seattle, WA, USA
| | - Elizabeth A Holmes
- Department of Laboratory Medicine, School of Pharmacy, University of Washington, Seattle, WA, USA
| | - Dylan H Ross
- Department of Medicinal Chemistry, School of Pharmacy, University of Washington, Seattle, WA, USA
| | - Tianwei Shen
- Department of Medicinal Chemistry, School of Pharmacy, University of Washington, Seattle, WA, USA
| | - Kelly M Hines
- Department of Medicinal Chemistry, School of Pharmacy, University of Washington, Seattle, WA, USA; University of Georgia, Department of Chemistry, Athens, GA, USA
| | - Stephen J Salipante
- Department of Laboratory Medicine, School of Pharmacy, University of Washington, Seattle, WA, USA
| | - Libin Xu
- Department of Medicinal Chemistry, School of Pharmacy, University of Washington, Seattle, WA, USA
| |
Collapse
|
23
|
Lyu Z, Shang Y, Wang X, Wu Y, Zheng J, Liu H, Gong T, Ye L, Qu D. Monoclonal Antibodies Specific to the Extracellular Domain of Histidine Kinase YycG of Staphylococcus epidermidis Inhibit Biofilm Formation. Front Microbiol 2020; 11:1839. [PMID: 32849437 PMCID: PMC7426370 DOI: 10.3389/fmicb.2020.01839] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/14/2020] [Indexed: 01/12/2023] Open
Abstract
Staphylococcus epidermidis is frequently associated with biofilm-related infections. Biofilms drastically reduce the efficacy of conventional antibiotics and the host immune system. In S. epidermidis biofilm formation, a major role is played by the YycG/YycF two-component system, and previous findings have indicated that inhibitors targeting the cytoplasmic HATPase_c domain of YycG kinase in S. epidermidis exhibit bactericidal and biofilm-killing activities. Therefore, we hypothesized that monoclonal antibodies (mAbs) against YycG extracellular (YycGex) domain would block the signal transduction and influence the biofilm formation of S. epidermidis. In this study, we screened out two YycGex-specific mAbs showing the highest affinity for the target, mAbs 2F3 and 1H1. These mAbs inhibited S. epidermidis biofilm formation in a dose-dependent manner, and at a concentration of 160 μg/mL, mAbs 2F3 and 1H1 caused 78.3 and 93.1% biofilm reduction, respectively, relative to normal mouse IgG control. When co-cultivated with YycGex mAbs, S. epidermidis cells showed diminished initial-adherence capacity, and the antibody treatment further led to a marked decrease in the synthesis of polysaccharide intercellular adhesin and in the transcriptional level of genes encoding proteins involved in biofilm formation. Lastly, we determined that the epitopes recognized by the two YycGex mAbs are located within aa 59–70 of the YycGex domain. It indicates that the YycGex domain may be a potential candidate as a vaccine for the prevention of S. epidermidis biofilm infections.
Collapse
Affiliation(s)
- Zhihui Lyu
- Key Laboratory of Medical Molecular Virology of MOE and MOH, Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yongpeng Shang
- Key Laboratory of Medical Molecular Virology of MOE and MOH, Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xiaofei Wang
- Key Laboratory of Medical Molecular Virology of MOE and MOH, Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yang Wu
- Key Laboratory of Medical Molecular Virology of MOE and MOH, Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jinxin Zheng
- Department of Infectious Diseases and Shenzhen Key Lab for Endogenous Infection, Shenzhen Nanshan Hospital, Shenzhen University, Shenzhen, China
| | - Huayong Liu
- Key Laboratory of Medical Molecular Virology of MOE and MOH, Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Ting Gong
- Key Laboratory of Medical Molecular Virology of MOE and MOH, Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Lina Ye
- Key Laboratory of Medical Molecular Virology of MOE and MOH, Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Di Qu
- Key Laboratory of Medical Molecular Virology of MOE and MOH, Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
24
|
Bottagisio M, Soggiu A, Piras C, Bidossi A, Greco V, Pieroni L, Bonizzi L, Roncada P, Lovati AB. Proteomic Analysis Reveals a Biofilm-Like Behavior of Planktonic Aggregates of Staphylococcus epidermidis Grown Under Environmental Pressure/Stress. Front Microbiol 2019; 10:1909. [PMID: 31551940 PMCID: PMC6743020 DOI: 10.3389/fmicb.2019.01909] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 08/05/2019] [Indexed: 01/14/2023] Open
Abstract
Prosthetic joint replacement failure has a huge impact on quality of life and hospitalization costs. A leading cause of prosthetic joint infection is bacteria-forming biofilm on the surface of orthopedic devices. Staphylococcus epidermidis is an emergent, low-virulence pathogen implicated in chronic infections, barely indistinguishable from aseptic loosening when embedded in a mature matrix. The literature on the behavior of quiescent S. epidermidis in mature biofilms is scarce. To fill this gap, we performed comparative analysis of the whole proteomic profiles of two methicillin-resistant S. epidermidis strains growing in planktonic and in sessile form to investigate the molecular mechanisms underlying biofilm stability. After 72-h culture of biofilm-forming S. epidermidis, overexpression of proteins involved in the synthesis of nucleoside triphosphate and polysaccharides was observed, whereas planktonic bacteria expressed proteins linked to stress and anaerobic growth. Cytological analysis was performed to determine why planktonic bacteria unexpectedly expressed proteins typical of sessile culture. Images evidenced that prolonged culture under vigorous agitation can create a stressful growing environment that triggers microorganism aggregation in a biofilm-like matrix as a mechanism to survive harsh conditions. The choice of a unique late time point provided an important clue for future investigations into the biofilm-like behavior of planktonic cells. Our preliminary results may inform comparative proteomic strategies in the study of mature bacterial biofilm. Finally, there is an increasing number of studies on the aggregation of free-floating bacteria embedded in an extracellular matrix, prompting the need to gain further insight into this mode of bacterial growth.
Collapse
Affiliation(s)
- Marta Bottagisio
- IRCCS Istituto Ortopedico Galeazzi, Laboratory of Clinical Chemistry and Microbiology, Milan, Italy
| | - Alessio Soggiu
- Department of Veterinary Medicine (DiMeVet), University of Milan, Milan, Italy
| | - Cristian Piras
- Department of Veterinary Medicine (DiMeVet), University of Milan, Milan, Italy
| | - Alessandro Bidossi
- IRCCS Istituto Ortopedico Galeazzi, Laboratory of Clinical Chemistry and Microbiology, Milan, Italy
| | - Viviana Greco
- Institute of Biochemistry and Clinical Biochemistry, Università Cattolica del Sacro Cuore Roma, Rome, Italy.,Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Luisa Pieroni
- Proteomics and Metabonomics Unit, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Luigi Bonizzi
- Department of Veterinary Medicine (DiMeVet), University of Milan, Milan, Italy
| | - Paola Roncada
- Department of Health Sciences, Università degli Studi "Magna Græcia", Catanzaro, Italy
| | - Arianna B Lovati
- IRCCS Istituto Ortopedico Galeazzi, Cell and Tissue Engineering Laboratory, Milan, Italy
| |
Collapse
|
25
|
Wu X, Song Q, Han A. Interacting proteins of the essential two-component system YycFG in Bacillus subtilis. J Basic Microbiol 2019; 59:950-959. [PMID: 31339578 DOI: 10.1002/jobm.201800701] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 06/14/2019] [Accepted: 06/24/2019] [Indexed: 11/06/2022]
Abstract
Two-component signal transduction systems (TCSs) play a major role in adaption and survival of microorganisms in a dynamic and sometimes dangerous environment. YycFG is an essential TCS for many Gram-positive bacteria, such as Bacillus subtilis, which regulates many important biological processes. However, its functional essentiality remains largely unknown. Here, we report several YycFG interacting proteins through coimmunoprecipitation (Co-IP) and mass spectrometry (MS) analyses. We engineered the B. subtilis genome by a knock-in approach to express YycG with a C-terminal Flag and YycF with an N-terminal HA tag. Immunoprecipitated fractions using anti-Flag or anti-HA agarose were subjected to MS analyses. A total of 41 YycG interacting proteins and four YycF interacting proteins were identified, most of which are involved in cellular metabolic processes, including cell wall synthesis and modification. The interactions of YycG with AsnB and FabL, as examples, were further validated in vitro. This study provided a clue that YycFG may be directly involved in regulation of bacterial central metabolic pathways.
