1
|
Sun Y, Hao L, Liang J, Ye S, Su M. Salinity-induced virulence alteration of Aeromonas hydrophila isolated from Scatophagus argus: insights from transcriptomic profiling and phenotypic characterization. BMC Microbiol 2025; 25:266. [PMID: 40316893 PMCID: PMC12046933 DOI: 10.1186/s12866-025-03977-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 04/18/2025] [Indexed: 05/04/2025] Open
Abstract
BACKGROUND The emerging foodborne pathogen, Aeromonas hydrophila, co-infects humans and animals, especially fish, threatening aquacultural production and public health. Previously, we found that Scatophagus argus, a widely cultivated fish species with high economic value, exhibited enhanced growth but increased susceptibility to A. hydrophila infection under freshwater conditions compared to seawater conditions. However, the exact mechanisms involved remain unclear. RESULTS Our study demonstrated that the enhanced virulence of A. hydrophila 201416, isolated from S. argus, in response to increasing salinity was associated with altered quorum sensing-related gene expression and regulated behaviors. Results from virulence assays incorporating phenotypic characterization indicated that elevated salinity levels (from 0 to 35‰) significantly hindered Ah201416 infection of S. argus. This trend correlated with increased biofilm mass and swimming motility, yet was inversely related to bacterial growth. RNA-sequencing and quantitative reverse transcriptional PCR analysis confirmed significant upregulation of genes related to flagellar assembly (flgB, flgH, flgC, flgI, flhA, and fliA), bacterial secretion (HlyD and Ahh1), and quorum sensing (AhyR, LuxO, and LuxE) of Ah201416 in response to elevated salinity. These findings suggested that increased salinity not only enhanced the virulence of Ah201416 but also bolstered the resistance of S. argus, thereby mitigating its susceptibility. CONCLUSIONS This study provides deeper insights into the microbial risks associated with A. hydrophila in aquacultural production, which is critical to developing effective prevention and control strategies and ensuring a safe seafood supply. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
- Yuan Sun
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Lingyun Hao
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
- Center for Plant Environmental Sensing, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Jianbing Liang
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Shiyang Ye
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Maoliang Su
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
2
|
Fulton KM, Mendoza-Barberà E, Tomás JM, Twine SM, Smith JC, Merino S. Polar flagellin glycan heterogeneity of Aeromonas hydrophila strain ATCC 7966 T. Bioorg Chem 2025; 158:108300. [PMID: 40058227 DOI: 10.1016/j.bioorg.2025.108300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 02/08/2025] [Accepted: 02/18/2025] [Indexed: 03/19/2025]
Abstract
Motile pathogens often rely upon flagellar motility as an essential virulence factor and in many species the structural flagellin protein is glycosylated. Flagellin glycosylation has been shown to be important for proper function of the flagellar filament in a number of bacterial species. Aeromonas hydrophila is a ubiquitous aquatic pathogen with a constitutively expressed polar flagellum. Using a suite of mass spectrometry techniques, the flagellin FlaA and FlaB structural proteins of A. hydrophila strain ATCC 7966T were shown to be glycosylated with significant microheterogeneity, macroheterogeneity, and metaheterogeneity. The primary linking sugar in this strain was a novel and previously unreported pseudaminic acid derivative with a mass of 422 Da. The pseudaminic acid derivative was followed in sequence by two hexoses, an N-acetylglucosamine (with additional variable secondary modification), and a deoxy N-acetylglucosamine derivative. These pentasaccharide glycans were observed modifying all eight modification sites. Hexasaccharides, which included an additional N-acetylhexosamine residue as the capping sugar, were observed exclusively modifying a pair of isobaric peptides from FlaA and FlaB. Interestingly, these isobaric peptides are immediately adjacent to a toll-like receptor 5 binding site in both protein sequences. Glycosylation status was also linked to motility, a critical bacterial virulence factor.
Collapse
Affiliation(s)
- Kelly M Fulton
- Department of Chemistry, Faculty of Science, Carleton University, 1125 Colonel By Dr., Ottawa, Ontario, K1S 5B6, Canada; Human Health Therapeutics Research Centre, National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario, K1N 5A2, Canada.
| | - Elena Mendoza-Barberà
- Departamento de Biologia, Sanidad y Medio Ambiente, Facultad de Farmacia y Ciencias de la Alimentación, Universidad de Barcelona, C/ Joan XXIII, 27, 08028 Barcelona, Barcelona, Spain; Instituto de Investigación en Nutrición y Seguridad Alimentaria (INSA), Universidad de Barcelona, Av. Prat de la Riba, 171, 08921, Santa Coloma de Gramenet, Barcelona, Spain
| | - Juan M Tomás
- Instituto de Investigación en Nutrición y Seguridad Alimentaria (INSA), Universidad de Barcelona, Av. Prat de la Riba, 171, 08921, Santa Coloma de Gramenet, Barcelona, Spain; Departamento de Genética, Microbiología y Estadística, Facultad de Biología, Universidad de Barcelona, Avd. Diagonal 643, 08028 Barcelona, Barcelona, Spain
| | - Susan M Twine
- Human Health Therapeutics Research Centre, National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario, K1N 5A2, Canada; Department of Biology, Faculty of Science, Carleton University, 1125 Colonel By Dr., Ottawa, Ontario, K1S 5B6, Canada
| | - Jeffrey C Smith
- Department of Chemistry, Faculty of Science, Carleton University, 1125 Colonel By Dr., Ottawa, Ontario, K1S 5B6, Canada
| | - Susana Merino
- Instituto de Investigación en Nutrición y Seguridad Alimentaria (INSA), Universidad de Barcelona, Av. Prat de la Riba, 171, 08921, Santa Coloma de Gramenet, Barcelona, Spain; Departamento de Genética, Microbiología y Estadística, Facultad de Biología, Universidad de Barcelona, Avd. Diagonal 643, 08028 Barcelona, Barcelona, Spain
| |
Collapse
|
3
|
Liu L, Li J, Tu M, Gao L, Zhang Y, Rao Y, Rao L, Gui M. Complete genome sequence provides information on quorum sensing related spoilage and virulence of Aeromonas salmonicida GMT3 isolated from spoiled sturgeon. Food Res Int 2024; 196:115039. [PMID: 39614553 DOI: 10.1016/j.foodres.2024.115039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/21/2024] [Accepted: 09/01/2024] [Indexed: 12/01/2024]
Abstract
Foodborne bacteria can pose a threat to the public health due to their spoilage and virulence potential, which can be regulated by quorum sensing (QS) system. In the study, we isolated a spoilage bacteria strain Aeromonas salmonicida GMT3 from refrigerated sturgeon. The complete genome of A. salmonicida GMT3 was sequenced, and the QS related genes were assigned. QS signal molecules N-acyl-homoserine lactones (AHLs) and AI-2 were detected. Genes regulating the spoilage-related metabolic pathways, including protease and lipase secretion, amines metabolism, sulfur metabolism, motility and biofilm formation were analyzed. Furthermore, genes encoding for several virulence factors, e.g. hemolysin, aerolysin, type II secretion system (T2SS), type VI secretion system (T6SS), antibiotic and multidrug resistance were also identified. In addition, the spoilage and virulence phenotypes associated with QS including protease, swimming and swarming activity, biofilm and hemolytic activity were detected. This study provided new insights into spoilage and virulence mechanisms correlated with QS of A. salmonicida GMT3, which might promote development of new approaches for spoilage and virulence control based on QS target.
Collapse
Affiliation(s)
- Lei Liu
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China.
| | - Jun Li
- Fisheries Science Institute, Beijing Academy of Agriculture and Forestry Sciences, National Engineering Research Center for Freshwaters (Beijing), Beijing, 100068, China; China National Center for Food Safety Risk Assessment, Beijing 100022, China.
| | - Mingxia Tu
- Food Microbiology Key Laboratory of Sichuan Province, School of Food Science and Bioengineering, Xihua University, Chengdu 610039, China.
| | - Liang Gao
- Fisheries Science Institute, Beijing Academy of Agriculture and Forestry Sciences, National Engineering Research Center for Freshwaters (Beijing), Beijing, 100068, China.
| | - Ying Zhang
- Fisheries Science Institute, Beijing Academy of Agriculture and Forestry Sciences, National Engineering Research Center for Freshwaters (Beijing), Beijing, 100068, China.
| | - Yu Rao
- Food Microbiology Key Laboratory of Sichuan Province, School of Food Science and Bioengineering, Xihua University, Chengdu 610039, China.
| | - Lei Rao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Meng Gui
- Fisheries Science Institute, Beijing Academy of Agriculture and Forestry Sciences, National Engineering Research Center for Freshwaters (Beijing), Beijing, 100068, China.
| |
Collapse
|
4
|
Zeng Y, Liu J, Wang W, Wang B, Jia A. Actinomycin D reduces virulence factors and biofilms against Aeromonas hydrophila. J Appl Microbiol 2024; 135:lxae240. [PMID: 39277782 DOI: 10.1093/jambio/lxae240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 08/30/2024] [Accepted: 09/13/2024] [Indexed: 09/17/2024]
Abstract
AIMS Aeromonas hydrophila, a Gram-negative bacterium, is ubiquitously found in many aquatic habitats, causing septicemia in humans and fishes. Attributed to abuse or misuse of conventional antimicrobial drug usage, antimicrobial resistance is at an alarming rise. There is an available alternative strategy to bacterial resistance to antimicrobials, which is inhibition of virulence and pathogenicity employing quorum sensing inhibitors (QSIs). Hence, actinomycin D's effectiveness against A. hydrophila SHAe 115 as a QSI was investigated in decreasing virulence factors and preventing biofilm formation. METHODS AND RESULTS Actinomycin D, belongs to the QSI combating Pseudomonas aeruginosa PAO1 originally isolated from an entophytic actinomycete (Streptomyces cyaneochromogenes RC1) in Areca catechu L. In the present work, further investigations were carried out to assess the effect of actinomycin D at subminimal inhibitory concentrations (sub-MICs), QS-regulated virulence factors, and biofilm inhibition strategies. Intrinsic properties encompassing inhibition of the production of protease and hemolysin and subsequent activities on biofilm formation and eradication of mature biofilm were established along with weakened swimming and swarming motilities in A. hydrophila SHAe 115. In the Tenebrio molitor survival assay, actinomycin D effectively reduced the virulence and pathogenicity of A. hydrophila, resulting in elimination of mortality. However, the hydrolysate of actinomycin D, 2-hydroxy-4,6-dimethyl-3-oxo-3H-phenoxazine-1,9-dicarboxylic acid (HDPD), had lost the QSI activity in A. hydrophila. CONCLUSIONS Actinomycin D was proved as a viable QSI in lessening A. hydrophila's the virulence and pathogenicity, as evident from our research findings.
Collapse
Affiliation(s)
- Yuexiang Zeng
- Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou 570311, China
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Junsheng Liu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Wei Wang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Bo Wang
- Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou 570311, China
| | - Aiqun Jia
- Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou 570311, China
| |
Collapse
|
5
|
Roh H, Kannimuthu D. Genomic and Transcriptomic Diversification of Flagellin Genes Provides Insight into Environmental Adaptation and Phylogeographic Characteristics in Aeromonas hydrophila. MICROBIAL ECOLOGY 2024; 87:65. [PMID: 38695873 PMCID: PMC11065939 DOI: 10.1007/s00248-024-02373-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/01/2024] [Indexed: 05/05/2024]
Abstract
Aeromonas hydrophila is an opportunistic motile pathogen with a broad host range, infecting both terrestrial and aquatic animals. Environmental and geographical conditions exert selective pressure on both geno- and phenotypes of pathogens. Flagellin, directly exposed to external environments and containing important immunogenic epitopes, may display significant variability in response to external conditions. In this study, we conducted a comparative analysis of ~ 150 A. hydrophila genomes, leading to the identification of six subunits of the flagellin gene (fla-1 to fla-4, flaA, and flaB). Individual strains harbored different composition of flagellin subunits and copies. The composition of subunits showed distinct patterns depending on environmental sources. Strains from aquatic environments were mainly comprised of fla-1 to fla-4 subunits, while terrestrial strains predominated in groups harboring flaA and flaB subunits. Each flagellin showed varying levels of expression, with flaA and flaB demonstrating significantly higher expression compared to others. One of the chemotaxis pathways that control flagellin movement through a two-component system was significantly upregulated in flaA(+ 1)/flaB(+ 1) group, whereas flaA and flaB showed different transcriptomic expressions. The genes positively correlated with flaA expression were relevant to biofilm formation and bacterial chemotaxis, but flaB showed a negative correlation with the genes in ABC transporters and quorum sensing pathway. However, the expression patterns of fla-2 to fla-4 were identical. This suggests various types of flagellin subunits may have different biological functions. The composition and expression levels of flagellin subunits could provide valuable insights into the adaptation of A. hydrophila and the differences among strains in response to various external environments.
