1
|
Tulin G, Méndez AA, Figueroa NR, Smith C, Folmer MP, Serra D, Wade JT, Checa SK, Soncini FC. Integration of BrfS into the biofilm-controlling cascade promotes sessile Salmonella growth at low temperatures. Biofilm 2025; 9:100254. [PMID: 39927094 PMCID: PMC11804604 DOI: 10.1016/j.bioflm.2025.100254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 01/14/2025] [Accepted: 01/15/2025] [Indexed: 02/11/2025] Open
Abstract
Biofilm formation is stimulated by different stress-related physiological and environmental conditions. In Salmonella and Escherichia coli, curli fibers and phosphoethanolamine-cellulose are the major extracellular components of biofilms. The production of both is under the control of CsgD, a transcriptional regulator whose expression is modulated by a number of factors responding to different signals. The atypical MerR-like regulator MlrA is key in the activation of csgD transcription in both Salmonella and E. coli. Recently, MlrB, a SPI-2-encoded MlrA-like regulator that counteracts MlrA by repressing csgD transcription and biofilm formation inside macrophages was identified. Here, we characterize STM1266, a Salmonella-specific MlrA-like regulator, recently renamed BrfS. In contrast to mlrA, brfS transcription increases in minimal growth media and at 20 °C, a temperature not commonly tested in laboratories. Under these conditions, as well as in salt-limited rich medium, deletion or overexpression of brfS affects extracellular matrix production. Using transcriptomics, we uncovered genes under BrfS control relevant for biofilm formation such as csgB and bapA. Transcriptional analysis of these genes in mutants lacking brfS, csgD or both, indicates that BrfS controls curli biosynthesis both in a CsgD-dependent and independent manner. By contrast, at low temperatures, bapA transcription depends only on BrfS, and neither deletion of csgD nor of mlrA modify its expression. Based on these results, we propose that BrfS contributes to Salmonella persistence in the environment, where the pathogen encounters low temperatures and nutrient limitation.
Collapse
Affiliation(s)
- Gonzalo Tulin
- Instituto de Biología Molecular y Celular de Rosario, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas, Rosario, Argentina
| | - Andrea A.E. Méndez
- Instituto de Biología Molecular y Celular de Rosario, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas, Rosario, Argentina
| | - Nicolás R. Figueroa
- Instituto de Biología Molecular y Celular de Rosario, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas, Rosario, Argentina
- Current position: Centro de Estudios Fotosintéticos y Bioquímicos, Consejo Nacional de Investigaciones Científicas y Técnicas, Rosario, Argentina
| | - Carol Smith
- Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - María P. Folmer
- Instituto de Biología Molecular y Celular de Rosario, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas, Rosario, Argentina
| | - Diego Serra
- Instituto de Biología Molecular y Celular de Rosario, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas, Rosario, Argentina
| | - Joseph T. Wade
- Wadsworth Center, New York State Department of Health, Albany, NY, USA
- Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, NY, USA
- RNA Institute, University at Albany, SUNY, Albany, NY, USA
| | - Susana K. Checa
- Instituto de Biología Molecular y Celular de Rosario, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas, Rosario, Argentina
| | - Fernando C. Soncini
- Instituto de Biología Molecular y Celular de Rosario, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas, Rosario, Argentina
| |
Collapse
|
2
|
Nayak SRR, Pohokar P, Das A, Dhivya L, Pasupuleti M, Soundharrajan I, Almutairi BO, Kumaradoss KM, Arockiaraj J. Chalcone derivative enhance poultry meat preservation through quorum sensing inhibition against Salmonella (Salmonella enterica serovar Typhi) contamination. Food Control 2025; 171:111155. [DOI: 10.1016/j.foodcont.2025.111155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2025]
|
3
|
Pradhan J, Pradhan D, Sahu JK, Mishra S, Mallick S, Das S, Negi VD. A novel rspA gene regulates biofilm formation and virulence of Salmonella Typhimurium. Microb Pathog 2023; 185:106432. [PMID: 37926364 DOI: 10.1016/j.micpath.2023.106432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/26/2023] [Accepted: 10/28/2023] [Indexed: 11/07/2023]
Abstract
Salmonella spp. are facultative anaerobic, Gram-negative, rod-shaped bacteria and belongs to the Enterobacteriaceae family. Although much has been known about Salmonella pathogenesis, the functional characterizations of certain genes are yet to be explored. The rspA (STM14_1818) is one such gene with putative dehydratase function, and its role in pathogenesis is unknown. The background information showed that rspA gene is upregulated in Salmonella when it resides inside macrophages, which led us to investigate its role in Salmonella pathogenesis. We generated the rspA knockout strain and complement strain in S. Typhimurium 14028. Ex-vivo and in-vivo infectivity was looked at macrophage and epithelial cell lines and Caenorhabditis elegans (C. elegans). The mutant strain differentially formed the biofilm at different temperatures by altering the expression of genes involved in the synthesis of cellulose and curli. Besides, the mutant strain is hyperproliferative intracellularly and showed increased bacterial burden in C. elegans. The mutant strain became more infectious and lethal, causing faster death of the worms than the wild type, and also modulates the worm's innate immunity. Thus, we found that the rspA deletion mutant was more pathogenic. In this study, we concluded that the rspA gene differentially regulates the biofilm formation in a temperature dependent manner by modulating the genes involved in the synthesis of cellulose and curli and negatively regulates the Salmonella virulence for longer persistence inside the host.
Collapse
Affiliation(s)
- Jasmin Pradhan
- Laboratory of Infection Immunology, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India.
| | - Diana Pradhan
- Laboratory of Infection Immunology, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India.
| | - Jugal Kishor Sahu
- Laboratory of Infection Immunology, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India.
| | - Satyajit Mishra
- Laboratory of Infection Immunology, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India.
| | - Swarupa Mallick
- Laboratory of Infection Immunology, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India.
| | - Surajit Das
- Laboratory of Infection Immunology, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India.
| | - Vidya Devi Negi
- Laboratory of Infection Immunology, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India.
| |
Collapse
|
4
|
Perry EK, Tan MW. Bacterial biofilms in the human body: prevalence and impacts on health and disease. Front Cell Infect Microbiol 2023; 13:1237164. [PMID: 37712058 PMCID: PMC10499362 DOI: 10.3389/fcimb.2023.1237164] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/11/2023] [Indexed: 09/16/2023] Open
Abstract
Bacterial biofilms can be found in most environments on our planet, and the human body is no exception. Consisting of microbial cells encased in a matrix of extracellular polymers, biofilms enable bacteria to sequester themselves in favorable niches, while also increasing their ability to resist numerous stresses and survive under hostile circumstances. In recent decades, biofilms have increasingly been recognized as a major contributor to the pathogenesis of chronic infections. However, biofilms also occur in or on certain tissues in healthy individuals, and their constituent species are not restricted to canonical pathogens. In this review, we discuss the evidence for where, when, and what types of biofilms occur in the human body, as well as the diverse ways in which they can impact host health under homeostatic and dysbiotic states.
Collapse
Affiliation(s)
| | - Man-Wah Tan
- Department of Infectious Diseases, Genentech, South San Francisco, CA, United States
| |
Collapse
|
5
|
Turner M, Van Hulzen L, Pietri JE. The gut microbiota induces melanin deposits that act as substrates for fimA-mediated aggregation of Salmonella Typhimurium and enhance infection of the German cockroach vector. Microbiol Spectr 2023; 11:e0211923. [PMID: 37606369 PMCID: PMC10580948 DOI: 10.1128/spectrum.02119-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 06/28/2023] [Indexed: 08/23/2023] Open
Abstract
When Salmonella Typhimurium is ingested by German cockroaches, the bacteria replicate in the gut and persist for at least 7 d, enabling transmission in the feces. However, the mechanisms that facilitate survival and persistence in the cockroach gut remain poorly detailed. We previously reported the formation of biofilm-like aggregate populations of S. Typhimurium in the gut of cockroaches upon ingestion. We also reported that deletion of the type-1 fimbrial subunit of S. Typhimurium, fimA, leads to a reduced bacterial load in the cockroach gut. Here, we link these observations and provide further insight into the mechanism and function of S. Typhimurium aggregation in the gut of the cockroach. We show that S. Typhimurium but not Escherichia coli forms aggregated populations in the cockroach gut, and that aggregate formation requires fimA but not the biofilm formation-related genes csgA and csgD. Furthermore, we show that S. Typhimurium aggregates are formed using small granular deposits present in the cockroach gut, which exhibit properties consistent with melanin, as substrates. These melanin deposits are prevalent in the guts of both immature and adult cockroaches from laboratory colonies and are correlated with increased gut bacterial density while being entirely absent in gnotobiotic cockroaches reared without exposure to environmental bacteria, indicating they are induced as a response to the gut microbiota. When cockroaches lacking melanin deposits in the gut are fed S. Typhimurium, they exhibit lower rates of infection than those harboring melanin deposits, demonstrating that microbiota-induced melanin deposits enhance infection of the gut of the vector. IMPORTANCE Cockroaches, including the German cockroach (Blattella germanica), can be both mechanical and biological vectors of pathogenic bacteria. Together, our data reveal a novel mechanism by which S. Typhimurium interacts with the cockroach gut and its microbiota that promotes infection of the vector. These findings exemplify the emerging but underappreciated complexity of the relationship between cockroaches and S. Typhimurium.
Collapse
Affiliation(s)
- Matthew Turner
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, South Dakota, USA
| | - Landen Van Hulzen
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, South Dakota, USA
| | - Jose E. Pietri
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, South Dakota, USA
| |
Collapse
|
6
|
Won K, Kim D, Shin D, Hur J, Lee HK, Heo J, Oh JD. High-throughput sequencing-based metagenomic and transcriptomic analysis of intestine in piglets infected with salmonella. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2022; 64:1144-1172. [PMID: 36812005 PMCID: PMC9890335 DOI: 10.5187/jast.2022.e73] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/17/2022] [Accepted: 09/05/2022] [Indexed: 11/05/2022]
Abstract
Salmonella enterica serovar Typhimurium isolate HJL777 is a virulent bacterial strain in pigs. The high rate of salmonella infection are at high risk of non-typhoidal salmonella gastroenteritis development. Salmonellosis is most common in young pigs. We investigated changes in gut microbiota and biological function in piglets infected with salmonella via analysis of rectal fecal metagenome and intestinal transcriptome using 16S rRNA and RNA sequencing. We identified a decrease in Bacteroides and increase in harmful bacteria such as Spirochaetes and Proteobacteria by microbial community analysis. We predicted that reduction of Bacteroides by salmonella infection causes proliferation of salmonella and harmful bacteria that can cause an intestinal inflammatory response. Functional profiling of microbial communities in piglets with salmonella infection showed increasing lipid metabolism associated with proliferation of harmful bacteria and inflammatory responses. Transcriptome analysis identified 31 differentially expressed genes. Using gene ontology and Innate Immune Database analysis, we identified that BGN, DCN, ZFPM2 and BPI genes were involved in extracellular and immune mechanisms, specifically salmonella adhesion to host cells and inflammatory responses during infection. We confirmed alterations in gut microbiota and biological function during salmonella infection in piglets. Our findings will help prevent disease and improve productivity in the swine industry.
Collapse
Affiliation(s)
- KyeongHye Won
- Department of Animal Biotechnology,
College of Agricultural and Life Sciences, Jeonbuk National
University, Jeonju 54896, Korea
| | - Dohyun Kim
- Department of Animal Biotechnology,
College of Agricultural and Life Sciences, Jeonbuk National
University, Jeonju 54896, Korea
| | - Donghyun Shin
- Department of Agricultural Convergence
Technology, Jeonbuk National University, Jeonju 54896,
Korea
| | - Jin Hur
- Department of Veterinary Public Health,
College of Veterinary Medicine, Jeonbuk National University,
Iksan 54596, Korea
| | - Hak-Kyo Lee
- Department of Animal Biotechnology,
College of Agricultural and Life Sciences, Jeonbuk National
University, Jeonju 54896, Korea,Department of Agricultural Convergence
Technology, Jeonbuk National University, Jeonju 54896,
Korea
| | - Jaeyoung Heo
- Department of Animal Biotechnology,
College of Agricultural and Life Sciences, Jeonbuk National
University, Jeonju 54896, Korea,Corresponding author: Jaeyoung Heo,
Department of Animal Biotechnology, College of Agricultural and Life Sciences,
Jeonbuk National University, Jeonju 54896, Korea. Tel: +82-63-270-2549, E-mail:
| | - Jae-Don Oh
- Department of Animal Biotechnology,
College of Agricultural and Life Sciences, Jeonbuk National
University, Jeonju 54896, Korea,Corresponding author: Jae-Don Oh,
Department of Animal Biotechnology, College of Agricultural and Life Sciences,
Jeonbuk National University, Jeonju 54896, Korea. Tel: +82-63-270-5931, E-mail:
| |
Collapse
|
7
|
Kharadi RR, Sundin GW. CsrD regulates amylovoran biosynthesis and virulence in Erwinia amylovora in a novel cyclic-di-GMP dependent manner. MOLECULAR PLANT PATHOLOGY 2022; 23:1154-1169. [PMID: 35396793 PMCID: PMC9276943 DOI: 10.1111/mpp.13217] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 06/14/2023]
Abstract
Erwinia amylovora is an economically devastating plant pathogen that causes fire blight disease in members of the Rosaceae family, most notably in apple and pear. The exopolysaccharide amylovoran is a pathogenicity determinant in E. amylovora and a major component of the extracellular matrix of biofilms formed within the xylem vasculature of the host plant. The second messenger cyclic-di-GMP (c-di-GMP) has been reported to positively regulate the transcription of amsG (the first gene in the 12-gene amylovoran [ams] biosynthetic operon), thus impacting amylovoran production. However, the regulatory mechanism by which this interaction occurs is largely unknown. Here, we report that c-di-GMP can bind to specific residues in the EAL domain of the E. amylovora protein CsrD. CsrD and RNase E regulate the degradation of the sRNA CsrB in E. amylovora. When CsrD is bound to c-di-GMP, there is an enhancement in the level of RNase E-mediated degradation of CsrB, which then alters amsG transcription. Additionally, csrD was also found to positively contribute to virulence and biofilm formation. We thus present a pathway of conditional regulation of amylovoran production mediated by changing intracellular levels of c-di-GMP, which impacts disease progression.