Collapse
Affiliation(s)
- Xuanang Wu
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiang'an, Xiamen, China
| | - Qi Song
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiang'an, Xiamen, China
| | - Aidong Han
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiang'an, Xiamen, China
| |
Collapse
|
26
|
Streptococcus pneumoniae two-component regulatory systems: The interplay of the pneumococcus with its environment. Int J Med Microbiol 2018; 308:722-737. [DOI: 10.1016/j.ijmm.2017.11.012] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 11/21/2017] [Accepted: 11/24/2017] [Indexed: 02/06/2023] Open
|
27
|
Pneumococcal Metabolic Adaptation and Colonization Are Regulated by the Two-Component Regulatory System 08. mSphere 2018; 3:3/3/e00165-18. [PMID: 29769380 PMCID: PMC5956151 DOI: 10.1128/msphere.00165-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 04/30/2018] [Indexed: 01/06/2023] Open
Abstract
Streptococcus pneumoniae interplays with its environment by using 13 two-component regulatory systems and one orphan response regulator. These systems are involved in the sensing of environmental signals, thereby modulating pneumococcal pathophysiology. This study aimed to understand the functional role of genes subject to control by the TCS08. The identified genes play a role in transport of compounds such as sugars or amino acids. In addition, the intermediary metabolism and colonization factors are modulated by TCS08. Thus, TCS08 regulates genes involved in maintaining pneumococcal physiology, transport capacity, and adhesive factors to enable optimal colonization, which represents a prerequisite for invasive pneumococcal disease. Streptococcus pneumoniae two-component regulatory systems (TCS) enable adaptation and ensure its maintenance in host environments. This study deciphers the impact of TCS08 on pneumococcal gene expression and its role in metabolic and pathophysiological processes. Transcriptome analysis and real-time PCR demonstrated a regulatory effect of TCS08 on genes involved mainly in environmental information processing, intermediary metabolism, and colonization by S. pneumoniae D39 and TIGR4. Striking examples are genes for fatty acid biosynthesis, genes of the arginine deiminase system, and the psa operon encoding the manganese ABC transport system. In silico analysis confirmed that TCS08 is homologous to Staphylococcus aureus SaeRS, and a SaeR-like binding motif is displayed in the promoter region of pavB, the upstream gene of the tcs08 operon encoding a surface-exposed adhesin. Indeed, PavB is regulated by TCS08 as confirmed by immunoblotting and surface abundance assays. Similarly, pilus-1 of TIGR4 is regulated by TCS08. Finally, in vivo infections using the acute pneumonia and sepsis models showed a strain-dependent effect. Loss of function of HK08 or TCS08 attenuated D39 virulence in lung infections. The RR08 deficiency attenuated TIGR4 in pneumonia, while there was no effect on sepsis. In contrast, lack of HK08 procured a highly virulent TIGR4 phenotype in both pneumonia and sepsis infections. Taken together, these data indicate the importance of TCS08 in pneumococcal fitness to adapt to the milieu of the respiratory tract during colonization. IMPORTANCEStreptococcus pneumoniae interplays with its environment by using 13 two-component regulatory systems and one orphan response regulator. These systems are involved in the sensing of environmental signals, thereby modulating pneumococcal pathophysiology. This study aimed to understand the functional role of genes subject to control by the TCS08. The identified genes play a role in transport of compounds such as sugars or amino acids. In addition, the intermediary metabolism and colonization factors are modulated by TCS08. Thus, TCS08 regulates genes involved in maintaining pneumococcal physiology, transport capacity, and adhesive factors to enable optimal colonization, which represents a prerequisite for invasive pneumococcal disease.
Collapse
|
28
|
Eijkelkamp BA, Begg SL, Pederick VG, Trapetti C, Gregory MK, Whittall JJ, Paton JC, McDevitt CA. Arachidonic Acid Stress Impacts Pneumococcal Fatty Acid Homeostasis. Front Microbiol 2018; 9:813. [PMID: 29867785 PMCID: PMC5958418 DOI: 10.3389/fmicb.2018.00813] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 04/10/2018] [Indexed: 12/21/2022] Open
Abstract
Free fatty acids hold dual roles during infection, serving to modulate the host immune response while also functioning directly as antimicrobials. Of particular importance are the long chain polyunsaturated fatty acids, which are not commonly found in bacterial organisms, that have been proposed to have antibacterial roles. Arachidonic acid (AA) is a highly abundant long chain polyunsaturated fatty acid and we examined its effect upon Streptococcus pneumoniae. Here, we observed that in a murine model of S. pneumoniae infection the concentration of AA significantly increases in the blood. The impact of AA stress upon the pathogen was then assessed by a combination of biochemical, biophysical and microbiological assays. In vitro bacterial growth and intra-macrophage survival assays revealed that AA has detrimental effects on pneumococcal fitness. Subsequent analyses demonstrated that AA exerts antimicrobial activity via insertion into the pneumococcal membrane, although this did not increase the susceptibility of the bacterium to antibiotic, oxidative or metal ion stress. Transcriptomic profiling showed that AA treatment also resulted in a dramatic down-regulation of the genes involved in fatty acid biosynthesis, in addition to impacts on other metabolic processes, such as carbon-source utilization. Hence, these data reveal that AA has two distinct mechanisms of perturbing the pneumococcal membrane composition. Collectively, this work provides a molecular basis for the antimicrobial contribution of AA to combat pneumococcal infections.
Collapse
Affiliation(s)
- Bart A Eijkelkamp
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Stephanie L Begg
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Victoria G Pederick
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Claudia Trapetti
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Melissa K Gregory
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Jonathan J Whittall
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - James C Paton
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Christopher A McDevitt
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
29
|
Takada H, Yoshikawa H. Essentiality and function of WalK/WalR two-component system: the past, present, and future of research. Biosci Biotechnol Biochem 2018. [PMID: 29514560 DOI: 10.1080/09168451.2018.1444466] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The WalK/WalR two-component system (TCS), originally identified in Bacillus subtilis, is very highly conserved in gram-positive bacteria, including several important pathogens. The WalK/WalR TCS appears to be involved in the growth of most bacterial species encoding it. Previous studies have indicated conserved functions of this system, defining this signal transduction pathway as a crucial regulatory system for cell wall metabolism. Because of such effects on essential functions, this system is considered a potential target for anti-infective therapeutics. In this review, we discuss the role of WalK/WalR TCS in different bacterial cells, focusing on the function of the genes in its regulon as well as the variations in walRK operon structure, its auxiliary proteins, and the composition of its regulon. We also discuss recent experimental data addressing its essential function and the potential type of signal being sensed by B. subtilis. This review also focuses on the potential future research.