Collapse
Affiliation(s)
- HyeongJin Roh
- Pathogen Transmission and Disease Research Group, Institute of Marine Research, PO Box 1870 Nordnes 5870, Bergen, Norway.
| | - Dhamotharan Kannimuthu
- Pathogen Transmission and Disease Research Group, Institute of Marine Research, PO Box 1870 Nordnes 5870, Bergen, Norway
| |
Collapse
|
6
|
Xiong C, Xiong C, Lu J, Long R, Jiao H, Li Y, Wang B, Lin Y, Ye H, Lin L, Wu R. flgL mutation reduces pathogenicity of Aeromonas hydrophila by negatively regulating swimming ability, biofilm forming ability, adherence and virulence gene expression. Int J Biol Macromol 2024; 261:129676. [PMID: 38272420 DOI: 10.1016/j.ijbiomac.2024.129676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/19/2024] [Accepted: 01/20/2024] [Indexed: 01/27/2024]
Abstract
Aeromonas hydrophila is a serious human and animal co-pathogenic bacterium. Flagellum, a key virulence factor, is vital for bacterium tissue colonization and invasion. flgL is a crucial gene involved in the composition of flagellum. However, the impact of flgL on virulence is not yet clear. In this study, we constructed a stable mutant strain (△flgL-AH) using homologous recombination. The results of the attack experiments indicated a significant decrease in the virulence of △flgL-AH. The biological properties analysis revealed a significant decline in swimming ability and biofilm formation capacity in △flgL-AH and the transmission electron microscope results showed that the ∆flgL-AH strain did not have a flagellar structure. Moreover, a significant decrease in the adhesion capacity of ∆flgL-AH was found using absolute fluorescence quantitative polymerase chain reaction (PCR). The quantitative real-time PCR results showed that the expression of omp and the eight flagellum-related genes were down-regulated. In summary, flgL mutation leads to a reduction in pathogenicity possibly via decreasing the swimming ability, biofilm formation capacity and adhesion capacity, these changes might result from the down expression of omp and flagellar-related genes.
Collapse
Affiliation(s)
- Caijiang Xiong
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Aquaculture Engineering Technology Research Center, College of Fisheries, Southwest University, Chongqing 400715, China
| | - Chuanyu Xiong
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Aquaculture Engineering Technology Research Center, College of Fisheries, Southwest University, Chongqing 400715, China
| | - Jiahui Lu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Aquaculture Engineering Technology Research Center, College of Fisheries, Southwest University, Chongqing 400715, China
| | - Rui Long
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Aquaculture Engineering Technology Research Center, College of Fisheries, Southwest University, Chongqing 400715, China
| | - Hanyang Jiao
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Aquaculture Engineering Technology Research Center, College of Fisheries, Southwest University, Chongqing 400715, China
| | - Yun Li
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Aquaculture Engineering Technology Research Center, College of Fisheries, Southwest University, Chongqing 400715, China
| | - Bei Wang
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang 524088, China
| | - Ying Lin
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Aquaculture Engineering Technology Research Center, College of Fisheries, Southwest University, Chongqing 400715, China
| | - Hua Ye
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Aquaculture Engineering Technology Research Center, College of Fisheries, Southwest University, Chongqing 400715, China
| | - Lingyun Lin
- Agriculture Ministry Key Laboratory of Healthy Freshwater Aquaculture, Key Laboratory of Fish Health and Nutrition of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou 313001, China.
| | - Ronghua Wu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Aquaculture Engineering Technology Research Center, College of Fisheries, Southwest University, Chongqing 400715, China.
| |
Collapse
|
7
|
Cantillo Villa Y, Triga A, Katharios P. Polyinfection in Fish Aeromoniasis: A Study of Co-Isolated Aeromonas Species in Aeromonas veronii Outbreaks. Pathogens 2023; 12:1337. [PMID: 38003801 PMCID: PMC10674900 DOI: 10.3390/pathogens12111337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/08/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
We studied the phenotypic and genomic characteristics related to the virulence and antibiotic resistance of two Aeromonas strains, which were co-isolated before an outbreak of Aeromonas veronii among diseased seabass on Agathonisi Island, Greece, in April 2015. The first strain, AG2.13.2, is a potentially pathogenic mesophilic variant of Aeromonas salmonicida, and the second, AG2.13.5, corresponds to an Aeromonas rivipollensis related to A. rivipollensis KN-Mc-11N1 with an ANI value of 97.32%. AG2.13.2 lacks the type III secretion system just like other mesophilic strains of A. salmonicida. This characteristic has been associated with lower virulence. However, the genome of AG2.13.2 contains other important virulence factors such as type II and type VI secretion systems, and toxins such as rtxA, aerolysin aer/act, and different types of hemolysins. The strain also carries several genes associated with antibiotic resistance such as the tetE efflux pump, and exhibits resistance to tetracycline, ampicillin, and oxolinic acid. In an in vivo challenge test with gilthead seabream larvae, the A. veronii bv sobria strain AG5.28.6 exhibited the highest virulence among all tested strains. Conversely, both A. salmonicida and A. rivipollensis showed minimal virulence when administered alone. Interestingly, when A. veronii bv sobria AG5.28.6 was co-administered with A. rivipollensis, the larvae survival probability increased compared to those exposed to A. veronii bv sobria AG5.28.6 alone. This finding indicates an antagonistic interaction between A. veronii bv sobria AG5.28.6 and A. rivipollensis AG2.13.5. The co-administration of A. veronii bv sobria AG5.28.6 with Aeromonas salmonicida did not yield distinct survival probabilities. Our results validate that the primary pathogen responsible for European seabass aeromoniasis is Aeromonas veronii bv sobria.
Collapse
Affiliation(s)
- Yanelys Cantillo Villa
- Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), Hellenic Centre for Marine Research (HCMR), 71500 Gournes, Greece; (Y.C.V.); (A.T.)
- Department of Biology, University of Crete, 71110 Heraklion, Greece
| | - Adriana Triga
- Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), Hellenic Centre for Marine Research (HCMR), 71500 Gournes, Greece; (Y.C.V.); (A.T.)
- Department of Biology, University of Crete, 71110 Heraklion, Greece
| | - Pantelis Katharios
- Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), Hellenic Centre for Marine Research (HCMR), 71500 Gournes, Greece; (Y.C.V.); (A.T.)
- Aquatic Biologicals, Thalassocosmos, 71500 Gournes, Greece
| |
Collapse
|
8
|
Lee HJ, Storesund JE, Lunestad BT, Hoel S, Lerfall J, Jakobsen AN. Whole genome sequence analysis of Aeromonas spp. isolated from ready-to-eat seafood: antimicrobial resistance and virulence factors. Front Microbiol 2023; 14:1175304. [PMID: 37455746 PMCID: PMC10348363 DOI: 10.3389/fmicb.2023.1175304] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/08/2023] [Indexed: 07/18/2023] Open
Abstract
Aeromonas are widespread in aquatic environments and are considered emerging pathogens in humans and animals. Multidrug resistant (MDR) Aeromonas circulating in the aquatic environment and food production chain can potentially disseminate antimicrobial resistance (AMR) to humans via the foodborne route. In this study, we aimed to investigate AMR and virulence factors of 22 Aeromonas strains isolated from ready-to-eat (RTE) seafood. A multilocus phylogenetic analysis (MLPA) using the concatenated sequences of six housekeeping genes (gyrB, rpoD, gyrA, recA, dnaJ, and dnaX) in the 22 Aeromonas genomes and average nucleotide identity (ANI) analysis revealed eight different species; A. caviae, A. dhakensis, A. hydrophila, A. media, A. rivipollensis, A. salmonicida, A. bestiarum, and A. piscicola. The presence of virulence genes, AMR genes and mobile genetic elements (MGEs) in the Aeromonas genomes was predicted using different databases. Our data showed that the genes responsible for adherence and motility (Msh type IV pili, tap type IV pili, polar flagella), type II secretion system (T2SS) and hemolysins were present in all strains, while the genes encoding enterotoxins and type VI secretion system (T6SS) including major effectors were highly prevalent. Multiple AMR genes encoding β-lactamases such as cphA and blaOXA were detected, and the distribution of those genes was species-specific. In addition, the quinolone resistance gene, qnrS2 was found in a IncQ type plasmid of the A. rivopollensis strain A539. Furthermore, we observed the co-localization of a class I integron (intl1) with two AMR genes (sul1 and aadA1), and a Tn521 transposon carrying a mercury operon in A. caviae strain SU4-2. Various MGEs including other transposons and insertion sequence (IS) elements were identified without strongly associating with detected AMR genes or virulence genes. In conclusion, Aeromonas strains in RTE seafood were potentially pathogenic, carrying several virulence-related genes. Aeromonas carrying multiple AMR genes and MGEs could potentially be involved in the dissemination and spread of AMR genes to other bacterial species residing in the same environment and possibly to humans. Considering a One-Health approach, we highlight the significance of monitoring AMR caused by Aeromonas circulating in the food chain.
Collapse
Affiliation(s)
- Hye-Jeong Lee
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Trondheim, Norway
| | - Julia E. Storesund
- Section for Contaminants and Biohazards, Institute of Marine Research, Bergen, Norway
| | - Bjørn-Tore Lunestad
- Section for Contaminants and Biohazards, Institute of Marine Research, Bergen, Norway
| | - Sunniva Hoel
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Trondheim, Norway
| | - Jørgen Lerfall
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Trondheim, Norway
| | - Anita Nordeng Jakobsen
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
9
|
Flagellar motility mediates biofilm formation in Aeromonas dhakensis. Microb Pathog 2023; 177:106059. [PMID: 36878334 DOI: 10.1016/j.micpath.2023.106059] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 11/27/2022] [Accepted: 03/03/2023] [Indexed: 03/07/2023]
Abstract
Aeromonas dhakensis possesses dual flagellar systems for motility under different environments. Flagella-mediated motility is necessary for biofilm formation through an initial attachment of bacteria to the surface, but this has not been elucidated in A. dhakensis. This study investigates the role of polar (flaH, maf1) and lateral (lafB, lafK and lafS) flagellar genes in the biofilm formation of a clinical A. dhakensis strain WT187 isolated from burn wound infection. Five deletion mutants and corresponding complemented strains were constructed using pDM4 and pBAD33 vectors, respectively, and analyzed for motility and biofilm formation using crystal violet staining and real-time impedance-based assays. All mutants were significantly reduced in swimming (p < 0.0001), swarming (p < 0.0001) and biofilm formation using crystal violet assay (p < 0.05). Real-time impedance-based analysis revealed WT187 biofilm was formed between 6 to 21 h, consisting of early (6-10 h), middle (11-18 h), and late (19-21 h) stages. The highest cell index of 0.0746 was recorded at 22-23 h and biofilms began to disperse starting from 24 h. Mutants Δmaf1, ΔlafB, ΔlafK and ΔlafS exhibited reduced cell index values at 6-48 h when compared to WT187 which indicates less biofilm formation. Two complemented strains cmaf1 and clafB exhibited full restoration to wild-type level in swimming, swarming, and biofilm formation using crystal violet assay, hence suggesting that both maf1 and lafB genes are involved in biofilm formation through flagella-mediated motility and surface attachment. Our study shows the role of flagella in A. dhakensis biofilm formation warrants further investigations.