Collapse
Affiliation(s)
- Roshni R. Kharadi
- Department of Plant, Soil and Microbial SciencesMichigan State UniversityEast LansingMichiganUSA
| | - George W. Sundin
- Department of Plant, Soil and Microbial SciencesMichigan State UniversityEast LansingMichiganUSA
| |
Collapse
|
8
|
Werning ML, Hernández-Alcántara AM, Ruiz MJ, Soto LP, Dueñas MT, López P, Frizzo LS. Biological Functions of Exopolysaccharides from Lactic Acid Bacteria and Their Potential Benefits for Humans and Farmed Animals. Foods 2022; 11:1284. [PMID: 35564008 PMCID: PMC9101012 DOI: 10.3390/foods11091284] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/18/2022] [Accepted: 04/25/2022] [Indexed: 02/04/2023] Open
Abstract
Lactic acid bacteria (LAB) synthesize exopolysaccharides (EPS), which are structurally diverse biopolymers with a broad range of technological properties and bioactivities. There is scientific evidence that these polymers have health-promoting properties. Most commercialized probiotic microorganisms for consumption by humans and farmed animals are LAB and some of them are EPS-producers indicating that some of their beneficial properties could be due to these polymers. Probiotic LAB are currently used to improve human health and for the prevention and treatment of specific pathologic conditions. They are also used in food-producing animal husbandry, mainly due to their abilities to promote growth and inhibit pathogens via different mechanisms, among which the production of EPS could be involved. Thus, the aim of this review is to discuss the current knowledge of the characteristics, usage and biological role of EPS from LAB, as well as their postbiotic action in humans and animals, and to predict the future contribution that they could have on the diet of food animals to improve productivity, animal health status and impact on public health.
Collapse
Affiliation(s)
- María Laura Werning
- Laboratory of Food Analysis “Rodolfo Oscar DALLA SANTINA”, Institute of Veterinary Science (ICiVet Litoral), National University of the Litoral-National, Council of Scientific and Technical Research (UNL/CONICET), Esperanza 3080, SF, Argentina; (M.J.R.); (L.P.S.); (L.S.F.)
| | - Annel M. Hernández-Alcántara
- Department of Microorganisms and Plant Biotechnology, Margarita Salas Center for Biological Research (CIB)-Consejo Superior de Investigaciones Científicas (CSIC), 28040 Madrid, Spain; (A.M.H.-A.); (P.L.)
| | - María Julia Ruiz
- Laboratory of Food Analysis “Rodolfo Oscar DALLA SANTINA”, Institute of Veterinary Science (ICiVet Litoral), National University of the Litoral-National, Council of Scientific and Technical Research (UNL/CONICET), Esperanza 3080, SF, Argentina; (M.J.R.); (L.P.S.); (L.S.F.)
- Department of Animal Health and Preventive Medicine, Faculty of Veterinary Sciences, National University of the Center of the Province of Buenos Aires, Buenos Aires 7000, Argentina
| | - Lorena Paola Soto
- Laboratory of Food Analysis “Rodolfo Oscar DALLA SANTINA”, Institute of Veterinary Science (ICiVet Litoral), National University of the Litoral-National, Council of Scientific and Technical Research (UNL/CONICET), Esperanza 3080, SF, Argentina; (M.J.R.); (L.P.S.); (L.S.F.)
- Department of Public Health, Faculty of Veterinary Science, Litoral National University, Esperanza 3038, Argentina
| | - María Teresa Dueñas
- Department of Applied Chemistry, Faculty of Chemistry, University of the Basque Country (UPV/EHU), 20018 San Sebastián, Spain;
| | - Paloma López
- Department of Microorganisms and Plant Biotechnology, Margarita Salas Center for Biological Research (CIB)-Consejo Superior de Investigaciones Científicas (CSIC), 28040 Madrid, Spain; (A.M.H.-A.); (P.L.)
| | - Laureano Sebastián Frizzo
- Laboratory of Food Analysis “Rodolfo Oscar DALLA SANTINA”, Institute of Veterinary Science (ICiVet Litoral), National University of the Litoral-National, Council of Scientific and Technical Research (UNL/CONICET), Esperanza 3080, SF, Argentina; (M.J.R.); (L.P.S.); (L.S.F.)
- Department of Public Health, Faculty of Veterinary Science, Litoral National University, Esperanza 3038, Argentina
| |
Collapse
|
9
|
Choong FX, Huzell S, Rosenberg M, Eckert JA, Nagaraj M, Zhang T, Melican K, Otzen DE, Richter-Dahlfors A. A semi high-throughput method for real-time monitoring of curli producing Salmonella biofilms on air-solid interfaces. Biofilm 2021; 3:100060. [PMID: 34841245 PMCID: PMC8605384 DOI: 10.1016/j.bioflm.2021.100060] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 11/24/2022] Open
Abstract
Biofilms enable bacteria to colonize numerous ecological niches. Bacteria within a biofilm are protected by the extracellular matrix (ECM), of which the fibril-forming amyloid protein curli and polysaccharide cellulose are major components in members of Salmonella, Eschericha and Mycobacterium genus. A shortage of real-time detection methods has limited our understanding of how ECM production contributes to biofilm formation and pathogenicity. Here we present optotracing as a new semi-high throughput method for dynamic monitoring of Salmonella biofilm growth on air-solid interfaces. We show how an optotracer with binding-induced fluorescence acts as a dynamic fluorescent reporter of curli expression during biofilm formation on agar. Using spectrophotometry and microscopic imaging of fluorescence, we analyse in real-time the development of the curli architecture in relation to bacterial cells. With exceptional spatial and temporal precision, this revealed a well-structured, non-uniform distribution of curli organised in distally projecting radial channel patterns. Dynamic monitoring of the biofilm also showed defined regions undergoing different growth phases. ECM structures were found to assemble in regions of late exponential growth phase, suggesting that ECM forms on site after bacteria colonize the surface. As the optotracer biofilm method expedites screening of curli production, providing exceptional spatial-temporal understanding of the surface-associated biofilm lifestyle, this method adds a new technique to further our understanding of bacterial biofilms. Design and evaluation of a method for real-time biofilm experimentation. Optotracing enables real-time monitoring of biofilm formation on solid supports. Definitive biofilm monitoring by selective tracking of ECM components. A method reducing the inherent biases of morphotyping. A semi-high throughput method increasing the ease and efficiency of biofilm detection.
Collapse
Affiliation(s)
- Ferdinand X Choong
- AIMES - Center for the Advancement of Integrated Medical and Engineering Sciences at Karolinska Institutet and KTH Royal Institute of Technology, Stockholm, Sweden.,Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Smilla Huzell
- AIMES - Center for the Advancement of Integrated Medical and Engineering Sciences at Karolinska Institutet and KTH Royal Institute of Technology, Stockholm, Sweden.,Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Ming Rosenberg
- AIMES - Center for the Advancement of Integrated Medical and Engineering Sciences at Karolinska Institutet and KTH Royal Institute of Technology, Stockholm, Sweden.,Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Johannes A Eckert
- AIMES - Center for the Advancement of Integrated Medical and Engineering Sciences at Karolinska Institutet and KTH Royal Institute of Technology, Stockholm, Sweden.,Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Madhu Nagaraj
- iNANO and Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Tianqi Zhang
- AIMES - Center for the Advancement of Integrated Medical and Engineering Sciences at Karolinska Institutet and KTH Royal Institute of Technology, Stockholm, Sweden.,Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Keira Melican
- AIMES - Center for the Advancement of Integrated Medical and Engineering Sciences at Karolinska Institutet and KTH Royal Institute of Technology, Stockholm, Sweden.,Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Daniel E Otzen
- iNANO and Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Agneta Richter-Dahlfors
- AIMES - Center for the Advancement of Integrated Medical and Engineering Sciences at Karolinska Institutet and KTH Royal Institute of Technology, Stockholm, Sweden.,Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
10
|
Lamprokostopoulou A, Römling U. Yin and Yang of Biofilm Formation and Cyclic di-GMP Signaling of the Gastrointestinal Pathogen Salmonella enterica Serovar Typhimurium. J Innate Immun 2021; 14:275-292. [PMID: 34775379 PMCID: PMC9275015 DOI: 10.1159/000519573] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 08/27/2021] [Indexed: 11/24/2022] Open
Abstract
Within the last 60 years, microbiological research has challenged many dogmas such as bacteria being unicellular microorganisms directed by nutrient sources; these investigations produced new dogmas such as cyclic diguanylate monophosphate (cyclic di-GMP) second messenger signaling as a ubiquitous regulator of the fundamental sessility/motility lifestyle switch on the single-cell level. Successive investigations have not yet challenged this view; however, the complexity of cyclic di-GMP as an intracellular bacterial signal, and, less explored, as an extracellular signaling molecule in combination with the conformational flexibility of the molecule, provides endless opportunities for cross-kingdom interactions. Cyclic di-GMP-directed microbial biofilms commonly stimulate the immune system on a lower level, whereas host-sensed cyclic di-GMP broadly stimulates the innate and adaptive immune responses. Furthermore, while the intracellular second messenger cyclic di-GMP signaling promotes bacterial biofilm formation and chronic infections, oppositely, Salmonella Typhimurium cellulose biofilm inside immune cells is not endorsed. These observations only touch on the complexity of the interaction of biofilm microbial cells with its host. In this review, we describe the Yin and Yang interactive concepts of biofilm formation and cyclic di-GMP signaling using S. Typhimurium as an example.
Collapse
Affiliation(s)
| | - Ute Römling
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
11
|
Abstract
Polysaccharides are often the most abundant antigens found on the extracellular surfaces of bacterial cells. These polysaccharides play key roles in interactions with the outside world, and for many bacterial pathogens, they represent what is presented to the human immune system. As a result, many vaccines have been or currently are being developed against carbohydrate antigens. In this review, we explore the diversity of capsular polysaccharides (CPS) in Salmonella and other selected bacterial species and explain the classification and function of CPS as vaccine antigens. Despite many vaccines being developed using carbohydrate antigens, the low immunogenicity and the diversity of infecting strains and serovars present an antigen formulation challenge to manufacturers. Vaccines tend to focus on common serovars or have changing formulations over time, reflecting the trends in human infection, which can be costly and time-consuming. We summarize the approaches to generate carbohydrate-based vaccines for Salmonella, describe vaccines that are in development and emphasize the need for an effective vaccine against non-typhoidal Salmonella strains.
Collapse
|
12
|
The Abundance and Organization of Salmonella Extracellular Polymeric Substances in Gallbladder-Mimicking Environments and In Vivo. Infect Immun 2021; 89:e0031021. [PMID: 34398679 DOI: 10.1128/iai.00310-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Salmonella enterica serovar Typhi (S. Typhi) causes chronic infections by establishing biofilms on cholesterol gallstones. Production of extracellular polymeric substances (EPSs) is key to biofilm development and biofilm architecture depends on which EPSs are made. The presence and spatial distribution of Salmonella EPSs produced in vitro and in vivo were investigated in S. Typhimurium and S. Typhi biofilms by confocal microscopy. Comparisons between serovars and EPS-mutant bacteria were examined by growth on cholesterol-coated surfaces, with human gallstones in ox or human bile, and in mice with gallstones. On cholesterol-coated surfaces, major differences in EPS biomass were not found between serovars. Co-culture biofilms containing wild-type (WT) and EPS-mutant bacteria demonstrated WT compensation for EPS mutations. Biofilm EPS analysis from gallbladder-mimicking conditions found that culture in human bile more consistently replicated the relative abundance and spatial organization of each EPS on gallstones from the chronic mouse model than culture in ox bile. S. Typhimurium biofilms cultured in vitro on gallstones in ox bile exhibited co-localized pairings of curli fimbriae/lipopolysaccharide and O antigen capsule/cellulose while these associations were not present in S. Typhi biofilms or in mouse gallstone biofilms. In general, inclusion of human bile with gallstones in vitro replicated biofilm development on gallstones in vivo, demonstrating its strength as a model for studying biofilm parameters or EPS-directed therapeutic treatments.