Collapse
Affiliation(s)
- Hiraku Takada
- Department of Life Science and Research Center for Life Science, College of Science, Rikkyo University, Tokyo, Japan.,Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | | |
Collapse
|
30
|
Müller A, Grein F, Otto A, Gries K, Orlov D, Zarubaev V, Girard M, Sher X, Shamova O, Roemer T, François P, Becher D, Schneider T, Sahl HG. Differential daptomycin resistance development in Staphylococcus aureus strains with active and mutated gra regulatory systems. Int J Med Microbiol 2017; 308:335-348. [PMID: 29429584 DOI: 10.1016/j.ijmm.2017.12.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 12/13/2017] [Accepted: 12/18/2017] [Indexed: 02/03/2023] Open
Abstract
The first-in-class lipopeptide antibiotic daptomycin (DAP) is highly active against Gram-positive pathogens including ß-lactam and glycopeptide resistant strains. Its molecular mode of action remains enigmatic, since a defined target has not been identified so far and multiple effects, primarily on the cell envelope have been observed. Reduced DAP susceptibility has been described in S. aureus and enterococci after prolonged treatment courses. In line with its pleiotropic antibiotic activities, a unique, defined molecular mechanism of resistance has not emerged, instead non-susceptibility appears often accompanied by alterations in membrane composition and changes in cell wall homeostasis. We compared S. aureus strains HG001 and SG511, which differ primarily in the functionality of the histidine kinase GraS, to evaluate the impact of the GraRS regulatory system on the development of DAP non-susceptibility. After extensive serial passing, both DAPR variants reached a minimal inhibitory concentration of 31 μg/ml and shared some phenotypic characteristics (e.g. thicker cell wall, reduced autolysis). However, based on comprehensive analysis of the underlying genetic, transcriptomic and proteomic changes, we found that both strains took different routes to achieve DAP resistance. Our study highlights the impressive genetic and physiological capacity of S. aureus to counteract pleiotropic activities of cell wall- and membrane-active compounds even when a major cell wall regulatory system is dysfunctional.
Collapse
Affiliation(s)
- Anna Müller
- Institute for Pharmaceutical Microbiology, University Hospital Bonn, University of Bonn, Bonn, Germany; German Center for Infection Research (DZIF), partner site Bonn-Cologne, Bonn.
| | - Fabian Grein
- Institute for Pharmaceutical Microbiology, University Hospital Bonn, University of Bonn, Bonn, Germany; German Center for Infection Research (DZIF), partner site Bonn-Cologne, Bonn
| | - Andreas Otto
- Institute for Microbiology, University of Greifswald, Greifswald, Germany
| | - Kathrin Gries
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Dmitriy Orlov
- Institute for Experimental Medicine, Saint Petersburg, Russia; Saint Petersburg University, Saint Petersburg, Russia
| | - Vladimir Zarubaev
- Pasteur Institute of Epidemiology and Microbiology, Saint Petersburg Russia
| | - Myriam Girard
- Genomic Research Laboratory, Department of Medical Specialties, University Hospitals of Geneva, University of Geneva, Geneva, Switzerland
| | - Xinwei Sher
- Merck & Co., Infectious Diseases, Kenilworth, NJ, USA
| | - Olga Shamova
- Institute for Experimental Medicine, Saint Petersburg, Russia; Saint Petersburg University, Saint Petersburg, Russia
| | | | - Patrice François
- Genomic Research Laboratory, Department of Medical Specialties, University Hospitals of Geneva, University of Geneva, Geneva, Switzerland
| | - Dörte Becher
- Institute for Microbiology, University of Greifswald, Greifswald, Germany
| | - Tanja Schneider
- Institute for Pharmaceutical Microbiology, University Hospital Bonn, University of Bonn, Bonn, Germany; German Center for Infection Research (DZIF), partner site Bonn-Cologne, Bonn
| | - Hans-Georg Sahl
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, Bonn; Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, University of Bonn, Bonn, Germany
| |
Collapse
|
31
|
Characterization of the Mechanisms of Daptomycin Resistance among Gram-Positive Bacterial Pathogens by Multidimensional Lipidomics. mSphere 2017; 2:mSphere00492-17. [PMID: 29242835 PMCID: PMC5729219 DOI: 10.1128/msphere.00492-17] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 11/16/2017] [Indexed: 12/22/2022] Open
Abstract
Previous work suggests that altered lipid metabolism may be associated with daptomycin resistance in Gram-positive pathogens, but lipidomic changes underlying resistance are not fully understood. We performed untargeted lipidomics by using three-dimensional hydrophilic interaction liquid chromatography-ion mobility-mass spectrometry (HILIC-IM-MS) to characterize alterations in the lipidomes of daptomycin-susceptible and -resistant isogenic strain pairs of Enterococcus faecalis, Staphylococcus aureus, and Corynebacterium striatum. We first validated the HILIC-IM-MS method by replicating the expected alterations of phospholipid metabolism in the previously studied E. faecalis strain pairs, such as reduced phosphatidylglycerols (PGs), while also revealing additional changes in cardiolipins (CLs), lysyl-PGs, and glycolipids. Whole-genome sequencing of the S. aureus and C. striatum strains found that daptomycin resistance was associated with mutations in pgsA, which encodes phosphatidylglycerophosphate synthase, as well as mutations in genes affecting fatty acid biosynthesis and cell wall metabolism. Lipidomics revealed significantly decreased levels of PGs, CLs, and amino acid-modified PGs, as well as accumulation of lipids upstream of PGs, such as glycolipids and phosphatidic acids, in the resistant strains. Notably, the glycolipids, diglucosyldiacylglycerols, were significantly elevated in a fatty acid-dependent manner in the daptomycin-resistant S. aureus strain. In daptomycin-resistant C. striatum, which has a unique cell envelope architecture, the glycolipids, glucuronosyldiacylglycerols, and phosphatidylinositols were significantly elevated. These results demonstrate that alteration of lipid metabolism via mutations in pgsA is a common mechanism of daptomycin resistance in two distinct species of Gram-positive bacteria and point to the potential contribution of altered glycolipid and fatty acid compositions to daptomycin resistance. IMPORTANCE This work comprehensively characterizes lipidomic changes underlying daptomycin resistance in three Gram-positive bacterial species, E. faecalis, S. aureus, and C. striatum, by using a novel three-dimensional lipidomics methodology based on advanced mass spectrometry. We demonstrated a number of advantages of our method in comparison with other methods commonly used in the field, such as high molecular specificity, sensitivity, and throughput. Whole-genome sequencing of the S. aureus and C. striatum strains identified mutations in pgsA, which encodes phosphatidylglycerophosphate synthase, in both resistant strains. Lipidomics revealed significantly decreased levels of lipids downstream of PgsA, as well as accumulation of lipids upstream of PgsA in the resistant strains. Furthermore, we found that changes in individual molecular species of each lipid class depend on the their specific fatty acid compositions. The characteristic changes in individual lipid species could be used as biomarkers for identifying underlying resistance mechanisms and for evaluating potential therapies.