Collapse
|
10
|
Miyagi K, Shimoji N, Oshiro H, Hirai I. Differences in flaA gene sequences, swimming motility, and biofilm forming ability between clinical and environmental isolates of Aeromonas species. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:11740-11754. [PMID: 36098923 DOI: 10.1007/s11356-022-22871-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/31/2022] [Indexed: 06/15/2023]
Abstract
The flagellin A gene (flaA) sequences, swimming motility, and biofilm forming ability were investigated in order to reveal the genetic and functional differences of flagella between clinical and environmental isolates of Aeromonas species. Twenty-eight clinical and 48 environmental strains of Aeromonas species isolated in Okinawa Prefecture of Japan were used in this study. The full-length flaA genes of these strains were sequenced and aligned, and a phylogenetic tree was constructed. In addition, swimming motility and biofilm forming ability were evaluated by conventional methods. Aeromonas veronii biovar sobria and A. hydrophila clearly divided into clinical and environmental strain clusters in the flaA phylogenetic classification, and the six and 13 specific amino acids respectively, of FlaA of both species were different in clinical and environmental strains. Furthermore, the flaA size of the clinical strain of A. veronii bv. sobria was mainly 909, 924, and 939 bp, and the size of A. hydrophila was 909 bp. The swimming motility of clinical isolates of both species was lower than the environmental isolates; however, the biofilm forming ability of the clinical isolates was high. Thus, the clinical isolates of A. veronii bv. sobria and A. hydrophila had different genetic and functional characteristics of flagellin than the environmental isolates. The characteristics of flagellin could serve as indicators to distinguish between clinical and environmental isolates of the both species. It may contribute to diagnosis of these diseases and the monitoring of clinical strain invasion into the natural environment.
Collapse
Affiliation(s)
- Kazufumi Miyagi
- Laboratory of Microbiology, School of Health Sciences, Faculty of Medicine, University of the Ryukyus, 207 Uehara, Nishihara-cho, Okinawa, 903-0215, Japan.
| | - Noriaki Shimoji
- Department of Clinical Laboratory, Urasoe General Hospital, 4-16-1 Iso, Urasoe-shi, Okinawa, 901-2132, Japan
| | - Haruna Oshiro
- Department of Clinical Laboratory, Urasoe General Hospital, 4-16-1 Iso, Urasoe-shi, Okinawa, 901-2132, Japan
| | - Itaru Hirai
- Laboratory of Microbiology, School of Health Sciences, Faculty of Medicine, University of the Ryukyus, 207 Uehara, Nishihara-cho, Okinawa, 903-0215, Japan
| |
Collapse
|
11
|
Lee JH, Yoo H, Ahn YJ, Kim HJ, Kwon SR. Evaluation of the Antimicrobial Effect of Graphene Oxide Fiber on Fish Bacteria for Application in Aquaculture Systems. MATERIALS (BASEL, SWITZERLAND) 2022; 15:966. [PMID: 35160912 PMCID: PMC8840572 DOI: 10.3390/ma15030966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/06/2022] [Accepted: 01/18/2022] [Indexed: 02/06/2023]
Abstract
The growing importance of the domestic aquaculture industry has led not only to its continuous development and expansion but also to an increase in the production of wastewater containing pathogenic microorganisms and antibiotic-resistant bacteria. As the existing water purification facilities have a high initial cost of construction, operation, and maintenance, it is necessary to develop an economical solution. Graphene oxide (GO) is a carbon-based nanomaterial that is easy to manufacture, inexpensive and has excellent antimicrobial properties. In this study, the antimicrobial effect of GO polyester fibers on seven species of fish pathogenic bacteria was analyzed to evaluate their effectiveness in water treatment systems and related products. As a result of incubating GO polyester fibers with seven types of fish pathogenic bacteria for 1, 6, and 12 h, there was no antimicrobial effect in Vibrio harveyi, V. scopthalmi, and Edwardsiella tarda. In contrast, GO fibers showed antimicrobial effects of more than 99% against A. hydrophila, S. parauberis, S. iniae, and P. piscicola, suggesting the potential use of GO fibers in water treatment systems.
Collapse
Affiliation(s)
- Ji Hyun Lee
- Department of Aquatic Life Medical Sciences, Sunmoon University, Asan 31460, Korea;
| | | | - Yu Jin Ahn
- SamhwanTF, Nowon-gu, Seoul 10848, Korea;
| | - Hyoung Jun Kim
- OIE Reference Laboratory for VHS, National Institute of Fisheries Science, Busan 46083, Korea
| | - Se Ryun Kwon
- Department of Aquatic Life Medical Sciences, Sunmoon University, Asan 31460, Korea;
- Genome-Based BioIT Convergence Institute, Asan 31460, Korea
| |
Collapse
|
12
|
da Silva Filho AC, Marchaukoski JN, Raittz RT, De Pierri CR, de Jesus Soares Machado D, Fadel-Picheth CMT, Picheth G. Prediction and Analysis in silico of Genomic Islands in Aeromonas hydrophila. Front Microbiol 2021; 12:769380. [PMID: 34912316 PMCID: PMC8667584 DOI: 10.3389/fmicb.2021.769380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/01/2021] [Indexed: 11/13/2022] Open
Abstract
Aeromonas are Gram-negative rods widely distributed in the environment. They can cause severe infections in fish related to financial losses in the fish industry, and are considered opportunistic pathogens of humans causing infections ranging from diarrhea to septicemia. The objective of this study was to determine in silico the contribution of genomic islands to A. hydrophila. The complete genomes of 17 A. hydrophila isolates, which were separated into two phylogenetic groups, were analyzed using a genomic island (GI) predictor. The number of predicted GIs and their characteristics varied among strains. Strains from group 1, which contains mainly fish pathogens, generally have a higher number of predicted GIs, and with larger size, than strains from group 2 constituted by strains recovered from distinct sources. Only a few predicted GIs were shared among them and contained mostly genes from the core genome. Features related to virulence, metabolism, and resistance were found in the predicted GIs, but strains varied in relation to their gene content. In strains from group 1, O Ag biosynthesis clusters OX1 and OX6 were identified, while strains from group 2 each had unique clusters. Metabolic pathways for myo-inositol, L-fucose, sialic acid, and a cluster encoding QueDEC, tgtA5, and proteins related to DNA metabolism were identified in strains of group 1, which share a high number of predicted GIs. No distinctive features of group 2 strains were identified in their predicted GIs, which are more diverse and possibly better represent GIs in this species. However, some strains have several resistance attributes encoded by their predicted GIs. Several predicted GIs encode hypothetical proteins and phage proteins whose functions have not been identified but may contribute to Aeromonas fitness. In summary, features with functions identified on predicted GIs may confer advantages to host colonization and competitiveness in the environment.
Collapse
Affiliation(s)
| | - Jeroniza Nunes Marchaukoski
- Department of Bioinformatics, Professional and Technical Education Sector, Federal University of Parana, Curitiba, Brazil
| | - Roberto Tadeu Raittz
- Department of Bioinformatics, Professional and Technical Education Sector, Federal University of Parana, Curitiba, Brazil
| | | | - Diogo de Jesus Soares Machado
- Department of Bioinformatics, Professional and Technical Education Sector, Federal University of Parana, Curitiba, Brazil
| | | | - Geraldo Picheth
- Department of Clinical Analysis, Federal University of Parana, Curitiba, Brazil
| |
Collapse
|
13
|
Surface Glucan Structures in Aeromonas spp. Mar Drugs 2021; 19:md19110649. [PMID: 34822520 PMCID: PMC8625153 DOI: 10.3390/md19110649] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/17/2021] [Accepted: 11/19/2021] [Indexed: 01/24/2023] Open
Abstract
Aeromonas spp. are generally found in aquatic environments, although they have also been isolated from both fresh and processed food. These Gram-negative, rod-shaped bacteria are mostly infective to poikilothermic animals, although they are also considered opportunistic pathogens of both aquatic and terrestrial homeotherms, and some species have been associated with gastrointestinal and extraintestinal septicemic infections in humans. Among the different pathogenic factors associated with virulence, several cell-surface glucans have been shown to contribute to colonization and survival of Aeromonas pathogenic strains, in different hosts. Lipopolysaccharide (LPS), capsule and α-glucan structures, for instance, have been shown to play important roles in bacterial–host interactions related to pathogenesis, such as adherence, biofilm formation, or immune evasion. In addition, glycosylation of both polar and lateral flagella has been shown to be mandatory for flagella production and motility in different Aeromonas strains, and has also been associated with increased bacterial adhesion, biofilm formation, and induction of the host proinflammatory response. The main aspects of these structures are covered in this review.
Collapse
|
14
|
Lau TTV, Puah SM, Tan JAMA, Puthucheary SD, Chua KH. Characterization of the relationship between polar and lateral flagellar genes in clinical Aeromonas dhakensis: phenotypic, genetic and biochemical analyses. Braz J Microbiol 2021; 52:517-529. [PMID: 33768508 DOI: 10.1007/s42770-021-00457-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 02/23/2021] [Indexed: 11/25/2022] Open
Abstract
Flagellar-mediated motility is a crucial virulence factor in many bacterial species. A dual flagellar system has been described in aeromonads; however, there is no flagella-related study in the emergent human pathogen Aeromonas dhakensis. Using 46 clinical A. dhakensis, phenotypic motility, genotypic characteristics (flagellar genes and sequence types), biochemical properties and their relationship were investigated in this study. All 46 strains showed swimming motility at 30 °C in 0.3% Bacto agar and carried the most prevalent 6 polar flagellar genes cheA, flgE, flgG, flgH, flgL, and flgN. On the contrary, only 18 strains (39%) demonstrated swarming motility on 0.5% Eiken agar at 30 °C and they harbored 11 lateral flagellar genes lafB, lafK, lafS, lafT, lafU, flgCL, flgGL, flgNL, fliEL, fliFL, and fliGL. No association was found between biochemical properties and motility phenotypes. Interestingly, a significant association between swarming and strains isolated from pus was observed (p = 0.0171). Three strains 187, 277, and 289 isolated from pus belonged to novel sequence types (ST522 and ST524) exhibited fast swimming and swarming profiles, and they harbored > 90% of the flagellar genes tested. Our findings provide a fundamental understanding of flagellar-mediated motility in A. dhakensis.
Collapse
Affiliation(s)
- Tien-Tien Vicky Lau
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Suat-Moi Puah
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | | | - S D Puthucheary
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Kek-Heng Chua
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
15
|
Forn-Cuní G, Fulton KM, Smith JC, Twine SM, Mendoza-Barberà E, Tomás JM, Merino S. Polar Flagella Glycosylation in Aeromonas: Genomic Characterization and Involvement of a Specific Glycosyltransferase (Fgi-1) in Heterogeneous Flagella Glycosylation. Front Microbiol 2021; 11:595697. [PMID: 33584564 PMCID: PMC7874193 DOI: 10.3389/fmicb.2020.595697] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 12/21/2020] [Indexed: 01/27/2023] Open
Abstract
Polar flagella from mesophilic Aeromonas strains have previously been shown to be modified with a range of glycans. Mass spectrometry studies of purified polar flagellins suggested the glycan typically includes a putative pseudaminic acid like derivative; while some strains are modified with this single monosaccharide, others modified with a heterologous glycan. In the current study, we demonstrate that genes involved in polar flagella glycosylation are clustered in highly polymorphic genomic islands flanked by pseudaminic acid biosynthetic genes (pse). Bioinformatic analysis of mesophilic Aeromonas genomes identified three types of polar flagella glycosylation islands (FGIs), denoted Group I, II and III. FGI Groups I and III are small genomic islands present in Aeromonas strains with flagellins modified with a single monosaccharide pseudaminic acid derivative. Group II were large genomic islands, present in strains found to modify polar flagellins with heterogeneous glycan moieties. Group II, in addition to pse genes, contained numerous glycosyltransferases and other biosynthetic enzymes. All Group II strains shared a common glycosyltransferase downstream of luxC that we named flagella glycosylation island 1, fgi-1, in A. piscicola AH-3. We demonstrate that Fgi-1 transfers the first sugar of the heterogeneous glycan to the pseudaminic acid derivative linked to polar flagellins and could be used as marker for polysaccharidic glycosylation of Aeromonas polar flagella.