Collapse
|
13
|
Vasicek EM, O'Neal L, Parsek MR, Fitch J, White P, Gunn JS. L-Arabinose Transport and Metabolism in Salmonella Influences Biofilm Formation. Front Cell Infect Microbiol 2021; 11:698146. [PMID: 34368016 PMCID: PMC8341724 DOI: 10.3389/fcimb.2021.698146] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/21/2021] [Indexed: 11/28/2022] Open
Abstract
L-arabinose inducible promoters are commonly used in gene expression analysis. However, nutrient source and availability also play a role in biofilm formation; therefore, L-arabinose metabolism could impact biofilm development. In this study we examined the impact of L-arabinose on Salmonella enterica serovar Typhimurium (S. Typhimurium) biofilm formation. Using mutants impaired for the transport and metabolism of L-arabinose, we showed that L-arabinose metabolism negatively impacts S. Typhimurium biofilm formation in vitro. When L-arabinose metabolism is abrogated, biofilm formation returned to baseline levels. However, without the ability to import extracellular L-arabinose, biofilm formation significantly increased. Using RNA-Seq we identified several gene families involved in these different phenotypes including curli expression, amino acid synthesis, and L-arabinose metabolism. Several individual candidate genes were tested for their involvement in the L-arabinose-mediated biofilm phenotypes, but most played no significant role. Interestingly, in the presence of L-arabinose the diguanylate cyclase gene adrA was downregulated in wild type S. Typhimurium. Meanwhile cyaA, encoding an adenylate cyclase, was downregulated in an L-arabinose transport mutant. Using an IPTG-inducible plasmid to deplete c-di-GMP via vieA expression, we were able to abolish the increased biofilm phenotype seen in the transport mutant. However, the mechanism by which the L-arabinose import mutant forms significantly larger biofilms remains to be determined. Regardless, these data suggest that L-arabinose metabolism influences intracellular c-di-GMP levels and therefore biofilm formation. These findings are important when considering the use of an L-arabinose inducible promoter in biofilm conditions.
Collapse
Affiliation(s)
- Erin M Vasicek
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, OH, United States.,Infectious Diseases Institute, The Ohio State University, Columbus, OH, United States.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, United States
| | - Lindsey O'Neal
- Department of Microbiology, University of Washington, Seattle, WA, United States
| | - Matthew R Parsek
- Department of Microbiology, University of Washington, Seattle, WA, United States
| | - James Fitch
- The Institute for Genomic Medicine, The Research Institute at Nationwide Children's Hospital, Columbus, OH, United States
| | - Peter White
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, United States.,The Institute for Genomic Medicine, The Research Institute at Nationwide Children's Hospital, Columbus, OH, United States
| | - John S Gunn
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, OH, United States.,Infectious Diseases Institute, The Ohio State University, Columbus, OH, United States.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, United States
| |
Collapse
|
14
|
Flores Monter YM, Chaves A, Arellano-Reynoso B, López-Pérez AM, Suzán-Azpiri H, Suzán G. Edaphoclimatic seasonal trends and variations of the Salmonella spp. infection in Northwestern Mexico. Infect Dis Model 2021; 6:805-819. [PMID: 34258482 PMCID: PMC8237282 DOI: 10.1016/j.idm.2021.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/18/2021] [Accepted: 05/16/2021] [Indexed: 11/25/2022] Open
Abstract
Currently, Salmonella spp. is the bacterium causing the highest number of food-borne diseases (FADs) in the world. It is primarily associated with contaminated water used to that irrigates crops from intensive livestock farming. However, literature emphasizes that the reservoirs for Salmonella spp. remain in wildlife and there are unconventional sources or secondary reservoirs, such as soil. Human soil-borne diseases have not been modeled in spatial scenarios, and therefore it is necessary to consider soil and other climatic factors to anticipate the emergence of new strains or serotypes with potential threat to public and animal health. The objective of this research was to investigate whether edaphic and climatic factors are associated with the occurrence and prevalence of Salmonella spp. in Northwestern Mexico. We estimated the potential distribution of Salmonella spp. with an interpolation method of unsampled kriging areas for 15 environmental variables, considering that these factors have a seasonal dynamic of change during the year and modifications in longer periods. Subsequently, a database was generated with human salmonellosis cases reported in the epidemiological bulletins of the National System of Epidemiological Surveillance (SIVE). For the Northwest region, there were 30,595 human cases of paratyphoid and other salmonellosis reported have been reported in Baja California state, 71,462 in Chihuahua, and 16,247 in Sonora from 2002 to 2019. The highest prevalence was identified in areas with higher temperatures between 35 and 37 °C, and precipitation greater than 1000 mm. The edaphic variables limited the prevalence and geographical distribution of Salmonella spp., because the region is characterized by presenting a low percentage of organic matter (≤4.3), and most of the territory is classified as aridic and xeric, which implies that the humidity comprises ≤ 180 days a year. Finally, the seasonal time series indicated that in the states of Baja California and Chihuahua the rainy quarter of the year is 18.7% and 17.01% above a typical quarter respectively, while for Sonora the warmest quarter is 23.3%. It is necessary to deepen the relationship between different soil characteristics and climate elements such as temperature and precipitation, which influence the distribution of different soil-transmitted diseases.
Collapse
Affiliation(s)
- Yasiri Mayeli Flores Monter
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, México City, 04510, Mexico
| | - Andrea Chaves
- Escuela de Biología, Universidad de Costa Rica, San José, 11501-2060, Costa Rica
| | - Beatriz Arellano-Reynoso
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, México City, 04510, Mexico
| | - Andrés Mauricio López-Pérez
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA, 95695, United States
| | | | - Gerardo Suzán
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, México City, 04510, Mexico
| |
Collapse
|
15
|
Konduri R, Saiabhilash CR, Shivaji S. Biofilm-Forming Potential of Ocular Fluid Staphylococcus aureus and Staphylococcus epidermidis on Ex Vivo Human Corneas from Attachment to Dispersal Phase. Microorganisms 2021; 9:microorganisms9061124. [PMID: 34067392 PMCID: PMC8224674 DOI: 10.3390/microorganisms9061124] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 12/14/2022] Open
Abstract
The biofilm-forming potential of Staphylococcus aureus and Staphylococcus epidermidis, isolated from patients with Endophthalmitis, was monitored using glass cover slips and cadaveric corneas as substrata. Both the ocular fluid isolates exhibited biofilm-forming potential by the Congo red agar, Crystal violet and 2,3-bis (2-methoxy-4-nitro-5-sulfophenyl)-5-(phenylamino) carbonyl-2H-tetra-zolium hydroxide (XTT) methods. Confocal microscopy demonstrated that the thickness of the biofilm increased from 4–120 h of biofilm formation. Scanning electron microscopic studies indicated that the biofilms grown on cover slips and ex vivo corneas of both the isolates go through an adhesion phase at 4 h followed by multilayer clumping of cells with intercellular connections and copious amounts of extracellular polymeric substance. Clumps subsequently formed columns and eventually single cells were visible indicative of dispersal phase. Biofilm formation was more rapid when the cornea was used as a substratum. In the biofilms grown on corneas, clumping of cells, formation of 3D structures and final appearance of single cells indicative of dispersal phase occurred by 48 h compared to 96–120 h when biofilms were grown on cover slips. In the biofilm phase, both were several-fold more resistant to antibiotics compared to planktonic cells. This is the first study on biofilm forming potential of ocular fluid S. aureus and S. epidermidis on cadaveric cornea, from attachment to dispersal phase of biofilm formation.
Collapse
|
16
|
Ray S, Da Costa R, Thakur S, Nandi D. Salmonella Typhimurium encoded cold shock protein E is essential for motility and biofilm formation. MICROBIOLOGY-SGM 2021; 166:460-473. [PMID: 32159509 DOI: 10.1099/mic.0.000900] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The ability of bacteria to form biofilms increases their survival under adverse environmental conditions. Biofilms have enormous medical and environmental impact; consequently, the factors that influence biofilm formation are an important area of study. In this investigation, the roles of two cold shock proteins (CSP) during biofilm formation were investigated in Salmonella Typhimurium, which is a major foodborne pathogen. Among all CSP transcripts studied, the expression of cspE (STM14_0732) was higher during biofilm growth. The cspE deletion strain (ΔcspE) did not form biofilms on a cholesterol coated glass surface; however, complementation with WT cspE, but not the F30V mutant, was able to rescue this phenotype. Transcript levels of other CSPs demonstrated up-regulation of cspA (STM14_4399) in ΔcspE. The cspA deletion strain (ΔcspA) did not affect biofilm formation; however, ΔcspEΔcspA exhibited higher biofilm formation compared to ΔcspE. Most likely, the higher cspA amounts in ΔcspE reduced biofilm formation, which was corroborated using cspA over-expression studies. Further functional studies revealed that ΔcspE and ΔcspEΔcspA exhibited slow swimming but no swarming motility. Although cspA over-expression did not affect motility, cspE complementation restored the swarming motility of ΔcspE. The transcript levels of the major genes involved in motility in ΔcspE demonstrated lower expression of the class III (fliC, motA, cheY), but not class I (flhD) or class II (fliA, fliL), flagellar regulon genes. Overall, this study has identified the interplay of two CSPs in regulating two biological processes: CspE is essential for motility in a CspA-independent manner whereas biofilm formation is CspA-dependent.
Collapse
Affiliation(s)
- Semanti Ray
- Department of Biochemistry, Indian Institute of Science, Bangalore-560012, India
| | - Rochelle Da Costa
- Department of Biochemistry, Indian Institute of Science, Bangalore-560012, India
| | - Samriddhi Thakur
- Department of Undergraduate Studies, Indian Insitute of Science, Bangalore-560012, India
| | - Dipankar Nandi
- Department of Biochemistry, Indian Institute of Science, Bangalore-560012, India
| |
Collapse
|
17
|
Elhenawy W, Hordienko S, Gould S, Oberc AM, Tsai CN, Hubbard TP, Waldor MK, Coombes BK. High-throughput fitness screening and transcriptomics identify a role for a type IV secretion system in the pathogenesis of Crohn's disease-associated Escherichia coli. Nat Commun 2021; 12:2032. [PMID: 33795670 PMCID: PMC8016931 DOI: 10.1038/s41467-021-22306-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 03/05/2021] [Indexed: 02/06/2023] Open
Abstract
Adherent-invasive Escherichia coli (AIEC) are pathogenic bacteria frequently isolated from patients who have Crohn's disease (CD). Despite the phenotypic differences between AIEC and commensal E. coli, comparative genomic approaches have been unable to differentiate these two groups, making the identification of key virulence factors a challenge. Here, we conduct a high-resolution, in vivo genetic screen to map AIEC genes required for intestinal colonization of mice. In addition, we use in vivo RNA-sequencing to define the host-associated AIEC transcriptome. We identify diverse metabolic pathways required for efficient gut colonization by AIEC and show that a type IV secretion system (T4SS) is required to form biofilms on the surface of epithelial cells, thereby promoting AIEC persistence in the gut. E. coli isolated from CD patients are enriched for a T4SS, suggesting a possible connection to disease activity. Our findings establish the T4SS as a principal AIEC colonization factor and highlight the use of genome-wide screens in decoding the infection biology of CD-associated bacteria that otherwise lack a defined genetic signature.
Collapse
Affiliation(s)
- Wael Elhenawy
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, Hamilton, ON, Canada
| | - Sarah Hordienko
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Steven Gould
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Alexander M Oberc
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Caressa N Tsai
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Troy P Hubbard
- Division of Infectious Diseases, Brigham & Women's Hospital, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Matthew K Waldor
- Division of Infectious Diseases, Brigham & Women's Hospital, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Boston, MA, USA
| | - Brian K Coombes
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada.
- Michael G. DeGroote Institute for Infectious Disease Research, Hamilton, ON, Canada.
- Farncombe Family Digestive Health Research Institute, Hamilton, ON, Canada.
| |
Collapse
|
18
|
Sokaribo AS, Perera SR, Sereggela Z, Krochak R, Balezantis LR, Xing X, Lam S, Deck W, Attah-Poku S, Abbott DW, Tamuly S, White AP. A GMMA-CPS-Based Vaccine for Non-Typhoidal Salmonella. Vaccines (Basel) 2021; 9:vaccines9020165. [PMID: 33671372 PMCID: PMC7922415 DOI: 10.3390/vaccines9020165] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 11/16/2022] Open
Abstract
Non-typhoidal Salmonella are a major cause of gastroenteritis worldwide, as well as causing bloodstream infections in sub-Saharan Africa with a high fatality rate. No vaccine is currently available for human use. Current vaccine development strategies are focused on capsular polysaccharides (CPS) present on the surface of non-typhoidal Salmonella. This study aimed to boost the amount of CPS purified from S. Typhimurium for immunization trials. Random mutagenesis with Tn10 transposon increased the production of CPS colanic acid, by 10-fold compared to wildtype. Immunization with colanic acid or colanic acid conjugated to truncated glycoprotein D or inactivated diphtheria toxin did not induce a protective immune response in mice. However, immunization with Generalized Modules for Membrane Antigens (GMMAs) isolated from colanic acid overproducing isolates reduced Salmonella colonization in mice. Our results support the development of a GMMA-CPS-based vaccine against non-typhoidal Salmonella.
Collapse
Affiliation(s)
- Akosiererem S. Sokaribo
- Vaccine and Infectious Disease Organization-International Vaccine Centre, Saskatoon, SK S7N5E3, Canada; (A.S.S.); (S.R.P.); (Z.S.); (R.K.); (L.R.B.); (S.L.); (W.D.); (S.A.-P.)