Collapse
|
32
|
Hingston P, Chen J, Allen K, Truelstrup Hansen L, Wang S. Strand specific RNA-sequencing and membrane lipid profiling reveals growth phase-dependent cold stress response mechanisms in Listeria monocytogenes. PLoS One 2017; 12:e0180123. [PMID: 28662112 PMCID: PMC5491136 DOI: 10.1371/journal.pone.0180123] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 06/11/2017] [Indexed: 11/19/2022] Open
Abstract
The human pathogen Listeria monocytogenes continues to pose a challenge in the food industry, where it is known to contaminate ready-to-eat foods and grow during refrigerated storage. Increased knowledge of the cold-stress response of this pathogen will enhance the ability to control it in the food-supply-chain. This study utilized strand-specific RNA sequencing and whole cell fatty acid (FA) profiling to characterize the bacterium's cold stress response. RNA and FAs were extracted from a cold-tolerant strain at five time points between early lag phase and late stationary-phase, both at 4°C and 20°C. Overall, more genes (1.3×) were suppressed than induced at 4°C. Late stationary-phase cells exhibited the greatest number (n = 1,431) and magnitude (>1,000-fold) of differentially expressed genes (>2-fold, p<0.05) in response to cold. A core set of 22 genes was upregulated at all growth phases, including nine genes required for branched-chain fatty acid (BCFA) synthesis, the osmolyte transporter genes opuCBCD, and the internalin A and D genes. Genes suppressed at 4°C were largely associated with cobalamin (B12) biosynthesis or the production/export of cell wall components. Antisense transcription accounted for up to 1.6% of total mapped reads with higher levels (2.5×) observed at 4°C than 20°C. The greatest number of upregulated antisense transcripts at 4°C occurred in early lag phase, however, at both temperatures, antisense expression levels were highest in late stationary-phase cells. Cold-induced FA membrane changes included a 15% increase in the proportion of BCFAs and a 15% transient increase in unsaturated FAs between lag and exponential phase. These increases probably reduced the membrane phase transition temperature until optimal levels of BCFAs could be produced. Collectively, this research provides new information regarding cold-induced membrane composition changes in L. monocytogenes, the growth-phase dependency of its cold-stress regulon, and the active roles of antisense transcripts in regulating its cold stress response.
Collapse
Affiliation(s)
- Patricia Hingston
- Department of Food, Nutrition, and Health, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Jessica Chen
- Department of Food, Nutrition, and Health, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Kevin Allen
- Department of Food, Nutrition, and Health, The University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Siyun Wang
- Department of Food, Nutrition, and Health, The University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
33
|
Lv Z, Zhao D, Chang J, Liu H, Wang X, Zheng J, Huang R, Lin Z, Shang Y, Ye L, Wu Y, Han S, Qu D. Anti-bacterial and Anti-biofilm Evaluation of Thiazolopyrimidinone Derivatives Targeting the Histidine Kinase YycG Protein of Staphylococcus epidermidis. Front Microbiol 2017; 8:549. [PMID: 28408903 PMCID: PMC5374206 DOI: 10.3389/fmicb.2017.00549] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 03/16/2017] [Indexed: 01/15/2023] Open
Abstract
Staphylococcus epidermidis is one of the most important opportunistic pathogens in nosocomial infections. The main pathogenicity associated with S. epidermidis involves the formation of biofilms on implanted medical devices, biofilms dramatically decrease the efficacy of conventional antibiotics and the host immune system. This emphasizes the urgent need for designing novel anti-staphylococcal biofilm agents. Based on the findings that compound 5, targeting the histidine kinase domain of S. epidermidis YycG, possessed bactericidal activity against staphylococci, 39 derivatives of compound 5 with intact thiazolopyrimidinone core structures were newly designed, 7 derivatives were further screened to explore their anti-bacterial and anti-biofilm activities. The seven derivatives strongly inhibited the growth of S. epidermidis and Staphylococcus aureus in the minimal inhibitory concentration range of 1.56–6.25 μM. All the derivatives reduced the proportion of viable cells in mature biofilms. They all displayed low cytotoxicity on mammalian cells and were not hemolytic to human erythrocytes. The biofilm inhibition activities of four derivatives (H5-32, H5-33, H5-34, and H5-35) were further investigated under shearing forces, they all led to significant decreases in the biofilm formation of S. epidermidis. These results were suggestive that the seven derivatives of compound 5 have the potential to be developed into agents for eradicating biofilm-associated infections.
Collapse
Affiliation(s)
- Zhihui Lv
- Key Laboratory of Medical Molecular Virology of Ministry of Education and Ministry of Public Health, Institute of Medical Microbiology and Institutes of Biomedical Sciences, Shanghai Medical School of Fudan UniversityShanghai, China
| | - Dan Zhao
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech UniversityNanjing, China
| | - Jun Chang
- Department of Natural Products Chemistry, School of Pharmacy, Fudan UniversityShanghai, China
| | - Huayong Liu
- Key Laboratory of Medical Molecular Virology of Ministry of Education and Ministry of Public Health, Institute of Medical Microbiology and Institutes of Biomedical Sciences, Shanghai Medical School of Fudan UniversityShanghai, China
| | - Xiaofei Wang
- Key Laboratory of Medical Molecular Virology of Ministry of Education and Ministry of Public Health, Institute of Medical Microbiology and Institutes of Biomedical Sciences, Shanghai Medical School of Fudan UniversityShanghai, China
| | - Jinxin Zheng
- Department of Infectious Diseases and Shenzhen Key Lab for Endogenous Infection, Shenzhen Nanshan Hospital, Shenzhen UniversityShenzhen, China
| | - Renzheng Huang
- Department of Gastroenterology, Zhongshan Hospital of Fudan UniversityShanghai, China
| | - Zhiwei Lin
- Key Laboratory of Medical Molecular Virology of Ministry of Education and Ministry of Public Health, Institute of Medical Microbiology and Institutes of Biomedical Sciences, Shanghai Medical School of Fudan UniversityShanghai, China
| | - Yongpeng Shang
- Key Laboratory of Medical Molecular Virology of Ministry of Education and Ministry of Public Health, Institute of Medical Microbiology and Institutes of Biomedical Sciences, Shanghai Medical School of Fudan UniversityShanghai, China
| | - Lina Ye
- Key Laboratory of Medical Molecular Virology of Ministry of Education and Ministry of Public Health, Institute of Medical Microbiology and Institutes of Biomedical Sciences, Shanghai Medical School of Fudan UniversityShanghai, China
| | - Yang Wu
- Key Laboratory of Medical Molecular Virology of Ministry of Education and Ministry of Public Health, Institute of Medical Microbiology and Institutes of Biomedical Sciences, Shanghai Medical School of Fudan UniversityShanghai, China
| | - Shiqing Han
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech UniversityNanjing, China
| | - Di Qu
- Key Laboratory of Medical Molecular Virology of Ministry of Education and Ministry of Public Health, Institute of Medical Microbiology and Institutes of Biomedical Sciences, Shanghai Medical School of Fudan UniversityShanghai, China
| |
Collapse
|
34
|
Stamsås GA, Straume D, Salehian Z, Håvarstein LS. Evidence that pneumococcal WalK is regulated by StkP through protein-protein interaction. MICROBIOLOGY-SGM 2017; 163:383-399. [PMID: 27902439 DOI: 10.1099/mic.0.000404] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
WalRK is the only two-component regulatory system essential for viability in Streptococcus pneumoniae. Despite its importance, the biological role of this system is not well understood. However, previous studies have shown that it has a crucial role in controlling pneumococcal cell division. Considerable efforts have been made to understand how the WalRK system is regulated, but no signal(s) sensed by the WalK histidine kinase has been identified so far. Here, we provide evidence that the serine/threonine protein kinase StkP modulates the activity of WalK through direct protein-protein interaction, suggesting that this interaction is one of the signals sensed by WalK. In most low-G+C content Gram-positive bacteria, WalK orthologues are attached to the cytoplasmic membrane via two transmembrane segments separated by a large extracellular loop believed to function as a sensor domain. In contrast, members of the genus Streptococcus have WalK histidine kinases that are anchored to the cytoplasmic membrane by a single transmembrane segment. It has been a long-standing question whether this segment only serves as a membrane anchor or if it also functions as a signal-sensing domain. Our data strongly support the latter, i.e. that the transmembrane segment senses signals that regulate the activity of WalK.