Collapse
Affiliation(s)
- Gabriel Forn-Cuní
- Departamento de Genética, Microbiología y Estadística, Sección Microbiología, Virología y Biotecnología, Facultad de Biología, Universidad de Barcelona, Barcelona, Spain
| | - Kelly M. Fulton
- National Research Council Canada, Human Health Therapeutics Research Centre, Ottawa, ON, Canada
- Faculty of Science, Carleton University, Ottawa, ON, Canada
| | | | - Susan M. Twine
- National Research Council Canada, Human Health Therapeutics Research Centre, Ottawa, ON, Canada
- Faculty of Science, Carleton University, Ottawa, ON, Canada
| | - Elena Mendoza-Barberà
- Departamento de Genética, Microbiología y Estadística, Sección Microbiología, Virología y Biotecnología, Facultad de Biología, Universidad de Barcelona, Barcelona, Spain
| | - Juan M. Tomás
- Departamento de Genética, Microbiología y Estadística, Sección Microbiología, Virología y Biotecnología, Facultad de Biología, Universidad de Barcelona, Barcelona, Spain
| | - Susana Merino
- Departamento de Genética, Microbiología y Estadística, Sección Microbiología, Virología y Biotecnología, Facultad de Biología, Universidad de Barcelona, Barcelona, Spain
| |
Collapse
|
16
|
Barger PC, Liles MR, Beck BH, Newton JC. Differential production and secretion of potentially toxigenic extracellular proteins from hypervirulent Aeromonas hydrophila under biofilm and planktonic culture. BMC Microbiol 2021; 21:8. [PMID: 33407117 PMCID: PMC7788984 DOI: 10.1186/s12866-020-02065-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 12/07/2020] [Indexed: 12/17/2022] Open
Abstract
Background Hypervirulent Aeromonas hydrophila (vAh) is an emerging pathogen in freshwater aquaculture that results in the loss of over 3 million pounds of marketable channel catfish, Ictalurus punctatus, and channel catfish hybrids (I. punctatus, ♀ x blue catfish, I. furcatus, ♂) each year from freshwater catfish production systems in Alabama, U.S.A. vAh isolates are clonal in nature and are genetically unique from, and significantly more virulent than, traditional A. hydrophila isolates from fish. Even with the increased virulence, natural infections cannot be reproduced in aquaria challenges making it difficult to determine modes of infection and the pathophysiology behind the devastating mortalities that are commonly observed. Despite the intimate connection between environmental adaptation and plastic response, the role of environmental adaption on vAh pathogenicity and virulence has not been previously explored. In this study, secreted proteins of vAh cultured as free-living planktonic cells and within a biofilm were compared to elucidate the role of biofilm growth on virulence. Results Functional proteolytic assays found significantly increased degradative activity in biofilm secretomes; in contrast, planktonic secretomes had significantly increased hemolytic activity, suggesting higher toxigenic potential. Intramuscular injection challenges in a channel catfish model showed that in vitro degradative activity translated into in vivo tissue destruction. Identification of secreted proteins by HPLC-MS/MS revealed the presence of many putative virulence proteins under both growth conditions. Biofilm grown vAh produced higher levels of proteolytic enzymes and adhesins, whereas planktonically grown cells secreted higher levels of toxins, porins, and fimbrial proteins. Conclusions This study is the first comparison of the secreted proteomes of vAh when grown in two distinct ecological niches. These data on the adaptive physiological response of vAh based on growth condition increase our understanding of how environmental niche partitioning could affect vAh pathogenicity and virulence. Increased secretion of colonization factors and degradative enzymes during biofilm growth and residency may increase bacterial attachment and host invasiveness, while increased secretion of hemolysins, porins, and other potential toxins under planktonic growth (or after host invasion) could result in increased host mortality. The results of this research underscore the need to use culture methods that more closely mimic natural ecological habitat growth to improve our understanding of vAh pathogenesis. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-020-02065-2.
Collapse
Affiliation(s)
- Priscilla C Barger
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA. .,Biological Sciences, College of Sciences and Math, Auburn University, Auburn, AL, USA.
| | - Mark R Liles
- Biological Sciences, College of Sciences and Math, Auburn University, Auburn, AL, USA
| | - Benjamin H Beck
- USDA ARS Aquatic Animal Health Research Unit, Auburn, AL, USA
| | - Joseph C Newton
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA.
| |
Collapse
|
17
|
Khairnar A, Sunsunwal S, Babu P, Ramya TNC. Novel serine/threonine-O-glycosylation with N-acetylneuraminic acid and 3-deoxy-D-manno-octulosonic acid by bacterial flagellin glycosyltransferases. Glycobiology 2020; 31:288-306. [PMID: 32886756 DOI: 10.1093/glycob/cwaa084] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/05/2020] [Accepted: 08/24/2020] [Indexed: 12/15/2022] Open
Abstract
Some bacterial flagellins are O-glycosylated on surface-exposed serine/threonine residues with nonulosonic acids such as pseudaminic acid, legionaminic acid and their derivatives by flagellin nonulosonic acid glycosyltransferases, also called motility-associated factors (Maf). We report here two new glycosidic linkages previously unknown in any organism, serine/threonine-O-linked N-acetylneuraminic acid (Ser/Thr-O-Neu5Ac) and serine/threonine-O-linked 3-deoxy-D-manno-octulosonic acid or keto-deoxyoctulosonate (Ser/Thr-O-KDO), both catalyzed by Geobacillus kaustophilus Maf and Clostridium botulinum Maf. We identified these novel glycosidic linkages in recombinant G. kaustophilus and C. botulinum flagellins that were coexpressed with their cognate recombinant Maf protein in Escherichia coli strains producing the appropriate nucleotide sugar glycosyl donor. Our finding that both G. kaustophilus Maf (putative flagellin sialyltransferase) and C. botulinum Maf (putative flagellin legionaminic acid transferase) catalyzed Neu5Ac and KDO transfer on to flagellin indicates that Maf glycosyltransferases display donor substrate promiscuity. Maf glycosyltransferases have the potential to radically expand the scope of neoglycopeptide synthesis and posttranslational protein engineering.
Collapse
Affiliation(s)
- Aasawari Khairnar
- Department of Protein Science and Engineering, CSIR-Institute of Microbial Technology, Sector 39-A, Chandigarh 160036, India
| | - Sonali Sunsunwal
- Department of Protein Science and Engineering, CSIR-Institute of Microbial Technology, Sector 39-A, Chandigarh 160036, India
| | - Ponnusamy Babu
- Glycomics and Glycoproteomics & Biologics Characterization Facility, Centre for Cellular and Molecular Platforms, National Centre for Biological Sciences-TIFR, Bengaluru, UAS-GKVK Campus, Bellary Road, 560065, India
| | - T N C Ramya
- Department of Protein Science and Engineering, CSIR-Institute of Microbial Technology, Sector 39-A, Chandigarh 160036, India
| |
Collapse
|
18
|
Oral Administration of Lactobacillus Casei Expressing Flagellin A Protein Confers Effective Protection against Aeromonas Veronii in Common Carp, Cyprinus Carpio. Int J Mol Sci 2019; 21:ijms21010033. [PMID: 31861650 PMCID: PMC6981697 DOI: 10.3390/ijms21010033] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 12/16/2019] [Accepted: 12/17/2019] [Indexed: 12/19/2022] Open
Abstract
Aeromonas veronii is a pathogen capable of infecting humans, livestock and aquatic animals, resulting in serious economic losses. In this study, two recombinant Lactobacillus casei expressing flagellin A (FlaA) of A. veronii, Lc-pPG-1-FlaA (surface-displayed) and Lc-pPG-2-FlaA (secretory) were constructed. The immune responses in fish administered with recombinant L. casei were evaluated. The two recombinant L. casei were orally administered to common carp, which stimulated high serum IgM and induced higher ACP, AKP, SOD and LYZ activity. Using qRT-PCR, the expression of IL-10, IL-8, IL-1β, TNF-α and IFN-γ in the tissue of fish immunized with recombinant L. casei was significantly (p < 0.05) upregulated, which indicated that recombinant L. casei could activate the innate immune system to trigger the cell immune response and inflammatory response. Furthermore, recombinant L. casei was able to survive the intestinal environment and colonize in intestine mucosal. The study showed that after being challenged by A. veronii, fish administered with Lc-pPG-1-FlaA (70%) and Lc-pPG-2-FlaA (50%) had higher survival rates compared to Lc-pPG and PBS, indicating that recombinant L. casei might prevent A. veronii infection by activating the immune system to trigger immune responses. We demonstrated that flagellin as an antigen of vaccine, is acceptable for preventing A. veronii infection in fish. The recombinant L. casei expressing FlaA may be a novel mucosal vaccine for treating and controlling A. veronii.
Collapse
|
19
|
Minasyan H. Rototrichous: a new type of bacterial flagellation. Arch Microbiol 2019; 202:519-523. [PMID: 31712863 DOI: 10.1007/s00203-019-01765-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 08/30/2018] [Accepted: 10/31/2019] [Indexed: 11/28/2022]
Abstract
A rod-shaped microorganism with unknown type of flagellation has been accidentally discovered during phase-contrast microscopy of a sample of contaminated human donor blood. The flagellum consists of three fragments that form a complex locomotor device attached to bacterial body. The device provides bacterial motility by rotating around longitudinal axis of bacterial body and so this type of flagellation has been named "rototrichous." This newly discovered bacterial flagellation should be included in the classification of bacterial flagellations.
Collapse
|
20
|
Tsai J, Yeh Y, Lin L, Sun Y, Hsiao C. Crystal structure of the flagellin protein FlaG from Helicobacter pylori. J CHIN CHEM SOC-TAIP 2019. [DOI: 10.1002/jccs.201900162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jia‐Yin Tsai
- Department of Life Science and Institute of Bioinformatics and Structural BiologyNational Tsing Hua University Hsinchu Taiwan
| | - Yi‐Hung Yeh
- Institute of Molecular BiologyAcademia Sinica Taipei Taiwan
| | - Lun‐Der Lin
- Department of Life Science and Institute of Bioinformatics and Structural BiologyNational Tsing Hua University Hsinchu Taiwan
| | - Yuh‐Ju Sun
- Department of Life Science and Institute of Bioinformatics and Structural BiologyNational Tsing Hua University Hsinchu Taiwan
| | | |
Collapse
|
21
|
Banerjee P, Chanchal, Jain D. Sensor I Regulated ATPase Activity of FleQ Is Essential for Motility to Biofilm Transition in Pseudomonas aeruginosa. ACS Chem Biol 2019; 14:1515-1527. [PMID: 31268665 DOI: 10.1021/acschembio.9b00255] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Members of the AAA+ (ATPase associated with various cellular activities) family of ATPases couple chemical energy derived from ATP hydrolysis for generation of mechanical force, resulting in conformational changes. The hydrolysis is brought about by highly conserved domains and motifs. The sensor I motif is critical for sensing and hydrolysis of the nucleotide. Pseudomonas aeruginosa FleQ is an ATPase that is a positive regulator of flagellar gene expression. We have determined the crystal structures of the ATPase domain of wild-type FleQ and sensor I mutants H287N and H287A in complex with ATPγS and Mg2+ to 2.4, 1.95, and 2.25 Å resolution, respectively. The structural data highlight the role of sensor I in regulating the ATPase activity. The in vitro and in vivo data demonstrate that the moderate ATPase activity of FleQ due to the presence of histidine in sensor I is essential for maintaining the monotrichous phenotype and for the rapid motility to biofilm transition.