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N5E5, Canada
| | - Sumudu R. Perera
- Vaccine and Infectious Disease Organization-International Vaccine Centre, Saskatoon, SK S7N5E3, Canada; (A.S.S.); (S.R.P.); (Z.S.); (R.K.); (L.R.B.); (S.L.); (W.D.); (S.A.-P.)
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N5E5, Canada
| | - Zoe Sereggela
- Vaccine and Infectious Disease Organization-International Vaccine Centre, Saskatoon, SK S7N5E3, Canada; (A.S.S.); (S.R.P.); (Z.S.); (R.K.); (L.R.B.); (S.L.); (W.D.); (S.A.-P.)
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N5E5, Canada
| | - Ryan Krochak
- Vaccine and Infectious Disease Organization-International Vaccine Centre, Saskatoon, SK S7N5E3, Canada; (A.S.S.); (S.R.P.); (Z.S.); (R.K.); (L.R.B.); (S.L.); (W.D.); (S.A.-P.)
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N5E5, Canada
| | - Lindsay R. Balezantis
- Vaccine and Infectious Disease Organization-International Vaccine Centre, Saskatoon, SK S7N5E3, Canada; (A.S.S.); (S.R.P.); (Z.S.); (R.K.); (L.R.B.); (S.L.); (W.D.); (S.A.-P.)
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N5E5, Canada
| | - Xiaohui Xing
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, AB T1J4B1, Canada; (X.X.); (D.W.A.)
| | - Shirley Lam
- Vaccine and Infectious Disease Organization-International Vaccine Centre, Saskatoon, SK S7N5E3, Canada; (A.S.S.); (S.R.P.); (Z.S.); (R.K.); (L.R.B.); (S.L.); (W.D.); (S.A.-P.)
| | - William Deck
- Vaccine and Infectious Disease Organization-International Vaccine Centre, Saskatoon, SK S7N5E3, Canada; (A.S.S.); (S.R.P.); (Z.S.); (R.K.); (L.R.B.); (S.L.); (W.D.); (S.A.-P.)
| | - Sam Attah-Poku
- Vaccine and Infectious Disease Organization-International Vaccine Centre, Saskatoon, SK S7N5E3, Canada; (A.S.S.); (S.R.P.); (Z.S.); (R.K.); (L.R.B.); (S.L.); (W.D.); (S.A.-P.)
| | - Dennis Wade Abbott
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, AB T1J4B1, Canada; (X.X.); (D.W.A.)
| | - Shantanu Tamuly
- Department of Veterinary Biochemistry, College of Veterinary Science, Assam Agricultural University, Khanapara, Guwahati 781022, Assam, India;
| | - Aaron P. White
- Vaccine and Infectious Disease Organization-International Vaccine Centre, Saskatoon, SK S7N5E3, Canada; (A.S.S.); (S.R.P.); (Z.S.); (R.K.); (L.R.B.); (S.L.); (W.D.); (S.A.-P.)
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N5E5, Canada
- Correspondence: ; Tel.: +01-306-966-7485
| |
Collapse
|
19
|
Harrell JE, Hahn MM, D'Souza SJ, Vasicek EM, Sandala JL, Gunn JS, McLachlan JB. Salmonella Biofilm Formation, Chronic Infection, and Immunity Within the Intestine and Hepatobiliary Tract. Front Cell Infect Microbiol 2021; 10:624622. [PMID: 33604308 PMCID: PMC7885405 DOI: 10.3389/fcimb.2020.624622] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 12/17/2020] [Indexed: 12/12/2022] Open
Abstract
Within the species of Salmonella enterica, there is significant diversity represented among the numerous subspecies and serovars. Collectively, these account for microbes with variable host ranges, from common plant and animal colonizers to extremely pathogenic and human-specific serovars. Despite these differences, many Salmonella species find commonality in the ability to form biofilms and the ability to cause acute, latent, or chronic disease. The exact outcome of infection depends on many factors such as the growth state of Salmonella, the environmental conditions encountered at the time of infection, as well as the infected host and immune response elicited. Here, we review the numerous biofilm lifestyles of Salmonella (on biotic and abiotic surfaces) and how the production of extracellular polymeric substances not only enhances long-term persistence outside the host but also is an essential function in chronic human infections. Furthermore, careful consideration is made for the events during initial infection that allow for gut transcytosis which, in conjunction with host immune functions, often determine the progression of disease. Both typhoidal and non-typhoidal salmonellae can cause chronic and/or secondary infections, thus the adaptive immune responses to both types of bacteria are discussed with particular attention to the differences between Salmonella Typhi, Salmonella Typhimurium, and invasive non-typhoidal Salmonella that can result in differential immune responses. Finally, while strides have been made in our understanding of immunity to Salmonella in the lymphoid organs, fewer definitive studies exist for intestinal and hepatobiliary immunity. By examining our current knowledge and what remains to be determined, we provide insight into new directions in the field of Salmonella immunity, particularly as it relates to chronic infection.
Collapse
Affiliation(s)
- Jaikin E Harrell
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, United States
| | - Mark M Hahn
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, United States.,Infectious Diseases Institute, The Ohio State University, Columbus, OH, United States
| | - Shaina J D'Souza
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, United States
| | - Erin M Vasicek
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, United States.,Infectious Diseases Institute, The Ohio State University, Columbus, OH, United States
| | - Jenna L Sandala
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, United States.,Infectious Diseases Institute, The Ohio State University, Columbus, OH, United States
| | - John S Gunn
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, United States.,Infectious Diseases Institute, The Ohio State University, Columbus, OH, United States.,Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - James B McLachlan
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, United States
| |
Collapse
|
20
|
Lu J, Li L, Pan F, Zuo G, Yu D, Liu R, Fan H, Ma Z. PagC is involved in salmonella pullorum OMVs production and affects biofilm production. Vet Microbiol 2020; 247:108778. [PMID: 32768224 DOI: 10.1016/j.vetmic.2020.108778] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 06/05/2020] [Accepted: 06/20/2020] [Indexed: 12/12/2022]
Abstract
The pagC gene is ubiquitously distributed in Salmonella, but there is limited information regarding its function. Pullorum disease (PD) is a septicemic disease caused by Salmonella Pullorum, which also harbors the pagC gene. In this study, we constructed an S. Pullorum pagC gene deletion strain and its complemented strain. First, we confirmed that the pagC gene does not participate in bacterial growth regulation or environmental pH adaptation. Interestingly, the results of subsequent analyses indicated that the pagC gene defect led to increased bacterial colonization in the intestine (especially in the cecum) and increased biofilm formation, while the number of outer-membrane vesicles (OMVs) in the bacterial culture decreased. Purified OMVs were able to reduce S. Pullorum biofilm formation in vitro. In addition, the results of a mass spectrometry analysis of purified OMVs indicated that some enzymes harbored by OMVs may be involved in biofilm degradation. Based on these results, we conclude that deletion of the pagC gene leads to reduced S. Pullorum OMVs production, which subsequently promotes biofilm stability, increases bacterial colonization in the intestine, and potentially inhibits the switch from sessile to planktonic growth.
Collapse
Affiliation(s)
- Jiaxing Lu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; Ministry of Agriculture Key Laboratory of Animal Bacteriology, Nanjing, 210095, China
| | - Lianyue Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; Ministry of Agriculture Key Laboratory of Animal Bacteriology, Nanjing, 210095, China
| | - Fei Pan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; Ministry of Agriculture Key Laboratory of Animal Bacteriology, Nanjing, 210095, China
| | - Gengliang Zuo
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; Ministry of Agriculture Key Laboratory of Animal Bacteriology, Nanjing, 210095, China
| | - Dandan Yu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; Ministry of Agriculture Key Laboratory of Animal Bacteriology, Nanjing, 210095, China
| | - Runxia Liu
- South Dakota State University, Brookings, SD, 57007, USA
| | - Hongjie Fan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; Ministry of Agriculture Key Laboratory of Animal Bacteriology, Nanjing, 210095, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
| | - Zhe Ma
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; Ministry of Agriculture Key Laboratory of Animal Bacteriology, Nanjing, 210095, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
| |
Collapse
|
21
|
Eran Z, Akçelik M, Yazıcı BC, Özcengiz G, Akçelik N. Regulation of biofilm formation by marT in Salmonella Typhimurium. Mol Biol Rep 2020; 47:5041-5050. [PMID: 32529277 DOI: 10.1007/s11033-020-05573-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 06/05/2020] [Indexed: 11/30/2022]
Abstract
In this study, we aimed at identifying the regulatory role of marT gene, known as the regulator of misL, on 15 different biofilm-related genes in S. Typhimurium 14028 strain. We also tested the strains for their ability to form biofilm and determined the adherence characteristics of the wild type and the mutant strains of the organism on Caco-2 and HEp-2 cells. For comparative analyses of the candidate genes, individual gene mutations were created via antibiotic gene cassette insertion into each gene of interest. marT gene was cloned behind an arabinose inducible BAD promoter in order to control marT expression. This recombinant plasmid was transfer into each of the 15 mutant strains to investigate the level of expression of each single gene in the presence and absence of marT induction. Besides determination of variations in biofilm formation by each mutant strain, the attachment characteristics of them onto Caco-2 and HEp-2 cell lines were also reported. As a result of attachments experiments on polystyrene surfaces, it was determined that the biofilm production capacity of each mutant strain decreased in a statistically significant manner (p < 0.05). QRT-PCR trials indicated that the marT gene regulates the expression of 14 genes, namely fimA, fimD, fimF, fimH, stjB, stjC, csgA, csgD, ompC, sthB, sthE, rmbA, fliZ and yaiC, in a positive manner. QRT-PCR studies were also revealed that the MarT protein positively regulates its own promoter. When the adherence characteristics of the mutant strains and the wild-type were investigated by using Caco-2 and HEp-2 cells, it was determined that the single gene mutations did have no effect on bacterial adhesion. In view of our mutational analyses and biofilm formation studies, it was concluded that fliZ, ompC, rmbA, stjB and stjC genes are related with biofilm formation in Salmonella, besides other cellular functions of them. Taken together, our data suggested that the regulatory role of MarT protein is not only restricted to the regulation of misL gene expression, but it rather acts as a general regulator on the biofilm-related genes in Salmonella.
Collapse
Affiliation(s)
- Zeynep Eran
- Department of Biology, Middle East Technical University, Ankara, Turkey
| | | | | | - Gülay Özcengiz
- Department of Biology, Middle East Technical University, Ankara, Turkey
| | - Nefise Akçelik
- Biotechnology Institute, Ankara University, Ankara, Turkey.
| |
Collapse
|
22
|
M Campos JC, Antunes LCM, Ferreira RBR. Global priority pathogens: virulence, antimicrobial resistance and prospective treatment options. Future Microbiol 2020; 15:649-677. [DOI: 10.2217/fmb-2019-0333] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter spp. and Salmonella spp. are part of a group of pathogens that pose a major threat to human health due to the emergence of multidrug-resistant strains. Moreover, these bacteria have several virulence factors that allow them to successfully colonize their hosts, such as toxins and the ability to produce biofilms, resulting in an urgent need to develop new strategies to fight these pathogens. In this review, we compile the most up-to-date information on the epidemiology, virulence and resistance of these clinically important microorganisms. Additionally, we address new therapeutic alternatives, with a focus on molecules with antivirulence activity, which are considered promising to combat multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Juliana C de M Campos
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luis CM Antunes
- Escola Nacional de Saúde Pública Sergio Arouca, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia de Inovação em Doenças de Populações Negligenciadas, Centro de Desenvolvimento Tecnológico em Saúde, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Rosana BR Ferreira
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
23
|
Transcriptional changes involved in inhibition of biofilm formation by ε-polylysine in Salmonella Typhimurium. Appl Microbiol Biotechnol 2020; 104:5427-5436. [PMID: 32307570 DOI: 10.1007/s00253-020-10575-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 03/05/2020] [Accepted: 03/22/2020] [Indexed: 01/08/2023]
Abstract
The pathogenicity of Salmonella Typhimurium, a foodborne pathogen, is mainly attributed to its ability to form biofilm on food contact surfaces. ε-polylysine, a polymer of positively charged lysine, is reported to inhibit biofilm formation of both gram-positive and gram-negative bacteria. To elucidate the mechanism underlying ε-polylysine-mediated inhibition of biofilm formation, the transcriptional profiles of ε-polylysine-treated and untreated Salmonella Typhimurium cells were comparatively analysed. The genome-wide DNA microarray analysis was performed using Salmonella Typhimurium incubated with 0.001% ε-polylysine in 0.1% Bacto Soytone at 30 °C for 2 h. The expression levels of genes involved in curli amyloid fibres and cellulose production, quorum sensing, and flagellar motility were downregulated, whereas those of genes associated with colanic acid synthesis were upregulated after treatment with ε-polylysine. The microarray results were validated by quantitative real-time polymerase chain reaction (qRT-PCR). Furthermore, treatment with ε-polylysine decreased the production of colanic acid in Salmonella Typhimurium. The findings of this study improved our understanding of the mechanisms underlying ε-polylysine-mediated biofilm inhibition and may contribute to the development of new disinfectants to control biofilm during food manufacturing and storage.