Collapse
Affiliation(s)
- Gro Anita Stamsås
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, NO-1432 Ås, Norway
| | - Daniel Straume
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, NO-1432 Ås, Norway
| | - Zhian Salehian
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, NO-1432 Ås, Norway
| | - Leiv Sigve Håvarstein
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, NO-1432 Ås, Norway
| |
Collapse
|
35
|
Monedero V, Revilla-Guarinos A, Zúñiga M. Physiological Role of Two-Component Signal Transduction Systems in Food-Associated Lactic Acid Bacteria. ADVANCES IN APPLIED MICROBIOLOGY 2017; 99:1-51. [PMID: 28438266 DOI: 10.1016/bs.aambs.2016.12.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Two-component systems (TCSs) are widespread signal transduction pathways mainly found in bacteria where they play a major role in adaptation to changing environmental conditions. TCSs generally consist of sensor histidine kinases that autophosphorylate in response to a specific stimulus and subsequently transfer the phosphate group to their cognate response regulators thus modulating their activity, usually as transcriptional regulators. In this review we present the current knowledge on the physiological role of TCSs in species of the families Lactobacillaceae and Leuconostocaceae of the group of lactic acid bacteria (LAB). LAB are microorganisms of great relevance for health and food production as the group spans from starter organisms to pathogens. Whereas the role of TCSs in pathogenic LAB (most of them belonging to the family Streptococcaceae) has focused the attention, the roles of TCSs in commensal LAB, such as most species of Lactobacillaceae and Leuconostocaceae, have been somewhat neglected. However, evidence available indicates that TCSs are key players in the regulation of the physiology of these bacteria. The first studies in food-associated LAB showed the involvement of some TCSs in quorum sensing and production of bacteriocins, but subsequent studies have shown that TCSs participate in other physiological processes, such as stress response, regulation of nitrogen metabolism, regulation of malate metabolism, and resistance to antimicrobial peptides, among others.
Collapse
Affiliation(s)
- Vicente Monedero
- Instituto de Agroquímica y Tecnología de Alimentos (CSIC), Paterna, Spain
| | | | - Manuel Zúñiga
- Instituto de Agroquímica y Tecnología de Alimentos (CSIC), Paterna, Spain
| |
Collapse
|
36
|
Deng DM, Liu MJ, ten Cate JM, Crielaard W. The VicRK System of Streptococcus mutans Responds to Oxidative Stress. J Dent Res 2016; 86:606-10. [PMID: 17586705 DOI: 10.1177/154405910708600705] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In Streptococcus mutans, virulence and cariogenicity may be modulated via the two-component regulatory system VicRK. Environmental signals, sensed by VicK, inducing this modulation are still unclear, however, and were investigated in the present study. We found that VicRK displays homology with protein-domains that, in other bacteria, are involved in redox-sensing. After constructing a VicRK-promoter GFP-reporter strain, we showed increased fluorescence intensity under oxidative stress. Potential interference of alternative signals and experimental conditions on GFP expression was excluded by the use of negative and positive control strains. Finally, we constructed a clean vicK knockout mutant, which proved to be more sensitive to H2O2 than the wild-type. In conclusion, this study showed that the VicRK system responds to and protects against oxidative stress. As a result, a link between oxidative/redox stress and the cariogenic nature of S. mutans can be hypothesized.
Collapse
Affiliation(s)
- D M Deng
- Department of Cariology, Academic Centre for Dentistry Amsterdam ACTA, Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
37
|
Mohedano ML, Amblar M, de la Fuente A, Wells JM, López P. The Response Regulator YycF Inhibits Expression of the Fatty Acid Biosynthesis Repressor FabT in Streptococcus pneumoniae. Front Microbiol 2016; 7:1326. [PMID: 27610104 PMCID: PMC4996995 DOI: 10.3389/fmicb.2016.01326] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 08/11/2016] [Indexed: 11/25/2022] Open
Abstract
The YycFG (also known as WalRK, VicRK, MicAB, or TCS02) two-component system (TCS) is highly conserved among Gram-positive bacteria with a low G+C content. In Streptococcus pneumoniae the YycF response regulator has been reported to be essential due to its control of pcsB gene expression. Previously we showed that overexpression of yycF in S. pneumoniae TIGR4 altered the transcription of genes involved in cell wall metabolism and fatty acid biosynthesis, giving rise to anomalous cell division and increased chain length of membrane fatty acids. Here, we have overexpressed the yycFG system in TIGR4 wild-type strain and yycF in a TIGR4 mutant depleted of YycG, and analyzed their effects on expression of proteins involved in fatty acid biosynthesis during activation of the TCS. We demonstrate that transcription of the fab genes and levels of their products were only altered in the YycF overexpressing strain, indicating that the unphosphorylated form of YycF is involved in the regulation of fatty acid biosynthesis. In addition, DNA-binding assays and in vitro transcription experiments with purified YycF and the promoter region of the FabTH-acp operon support a direct inhibition of transcription of the FabT repressor by YycF, thus confirming the role of the unphosphorylated form in transcriptional regulation.
Collapse
Affiliation(s)
- Maria L Mohedano
- Laboratorio de Biología Molecular de Bacterias Gram positivas, Departamento de Microbiología Molecular y Biología de las Infecciones, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas Madrid, Spain
| | - Mónica Amblar
- Unidad de Patología Molecular del Neumococo, Centro Nacional de Microbiología, Instituto de Salud Carlos III Majadahonda, Spain
| | - Alicia de la Fuente
- Laboratorio de Biología Molecular de Bacterias Gram positivas, Departamento de Microbiología Molecular y Biología de las Infecciones, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas Madrid, Spain
| | - Jerry M Wells
- Host-Microbe Interactomics, Animal Sciences Department, University of Wageningen Wageningen, Netherlands
| | - Paloma López
- Laboratorio de Biología Molecular de Bacterias Gram positivas, Departamento de Microbiología Molecular y Biología de las Infecciones, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas Madrid, Spain
| |
Collapse
|
38
|
Putative histidine kinase inhibitors with antibacterial effect against multi-drug resistant clinical isolates identified by in vitro and in silico screens. Sci Rep 2016; 6:26085. [PMID: 27173778 PMCID: PMC4865847 DOI: 10.1038/srep26085] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 03/15/2016] [Indexed: 01/21/2023] Open
Abstract
Novel antibacterials are urgently needed to address the growing problem of bacterial resistance to conventional antibiotics. Two-component systems (TCS) are widely used by bacteria to regulate gene expression in response to various environmental stimuli and physiological stress and have been previously proposed as promising antibacterial targets. TCS consist of a sensor histidine kinase (HK) and an effector response regulator. The HK component contains a highly conserved ATP-binding site that is considered to be a promising target for broad-spectrum antibacterial drugs. Here, we describe the identification of putative HK autophosphorylation inhibitors following two independent experimental approaches: in vitro fragment-based screen via differential scanning fluorimetry and in silico structure-based screening, each followed up by the exploration of analogue compounds as identified by ligand-based similarity searches. Nine of the tested compounds showed antibacterial effect against multi-drug resistant clinical isolates of bacterial pathogens and include three novel scaffolds, which have not been explored so far in other antibacterial compounds. Overall, putative HK autophosphorylation inhibitors were found that together provide a promising starting point for further optimization as antibacterials.