Collapse
Affiliation(s)
- Priyajit Banerjee
- Transcription Regulation Lab, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad 121001, India
- Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha 751024, India
| | - Chanchal
- Transcription Regulation Lab, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad 121001, India
- Manipal Academy of Higher Education, Karnataka 576104, India
| | - Deepti Jain
- Transcription Regulation Lab, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad 121001, India
| |
Collapse
|
22
|
Foysal MJ, Momtaz F, Ali MH, Siddik MAB, Chaklader MR, Rahman MM, Prodhan MSH, Cole A. Molecular characterization and interactome analysis of aerolysin (aer) gene from fish pathogen Aeromonas veronii: The pathogenicity inferred from sequence divergence and linked to histidine kinase (cheA). JOURNAL OF FISH DISEASES 2019; 42:465-475. [PMID: 30734315 DOI: 10.1111/jfd.12954] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 10/17/2018] [Accepted: 10/17/2018] [Indexed: 06/09/2023]
Abstract
Aerolysin (aer) is one of the most important and abundant virulence factors in the infection of fish by Aeromonas veronii. A comprehensive study on the molecular characterization and pathogenicity of the aer gene from 34 A. veronii isolates from diseased carp and catfish was carried out and its interactome was analysed to observe the functional correlations between aer and other proteins within the A. veronii network. The PCR-based amplification of aer from the 34 isolates of A. veronii showed more aer-positive isolates from catfish with a high pathogenic potential in the in vivo challenge test than the carp fish. The analysis of aer gene sequence from challenged fish revealed significant sequence divergence according to the types and geographical distribution of the fish. The networking analysis of aer from the model A. veronii B565 revealed histidine kinase (cheA) as the most functional interacting partner. The study of the interaction between aer from the experimental A. veronii and cheA demonstrated that the A chain of cheA plays a more important role than the corresponding B chain during contact, and a linker sequence of 15 residues controlled the entire interaction process. Therefore, cheA could be an excellent drug target for controlling A. veronii infection of fish.
Collapse
Affiliation(s)
- Md Javed Foysal
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Farhana Momtaz
- Department of Microbiology, Chittagong University, Chittagong, Bangladesh
| | - Md Hazrat Ali
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Muhammad A B Siddik
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia
| | - Md Reaz Chaklader
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia
| | - Md Mahbubur Rahman
- Department of Biotechnology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Md Shamsul Haque Prodhan
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Anthony Cole
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia
| |
Collapse
|
23
|
Dong Y, Wang Y, Liu J, Ma S, Awan F, Lu C, Liu Y. Discovery of lahS as a Global Regulator of Environmental Adaptation and Virulence in Aeromonas hydrophila. Int J Mol Sci 2018; 19:E2709. [PMID: 30208624 PMCID: PMC6163582 DOI: 10.3390/ijms19092709] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 09/03/2018] [Accepted: 09/04/2018] [Indexed: 01/06/2023] Open
Abstract
Aeromonas hydrophila is an important aquatic microorganism that can cause fish hemorrhagic septicemia. In this study, we identified a novel LysR family transcriptional regulator (LahS) in the A. hydrophila Chinese epidemic strain NJ-35 from a library of 947 mutant strains. The deletion of lahS caused bacteria to exhibit significantly decreased hemolytic activity, motility, biofilm formation, protease production, and anti-bacterial competition ability when compared to the wild-type strain. In addition, the determination of the fifty percent lethal dose (LD50) in zebrafish demonstrated that the lahS deletion mutant (ΔlahS) was highly attenuated in virulence, with an approximately 200-fold increase in LD50 observed as compared with that of the wild-type strain. However, the ΔlahS strain exhibited significantly increased antioxidant activity (six-fold). Label-free quantitative proteome analysis resulted in the identification of 34 differentially expressed proteins in the ΔlahS strain. The differentially expressed proteins were involved in flagellum assembly, metabolism, redox reactions, and cell density induction. The data indicated that LahS might act as a global regulator to directly or indirectly regulate various biological processes in A. hydrophila NJ-35, contributing to a greater understanding the pathogenic mechanisms of A. hydrophila.
Collapse
Affiliation(s)
- Yuhao Dong
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Yao Wang
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Jin Liu
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Shuiyan Ma
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Furqan Awan
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Chengping Lu
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Yongjie Liu
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
24
|
The fight for invincibility: Environmental stress response mechanisms and Aeromonas hydrophila. Microb Pathog 2018; 116:135-145. [PMID: 29355702 DOI: 10.1016/j.micpath.2018.01.023] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 01/15/2018] [Accepted: 01/15/2018] [Indexed: 12/11/2022]
Abstract
Aeromonas hydrophila is a freshwater-dwelling zoonotic bacterium that has economic importance in aquaculture. In the past decade, Aeromonas hydrophila has become increasingly important because of its emergence as a food-borne zoonotic pathogen that is resistant to different treatment regimes. Being an aquatic bacterium, Aeromonas hydrophila is frequently subjected to several stressful environmental conditions, including changes in temperature, acidic pH and starvation that challenge its survival. To cope with these stressful conditions, like every cell, A. hydrophila possesses stress response mechanisms, such as alternative sigma factors, two-component systems, heat shock proteins, cold shock proteins, and acid tolerance response systems that eventually lead the fittest to survive. Moreover, the establishment of genetic variations among the strains related to environmental stress is also of great concern. This review presents the understandings based on inter-strain variations and stress response behavior of A. hydrophila that are important to control the increasing outbreaks of this bacterium in both human populations and aquaculture.
Collapse
|
25
|
Roux D, Schaefers M, Clark BS, Weatherholt M, Renaud D, Scott D, LiPuma JJ, Priebe G, Gerard C, Yoder-Himes DR. A putative lateral flagella of the cystic fibrosis pathogen Burkholderia dolosa regulates swimming motility and host cytokine production. PLoS One 2018; 13:e0189810. [PMID: 29346379 PMCID: PMC5773237 DOI: 10.1371/journal.pone.0189810] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 12/01/2017] [Indexed: 01/25/2023] Open
Abstract
Burkholderia dolosa caused an outbreak in the cystic fibrosis clinic at Boston Children's Hospital and was associated with high mortality in these patients. This species is part of a larger complex of opportunistic pathogens known as the Burkholderia cepacia complex (Bcc). Compared to other species in the Bcc, B. dolosa is highly transmissible; thus understanding its virulence mechanisms is important for preventing future outbreaks. The genome of one of the outbreak strains, AU0158, revealed a homolog of the lafA gene encoding a putative lateral flagellin, which, in other non-Bcc species, is used for movement on solid surfaces, attachment to host cells, or movement inside host cells. Here, we analyzed the conservation of the lafA gene and protein sequences, which are distinct from those of the polar flagella, and found lafA homologs to be present in numerous β-proteobacteria but notably absent from most other Bcc species. A lafA deletion mutant in B. dolosa showed a greater swimming motility than wild-type due to an increase in the number of polar flagella, but did not appear to contribute to biofilm formation, host cell invasion, or murine lung colonization or persistence over time. However, the lafA gene was important for cytokine production in human peripheral blood mononuclear cells, suggesting it may have a role in recognition by the human immune response.
Collapse
Affiliation(s)
- Damien Roux
- INSERM, IAME, UMR 1137, Paris, France
- Univ Paris Diderot, Sorbonne Paris Cité, Paris, France
- AP-HP, Louis Mourier Hospital, Intensive Care Unit, Colombes, France
| | - Matthew Schaefers
- Division of Critical Care Medicine, Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children’s Hospital, Boston, Massachusetts, United States of America
- Department of Anesthesia, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Bradley S. Clark
- Department of Biology, University of Louisville, Louisville, Kentucky, United States of America
| | - Molly Weatherholt
- Department of Biology, University of Louisville, Louisville, Kentucky, United States of America
| | - Diane Renaud
- Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, Kentucky, United States of America
| | - David Scott
- Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, Kentucky, United States of America
| | - John J. LiPuma
- Division of Pediatrics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Gregory Priebe
- Division of Critical Care Medicine, Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children’s Hospital, Boston, Massachusetts, United States of America
- Department of Anesthesia, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Craig Gerard
- Division of Respiratory Diseases, Boston Children’s Hospital, Boston, Massachusetts, United States of America
| | - Deborah R. Yoder-Himes
- Department of Biology, University of Louisville, Louisville, Kentucky, United States of America
- * E-mail:
| |
Collapse
|
26
|
Sulzenbacher G, Roig-Zamboni V, Lebrun R, Guérardel Y, Murat D, Mansuelle P, Yamakawa N, Qian XX, Vincentelli R, Bourne Y, Wu LF, Alberto F. Glycosylate and move! The glycosyltransferase Maf is involved in bacterial flagella formation. Environ Microbiol 2017; 20:228-240. [DOI: 10.1111/1462-2920.13975] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 10/17/2017] [Accepted: 10/22/2017] [Indexed: 11/30/2022]
Affiliation(s)
| | | | - Régine Lebrun
- Plate-forme Protéomique; Institut de Microbiologie de la Méditerranée, FR3479 Aix-Marseille Université and Centre National de la Recherche Scientifique; Marseille 13402 France
| | - Yann Guérardel
- Unité de Glycobiologie Structurale et Fonctionnelle; UMR 8576 Université de Lille and Centre National de la Recherche Scientifique; Lille 59000 France
| | - Dorothée Murat
- Aix Marseille Univ, CNRS, LCB UMR7283; Marseille 13402 France
- International Associated Laboratory of Evolution and Development of Magnetotactic Organisms (LIA-MagMC); Centre National de la Recherche Scientifique; Marseille 13402 France
| | - Pascal Mansuelle
- Plate-forme Protéomique; Institut de Microbiologie de la Méditerranée, FR3479 Aix-Marseille Université and Centre National de la Recherche Scientifique; Marseille 13402 France
| | - Nao Yamakawa
- Unité de Glycobiologie Structurale et Fonctionnelle; UMR 8576 Université de Lille and Centre National de la Recherche Scientifique; Lille 59000 France
| | - Xin-Xin Qian
- Aix Marseille Univ, CNRS, LCB UMR7283; Marseille 13402 France
- International Associated Laboratory of Evolution and Development of Magnetotactic Organisms (LIA-MagMC); Centre National de la Recherche Scientifique; Marseille 13402 France
| | | | - Yves Bourne
- Aix Marseille Univ, CNRS, AFMB UMR7257; Marseille 13288 France
| | - Long-Fei Wu
- Aix Marseille Univ, CNRS, LCB UMR7283; Marseille 13402 France
- International Associated Laboratory of Evolution and Development of Magnetotactic Organisms (LIA-MagMC); Centre National de la Recherche Scientifique; Marseille 13402 France
| | - François Alberto
- Aix Marseille Univ, CNRS, LCB UMR7283; Marseille 13402 France
- International Associated Laboratory of Evolution and Development of Magnetotactic Organisms (LIA-MagMC); Centre National de la Recherche Scientifique; Marseille 13402 France
| |
Collapse
|
27
|
Talagrand-Reboul E, Jumas-Bilak E, Lamy B. The Social Life of Aeromonas through Biofilm and Quorum Sensing Systems. Front Microbiol 2017; 8:37. [PMID: 28163702 PMCID: PMC5247445 DOI: 10.3389/fmicb.2017.00037] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 01/06/2017] [Indexed: 01/25/2023] Open
Abstract
Bacteria of the genus Aeromonas display multicellular behaviors herein referred to as “social life”. Since the 1990s, interest has grown in cell-to-cell communication through quorum sensing signals and biofilm formation. As they are interconnected, these two self-organizing systems deserve to be considered together for a fresh perspective on the natural history and lifestyles of aeromonads. In this review, we focus on the multicellular behaviors of Aeromonas, i.e., its social life. First, we review and discuss the available knowledge at the molecular and cellular levels for biofilm and quorum sensing. We then discuss the complex, subtle, and nested interconnections between the two systems. Finally, we focus on the aeromonad multicellular coordinated behaviors involved in heterotrophy and virulence that represent technological opportunities and applied research challenges.