Collapse
|
24
|
Sivasankar C, Jha NK, Ghosh R, Shetty PH. Anti quorum sensing and anti virulence activity of tannic acid and it's potential to breach resistance in Salmonella enterica Typhi / Paratyphi A clinical isolates. Microb Pathog 2019; 138:103813. [PMID: 31654777 DOI: 10.1016/j.micpath.2019.103813] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 09/16/2019] [Accepted: 10/18/2019] [Indexed: 11/28/2022]
Abstract
Salmonella enterica Typhi and Paratyphi A are food borne pathogens causing typhoid, which is one of the most important food borne disease in the developing world. S. Typhi and S. Paratyphi A are of much concern as multi drug resistance has been on the rise. The current study is aimed to screen phytochemicals for anti quorum sensing (QS) activity against S. Typhi and S. Paratyphi A. Upon screening with swarming assay, tannic acid (TA) showed highest anti-QS activity with minimal concentration of 400μg/ml. The anti-QS activity of TA was confirmed with C. violaceum ATCC 12,472. TA showed 38-43% and 35-50% of inhibition in cell surface hydrophobicity and EPS production respectively. Through FTIR analysis, it has been observed that EPS of treated cells has a considerable change in protein and peptide. TA has also exhibited drastic reduction in the surfactant production as high as 85-90%. Blood sensitivity and antibiotic sensitivity assay revealed that TA significantly sensitizes the S. Typhi and S. Paratyphi A cells to immune components in human blood and antibiotics. It has reduced the resistance of S. Typhi and S. Paratyphi A cells against amikacin, ampicillin, ciprofloxacin, azithromycin, chloramphenicol and gentamycin, thus revitalized the usage of these antibiotics against drug resistant S. Typhi and S. Paratyphi A infections. The consistency of anti-QS potential of TA was further evaluated and established with another eight clinical isolates of S. Typhi and S. Paratyphi A. Thus TA has been proved as a promising anti QS agent that can be developed as a therapeutic combination against S. Typhi and S. Paratyphi A.
Collapse
Affiliation(s)
- Chandran Sivasankar
- Department of Food Science and Technology, Pondicherry University, Puducherry, 605014, India
| | - Nisha Kumari Jha
- Department of Food Science and Technology, Pondicherry University, Puducherry, 605014, India
| | - Ruchira Ghosh
- Department of Food Science and Technology, Pondicherry University, Puducherry, 605014, India
| | | |
Collapse
|
25
|
Mechesso AF, Yixian Q, Park SC. Methyl gallate and tylosin synergistically reduce the membrane integrity and intracellular survival of Salmonella Typhimurium. PLoS One 2019; 14:e0221386. [PMID: 31490973 PMCID: PMC6730861 DOI: 10.1371/journal.pone.0221386] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 08/07/2019] [Indexed: 11/18/2022] Open
Abstract
Nymphaea tetragona Georgi (Nymphaceae) is traditionally used in Asia for the treatment of diarrhea, dysentery and fever. The plant contains various active compounds, including methyl gallate (MG) which are reported to inhibit bacterial virulence mechanisms. This study aimed to evaluate the alterations on viability, membrane potential and integrity of Salmonella enterica Serovar Typhimurium exposed to MG in combination with Tylosin (Ty), which is relatively inactive against Gram-negative bacteria, but it is commonly used as a feed additive in livestock. Besides, the effects of sub-inhibitory concentrations of the combination (MT) on the interaction between S. Typhimurium and the host cell, as well as on the indirect host responses, were characterized. Flow cytometry, confocal and electron microscopic examinations were undertaken to determine the effects of MT on S. Typhimurium. The impacts of sub-inhibitory concentrations of MT on biofilm formation, as well as on the adhesion, invasion and intracellular survival of S. Typhimurium were assessed. The result demonstrated significant damage to the bacterial membrane, leakage of cell contents and a reduction in the membrane potential when treated with MT. Sub-inhibitory concentrations of MT significantly reduced (P < 0.05) the biofilm-forming, adhesive and invasive abilities of S. Typhimurium. Exposure to MT drastically reduced the bacterial count in macrophages. Up-regulation of interleukin (IL)-6, IL-8 and IL-10 cytokine genes were detected in intestinal epithelial cells pre-treated with MT. This report is the first to describe the effects of MT against S. Typhimurium. The result indicates a synergistic interaction between MG and Ty against S. Typhimurium. Therefore, the combination may be a promising option to combat S. Typhimurium in swine and, indirectly, safeguard the health of the public.
Collapse
Affiliation(s)
- Abraham Fikru Mechesso
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Bukgu, Daegu, South Korea
| | - Quah Yixian
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Bukgu, Daegu, South Korea
| | - Seung-Chun Park
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Bukgu, Daegu, South Korea
- * E-mail:
| |
Collapse
|
26
|
Odeyemi OA, Abdullah Sani N. Antibiotic resistance, putative virulence factors and curli fimbrination among Cronobacter species. Microb Pathog 2019; 136:103665. [PMID: 31404630 DOI: 10.1016/j.micpath.2019.103665] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 08/09/2019] [Accepted: 08/09/2019] [Indexed: 01/27/2023]
Abstract
This study aimed to investigate antibiotic resistance and putative virulence factors among Cronobacter sakazakii isolated from powdered infant formula and other sources. The following 9 cultures (CR1-9) were collected from our culture collection: C. sakazakii and 3 Cronobacter species: C. sakazakii ATCC® 29544™, C. muytjensii ATCC® 51329™, C. turicensis E866 were used in this study. Isolates were subjected to antibiotic susceptibility and the following virulence factors (protease, DNase, haemolysin, gelatinase, motility and biofilm formation) using phenotypic methods. All the bacteria were able to form biofilm on agar at 37 °C and were resistant to ampicillin, erythromycin, fosfomycin and sulphamethoxazole. It was observed from this study that tested strains formed weak and strong biofilm with violet dry and rough (rdar), brown dry and rough (bdar), red mucoid and smooth (rmas) colony morphotypes on Congo red agar. Rdar expresses curli and fimbriae, while bdar expresses curli. Both biofilm colony morphotypes are commonly found in Enterobacteriaceae including Salmonella species. This study also reveals a new colony morphotypes in Cronobacter species. Conclusively, there was correlation between putative virulence factors and antibiotic resistance among the tested bacteria. Further study on virulence and antibiotic resistance genes is hereby encouraged.
Collapse
Affiliation(s)
- O A Odeyemi
- Aquaculture Microbiology Laboratory, Ecology and Biodiversity Centre, Institute for Marine and Antarctic Studies, University of Tasmania, Launceston, Australia; Food Safety, Security and Quality Research Group, Centre for Biotechnology and Functional Food, Faculty of Science and Technology, National University of Malaysia (UKM), Bangi, 43600, Selangor, Malaysia
| | - N Abdullah Sani
- Food Safety, Security and Quality Research Group, Centre for Biotechnology and Functional Food, Faculty of Science and Technology, National University of Malaysia (UKM), Bangi, 43600, Selangor, Malaysia.
| |
Collapse
|
27
|
Pal S, Verma J, Mallick S, Rastogi SK, Kumar A, Ghosh AS. Absence of the glycosyltransferase WcaJ in Klebsiella pneumoniae ATCC13883 affects biofilm formation, increases polymyxin resistance and reduces murine macrophage activation. Microbiology (Reading) 2019; 165:891-904. [PMID: 31246167 DOI: 10.1099/mic.0.000827] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Shilpa Pal
- Department of Biotechnology, Indian Institute of Technology Kharagpur, West Bengal-721302, India
| | - Jyoti Verma
- Advanced Technology Development Centre, Indian Institute of Technology Kharagpur, West Bengal-721302, India
| | - Sathi Mallick
- Department of Biotechnology, Indian Institute of Technology Kharagpur, West Bengal-721302, India
| | - Sumit Kumar Rastogi
- Department of Biotechnology, Indian Institute of Technology Kharagpur, West Bengal-721302, India
| | - Akash Kumar
- Department of Biotechnology, Indian Institute of Technology Kharagpur, West Bengal-721302, India
| | - Anindya S. Ghosh
- Department of Biotechnology, Indian Institute of Technology Kharagpur, West Bengal-721302, India
| |
Collapse
|
28
|
Ranjith K, Ramchiary J, Prakash JSS, Arunasri K, Sharma S, Shivaji S. Gene Targets in Ocular Pathogenic Escherichia coli for Mitigation of Biofilm Formation to Overcome Antibiotic Resistance. Front Microbiol 2019; 10:1308. [PMID: 31293528 PMCID: PMC6598151 DOI: 10.3389/fmicb.2019.01308] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 05/27/2019] [Indexed: 11/13/2022] Open
Abstract
The present work is an attempt to establish the functionality of genes involved in biofilm formation and antibiotic resistance in an ocular strain of Escherichia coli (L-1216/2010) which was isolated and characterized from the Vitreous fluid of a patient with Endophthalmitis. For this purpose, seven separate gene-specific knockout mutants were generated by homologous recombination in ocular E. coli. The genes that were mutated included three transmembrane genes ytfR (ABC transporter ATP-binding protein), mdtO (multidrug efflux system) and tolA (inner membrane protein), ryfA coding for non-coding RNA and three metabolic genes mhpA (3-3-hydroxyphenylpropionate 1,2-dioxygenase), mhpB (2,3-di hydroxyphenylpropionate 1,2-dioxygenase), and bdcR (regulatory gene of bdcA). Mutants were validated by sequencing and Reverse transcription-PCR and monitored for biofilm formation by XTT method and confocal microscopy. The antibiotic susceptibility of the mutants was also ascertained. The results indicated that biofilm formation was inhibited in five mutants (ΔbdcR, ΔmhpA, ΔmhpB, ΔryfA, and ΔtolA) and the thickness of biofilm reduced from 17.2 μm in the wildtype to 1.5 to 4.8 μm in the mutants. Mutants ΔytfR and ΔmdtO retained the potential to form biofilm. Complementation of the mutants with the wild type gene restored biofilm formation potential in all mutants except in ΔmhpB. The 5 mutants which lost their ability to form biofilm (ΔbdcR, ΔmhpA, ΔmhpB, ΔtolA, and ΔryfA) did not exhibit any change in their susceptibility to Ceftazidime, Cefuroxime, Ciprofloxacin, Gentamicin, Cefotaxime, Sulfamethoxazole, Imipenem, Erythromycin, and Streptomycin in the planktonic phase compared to wild type ocular E. coli. But ΔmdtO was the only mutant with altered MIC to Sulfamethoxazole, Imipenem, Erythromycin, and Streptomycin both in the planktonic and biofilm phase. This is the first report demonstrating the involvement of the metabolic genes mhpA and mhpB and bdcR (regulatory gene of bdcA) in biofilm formation in ocular E. coli. In addition we provide evidence that tolA and ryfA are required for biofilm formation while ytfR and mdtO are not required. Mitigation of biofilm formation to overcome antibiotic resistance could be achieved by targeting the genes bdcR, mhpA, mhpB, ryfA, and tolA.
Collapse
Affiliation(s)
- Konduri Ranjith
- Jhaveri Microbiology Centre - Prof. Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad, India.,Research Scholar, Manipal Academy of Higher Education, Manipal, India
| | - Jahnabi Ramchiary
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Jogadhenu S S Prakash
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Kotakonda Arunasri
- Jhaveri Microbiology Centre - Prof. Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad, India
| | - Savitri Sharma
- Jhaveri Microbiology Centre - Prof. Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad, India
| | - Sisinthy Shivaji
- Jhaveri Microbiology Centre - Prof. Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad, India
| |
Collapse
|
29
|
Ariafar MN, Iğci N, Akçelik M, Akçelik N. Investigation of the effect of different environmental conditions on biofilm structure of Salmonella enterica serotype Virchow via FTIR spectroscopy. Arch Microbiol 2019; 201:1233-1248. [PMID: 31197408 DOI: 10.1007/s00203-019-01681-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/22/2019] [Accepted: 05/21/2019] [Indexed: 12/11/2022]
Abstract
This study aims to describe the content of polymeric matrix components under different incubation temperatures and pH levels. Optimal biofilm production of 15 S. Virchow isolates occurred following the incubation in LB-NaCl for 72 h, at pH 6.6 and 20 °C. The expression of csgA, csgD, adrA and bcsA genes at 20 °C, 25 °C and 30 °C in S. Virchow DMC18 was analyzed, and it was discovered that the maximum production of cellulose and curli fimbriae occurred at 20 °C. The physical characteristics of pellicle structure of S. Virchow DMC18 was determined as rigid at 20 °C, while becoming fragile at higher temperatures. FTIR analyses confirmed the obtained molecular findings. The intensities of the 16 different peaks originating from carbohydrate, protein, and nucleic acid in the spectra of biofilm samples significantly diminished (p < 0.05) with the increasing temperature. The highest intensities of lipids and carbohydrates were observed at 20 °C indicating the changes in cell surface properties.