Collapse
|
39
|
Flores-Kim J, Darwin AJ. Regulation of bacterial virulence gene expression by cell envelope stress responses. Virulence 2015; 5:835-51. [PMID: 25603429 DOI: 10.4161/21505594.2014.965580] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The bacterial cytoplasm lies within a multilayered envelope that must be protected from internal and external hazards. This protection is provided by cell envelope stress responses (ESRs), which detect threats and reprogram gene expression to ensure survival. Pathogens frequently need these ESRs to survive inside the host, where their envelopes face dangerous environmental changes and attack from antimicrobial molecules. In addition, some virulence genes have become integrated into ESR regulons. This might be because these genes can protect the cell envelope from damage by host molecules, or it might help ESRs to reduce stress by moderating the assembly of virulence factors within the envelope. Alternatively, it could simply be a mechanism to coordinate the induction of virulence gene expression with entry into the host. Here, we briefly describe some of the bacterial ESRs, followed by examples where they control virulence gene expression in both Gram-negative and Gram-positive pathogens.
Collapse
Key Words
- BFP, bundle-forming pilus
- CAMP, cationic antimicrobial peptide
- CF, cystic fibrosis
- ECF, extracytoplasmic function
- EPEC, enteropathogenic E. coli
- ESR, envelope stress response
- HMV, hypermucoviscosity
- IM, inner membrane
- LPS, lipopolysaccharide
- LTA, lipoteichoic acids
- OM, outer membrane
- OMP, outer membrane protein
- PG, phosphatidylglycerol
- T(2/3/4)SS, type II/III/IV secretion system
- UPEC, uropathogenic E. coli
- WTA, wall teichoic acids
- antimicrobial peptide
- bacterial pathogens
- cell envelope
- gene regulation
- peptidoglycan
- phospholipid
- stress response
- teichoic acid
- virulence gene
Collapse
Affiliation(s)
- Josué Flores-Kim
- a Department of Microbiology ; New York University School of Medicine ; New York , NY USA
| | | |
Collapse
|
40
|
Pöntinen A, Markkula A, Lindström M, Korkeala H. Two-Component-System Histidine Kinases Involved in Growth of Listeria monocytogenes EGD-e at Low Temperatures. Appl Environ Microbiol 2015; 81:3994-4004. [PMID: 25841007 PMCID: PMC4524140 DOI: 10.1128/aem.00626-15] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 03/28/2015] [Indexed: 01/23/2023] Open
Abstract
Two-component systems (TCSs) aid bacteria in adapting to a wide variety of stress conditions. While the role of TCS response regulators in the cold tolerance of the psychrotrophic foodborne pathogen Listeria monocytogenes has been demonstrated previously, no comprehensive studies showing the role of TCS histidine kinases of L. monocytogenes at low temperature have been performed. We compared the expression levels of each histidine kinase-encoding gene of L. monocytogenes EGD-e in logarithmic growth phase at 3°C and 37°C, as well as the expression levels 30 min, 3 h, and 7 h after cold shock at 5°C and preceding cold shock (at 37°C). We constructed a deletion mutation in each TCS histidine kinase gene, monitored the growth of the EGD-e wild-type and mutant strains at 3°C and 37°C, and measured the minimum growth temperature of each strain. Two genes, yycG and lisK, proved significant in regard to induced relative expression levels under cold conditions and cold-sensitive mutant phenotypes. Moreover, the ΔresE mutant showed a lower growth rate than that of wild-type EGD-e at 3°C. Eleven other genes showed upregulated gene expression but revealed no cold-sensitive phenotypes. The results show that the histidine kinases encoded by yycG and lisK are important for the growth and adaptation of L. monocytogenes EGD-e at low temperature.
Collapse
Affiliation(s)
- Anna Pöntinen
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Annukka Markkula
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Miia Lindström
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Hannu Korkeala
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
41
|
Genes Associated with Desiccation and Osmotic Stress in Listeria monocytogenes as Revealed by Insertional Mutagenesis. Appl Environ Microbiol 2015; 81:5350-62. [PMID: 26025900 DOI: 10.1128/aem.01134-15] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 05/22/2015] [Indexed: 12/29/2022] Open
Abstract
Listeria monocytogenes is a foodborne pathogen whose survival in food processing environments may be associated with its tolerance to desiccation. To probe the molecular mechanisms used by this bacterium to adapt to desiccation stress, a transposon library of 11,700 L. monocytogenes mutants was screened, using a microplate assay, for strains displaying increased or decreased desiccation survival (43% relative humidity, 15°C) in tryptic soy broth (TSB). The desiccation phenotypes of selected mutants were subsequently assessed on food-grade stainless steel (SS) coupons in TSB plus 1% glucose (TSB-glu). Single transposon insertions in mutants exhibiting a change in desiccation survival of >0.5 log CFU/cm(2) relative to that of the wild type were determined by sequencing arbitrary PCR products. Strain morphology, motility, and osmotic stress survival (in TSB-glu plus 20% NaCl) were also analyzed. The initial screen selected 129 desiccation-sensitive (DS) and 61 desiccation-tolerant (DT) mutants, out of which secondary screening on SS confirmed 15 DT and 15 DS mutants. Among the DT mutants, seven immotile and flagellum-less strains contained transposons in genes involved in flagellum biosynthesis (fliP, flhB, flgD, flgL) and motor control (motB, fliM, fliY), while others harbored transposons in genes involved in membrane lipid biosynthesis, energy production, potassium uptake, and virulence. The genes that were interrupted in the 15 DS mutants included those involved in energy production, membrane transport, protein metabolism, lipid biosynthesis, oxidative damage control, and putative virulence. Five DT and 14 DS mutants also demonstrated similar significantly (P < 0.05) different survival relative to that of the wild type when exposed to osmotic stress, demonstrating that some genes likely have similar roles in allowing the organism to survive the two water stresses.
Collapse
|
42
|
Heterogeneity of genetic pathways toward daptomycin nonsusceptibility in Staphylococcus aureus determined by adjunctive antibiotics. Antimicrob Agents Chemother 2015; 59:2799-806. [PMID: 25733508 DOI: 10.1128/aac.04990-14] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 02/24/2015] [Indexed: 01/17/2023] Open
Abstract
Daptomycin is increasingly used in combination with other antibiotics to enhance antimicrobial efficacy and/or to mitigate the emergence of daptomycin nonsusceptibility (DNS). This study used a clinical methicillin-resistant Staphylococcus aureus (MRSA) strain in which DNS emerged upon therapy to examine the influence of antibiotic combinations on the development of mutations in specific genes (mprF, rpoBC, dltA, cls2, and yycFG) previously associated with DNS. Whole genomes of bacteria obtained following 28 days of in vitro exposure to daptomycin with or without adjunctive clarithromycin, linezolid, oxacillin, or trimethoprim-sulfamethoxazole were sequenced, and the sequences were compared to that of the progenitor isolate. The addition of oxacillin to medium containing daptomycin prevented the emergence of mprF mutation but did not prevent rpoBC mutation (P < 0.01). These isolates maintained susceptibility to daptomycin during the combined exposure (median MIC, 1 mg/liter). Daptomycin plus clarithromycin or linezolid resulted in low-level (1.5 to 8 mg/liter) and high-level (12 to 96 mg/liter) DNS, respectively, and did not prevent mprF mutation. However, these same combinations prevented rpoBC mutation. Daptomycin alone or combined with linezolid or trimethoprim-sulfamethoxazole resulted in high-level DNS and mutations in mprF plus rpoBC, cls2, and yycFG. Combining daptomycin with different antimicrobials alters the mutational space available for DNS development, thereby favoring the development of predictable collateral susceptibilities.
Collapse
|
43
|
Bem AE, Velikova N, Pellicer MT, Baarlen PV, Marina A, Wells JM. Bacterial histidine kinases as novel antibacterial drug targets. ACS Chem Biol 2015; 10:213-24. [PMID: 25436989 DOI: 10.1021/cb5007135] [Citation(s) in RCA: 149] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Bacterial histidine kinases (HKs) are promising targets for novel antibacterials. Bacterial HKs are part of bacterial two-component systems (TCSs), the main signal transduction pathways in bacteria, regulating various processes including virulence, secretion systems and antibiotic resistance. In this review, we discuss the biological importance of TCSs and bacterial HKs for the discovery of novel antibacterials, as well as published TCS and HK inhibitors that can be used as a starting point for structure-based approaches to develop novel antibacterials.