Collapse
Affiliation(s)
- Emilie Talagrand-Reboul
- Équipe Pathogènes Hydriques Santé Environnements, UMR 5569 HSM, Université de MontpellierMontpellier, France; Département d'Hygiène Hospitalière, Centre Hospitalier Régional Universitaire (CHRU) de MontpellierMontpellier, France
| | - Estelle Jumas-Bilak
- Équipe Pathogènes Hydriques Santé Environnements, UMR 5569 HSM, Université de MontpellierMontpellier, France; Département d'Hygiène Hospitalière, Centre Hospitalier Régional Universitaire (CHRU) de MontpellierMontpellier, France
| | - Brigitte Lamy
- Équipe Pathogènes Hydriques Santé Environnements, UMR 5569 HSM, Université de MontpellierMontpellier, France; Département de Bactériologie, Centre Hospitalier Universitaire (CHU) de NiceNice, France
| |
Collapse
|
28
|
Romero A, Saraceni PR, Merino S, Figueras A, Tomás JM, Novoa B. The Animal Model Determines the Results of Aeromonas Virulence Factors. Front Microbiol 2016; 7:1574. [PMID: 27757107 PMCID: PMC5048442 DOI: 10.3389/fmicb.2016.01574] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 09/20/2016] [Indexed: 12/19/2022] Open
Abstract
The selection of an experimental animal model is of great importance in the study of bacterial virulence factors. Here, a bath infection of zebrafish larvae is proposed as an alternative model to study the virulence factors of Aeromonas hydrophila. Intraperitoneal infections in mice and trout were compared with bath infections in zebrafish larvae using specific mutants. The great advantage of this model is that bath immersion mimics the natural route of infection, and injury to the tail also provides a natural portal of entry for the bacteria. The implication of T3SS in the virulence of A. hydrophila was analyzed using the AH-1::aopB mutant. This mutant was less virulent than the wild-type strain when inoculated into zebrafish larvae, as described in other vertebrates. However, the zebrafish model exhibited slight differences in mortality kinetics only observed using invertebrate models. Infections using the mutant AH-1ΔvapA lacking the gene coding for the surface S-layer suggested that this protein was not totally necessary to the bacteria once it was inside the host, but it contributed to the inflammatory response. Only when healthy zebrafish larvae were infected did the mutant produce less mortality than the wild-type. Variations between models were evidenced using the AH-1ΔrmlB, which lacks the O-antigen lipopolysaccharide (LPS), and the AH-1ΔwahD, which lacks the O-antigen LPS and part of the LPS outer-core. Both mutants showed decreased mortality in all of the animal models, but the differences between them were only observed in injured zebrafish larvae, suggesting that residues from the LPS outer core must be important for virulence. The greatest differences were observed using the AH-1ΔFlaB-J (lacking polar flagella and unable to swim) and the AH-1::motX (non-motile but producing flagella). They were as pathogenic as the wild-type strain when injected into mice and trout, but no mortalities were registered in zebrafish larvae. This study demonstrates that zebrafish larvae can be used as a host model to assess the virulence factors of A. hydrophila. This model revealed more differences in pathogenicity than the in vitro models and enabled the detection of slight variations in pathogenesis not observed using intraperitoneal injections of mice or fish.
Collapse
Affiliation(s)
- Alejandro Romero
- Department of Immunology and Genomics, Marine Research Institute-Consejo Superior de Investigaciones Científicas, Vigo Spain
| | - Paolo R Saraceni
- Department of Immunology and Genomics, Marine Research Institute-Consejo Superior de Investigaciones Científicas, Vigo Spain
| | - Susana Merino
- Department of Microbiology, Faculty of Biology, University of Barcelona, Barcelona Spain
| | - Antonio Figueras
- Department of Immunology and Genomics, Marine Research Institute-Consejo Superior de Investigaciones Científicas, Vigo Spain
| | - Juan M Tomás
- Department of Microbiology, Faculty of Biology, University of Barcelona, Barcelona Spain
| | - Beatriz Novoa
- Department of Immunology and Genomics, Marine Research Institute-Consejo Superior de Investigaciones Científicas, Vigo Spain
| |
Collapse
|
29
|
Merino S, Tomás JM. The FlgT Protein Is Involved in Aeromonas hydrophila Polar Flagella Stability and Not Affects Anchorage of Lateral Flagella. Front Microbiol 2016; 7:1150. [PMID: 27507965 PMCID: PMC4960245 DOI: 10.3389/fmicb.2016.01150] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 07/11/2016] [Indexed: 12/28/2022] Open
Abstract
Aeromonas hydrophila sodium-driven polar flagellum has a complex stator-motor. Consist of two sets of redundant and non-exchangeable proteins (PomA/PomB and PomA2/PomB2), which are homologs to other sodium-conducting polar flagellum stator motors; and also two essential proteins (MotX and MotY), that they interact with one of those two redundant pairs of proteins and form the T-ring. In this work, we described an essential protein for polar flagellum stability and rotation which is orthologs to Vibrio spp. FlgT and it is encoded outside of the A. hydrophila polar flagellum regions. The flgT was present in all mesophilic Aeromonas strains tested and also in the non-motile Aeromonas salmonicida. The A. hydrophila ΔflgT mutant is able to assemble the polar flagellum but is more unstable and released into the culture supernatant from the cell upon completion assembly. Presence of FlgT in purified polar hook-basal bodies (HBB) of wild-type strain was confirmed by Western blotting and electron microscopy observations showed an outer ring of the T-ring (H-ring) which is not present in the ΔflgT mutant. Anchoring and motility of proton-driven lateral flagella was not affected in the ΔflgT mutant and specific antibodies did not detect FlgT in purified lateral HBB of wild type strain.
Collapse
Affiliation(s)
- Susana Merino
- Departamento de Genética, Microbiología y Estadística, Sección Microbiologia, Virología y Biotecnología, Facultad de Biología, Universidad de Barcelona Barcelona, Spain
| | - Juan M Tomás
- Departamento de Genética, Microbiología y Estadística, Sección Microbiologia, Virología y Biotecnología, Facultad de Biología, Universidad de Barcelona Barcelona, Spain
| |
Collapse
|
30
|
Polar Glycosylated and Lateral Non-Glycosylated Flagella from Aeromonas hydrophila Strain AH-1 (Serotype O11). Int J Mol Sci 2015; 16:28255-69. [PMID: 26633358 PMCID: PMC4691044 DOI: 10.3390/ijms161226097] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 11/17/2015] [Accepted: 11/18/2015] [Indexed: 01/25/2023] Open
Abstract
Polar and but not lateral flagellin proteins from Aeromonas hydrophila strain AH-1 (serotype O11) were found to be glycosylated. Top-down mass spectrometry studies of purified polar flagellins suggested the presence of a 403 Da glycan of mass. Bottom-up mass spectrometry studies showed the polar flagellin peptides to be modified with 403 Da glycans in O-linkage. The MS fragmentation pattern of this putative glycan was similar to that of pseudaminic acid derivative. Mutants lacking the biosynthesis of pseudaminic acid (pseB and pseI homologues) were unable to produce polar flagella but no changes were observed in lateral flagella by post-transcriptional regulation of the flagellin. Complementation was achieved by reintroduction of the wild-type pseB and pseI. We compared two pathogenic features (adhesion to eukaryotic cells and biofilm production) between the wild-type strain and two kinds of mutants: mutants lacking polar flagella glycosylation and lacking the O11-antigen lipopolysaccharide (LPS) but with unaltered polar flagella glycosylation. Results suggest that polar flagella glycosylation is extremely important for A. hydrophila AH-1 adhesion to Hep-2 cells and biofilm formation. In addition, we show the importance of the polar flagella glycosylation for immune stimulation of IL-8 production via toll-"like" receptor 5 (TLR5).
Collapse
|
31
|
Schuhmacher JS, Thormann KM, Bange G. How bacteria maintain location and number of flagella? FEMS Microbiol Rev 2015. [PMID: 26195616 DOI: 10.1093/femsre/fuv034] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Bacteria differ in number and location of their flagella that appear in regular patterns at the cell surface (flagellation pattern). Despite the plethora of bacterial species, only a handful of these patterns exist. The correct flagellation pattern is a prerequisite for motility, but also relates to biofilm formation and the pathogenicity of disease-causing flagellated bacteria. However, the mechanisms that maintain location and number of flagella are far from being understood. Here, we review our knowledge on mechanisms that enable bacteria to maintain their appropriate flagellation pattern. While some peritrichous flagellation patterns might occur by rather simple stochastic processes, other bacterial species appear to rely on landmark systems to define the designated flagellar position. Such landmarks are the Tip system of Caulobacter crescentus or the signal recognition particle (SRP)-GTPase FlhF and the MinD/ParA-type ATPase FlhG (synonyms: FleN, YlxH and MinD2). The latter two proteins constitute a regulatory circuit essential for diverse flagellation patterns in many Gram-positive and negative species. The interactome of FlhF/G (e.g. C-ring proteins FliM, FliN, FliY or the transcriptional regulator FleQ/FlrA) seems evolutionary adapted to meet the specific needs for a respective pattern. This variability highlights the importance of the correct flagellation pattern for motile species.
Collapse
Affiliation(s)
- Jan S Schuhmacher
- LOEWE Center for Synthetic Microbiology & Dep. of Chemistry, Philipps University Marburg, Hans-Meerwein-Strasse, D-35043 Marburg, Germany
| | - Kai M Thormann
- Justus-Liebig University, Department of Microbiology and Molecular Biology, Heinrich-Buff-Ring 26-32, D-35392 Giessen, Germany
| | - Gert Bange
- LOEWE Center for Synthetic Microbiology & Dep. of Chemistry, Philipps University Marburg, Hans-Meerwein-Strasse, D-35043 Marburg, Germany
| |
Collapse
|
32
|
Novel insights into the pathogenicity of epidemic Aeromonas hydrophila ST251 clones from comparative genomics. Sci Rep 2015; 5:9833. [PMID: 26014286 PMCID: PMC4444815 DOI: 10.1038/srep09833] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 03/13/2015] [Indexed: 12/16/2022] Open
Abstract
Outbreaks in fish of motile Aeromonad septicemia (MAS) caused by Aeromonas hydrophila have caused a great concern worldwide. Here, for the first time, we provide two complete genomes of epidemic A. hydrophila strains isolated in China. To gain an insight into the pathogenicity of epidemic A. hydrophila, we performed comparative genomic analyses of five epidemic strains belonging to sequence type (ST) 251, together with the environmental strain ATCC 7966T. We found that the known virulence factors, including a type III secretion system, a type VI secretion system and lateral flagella, are not required for the high virulence of the ST251 clonal group. Additionally, our work identifies three utilization pathways for myo-inositol, sialic acid and L-fucose providing clues regarding the factors that underlie the epidemic and virulent nature of ST251 A. hydrophila. Based on the geographical distribution and biological resources of the ST251 clonal group, we conclude that ST251 is a high-risk clonal group of A. hydrophila which may be responsible for the MAS outbreaks in China and the southeastern United States.
Collapse
|
33
|
Maruyama Y, Kobayashi M, Murata K, Hashimoto W. Formation of a single polar flagellum by two distinct flagellar gene sets in Sphingomonas sp. strain A1. MICROBIOLOGY-SGM 2015; 161:1552-1560. [PMID: 26018545 DOI: 10.1099/mic.0.000119] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Gram-negative Sphingomonas sp. strain A1, originally identified as a non-motile and aflagellate bacterium, possesses two sets of genes required for flagellar formation. In this study, we characterized the flagellar genes and flagellum formation in strain A1. Flagellar gene cluster set I contained 35 flagellar genes, including one flagellin gene (p6), where the gene assembly structure resembled that required for the formation of lateral flagella in gammaproteobacteria. The set II flagellar genes were arranged in eight shorter clusters with 46 flagellar genes, including two flagellin genes (p5 and p5') and flhF, which is required for polar flagella. Our molecular phylogenetic analysis of the bacterial flagellins also demonstrated that, in contrast to p5 and p5', p6 was categorized as a lateral flagellin group. The motile phenotype appeared in strain A1 cells when they were subcultured on semisolid media. The motile strain A1 cells produced a single flagellum at the cell pole. DNA microarray analyses using non-motile and motile strain A1 cells indicated that flagellar formation was accompanied by increased transcription of both flagellar gene sets. The two flagellins p5 and p6 were major components of the flagellar filaments isolated from motile strain A1 cells, indicating that the polar flagellum is formed by lateral and non-lateral flagellins.