Collapse
Affiliation(s)
| | - Nasit Iğci
- Department of Molecular Biology and Genetics, Nevşehir Hacı Bektaş Veli University, Nevşehir, Turkey
| | - Mustafa Akçelik
- Biology Department, Faculty of Science, Ankara University, Ankara, Turkey
| | - Nefise Akçelik
- Biotechnology Institute, Ankara University, Ankara, Turkey.
| |
Collapse
|
30
|
Islam R, Brown S, Taheri A, Dumenyo CK. The Gene Encoding NAD-Dependent Epimerase/Dehydratase, wcaG, Affects Cell Surface Properties, Virulence, and Extracellular Enzyme Production in the Soft Rot Phytopathogen, Pectobacterium carotovorum. Microorganisms 2019; 7:microorganisms7060172. [PMID: 31200539 PMCID: PMC6616942 DOI: 10.3390/microorganisms7060172] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/03/2019] [Accepted: 06/06/2019] [Indexed: 01/03/2023] Open
Abstract
Pectobacterium carotovorum is a gram-negative bacterium that, together with other soft rot Enterobacteriaceae causes soft rot disease in vegetables, fruits, and ornamental plants through the action of exoproteins including plant cell wall-degrading enzymes (PCWDEs). Although pathogenicity in these bacteria is complex, virulence levels are proportional to the levels of plant cell wall-degrading exoenzymes (PCWDEs) secreted. Two low enzyme-producing transposon Tn5 mutants were isolated, and compared to their parent KD100, the mutants were less virulent on celery petioles and carrot disks. The inactivated gene responsible for the reduced virulence phenotype in both mutants was identified as wcaG. The gene, wcaG (previously denoted fcl) encodes NAD-dependent epimerase/dehydratase, a homologue of GDP-fucose synthetase of Escherichia coli. In Escherichia coli, GDP-fucose synthetase is involved in the biosynthesis of the exopolysaccharide, colanic acid (CA). The wcaG mutants of P. carotovorum formed an enhanced level of biofilm in comparison to their parent. In the hydrophobicity test the mutants showed more hydrophobicity than the parent in hexane and hexadecane as solvents. Complementation of the mutants with extrachromosomal copies of the wild type gene restored these functions to parental levels. These data indicate that NAD-dependent epimerase/dehydratase plays a vital rule in cell surface properties, exoenzyme production, and virulence in P. carotovorum.
Collapse
Affiliation(s)
- Rabiul Islam
- Department of Agricultural and Environmental Sciences, Tennessee State University, 3500 John A. Merritt Blvd; Box 9543, Nashville, TN 37209, USA.
| | - Shyretha Brown
- Department of Agricultural and Environmental Sciences, Tennessee State University, 3500 John A. Merritt Blvd; Box 9543, Nashville, TN 37209, USA.
| | - Ali Taheri
- Department of Agricultural and Environmental Sciences, Tennessee State University, 3500 John A. Merritt Blvd; Box 9543, Nashville, TN 37209, USA.
| | - C Korsi Dumenyo
- Department of Agricultural and Environmental Sciences, Tennessee State University, 3500 John A. Merritt Blvd; Box 9543, Nashville, TN 37209, USA.
| |
Collapse
|
31
|
Salmonella biofilms program innate immunity for persistence in Caenorhabditis elegans. Proc Natl Acad Sci U S A 2019; 116:12462-12467. [PMID: 31160462 DOI: 10.1073/pnas.1822018116] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The adaptive in vivo mechanisms underlying the switch in Salmonella enterica lifestyles from the infectious form to a dormant form remain unknown. We employed Caenorhabditis elegans as a heterologous host to understand the temporal dynamics of Salmonella pathogenesis and to identify its lifestyle form in vivo. We discovered that Salmonella exists as sessile aggregates, or in vivo biofilms, in the persistently infected C. elegans gut. In the absence of in vivo biofilms, Salmonella killed the host more rapidly by actively inhibiting innate immune pathways. Regulatory cross-talk between two major Salmonella pathogenicity islands, SPI-1 and SPI-2, was responsible for biofilm-induced changes in host physiology during persistent infection. Thus, biofilm formation is a survival strategy in long-term infections, as prolonging host survival is beneficial for the parasitic lifestyle.
Collapse
|
32
|
Dhakal J, Sharma CS, Nannapaneni R, McDANIEL CD, Kim T, Kiess A. Effect of Chlorine-Induced Sublethal Oxidative Stress on the Biofilm-Forming Ability of Salmonella at Different Temperatures, Nutrient Conditions, and Substrates. J Food Prot 2019; 82:78-92. [PMID: 30586327 DOI: 10.4315/0362-028x.jfp-18-119] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The present study was conducted to evaluate the effect of chlorine-induced oxidative stress on biofilm formation by various Salmonella strains on polystyrene and stainless steel (SS) surfaces at three temperatures (30, 25 [room temperature], and 4°C) in tryptic soy broth (TSB) and 1/10 TSB. Fifteen Salmonella strains (six serotypes) were exposed to a sublethal chlorine concentration (150 ppm of total chlorine) in TSB for 2 h at the predetermined temperatures. The biofilm-forming ability of the Salmonella strains was determined in 96-well polystyrene microtiter plates by using a crystal violet staining method and on SS coupons in 24-well tissue culture plates. All tested strains of Salmonella produced biofilms on both surfaces tested at room temperature and at 30°C. Of the 15 strains tested, none (chlorine stressed and nonstressed) formed biofilm at 4°C. At 30°C, Salmonella Heidelberg (ID 72), Salmonella Newport (ID 107), and Salmonella Typhimurium (ATCC 14028) formed more biofilm than did their respective nonstressed controls on polystyrene ( P ≤ 0.05). At room temperature, only stressed Salmonella Reading (ID 115) in 1/10 TSB had significantly more biofilm formation than did the nonstressed control cells ( P ≤ 0.05). Salmonella strains formed more biofilm in nutrient-deficient medium (1/10 TSB) than in full-strength TSB. At 25°C, chlorine-stressed Salmonella Heidelberg (ATCC 8326) and Salmonella Enteritidis (ATCC 4931) formed stronger biofilms on SS coupons ( P ≤ 0.05) than did the nonstressed cells. These findings suggest that certain strains of Salmonella can produce significantly stronger biofilms on plastic and SS upon exposure to sublethal chlorine.
Collapse
Affiliation(s)
- Janak Dhakal
- 1 Department of Grain Science and Industry, Kansas State University, Manhattan, Kansas 66506
| | - Chander S Sharma
- 2 Department of Poultry Science, Mississippi State University, Starkville, Mississippi 39762
| | - Ramakrishna Nannapaneni
- 3 Department of Food, Nutrition, and Health Promotion, Mississippi State University, Starkville, Mississippi 39762
| | - Christopher D McDANIEL
- 2 Department of Poultry Science, Mississippi State University, Starkville, Mississippi 39762
| | - Taejo Kim
- 4 Food and Nutrition Department, University of Wisconsin, Menomonie, Wisconsin 54751, USA
| | - Aaron Kiess
- 2 Department of Poultry Science, Mississippi State University, Starkville, Mississippi 39762
| |
Collapse
|
33
|
Exopolymeric substances (EPS) from Salmonella enterica: polymers, proteins and their interactions with plants and abiotic surfaces. J Microbiol 2018; 57:1-8. [DOI: 10.1007/s12275-019-8353-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 09/06/2018] [Accepted: 09/06/2018] [Indexed: 11/26/2022]
|
34
|
Charlebois A, Jacques M, Archambault M. Comparative transcriptomic analysis of Clostridium perfringens biofilms and planktonic cells. Avian Pathol 2018; 45:593-601. [PMID: 27207477 DOI: 10.1080/03079457.2016.1189512] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Clostridium perfringens is an opportunistic pathogen that can cause food poisoning in humans and various enterotoxaemias in animal species. Recently, C. perfringens was shown to form biofilms, a structured community of bacterial cells enclosed in a self-produced extracellular matrix. However, very little is known on the subject and no information is available on gene expression in C. perfringens biofilms. To gain insights into the differences between free-living C. perfringens cells and those in biofilms, we used RNA sequencing. In total, 25.7% of genes showed differential expression in the two growth modes; about 12.8% of genes were up-regulated and about 12.9% were down-regulated in biofilms. We show that 772 genes were significantly differentially expressed between biofilms and planktonic cells from the supernatant of biofilms. Genes that were down-regulated in biofilm cells, relative to planktonic cells, included those involved in virulence, energy production, amino acid, nucleotide and carbohydrate metabolism, and in translation and ribosomal structure. Genes up-regulated in biofilm cells were mainly involved in amino acid and carbohydrate metabolism, transcription, inorganic ion metabolism and in defence mechanisms. This study provides new insights into the transcriptomic response of C. perfringens during biofilm formation.
Collapse
Affiliation(s)
- Audrey Charlebois
- a Faculté de médecine vétérinaire, Département de pathologie et microbiologie, Centre de Recherche en Infectiologie Porcine et Aviaire (CRIPA) , Université de Montréal , Saint-Hyacinthe , Canada
| | - Mario Jacques
- a Faculté de médecine vétérinaire, Département de pathologie et microbiologie, Centre de Recherche en Infectiologie Porcine et Aviaire (CRIPA) , Université de Montréal , Saint-Hyacinthe , Canada
| | - Marie Archambault
- a Faculté de médecine vétérinaire, Département de pathologie et microbiologie, Centre de Recherche en Infectiologie Porcine et Aviaire (CRIPA) , Université de Montréal , Saint-Hyacinthe , Canada
| |
Collapse
|
35
|
The Rcs-Regulated Colanic Acid Capsule Maintains Membrane Potential in Salmonella enterica serovar Typhimurium. mBio 2017; 8:mBio.00808-17. [PMID: 28588134 PMCID: PMC5461412 DOI: 10.1128/mbio.00808-17] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The Rcs phosphorelay and Psp (phage shock protein) systems are envelope stress responses that are highly conserved in gammaproteobacteria. The Rcs regulon was found to be strongly induced during metal deprivation of Salmonella enterica serovar Typhimurium lacking the Psp response. Nineteen genes activated by the RcsA-RcsB response regulator make up an operon responsible for the production of colanic acid capsular polysaccharide, which promotes biofilm development. Despite more than half a century of research, the physiological function of colanic acid has remained elusive. Here we show that Rcs-dependent colanic acid production maintains the transmembrane electrical potential and proton motive force in cooperation with the Psp response. Production of negatively charged exopolysaccharide covalently bound to the outer membrane may enhance the surface potential by increasing the local proton concentration. This provides a unifying mechanism to account for diverse Rcs/colanic acid-related phenotypes, including susceptibility to membrane-damaging agents and biofilm formation. Colanic acid is a negatively charged polysaccharide capsule produced by Escherichia coli, Salmonella, and other gammaproteobacteria. Research conducted over the 50 years since the discovery of colanic acid suggests that this exopolysaccharide plays an important role for bacteria living in biofilms. However, a precise physiological role for colanic acid has not been defined. In this study, we provide evidence that colanic acid maintains the transmembrane potential and proton motive force during envelope stress. This work provides a new and fundamental insight into bacterial physiology.
Collapse
|
36
|
Salem WM, Shibat El-Hamed DMW, Sayed WF, Elamary RB. Alterations in virulence and antibiotic resistant genes of multidrug-resistant Salmonella serovars isolated from poultry: The bactericidal efficacy of Allium sativum. Microb Pathog 2017; 108:91-100. [PMID: 28479511 DOI: 10.1016/j.micpath.2017.05.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Revised: 04/27/2017] [Accepted: 05/02/2017] [Indexed: 12/13/2022]
Affiliation(s)
- W M Salem
- South Valley University, Faculty of Science, Botany Department, 83523, Qena, Egypt.
| | | | - W F Sayed
- South Valley University, Faculty of Science, Botany Department, 83523, Qena, Egypt
| | - R B Elamary
- South Valley University, Faculty of Science, Botany Department, 83523, Qena, Egypt
| |
Collapse
|
37
|
Choong FX, Bäck M, Fahlén S, Johansson LBG, Melican K, Rhen M, Nilsson KPR, Richter-Dahlfors A. Real-time optotracing of curli and cellulose in live Salmonella biofilms using luminescent oligothiophenes. NPJ Biofilms Microbiomes 2016; 2:16024. [PMID: 28721253 PMCID: PMC5515270 DOI: 10.1038/npjbiofilms.2016.24] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 07/15/2016] [Accepted: 09/08/2016] [Indexed: 12/14/2022] Open
Abstract
Extracellular matrix (ECM) is the protein- and polysaccharide-rich backbone of bacterial biofilms that provides a defensive barrier in clinical, environmental and industrial settings. Understanding the dynamics of biofilm formation in native environments has been hindered by a lack of research tools. Here we report a method for simultaneous, real-time, in situ detection and differentiation of the Salmonella ECM components curli and cellulose, using non-toxic, luminescent conjugated oligothiophenes (LCOs). These flexible conjugated polymers emit a conformation-dependent fluorescence spectrum, which we use to kinetically define extracellular appearance of curli fibres and cellulose polysaccharides during bacterial growth. The scope of this technique is demonstrated by defining biofilm morphotypes of Salmonella enterica serovars Enteritidis and Typhimurium, and their isogenic mutants in liquid culture and on solid media, and by visualising the ECM components in native biofilms. Our reported use of LCOs across a number of platforms, including intracellular cellulose production in eukaryotic cells and in infected tissues, demonstrates the versatility of this optotracing technology, and its ability to redefine biofilm research.