Collapse
Affiliation(s)
- Agnieszka E. Bem
- Host−Microbe
Interactomics, Wageningen University, De Elst 1, 6708 WD Wageningen, The Netherlands
| | - Nadya Velikova
- Instituto
de Biomedicina
de Valencia-Consejo Superior de Investigaciones Cientificas (IBV-CSIC), Jaume Roig 11, 46010-Valencia, Spain
| | - M. Teresa Pellicer
- R&D Department Interquim, Ferrer HealthTech, Joan Buscalla 10, 08137-Sant Cugat del Valles Barcelona, Spain
| | - Peter van Baarlen
- Host−Microbe
Interactomics, Wageningen University, De Elst 1, 6708 WD Wageningen, The Netherlands
| | - Alberto Marina
- Instituto
de Biomedicina
de Valencia-Consejo Superior de Investigaciones Cientificas (IBV-CSIC), Jaume Roig 11, 46010-Valencia, Spain
- Centro de Investigacion
Biomedica en Red de Enfermedades Raras (CIBER-ISCIII), Jaume Roig 11, 46010-Valencia, Spain
| | - Jerry M. Wells
- Host−Microbe
Interactomics, Wageningen University, De Elst 1, 6708 WD Wageningen, The Netherlands
| |
Collapse
|
44
|
Mohedano ML, García-Cayuela T, Pérez-Ramos A, Gaiser RA, Requena T, López P. Construction and validation of a mCherry protein vector for promoter analysis in Lactobacillus acidophilus. J Ind Microbiol Biotechnol 2014; 42:247-53. [PMID: 25533634 DOI: 10.1007/s10295-014-1567-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 12/12/2014] [Indexed: 01/02/2023]
Abstract
Lactobacilli are widespread in natural environments and are increasingly being investigated as potential health modulators. In this study, we have adapted the broad-host-range vector pNZ8048 to express the mCherry protein (pRCR) to expand the usage of the mCherry protein for analysis of gene expression in Lactobacillus. This vector is also able to replicate in Streptococcus pneumoniae and Escherichia coli. The usage of pRCR as a promoter probe was validated in Lactobacillus acidophilus by characterizing the regulation of lactacin B expression. The results show that the regulation is exerted at the transcriptional level, with lbaB gene expression being specifically induced by co-culture of the L. acidophilus bacteriocin producer and the S. thermophilus STY-31 inducer bacterium.
Collapse
Affiliation(s)
- M Luz Mohedano
- Departamento de Microbiología Molecular y Biología de las Infecciones, Centro de Investigaciones Biológicas (CIB-CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
45
|
Velikova N, Bem AE, van Baarlen P, Wells JM, Marina A. WalK, the Path towards New Antibacterials with Low Potential for Resistance Development. ACS Med Chem Lett 2013; 4:891-4. [PMID: 24900578 DOI: 10.1021/ml400320s] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Resistance to antibiotics used in the treatment of bacterial infectious diseases is a global health problem. More than a decade ago, two-component systems such as WalKR were proposed as ideal targets for the development of new antibiotics. Biochemical screens for WalKR inhibitors using compound libraries have identified many hits, some of which were shown to have non-specific effects. The recently published structures of the S. mutans and B. subtilis WalK provide the opportunity to study inhibitors of WalK autophosphorylation at the atomic level and means to design compounds with improved specificity and affinity using a structure-based approach.
Collapse
Affiliation(s)
- Nadya Velikova
- Instituto
de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas (CSIC), Jaume Roig 11, 46010 Valencia, Spain
| | - Agnieszka E. Bem
- Host−Microbe
Interactomics Chair Group, Animal Sciences, University of Wageningen, 6700 AH Wageningen, The Netherlands
| | - Peter van Baarlen
- Host−Microbe
Interactomics Chair Group, Animal Sciences, University of Wageningen, 6700 AH Wageningen, The Netherlands
| | - Jerry M. Wells
- Host−Microbe
Interactomics Chair Group, Animal Sciences, University of Wageningen, 6700 AH Wageningen, The Netherlands
| | - Alberto Marina
- Instituto
de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas (CSIC), Jaume Roig 11, 46010 Valencia, Spain
- CIBER de Enfermedades
Raras (CIBERER), ISCIII, 46010 Valencia, Spain
| |
Collapse
|
46
|
Bertsche U, Yang SJ, Kuehner D, Wanner S, Mishra NN, Roth T, Nega M, Schneider A, Mayer C, Grau T, Bayer AS, Weidenmaier C. Increased cell wall teichoic acid production and D-alanylation are common phenotypes among daptomycin-resistant methicillin-resistant Staphylococcus aureus (MRSA) clinical isolates. PLoS One 2013; 8:e67398. [PMID: 23785522 PMCID: PMC3681945 DOI: 10.1371/journal.pone.0067398] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Accepted: 05/17/2013] [Indexed: 12/02/2022] Open
Abstract
Multiple mechanisms have been correlated with daptomycin-resistance (DAP-R) in Staphylococcus aureus. However, one common phenotype observed in many DAP-R S. Aureus strains is a thickened cell wall (CW). The first evidence for an impact of CW-linked glycopolymers on this phenotype was recently demonstrated in a single, well-characterized DAP-R methicillin-susceptible S. aureus (MSSA) strain. In this isolate the thickened CW phenotype was linked to an increased production and D-alanylation of wall teichoic acids (WTA). In the current report, we extended these observations to methicillin-resistant daptomycin-sensitive/daptomyin-resistant (DAP-S/DAP-R) strain-pairs. These pairs included methicillin-resistant S. aureus (MRSA) isolates with and without single nucleotide polymorphisms (SNPs) in mprF (a genetic locus linked to DAP-R phenotype). We found increased CW dry mass in all DAP-R vs DAP-S isolates. This correlated with an increased expression of the WTA biosynthesis gene tagA, as well as an increased amount of WTA in the DAP-R vs DAP-S isolates. In addition, all DAP-R isolates showed a higher proportion of WTA D-alanylation vs their corresponding DAP-S isolate. We also detected an increased positive surface charge amongst the DAP-R strains (presumably related to the enhanced D-alanylation). In comparing the detailed CW composition of all isolate pairs, substantive differences were only detected in one DAP-S/DAP-R pair. The thickened CW phenotype, together with an increased surface charge most likely contributes to either: i) a charge-dependent repulsion of calcium complexed-DAP; and/or ii) steric-limited access of DAP to the bacterial cell envelope target. Taken together well-defined perturbations of CW structural and functional metrics contribute to the DAP-R phenotype and are common phenotypes in DAP-R S. Aureus isolates, both MSSA and MRSA. Note: Although “daptomycin-nonsusceptibility” is the generally accepted terminology, we have utilized the term “daptomycin resistance” for ease of presentation in this manuscript
Collapse
Affiliation(s)
- Ute Bertsche
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin, Microbial Genetics, University of Tübingen, Tübingen, Germany
| | - Soo-Jin Yang
- Division of Infectious Diseases, LA Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California, United States of America
- David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Daniel Kuehner
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin, Microbial Genetics, University of Tübingen, Tübingen, Germany
- Cecolabs UG, Tübingen, Germany
| | - Stefanie Wanner
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin, University of Tübingen, Tübingen, Germany
| | - Nagendra N. Mishra
- Division of Infectious Diseases, LA Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California, United States of America
| | - Tobias Roth
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin, Microbial Genetics, University of Tübingen, Tübingen, Germany
| | - Mulugeta Nega
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin, Microbial Genetics, University of Tübingen, Tübingen, Germany
| | - Alexander Schneider
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin, Microbiology/Biotechnology, University of Tübingen, Tübingen, Germany
| | - Christoph Mayer
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin, Microbiology/Biotechnology, University of Tübingen, Tübingen, Germany
| | - Timo Grau
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin, University of Tübingen, Tübingen, Germany
| | - Arnold S. Bayer
- Division of Infectious Diseases, LA Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California, United States of America
- David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Christopher Weidenmaier
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin, University of Tübingen, Tübingen, Germany
- * E-mail:
| |
Collapse
|
47
|
Bayer AS, Schneider T, Sahl HG. Mechanisms of daptomycin resistance in Staphylococcus aureus: role of the cell membrane and cell wall. Ann N Y Acad Sci 2013; 1277:139-58. [PMID: 23215859 PMCID: PMC3556211 DOI: 10.1111/j.1749-6632.2012.06819.x] [Citation(s) in RCA: 232] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The bactericidal, cell membrane-targeting lipopeptide antibiotic daptomycin (DAP) is an important agent in treating invasive Staphylococcus aureus infections. However, there have been numerous recent reports of development of daptomycin resistance (DAP-R) during therapy with this agent. The mechanisms of DAP-R in S. aureus appear to be quite diverse. DAP-R strains often exhibit progressive accumulation of single nucleotide polymorphisms in the multipeptide resistance factor gene (mprF) and the yycFG components of the yycFGHI operon. Both loci are involved in key cell membrane (CM) events, with mprF being responsible for the synthesis and outer CM translocation of the positively charged phospholipid, lysyl-phosphotidylglycerol (L-PG), while the yyc operon is involved in the generalized response to stressors such as antimicrobials. In addition, other perturbations of the CM have been identified in DAP-R strains, including extremes in CM order, resistance to CM depolarization and permeabilization, and reduced surface binding of DAP. Moreover, modifications of the cell wall (CW) appear to also contribute to DAP-R, including enhanced expression of the dlt operon (involved in d-alanylation of CW teichoic acids) and progressive CW thickening.