Collapse
Affiliation(s)
- Yukie Maruyama
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Masahiro Kobayashi
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Kousaku Murata
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Wataru Hashimoto
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
34
|
Cabezón E, Ripoll-Rozada J, Peña A, de la Cruz F, Arechaga I. Towards an integrated model of bacterial conjugation. FEMS Microbiol Rev 2014; 39:81-95. [PMID: 25154632 DOI: 10.1111/1574-6976.12085] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Bacterial conjugation is one of the main mechanisms for horizontal gene transfer. It constitutes a key element in the dissemination of antibiotic resistance and virulence genes to human pathogenic bacteria. DNA transfer is mediated by a membrane-associated macromolecular machinery called Type IV secretion system (T4SS). T4SSs are involved not only in bacterial conjugation but also in the transport of virulence factors by pathogenic bacteria. Thus, the search for specific inhibitors of different T4SS components opens a novel approach to restrict plasmid dissemination. This review highlights recent biochemical and structural findings that shed new light on the molecular mechanisms of DNA and protein transport by T4SS. Based on these data, a model for pilus biogenesis and substrate transfer in conjugative systems is proposed. This model provides a renewed view of the mechanism that might help to envisage new strategies to curb the threating expansion of antibiotic resistance.
Collapse
Affiliation(s)
- Elena Cabezón
- Departamento de Biología Molecular, Instituto de Biomedicina y Biotecnología de Cantabria, IBBTEC, (Universidad de Cantabria, CSIC) Santander, Spain
| | - Jorge Ripoll-Rozada
- Departamento de Biología Molecular, Instituto de Biomedicina y Biotecnología de Cantabria, IBBTEC, (Universidad de Cantabria, CSIC) Santander, Spain
| | - Alejandro Peña
- Departamento de Biología Molecular, Instituto de Biomedicina y Biotecnología de Cantabria, IBBTEC, (Universidad de Cantabria, CSIC) Santander, Spain
| | - Fernando de la Cruz
- Departamento de Biología Molecular, Instituto de Biomedicina y Biotecnología de Cantabria, IBBTEC, (Universidad de Cantabria, CSIC) Santander, Spain
| | - Ignacio Arechaga
- Departamento de Biología Molecular, Instituto de Biomedicina y Biotecnología de Cantabria, IBBTEC, (Universidad de Cantabria, CSIC) Santander, Spain
| |
Collapse
|
35
|
Merino S, Wilhelms M, Tomás JM. Role of Aeromonas hydrophila flagella glycosylation in adhesion to Hep-2 cells, biofilm formation and immune stimulation. Int J Mol Sci 2014; 15:21935-46. [PMID: 25464381 PMCID: PMC4284686 DOI: 10.3390/ijms151221935] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 11/13/2014] [Accepted: 11/21/2014] [Indexed: 12/30/2022] Open
Abstract
Abstract: Polar flagellin proteins from Aeromonas hydrophila strain AH-3 (serotype O34) were found to be O-glycosylated with a heterogeneous heptasaccharide glycan. Two mutants with altered (light and strong) polar flagella glycosylation still able to produce flagella were previously obtained, as well as mutants lacking the O34-antigen lipopolysaccharide (LPS) but with unaltered polar flagella glycosylation. We compared these mutants, altogether with the wild type strain, in different studies to conclude that polar flagella glycosylation is extremely important for A. hydrophila adhesion to Hep-2 cells and biofilm formation. Furthermore, the polar flagella glycosylation is an important factor for the immune stimulation of IL-8 production via toll receptor 5 (TLR5).
Collapse
Affiliation(s)
- Susana Merino
- Departamento de Microbiología, Facultad de Biología, Universidad de Barcelona, Diagonal 643, 08071 Barcelona, Spain.
| | - Markus Wilhelms
- Departamento de Microbiología, Facultad de Biología, Universidad de Barcelona, Diagonal 643, 08071 Barcelona, Spain.
| | - Juan M Tomás
- Departamento de Microbiología, Facultad de Biología, Universidad de Barcelona, Diagonal 643, 08071 Barcelona, Spain.
| |
Collapse
|
36
|
Qin Y, Lin G, Chen W, Huang B, Huang W, Yan Q. Flagellar motility contributes to the invasion and survival of Aeromonas hydrophila in Anguilla japonica macrophages. FISH & SHELLFISH IMMUNOLOGY 2014; 39:273-279. [PMID: 24859591 DOI: 10.1016/j.fsi.2014.05.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 05/03/2014] [Accepted: 05/13/2014] [Indexed: 06/03/2023]
Abstract
The interaction between pathogenic bacteria and the host phagocytes is complicated. It is generally believed that only obligate intracellular pathogens can invade and survive in host phagocytes. In this study, we revealed that the pathogenic Aeromonas hydrophila B11 can also invade and survive in the macrophages of its host Anguilla japonica in vitro. To further investigate the mechanisms of A. hydrophila invasion and survival in host macrophages, a mini-Tn10 transposon mutagenesis system was used to generate an insertion mutant library by cell conjugation between the donor Escherichia coli Sm10 (pLOFKm) and the recipient A. hydrophila B11. Out of 465 individual colonies, 13 mutants impaired in survival within macrophages were selected, and the mutant BM116 was the most seriously impaired strain. Molecular analysis showed that an ORF of approximately 1335 bp (GenBank accession numbers JQ974982) of the mutant BM116 was inserted by mini-Tn10. This ORF putatively encodes a deduced 445 amino acids protein that displays the highest identity (99.6%) with the flagellar hook protein FlgE of A. hydrophila subsp. hydrophila ATCC 7966. The biological characteristics of the wild-type B11, the mutant B116 and the complemented strain were investigated. The results reveal that the flagella of the mutant BM116 was absent and that these mutant bacteria exhibited defective motility, adhesion, and invasion and survival in host macrophages when compared with the wild type and the complemented strain. These findings indicate that flgE is required for flagellum biogenesis in A. hydrophila and that flagellar motility is required for A. hydrophila invasion and survival in the macrophages of its host. Our findings provide an important new understanding of the nonintracellular pathogenic bacteria invasion and survival in host phagocytes and the interactions between the pathogens and their host.
Collapse
Affiliation(s)
- Yingxue Qin
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, P.R. China, Jimei University, Xiamen, Fujian 361021, PR China; Fisheries College, Key Laboratory of Science and Technology for Aquaculture and Food Safety, Jimei University, Xiamen, Fujian 361021, PR China
| | - Guifang Lin
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, P.R. China, Jimei University, Xiamen, Fujian 361021, PR China; Fisheries College, Key Laboratory of Science and Technology for Aquaculture and Food Safety, Jimei University, Xiamen, Fujian 361021, PR China
| | - Wenbo Chen
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, P.R. China, Jimei University, Xiamen, Fujian 361021, PR China; Fisheries College, Key Laboratory of Science and Technology for Aquaculture and Food Safety, Jimei University, Xiamen, Fujian 361021, PR China
| | - Bei Huang
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, P.R. China, Jimei University, Xiamen, Fujian 361021, PR China; Fisheries College, Key Laboratory of Science and Technology for Aquaculture and Food Safety, Jimei University, Xiamen, Fujian 361021, PR China
| | - Wenshu Huang
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, P.R. China, Jimei University, Xiamen, Fujian 361021, PR China; Fisheries College, Key Laboratory of Science and Technology for Aquaculture and Food Safety, Jimei University, Xiamen, Fujian 361021, PR China
| | - Qingpi Yan
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, P.R. China, Jimei University, Xiamen, Fujian 361021, PR China; Fisheries College, Key Laboratory of Science and Technology for Aquaculture and Food Safety, Jimei University, Xiamen, Fujian 361021, PR China.
| |
Collapse
|
37
|
Merino S, Fulton KM, Twine SM, Wilhelms M, Molero R, Tomás JM. Aeromonas hydrophila flagella glycosylation: involvement of a lipid carrier. PLoS One 2014; 9:e89630. [PMID: 24586923 PMCID: PMC3931799 DOI: 10.1371/journal.pone.0089630] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 01/22/2014] [Indexed: 11/18/2022] Open
Abstract
Polar flagellin proteins from Aeromonas hydrophila strain AH-3 (serotype O34) were found to be O-glycosylated with a heterogeneous glycan. Mutants unable to produce WecP or Gne enzymes showed altered motility, and the study of their polar flagellin glycosylation showed that the patterns of glycosylation differed from that observed with wild type polar flagellin. This suggested the involvement of a lipid carrier in glycosylation. A gene coding for an enzyme linking sugar to a lipid carrier was identified in strain AH-3 (WecX) and subsequent mutation abolished completely motility, flagella production by EM, and flagellin glycosylation. This is the first report of a lipid carrier involved in flagella O-glycosylation. A molecular model has been proposed. The results obtained suggested that the N-acetylhexosamines are N-acetylgalactosamines and that the heptasaccharide is completely independent of the O34-antigen lipopolysaccharide. Furthermore, by comparing the mutants with differing degrees of polar flagellin glycosylation, we established their importance in A. hydrophila flagella formation and motility.
Collapse
Affiliation(s)
- Susana Merino
- Departamento de Microbiología, Facultad de Biología, Universidad de Barcelona, Barcelona, Spain
| | | | | | - Markus Wilhelms
- Departamento de Microbiología, Facultad de Biología, Universidad de Barcelona, Barcelona, Spain
| | - Raquel Molero
- Departamento de Microbiología, Facultad de Biología, Universidad de Barcelona, Barcelona, Spain
| | - Juan M. Tomás
- Departamento de Microbiología, Facultad de Biología, Universidad de Barcelona, Barcelona, Spain
| |
Collapse
|
38
|
Gram-negative flagella glycosylation. Int J Mol Sci 2014; 15:2840-57. [PMID: 24557579 PMCID: PMC3958885 DOI: 10.3390/ijms15022840] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Revised: 01/20/2014] [Accepted: 01/27/2014] [Indexed: 01/11/2023] Open
Abstract
Protein glycosylation had been considered as an eccentricity of a few bacteria. However, through advances in analytical methods and genome sequencing, it is now established that bacteria possess both N-linked and O-linked glycosylation pathways. Both glycosylation pathways can modify multiple proteins, flagellins from Archaea and Eubacteria being one of these. Flagella O-glycosylation has been demonstrated in many polar flagellins from Gram-negative bacteria and in only the Gram-positive genera Clostridium and Listeria. Furthermore, O-glycosylation has also been demonstrated in a limited number of lateral flagellins. In this work, we revised the current advances in flagellar glycosylation from Gram-negative bacteria, focusing on the structural diversity of glycans, the O-linked pathway and the biological function of flagella glycosylation.
Collapse
|
39
|
Abstract
Aeromonas species are inhabitants of aquatic environments and are able to cause disease in humans and fish among other animals. In aquaculture, they are responsible for the economically important diseases of furunculosis and motile Aeromonas septicaemia (MAS). Whereas gastroenteritis and wound infections are the major human diseases associated with the genus. As they inhabit and survive in diverse environments, aeromonads possess a wide range of colonisation factors. The motile species are able to swim in liquid environments through the action of a single polar flagellum, the flagellin subunits of which are glycosylated; although essential for function the biological role of glycan addition is yet to be determined. Approximately 60% of aeromonads possess a second lateral flagella system that is expressed in viscous environments for swarming over surfaces; both flagellar systems have been shown to be important in the initial colonisation of surfaces. Subsequently, other non-flagellar colonisation factors are employed; these can be both filamentous and non-filamentous. The aeromonads possess a number of fimbrial systems with the bundle-forming MSHA type IV pilus system, having a major role in human cell adherence. Furthermore, a series of outer-membrane proteins have also been implicated in the aeromonad adhesion process. A number of strains are also capable of cell invasion and that maybe linked with the more invasive diseases of bacteraemia or wound infections. These strains employ cell surface factors that allow the colonisation of these niches that protect them from the host's immune system such as S-layers, capsules or particular lipopolysaccharides.