Collapse
Affiliation(s)
- Ferdinand X Choong
- Swedish Medical Nanoscience Center, Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Marcus Bäck
- Division of Chemistry, Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Sara Fahlén
- Swedish Medical Nanoscience Center, Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Leif BG Johansson
- Division of Chemistry, Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Keira Melican
- Swedish Medical Nanoscience Center, Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Mikael Rhen
- Swedish Medical Nanoscience Center, Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Microbiology, Tumor and Cell biology, Karolinska Institutet, Stockholm, Sweden
| | - K Peter R Nilsson
- Division of Chemistry, Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Agneta Richter-Dahlfors
- Swedish Medical Nanoscience Center, Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
38
|
Salmonella Extracellular Matrix Components Influence Biofilm Formation and Gallbladder Colonization. Infect Immun 2016; 84:3243-3251. [PMID: 27600501 DOI: 10.1128/iai.00532-16] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 08/24/2016] [Indexed: 12/22/2022] Open
Abstract
Salmonella enterica serovar Typhi, the causative agent of typhoid fever in humans, forms biofilms encapsulated by an extracellular matrix (ECM). Biofilms facilitate colonization and persistent infection in gallbladders of humans and mouse models of chronic carriage. Individual roles of matrix components have not been completely elucidated in vitro or in vivo To examine individual functions, strains of Salmonella enterica serovar Typhimurium, the murine model of S Typhi, in which various ECM genes were deleted or added, were created to examine biofilm formation, colonization, and persistence in the gallbladder. Studies show that curli contributes most significantly to biofilm formation. Expression of Vi antigen decreased biofilm formation in vitro and virulence and bacterial survival in vivo without altering the examined gallbladder pro- or anti-inflammatory cytokines. Oppositely, loss of all ECM components (ΔwcaM ΔcsgA ΔyihO ΔbcsE) increased virulence and bacterial survival in vivo and reduced gallbladder interleukin-10 (IL-10) levels. Colanic acid and curli mutants had the largest defects in biofilm-forming ability and contributed most significantly to the virulence increase of the ΔwcaM ΔcsgA ΔyihO ΔbcsE mutant strain. While the ΔwcaM ΔcsgA ΔyihO ΔbcsE mutant was not altered in resistance to complement or growth in macrophages, it attached and invaded macrophages better than the wild-type (WT) strain. These data suggest that ECM components have various levels of importance in biofilm formation and gallbladder colonization and that the ECM diminishes disseminated disease in our model, perhaps by reducing cell attachment/invasion and dampening inflammation by maintaining/inducing IL-10 production. Understanding how ECM components aid acute disease and persistence could lead to improvements in therapeutic treatment of typhoid fever patients.
Collapse
|
39
|
Xavier JB. Sociomicrobiology and Pathogenic Bacteria. Microbiol Spectr 2016; 4:10.1128/microbiolspec.VMBF-0019-2015. [PMID: 27337482 PMCID: PMC4920084 DOI: 10.1128/microbiolspec.vmbf-0019-2015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Indexed: 12/16/2022] Open
Abstract
The study of microbial pathogenesis has been primarily a reductionist science since Koch's principles. Reductionist approaches are essential to identify the causal agents of infectious disease, their molecular mechanisms of action, and potential drug targets, and much of medicine's success in the treatment of infectious disease stems from that approach. But many bacteria-caused diseases cannot be explained by a single bacterium. Several aspects of bacterial pathogenesis will benefit from a more holistic approach that takes into account social interaction among bacteria of the same species and between species in consortia such as the human microbiome. The emerging discipline of sociomicrobiology provides a framework to dissect microbial interactions in single and multi-species communities without compromising mechanistic detail. The study of bacterial pathogenesis can benefit greatly from incorporating concepts from other disciplines such as social evolution theory and microbial ecology, where communities, their interactions with hosts, and with the environment play key roles.
Collapse
Affiliation(s)
- Joao B. Xavier
- Program for Computational Biology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 460, New York, NY 10065,
| |
Collapse
|
40
|
Ramachandran G, Aheto K, Shirtliff ME, Tennant SM. Poor biofilm-forming ability and long-term survival of invasive Salmonella Typhimurium ST313. Pathog Dis 2016; 74:ftw049. [PMID: 27222487 DOI: 10.1093/femspd/ftw049] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2016] [Indexed: 11/12/2022] Open
Abstract
Salmonella enterica serovar Typhimurium, an enteric pathogen that causes a self-limiting gastroenteritis, forms biofilms on different surfaces. In sub-Saharan Africa, Salmonella Typhimurium of a novel sequence type (ST) 313 was identified and produces septicemia in the absence of gastroenteritis. No animal reservoir has been identified, and it is hypothesized that transmission occurs via human to human. In this study, we show that invasive Salmonella Typhimurium ST313 strains from Mali are poor biofilm producers compared to Salmonella Typhimurium ST19 strains, which are found worldwide and are known to be associated with gastroenteritis. We evaluated biofilms using crystal violet staining, examination of the red, dry and rough morphotype, pellicle formation and a continuous flow system. One month-old Salmonella Typhimurium ST19 colonies survived in the absence of exogenous nutrients and were highly resistant to sodium hypochlorite treatment compared to Salmonella Typhimurium ST313. This study for the first time demonstrates the comparative biofilm-forming ability and long-term survival of clinical Salmonella Typhimurium ST19 and ST313 isolates. Salmonella Typhimurium ST19 strains are strong biofilm producers and can survive desiccation compared to Salmonella Typhimurium ST313 that form weak biofilms and survive poorly following desiccation. Our data suggest that like Salmonella Typhi, Salmonella Typhimurium ST313 lack mechanisms that allow it to persist in the environment.
Collapse
Affiliation(s)
- Girish Ramachandran
- Center for Vaccine Development, Institute for Global Health, University of Maryland School of Medicine, Baltimore, MD 21201, USA Department of Medicine, University of Maryland School of Medicine, MD 21201, USA
| | - Komi Aheto
- Center for Vaccine Development, Institute for Global Health, University of Maryland School of Medicine, Baltimore, MD 21201, USA Department of Medicine, University of Maryland School of Medicine, MD 21201, USA
| | - Mark E Shirtliff
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Sharon M Tennant
- Center for Vaccine Development, Institute for Global Health, University of Maryland School of Medicine, Baltimore, MD 21201, USA Department of Medicine, University of Maryland School of Medicine, MD 21201, USA
| |
Collapse
|
41
|
Gunn JS, Bakaletz LO, Wozniak DJ. What's on the Outside Matters: The Role of the Extracellular Polymeric Substance of Gram-negative Biofilms in Evading Host Immunity and as a Target for Therapeutic Intervention. J Biol Chem 2016; 291:12538-12546. [PMID: 27129225 DOI: 10.1074/jbc.r115.707547] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Biofilms are organized multicellular communities encased in an extracellular polymeric substance (EPS). Biofilm-resident bacteria resist immunity and antimicrobials. The EPS provides structural stability and presents a barrier; however, a complete understanding of how EPS structure relates to biological function is lacking. This review focuses on the EPS of three Gram-negative pathogens: Pseudomonas aeruginosa, nontypeable Haemophilus influenzae, and Salmonella enterica serovar Typhi/Typhimurium. Although EPS proteins and polysaccharides are diverse, common constituents include extracellular DNA, DNABII (DNA binding and bending) proteins, pili, flagella, and outer membrane vesicles. The EPS biochemistry promotes recalcitrance and informs the design of therapies to reduce or eliminate biofilm burden.
Collapse
Affiliation(s)
- John S Gunn
- Department of Microbial Infection and Immunity, Ohio State University, Columbus, Ohio 43210; Center for Microbial Interface Biology, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio 43205
| | - Lauren O Bakaletz
- Department of Microbial Infection and Immunity, Ohio State University, Columbus, Ohio 43210; Center for Microbial Interface Biology, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio 43205; Departments of Pediatrics and Otolaryngology, The Research Institute at Nationwide Children's Hospital and Ohio State University, Columbus, Ohio 43210
| | - Daniel J Wozniak
- Department of Microbial Infection and Immunity, Ohio State University, Columbus, Ohio 43210; Center for Microbial Interface Biology, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio 43205; Department of Microbiology, Ohio State University, Columbus, Ohio 43210.
| |
Collapse
|
42
|
Abstract
Microbes produce a biofilm matrix consisting of proteins, extracellular DNA, and polysaccharides that is integral in the formation of bacterial communities. Historical studies of polysaccharides revealed that their overproduction often alters the colony morphology and can be diagnostic in identifying certain species. The polysaccharide component of the matrix can provide many diverse benefits to the cells in the biofilm, including adhesion, protection, and structure. Aggregative polysaccharides act as molecular glue, allowing the bacterial cells to adhere to each other as well as surfaces. Adhesion facilitates the colonization of both biotic and abiotic surfaces by allowing the bacteria to resist physical stresses imposed by fluid movement that could separate the cells from a nutrient source. Polysaccharides can also provide protection from a wide range of stresses, such as desiccation, immune effectors, and predators such as phagocytic cells and amoebae. Finally, polysaccharides can provide structure to biofilms, allowing stratification of the bacterial community and establishing gradients of nutrients and waste products. This can be advantageous for the bacteria by establishing a heterogeneous population that is prepared to endure stresses created by the rapidly changing environments that many bacteria encounter. The diverse range of polysaccharide structures, properties, and roles highlight the importance of this matrix constituent to the successful adaptation of bacteria to nearly every niche. Here, we present an overview of the current knowledge regarding the diversity and benefits that polysaccharide production provides to bacterial communities within biofilms.
Collapse
|
43
|
Colanic Acid Intermediates Prevent De Novo Shape Recovery of Escherichia coli Spheroplasts, Calling into Question Biological Roles Previously Attributed to Colanic Acid. J Bacteriol 2016; 198:1230-40. [PMID: 26833417 DOI: 10.1128/jb.01034-15] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 01/27/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED After losing their protective peptidoglycan, bacterial spheroplasts can resynthesize a cell wall to recreate their normal shape. In Escherichia coli, this process requires the Rcs response. In its absence, spheroplasts do not revert to rod shapes but instead form enlarged spheroids and lyse. Here, we investigated the reason for this Rcs requirement. Rcs-deficient spheroids exhibited breaks and bulges in their periplasmic spaces and failed to synthesize a complete peptidoglycan cell wall, indicating that the bacterial envelope was defective. To determine the Rcs-dependent gene(s) required for shape recovery, we tested spheroplasts lacking selected RcsB-regulated genes and found that colanic acid (CA) biosynthesis appeared to be involved. Surprisingly, though, extracellular CA was not required for recovery. Instead, lysis was caused by mutations that interrupted CA biosynthesis downstream of the initial glycosyl transferase, WcaJ. Deleting wcaJ prevented lysis of spheroplasts lacking ensuing steps in the pathway, and providing WcaJ in trans to a mutant lacking the entire CA operon triggered spheroplast enlargement and lysis. Thus, CA is not required for spheroplast recovery. Instead, CA intermediates accumulate as dead-end products which inhibit recovery of wall-less cells. The results strongly imply that CA may not be required for the survival E. coli L-forms. More broadly, these findings mandate that previous conclusions about the role of colanic acid in biofilm formation or virulence must be reevaluated. IMPORTANCE Wall-less bacteria can resynthesize their walls and recreate a normal shape, which in Escherichia coli requires the Rcs response. While attempting to identify the Rcs-dependent gene required for shape recovery, we found that colanic acid (CA) biosynthesis appeared to be involved. Surprisingly, though, cell death was caused by mutations that interrupted CA biosynthesis downstream of the initial step in the pathway, creating dead-end compounds that inhibited recovery of wall-less cells. When testing for the biological role of CA, most previous experiments used mutants that would accumulate these deadly intermediates, meaning that all prior conclusions must be reexamined to determine if the results were caused by these lethal side effects instead of accurately reflecting the biological purpose of CA itself.
Collapse
|
44
|
Murugan K, Selvanayaki K, Al-Sohaibani S. Urinary catheter indwelling clinical pathogen biofilm formation, exopolysaccharide characterization and their growth influencing parameters. Saudi J Biol Sci 2016; 23:150-9. [PMID: 26858552 PMCID: PMC4705282 DOI: 10.1016/j.sjbs.2015.04.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 04/15/2015] [Accepted: 04/27/2015] [Indexed: 12/23/2022] Open
Abstract
Self-reproducing microbial biofilm community mainly involved in the contamination of indwelling medical devices including catheters play a vital role in nosocomial infections. The catheter-associated urinary tract infection (CA-UTI) causative Staphylococcus aureus, Enterobacter faecalis, and Pseudomonas aeruginosa were selectively isolated, their phenotypic as well as genotypic biofilm formation, production and monomeric sugar composition of EPS as well as sugar, salt, pH and temperature influence on their in vitro biofilm formation were determined. From 50 culture positive urinary catheters S. aureus (24%), P. aeruginosa (18%), E. faecalis (14%) and others (44%) were isolated. The performed assays revealed their varying biofilm forming ability. The isolated S. aureus ica, E. faecalis esp, and P. aeruginosa cup A gene sequencing and phylogenetic analysis showed their close branching and genetic relationship. The analyzed sugar, salt, pH, and temperature showed that the degree of CA-UTI isolates biofilm formation is an environmentally sensitive process. EPS monosaccharide HPLC analysis showed the presence of neutral sugars (ng/μl) as follows: glucose (P. aeruginosa: 44.275; E. faecalis: 4.23), lactose (P. aeruginosa: 7.29), mannitol (P. aeruginosa: 2.53; S. aureus: 2.62; E. faecalis: 2.054) and maltose (E. faecalis: 7.0042) revealing species-specific presence and variation. This study may have potential clinical relevance for the easy diagnosis and management of CA-UTI.