Collapse
Affiliation(s)
- Arnold S Bayer
- Los Angeles Biomedical Research Institute at Harbor-University of California, Los Angeles, Torrance, California 905092, USA.
| | | | | |
Collapse
|
48
|
The essential yhcSR two-component signal transduction system directly regulates the lac and opuCABCD operons of Staphylococcus aureus. PLoS One 2012; 7:e50608. [PMID: 23226327 PMCID: PMC3511567 DOI: 10.1371/journal.pone.0050608] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Accepted: 10/26/2012] [Indexed: 01/27/2023] Open
Abstract
Our previous studies suggested that the essential two-component signal transduction system, YhcSR, regulates the opuCABCD operon at the transcriptional level, and the Pspac-driven opuCABCD partially complements the lethal effects of yhcS antisense RNA expression in Staphylococcus aureus. However, the reason why yhcSR regulon is required for growth is still unclear. In this report, we present that the lac and opuC operons are directly transcriptionally regulated by YhcSR. Using real-time RT-PCR we showed that the down-regulation of yhcSR expression affected the transcription of lacA encoding galactose-6-phosphotase isomerase subunit LacA, and opuCA encoding a subunit of a glycine betaine/carnitine/choline ABC transporter. Promoter-lux reporter fusion studies further confirmed the transcriptional regulation of lac by YhcSR. Gel shift assays revealed that YhcR binds to the promoter regions of the lac and opuC operons. Moreover, the Pspac-driven lacABC expression in trans was able to partially complement the lethal effect of induced yhcS antisense RNA. Likewise, the Pspac-driven opuCABCD expression in trans complemented the growth defect of S. aureus in a high osmotic strength medium during the depletion of YhcSR. Taken together, the above data indicate that the yhcSR system directly regulates the expression of lac and opuC operons, which, in turn, may be partially associated with the essentiality of yhcSR in S. aureus. These results provide a new insight into the biological functions of the yhcSR, a global regulator.
Collapse
|
49
|
Wayne KJ, Li S, Kazmierczak KM, Tsui HCT, Winkler ME. Involvement of WalK (VicK) phosphatase activity in setting WalR (VicR) response regulator phosphorylation level and limiting cross-talk in Streptococcus pneumoniae D39 cells. Mol Microbiol 2012; 86:645-60. [PMID: 23013245 DOI: 10.1111/mmi.12006] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2012] [Indexed: 11/30/2022]
Abstract
WalRK (YycFG) two-component systems (TCSs) of low-GC Gram-positive bacteria play critical roles in regulating peptidogylcan hydrolase genes involved in cell division and wall stress responses. The WalRK (VicRK) TCSs of Streptococcus pneumoniae (pneumococcus) and other Streptococcus species show numerous differences with those of other low-GC species. Notably, the pneumococcal WalK sensor kinase is not essential for normal growth in culture, unlike its homologues in Bacillus and Staphylococcus species. The WalK sensor kinase possesses histidine autokinase activity and mediates dephosphorylation of phosphorylated WalR∼P response regulator. To understand the contributions of these two WalK activities to pneumococcal growth, we constructed and characterized a set of walK kinase and phosphatase mutants in biochemical reactions and in cells. We identified an amino acid substitution in WalK that significantly reduces phosphatase activity, but not other activities. Comparisons were made between WalRK regulon expression levels and WalR∼P amounts in cells determined by Phos-tag SDS-PAGE. Reduction of WalK phosphatase activity resulted in nearly 90% phosphorylation to WalR∼P, consistent with the conclusion that WalK phosphatase is strongly active in exponentially growing cells. WalK phosphatase activity was also shown to depend on the WalK PAS domain and to limit cross-talk and the recovery of WalR∼P from walK(+) cells.
Collapse
Affiliation(s)
- Kyle J Wayne
- Department of Biology, Indiana University Bloomington, 1001 East Third Street, Bloomington, IN, 47405, USA
| | | | | | | | | |
Collapse
|
50
|
Comparative proteomic analysis of Lactobacillus plantarum WCFS1 and ΔctsR mutant strains under physiological and heat stress conditions. Int J Mol Sci 2012; 13:10680-10696. [PMID: 23109816 PMCID: PMC3472708 DOI: 10.3390/ijms130910680] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 07/31/2012] [Accepted: 08/16/2012] [Indexed: 11/17/2022] Open
Abstract
Among Gram-positive bacteria, CtsR (Class Three Stress gene Repressor) mainly regulates the expression of genes encoding the Clp ATPases and the ClpP protease. To gain a better understanding of the biological significance of the CtsR regulon in response to heat-shock conditions, we performed a global proteomic analysis of Lactobacillus plantarum WCFS1 and ΔctsR mutant strains under optimal or heat stress temperatures. Total protein extracts from bacterial cells were analyzed by two-dimensional gel fractionation. By comparing maps from different culture conditions and different L. plantarum strains, image analysis revealed 23 spots with altered levels of expression. The proteomic analysis of L. plantarum WCFS1 and ctsR mutant strains confirms at the translational level the CtsR-mediated regulation of some members of the Clp family, as well as the heat induction of typical stress response genes. Heat activation of the putative CtsR regulon genes at transcriptional and translational levels, in the ΔctsR mutant, suggests additional regulative mechanisms, as is the case of hsp1. Furthermore, isoforms of ClpE with different molecular mass were found, which might contribute to CtsR quality control. Our results could add new outlooks in order to determine the complex biological role of CtsR-mediated stress response in lactic acid bacteria.
Collapse
|