Collapse
Affiliation(s)
- Kasi Murugan
- Department of Botany and Microbiology, College of Science, P.O. Box 2455, King Saud University, Riyadh 11451, Saudi Arabia
| | - Krishnasamy Selvanayaki
- P.G. and Research Department of Microbiology, K. S. Rangasamy College of Arts and Science, Tiruchengode, Namakkal 637 215, Tamilnadu, India
| | - Saleh Al-Sohaibani
- Department of Botany and Microbiology, College of Science, P.O. Box 2455, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
45
|
Srinandan CS, Elango M, Gnanadhas DP, Chakravortty D. Infiltration of Matrix-Non-producers Weakens the Salmonella Biofilm and Impairs Its Antimicrobial Tolerance and Pathogenicity. Front Microbiol 2015; 6:1468. [PMID: 26779121 PMCID: PMC4688346 DOI: 10.3389/fmicb.2015.01468] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 12/07/2015] [Indexed: 01/22/2023] Open
Abstract
Bacterial biofilms display a collective lifestyle, wherein the cells secrete extracellular polymeric substances (EPS) that helps in adhesion, aggregation, stability, and to protect the bacteria from antimicrobials. We asked whether the EPS could act as a public good for the biofilm and observed that infiltration of cells that do not produce matrix components weakened the biofilm of Salmonella enterica serovar Typhimurium. EPS production was costly for the producing cells, as indicated by a significant reduction in the fitness of wild type (WT) cells during competitive planktonic growth relative to the non-producers. Infiltration frequency of non-producers in the biofilm showed a concomitant decrease in overall productivity. It was apparent in the confocal images that the non-producing cells benefit from the EPS produced by the Wild Type (WT) to stay in the biofilm. The biofilm containing non-producing cells were more significantly susceptible to sodium hypochlorite and ciprofloxacin treatment than the WT biofilm. Biofilm infiltrated with non-producers delayed the pathogenesis, as tested in a murine model. The cell types were spatially assorted, with non-producers being edged out in the biofilm. However, cellulose was found to act as a barrier to keep the non-producers away from the WT microcolony. Our results show that the infiltration of non-cooperating cell types can substantially weaken the biofilm making it vulnerable to antibacterials and delay their pathogenesis. Cellulose, a component of EPS, was shown to play a pivotal role of acting as the main public good, and to edge-out the non-producers away from the cooperating microcolony.
Collapse
Affiliation(s)
- Chakravarthy S. Srinandan
- Department of Microbiology and Cell Biology, Indian Institute of ScienceBangalore, India
- Biofilm Biology Lab, Centre for Research on Infectious Diseases, School of Chemical and Biotechnology, SASTRA UniversityThanjavur, India
| | - Monalisha Elango
- Department of Microbiology and Cell Biology, Indian Institute of ScienceBangalore, India
| | - Divya P. Gnanadhas
- Department of Microbiology and Cell Biology, Indian Institute of ScienceBangalore, India
- Department of Aerospace Engineering, Indian Institute of ScienceBangalore, India
| | - Dipshikha Chakravortty
- Department of Microbiology and Cell Biology, Indian Institute of ScienceBangalore, India
- Centre for Biosystems Science and Engineering, Indian Institute of ScienceBangalore, India
| |
Collapse
|
46
|
Augimeri RV, Varley AJ, Strap JL. Establishing a Role for Bacterial Cellulose in Environmental Interactions: Lessons Learned from Diverse Biofilm-Producing Proteobacteria. Front Microbiol 2015; 6:1282. [PMID: 26635751 PMCID: PMC4646962 DOI: 10.3389/fmicb.2015.01282] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 10/31/2015] [Indexed: 01/21/2023] Open
Abstract
Bacterial cellulose (BC) serves as a molecular glue to facilitate intra- and inter-domain interactions in nature. Biosynthesis of BC-containing biofilms occurs in a variety of Proteobacteria that inhabit diverse ecological niches. The enzymatic and regulatory systems responsible for the polymerization, exportation, and regulation of BC are equally as diverse. Though the magnitude and environmental consequences of BC production are species-specific, the common role of BC-containing biofilms is to establish close contact with a preferred host to facilitate efficient host-bacteria interactions. Universally, BC aids in attachment, adherence, and subsequent colonization of a substrate. Bi-directional interactions influence host physiology, bacterial physiology, and regulation of BC biosynthesis, primarily through modulation of intracellular bis-(3'→5')-cyclic diguanylate (c-di-GMP) levels. Depending on the circumstance, BC producers exhibit a pathogenic or symbiotic relationship with plant, animal, or fungal hosts. Rhizobiaceae species colonize plant roots, Pseudomonadaceae inhabit the phyllosphere, Acetobacteriaceae associate with sugar-loving insects and inhabit the carposphere, Enterobacteriaceae use fresh produce as vehicles to infect animal hosts, and Vibrionaceae, particularly Aliivibrio fischeri, colonize the light organ of squid. This review will highlight the diversity of the biosynthesis and regulation of BC in nature by discussing various examples of Proteobacteria that use BC-containing biofilms to facilitate host-bacteria interactions. Through discussion of current data we will establish new directions for the elucidation of BC biosynthesis, its regulation and its ecophysiological roles.
Collapse
Affiliation(s)
| | | | - Janice L. Strap
- Molecular Microbial Biochemistry Laboratory, Faculty of Science, University of Ontario Institute of TechnologyOshawa, ON, Canada
| |
Collapse
|
47
|
Giaouris E, Heir E, Desvaux M, Hébraud M, Møretrø T, Langsrud S, Doulgeraki A, Nychas GJ, Kačániová M, Czaczyk K, Ölmez H, Simões M. Intra- and inter-species interactions within biofilms of important foodborne bacterial pathogens. Front Microbiol 2015; 6:841. [PMID: 26347727 PMCID: PMC4542319 DOI: 10.3389/fmicb.2015.00841] [Citation(s) in RCA: 193] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Accepted: 07/31/2015] [Indexed: 12/15/2022] Open
Abstract
A community-based sessile life style is the normal mode of growth and survival for many bacterial species. Under such conditions, cell-to-cell interactions are inevitable and ultimately lead to the establishment of dense, complex and highly structured biofilm populations encapsulated in a self-produced extracellular matrix and capable of coordinated and collective behavior. Remarkably, in food processing environments, a variety of different bacteria may attach to surfaces, survive, grow, and form biofilms. Salmonella enterica, Listeria monocytogenes, Escherichia coli, and Staphylococcus aureus are important bacterial pathogens commonly implicated in outbreaks of foodborne diseases, while all are known to be able to create biofilms on both abiotic and biotic surfaces. Particularly challenging is the attempt to understand the complexity of inter-bacterial interactions that can be encountered in such unwanted consortia, such as competitive and cooperative ones, together with their impact on the final outcome of these communities (e.g., maturation, physiology, antimicrobial resistance, virulence, dispersal). In this review, up-to-date data on both the intra- and inter-species interactions encountered in biofilms of these pathogens are presented. A better understanding of these interactions, both at molecular and biophysical levels, could lead to novel intervention strategies for controlling pathogenic biofilm formation in food processing environments and thus improve food safety.
Collapse
Affiliation(s)
- Efstathios Giaouris
- Department of Food Science and Nutrition, Faculty of the Environment, University of the Aegean, Myrina, Lemnos Island, Greece
| | - Even Heir
- Nofima, Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås, Norway
| | - Mickaël Desvaux
- INRA, UR454 Microbiologie, Centre Auvergne-Rhône-Alpes, Saint-Genès-Champanelle, France
| | - Michel Hébraud
- INRA, UR454 Microbiologie, Centre Auvergne-Rhône-Alpes, Saint-Genès-Champanelle, France
| | - Trond Møretrø
- Nofima, Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås, Norway
| | - Solveig Langsrud
- Nofima, Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås, Norway
| | - Agapi Doulgeraki
- Laboratory of Microbiology and Biotechnology of Foods, Department of Food Science and Human Nutrition, Faculty of Foods, Biotechnology and Development, Agricultural University of Athens, Athens, Greece
| | - George-John Nychas
- Laboratory of Microbiology and Biotechnology of Foods, Department of Food Science and Human Nutrition, Faculty of Foods, Biotechnology and Development, Agricultural University of Athens, Athens, Greece
| | - Miroslava Kačániová
- Department of Microbiology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Nitra, Slovakia
| | - Katarzyna Czaczyk
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, Poznań, Poland
| | - Hülya Ölmez
- TÜBİTAK Marmara Research Center, Food Institute, Gebze, Kocaeli, Turkey
| | - Manuel Simões
- Laboratory for Process Engineering, Environment, Biotechnology and Energy, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| |
Collapse
|
48
|
Simm R, Ahmad I, Rhen M, Le Guyon S, Römling U. Regulation of biofilm formation in Salmonella enterica serovar Typhimurium. Future Microbiol 2015; 9:1261-82. [PMID: 25437188 DOI: 10.2217/fmb.14.88] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
In animals, plants and the environment, Salmonella enterica serovar Typhimurium forms the red dry and rough (rdar) biofilm characterized by extracellular matrix components curli and cellulose. With complex expression control by at least ten transcription factors, the bistably expressed orphan response regulator CsgD directs rdar morphotype development. CsgD expression is an integral part of the Hfq regulon and the complex cyclic diguanosine monophosphate signaling network partially controlled by the global RNA-binding protein CsrA. Cell wall turnover and the periplasmic redox status regulate csgD expression on a post-transcriptional level by unknown mechanisms. Furthermore, phosphorylation of CsgD is a potential inactivation and degradation signal in biofilm dissolution. Including complex incoherent feed-forward loops, regulation of biofilm formation versus motility and virulence is of recognized complexity.
Collapse
Affiliation(s)
- Roger Simm
- Department of Biochemistry, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Montebello, Oslo, Norway
| | | | | | | | | |
Collapse
|
49
|
Application of Molecular Approaches for Understanding Foodborne Salmonella Establishment in Poultry Production. ACTA ACUST UNITED AC 2014. [DOI: 10.1155/2014/813275] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Salmonellosis in the United States is one of the most costly foodborne diseases. Given that Salmonella can originate from a wide variety of environments, reduction of this organism at all stages of poultry production is critical. Salmonella species can encounter various environmental stress conditions which can dramatically influence their survival and colonization. Current knowledge of Salmonella species metabolism and physiology in relation to colonization is traditionally based on studies conducted primarily with tissue culture and animal infection models. Consequently, while there is some information about environmental signals that control Salmonella growth and colonization, much still remains unknown. Genetic tools for comprehensive functional genomic analysis of Salmonella offer new opportunities for not only achieving a better understanding of Salmonella pathogens but also designing more effective intervention strategies. Now the function(s) of each single gene in the Salmonella genome can be directly assessed and previously unknown genetic factors that are required for Salmonella growth and survival in the poultry production cycle can be elucidated. In particular, delineating the host-pathogen relationships involving Salmonella is becoming very helpful for identifying optimal targeted gene mutagenesis strategies to generate improved vaccine strains. This represents an opportunity for development of novel vaccine approaches for limiting Salmonella establishment in early phases of poultry production. In this review, an overview of Salmonella issues in poultry, a general description of functional genomic technologies, and their specific application to poultry vaccine developments are discussed.
Collapse
|
50
|
Jacquot A, Sakamoto C, Razafitianamarahavo A, Caillet C, Merlin J, Fahs A, Ghigo JM, Duval JFL, Beloin C, Francius G. The dynamics and pH-dependence of Ag43 adhesins' self-association probed by atomic force spectroscopy. NANOSCALE 2014; 6:12665-12681. [PMID: 25208582 DOI: 10.1039/c4nr03312d] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Self-associating auto-transporter (SAAT) adhesins are two-domain cell surface proteins involved in bacteria auto-aggregation and biofilm formation. Antigen 43 (Ag43) is a SAAT adhesin commonly found in Escherichia coli whose variant Ag43a has been shown to promote persistence of uropathogenic E. coli within the bladder. The recent resolution of the tri-dimensional structure of the 499 amino-acids' β-domain in Ag43a has shed light on the possible mechanism governing the self-recognition of SAAT adhesins, in particular the importance of trans-interactions between the L shaped β-helical scaffold of two α-domains of neighboring adhesins. In this study, we use single-molecule force spectroscopy (SMFS) and dynamic force spectroscopy (DFS) to unravel the dynamics of Ag43-self association under various pH and molecular elongation rate conditions that mimic the situations encountered by E. coli in its natural environment. Results evidenced an important stretchability of Ag43α with unfolding of sub-domains leading to molecular extension as long as 150 nm. Nanomechanical analysis of molecular stretching data suggested that self-association of Ag43 can lead to the formation of dimers and tetramers driven by rapid and weak cis- as well as slow but strong trans-interaction forces with a magnitude as large as 100-250 pN. The dynamics of cis- and trans-interactions were demonstrated to be strongly influenced by pH and applied shear force, thus suggesting that environmental conditions can modulate Ag43-mediated aggregation of bacteria at the molecular level.
Collapse
Affiliation(s)
- Adrien Jacquot
- Université de Lorraine, Laboratoire de Chimie Physique et Microbiologie pour l'Environnement, UMR 7564, Villers-lès-Nancy, F-54601, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|