Collapse
Affiliation(s)
- Rebecca Lowry
- Department of Infection and Immunity, University of Sheffield, Sheffield, United Kingdom
| | - Sabela Balboa
- Department of Infection and Immunity, University of Sheffield, Sheffield, United Kingdom; Departamento de Microbiología y Parasitología, Universidad de Santiago de Compostela, Santiago de Compostela, Spain
| | - Jennifer L Parker
- Department of Infection and Immunity, University of Sheffield, Sheffield, United Kingdom
| | - Jonathan G Shaw
- Department of Infection and Immunity, University of Sheffield, Sheffield, United Kingdom.
| |
Collapse
|
40
|
Interaction of Aeromonas strains with lactic acid bacteria via Caco-2 cells. Appl Environ Microbiol 2013; 80:681-6. [PMID: 24242240 DOI: 10.1128/aem.03200-13] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genus Aeromonas includes some species that have now been identified as human pathogens of significant medical importance. We investigated the ability of 13 selected Aeromonas strains belonging to nine species isolated from clinical cases (n = 5), environmental waters (n = 5), and fish (n = 3) to adhere to and translocate Caco-2 cells in the absence and presence of two lactic acid bacteria (LAB), i.e., Lactobacillus acidophilus and Bifidobacterium breve. Aeromonas isolates were also assessed for their cytotoxicity, the presence of virulence genes, and hemolysin production. Among the clinical isolates, one strain of Aeromonas veronii biovar veronii and two strains of Aeromonas hydrophila carried cytotoxin (act), heat-labile toxin (alt), hemolysin (hlyA), and aerolysin (aerA) genes, were cytotoxic to Vero cells, produced hemolysin, and showed higher adherence to Caco-2 cells. In contrast, this was seen in only one environmental strain, a strain of A. veronii biovar sobria. When Aeromonas strains were coinoculated with LAB onto Caco-2 cells, their level of adhesion was reduced. However, their rate of translocation in the presence of LAB increased and was significantly (P < 0.05) higher among fish strains. We suggest that either the interaction between Aeromonas and LAB strains could have a detrimental effect on the Caco-2 cells, allowing the Aeromonas to translocate more readily, or the presence of the LAB stimulated the Aeromonas strains to produce more toxins and/or increase their translocation rate.
Collapse
|
41
|
Analyzing the modification of the Shewanella oneidensis MR-1 flagellar filament. PLoS One 2013; 8:e73444. [PMID: 24039942 PMCID: PMC3765264 DOI: 10.1371/journal.pone.0073444] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 07/22/2013] [Indexed: 11/19/2022] Open
Abstract
The unsheathed flagellar filament of Shewanella oneidensis MR-1 is composed of two highly homologous flagellins, FlaA, and the major structural unit, FlaB. We identified a gene cluster, SO_3261-SO_3265 (now sfmABCDE), that is required for the formation of a fully functional filament and for motility. The predicted function of the corresponding gene products strongly indicated a role in flagellin modification. Accordingly, loss of sfmABCDE results in a significant mass shift of both FlaA and FlaB. Mass spectroscopy analysis and single residue substitutions identified five serine residues in both flagellins that are modified via O-linkage. Modeling of the flagellin structures strongly suggests that at least four of the modified residues are exposed to the filament's surface. However, none of the five serine residues solely is crucial for function and assembly. Structural analysis of the flagellin modification revealed that it likely contains a nonulosonic acid (274 Da) linked to each glycosylated serine. The putative nonulosonic acid is further substituted with a 236 Da moiety which can carry additional methyl groups (250 Da, 264 Da). In addition, at least 5 lysine residues in FlaB and one in FlaA were found to be methylated. Based on homology comparisons we suggest that smfABCDE is required for species-specific flagellin modification in S. oneidensis MR-1.
Collapse
|
42
|
Gao X, Jian J, Li WJ, Yang YC, Shen XW, Sun ZR, Wu Q, Chen GQ. Genomic study of polyhydroxyalkanoates producing Aeromonas hydrophila 4AK4. Appl Microbiol Biotechnol 2013; 97:9099-109. [PMID: 24000047 DOI: 10.1007/s00253-013-5189-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 08/07/2013] [Accepted: 08/11/2013] [Indexed: 11/30/2022]
Abstract
The complete genome of Gram-negative Aeromonas hydrophila 4AK4 that has been used for industrial production of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) was sequenced and annotated. Its chromosome is 4,527,993 bp in size encoding 4,272 genes, including 28 rRNA genes and 104 tRNA genes. Comparative analysis indicated that genome of A. hydrophila 4AK4 was similar to that of the A. hydrophila ATCC 7966(T), an intensively studied aeromonad for its pathogenicity related to its genomic information. Genes possibly coming from other species or even other genus were identified in A. hydrophila 4AK4. A large number of putative virulent genes were predicted. However, a cytotonic enterotoxin (Ast) is absent in A. hydrophila 4AK4, allowing the industrial strain to be different from other A. hydrophila strains, indicating possible reduced virulence of strain 4AK4, which is very important for industrial fermentation. Genes involved in polyhydroxyalkanoate (PHA) metabolism were predicted and analyzed. The resulting genomic information is useful for improved production of PHA via metabolic engineering of A. hydrophila 4AK4.
Collapse
Affiliation(s)
- Xue Gao
- MOE Key Lab of Bioinformatics, School of Life Science, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Iwashkiw JA, Vozza NF, Kinsella RL, Feldman MF. Pour some sugar on it: the expanding world of bacterial proteinO-linked glycosylation. Mol Microbiol 2013; 89:14-28. [DOI: 10.1111/mmi.12265] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2013] [Indexed: 11/26/2022]
Affiliation(s)
- Jeremy A. Iwashkiw
- Alberta Glycomics Centre; Department of Biological Sciences; University of Alberta; CW405 Biological Sciences Building; Edmonton; Alberta; Canada; T6G 2E9
| | - Nicolas F. Vozza
- Alberta Glycomics Centre; Department of Biological Sciences; University of Alberta; CW405 Biological Sciences Building; Edmonton; Alberta; Canada; T6G 2E9
| | - Rachel L. Kinsella
- Alberta Glycomics Centre; Department of Biological Sciences; University of Alberta; CW405 Biological Sciences Building; Edmonton; Alberta; Canada; T6G 2E9
| | - Mario F. Feldman
- Alberta Glycomics Centre; Department of Biological Sciences; University of Alberta; CW405 Biological Sciences Building; Edmonton; Alberta; Canada; T6G 2E9
| |
Collapse
|
44
|
Abstract
Aeromonas hydrophila AH-3 lateral flagella are not assembled when bacteria grow in liquid media; however, lateral flagellar genes are transcribed. Our results indicate that A. hydrophila lateral flagellar genes are transcribed at three levels (class I to III genes) and share some similarities with, but have many important differences from, genes of Vibrio parahaemolyticus. A. hydrophila lateral flagellum class I gene transcription is σ(70) dependent, which is consistent with the fact that lateral flagellum is constitutively transcribed, in contrast to the characteristics of V. parahaemolyticus. The fact that multiple genes are included in class I highlights that lateral flagellar genes are less hierarchically transcribed than polar flagellum genes. The A. hydrophila lafK-fliEJL gene cluster (where the subscript L distinguishes genes for lateral flagella from those for polar flagella) is exclusively from class I and is in V. parahaemolyticus class I and II. Furthermore, the A. hydrophila flgAMNL cluster is not transcribed from the σ(54)/LafK-dependent promoter and does not contain class II genes. Here, we propose a gene transcriptional hierarchy for the A. hydrophila lateral flagella.
Collapse
|
45
|
Wu L, Jiang YN, Tang Q, Lin HX, Lu CP, Yao HC. Development of an Aeromonas hydrophila recombinant extracellular protease vaccine. Microb Pathog 2012; 53:183-8. [DOI: 10.1016/j.micpath.2012.07.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 07/21/2012] [Accepted: 07/24/2012] [Indexed: 10/28/2022]
|
46
|
Yeh HY, Klesius PH. Construction, expression and characterization of 11 putative flagellar apparatus genes of Aeromonas hydrophila AL09-73. JOURNAL OF FISH DISEASES 2012; 35:853-860. [PMID: 22924657 DOI: 10.1111/j.1365-2761.2012.01438.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 08/27/2011] [Accepted: 09/05/2011] [Indexed: 06/01/2023]
Affiliation(s)
- H-Y Yeh
- Aquatic Animal Health Research Unit, Agricultural Research Service, United States Department of Agriculture, Auburn, AL, USA.
| | | |
Collapse
|
47
|
Tomás JM. The main Aeromonas pathogenic factors. ISRN MICROBIOLOGY 2012; 2012:256261. [PMID: 23724321 PMCID: PMC3658858 DOI: 10.5402/2012/256261] [Citation(s) in RCA: 199] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 07/19/2012] [Indexed: 12/27/2022]
Abstract
The members of the Aeromonas genus are ubiquitous, water-borne bacteria. They have been isolated from marine waters, rivers, lakes, swamps, sediments, chlorine water, water distribution systems, drinking water and residual waters; different types of food, such as meat, fish, seafood, vegetables, and processed foods. Aeromonas strains are predominantly pathogenic to poikilothermic animals, and the mesophilic strains are emerging as important pathogens in humans, causing a variety of extraintestinal and systemic infections as well as gastrointestinal infections. The most commonly described disease caused by Aeromonas is the gastroenteritis; however, no adequate animal model is available to reproduce this illness caused by Aeromonas. The main pathogenic factors associated with Aeromonas are: surface polysaccharides (capsule, lipopolysaccharide, and glucan), S-layers, iron-binding systems, exotoxins and extracellular enzymes, secretion systems, fimbriae and other nonfilamentous adhesins, motility and flagella.
Collapse
Affiliation(s)
- J M Tomás
- Departamento Microbiología, Universidad de Barcelona, Diagonal 643, 08071 Barcelona, Spain
| |
Collapse
|
48
|
Wilhelms M, Fulton KM, Twine SM, Tomás JM, Merino S. Differential glycosylation of polar and lateral flagellins in Aeromonas hydrophila AH-3. J Biol Chem 2012; 287:27851-62. [PMID: 22733809 DOI: 10.1074/jbc.m112.376525] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Polar and lateral flagellin proteins from Aeromonas hydrophila strain AH-3 (serotype O34) were found to be glycosylated with different carbohydrate moieties. The lateral flagellin was modified at three sites in O-linkage, with a single monosaccharide of 376 Da, which we show to be a pseudaminic acid derivative. The polar flagellin was modified with a heterogeneous glycan, comprised of a heptasaccharide, linked through the same 376-Da sugar to the protein backbone, also in O-linkage. In-frame deletion mutants of pseudaminic acid biosynthetic genes pseB and pseF homologues resulted in abolition of polar and lateral flagellar formation by posttranscriptional regulation of the flagellins, which was restored by complementation with wild type pseB or F homologues or Campylobacter pseB and F.
Collapse
Affiliation(s)
- Markus Wilhelms
- Departamento de Microbiología, Facultad de Biología, Universidad de Barcelona, Diagonal 645, 08071 Barcelona, Spain
| | | | | | | | | |
Collapse
|
49
|
Merino S, Bouamama L, Knirel YA, Senchenkova SN, Regué M, Tomás JM. Aeromonas surface glucan attached through the O-antigen ligase represents a new way to obtain UDP-glucose. PLoS One 2012; 7:e35707. [PMID: 22563467 PMCID: PMC3341381 DOI: 10.1371/journal.pone.0035707] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 03/20/2012] [Indexed: 11/18/2022] Open
Abstract
We previously reported that A. hydrophila GalU mutants were still able to produce UDP-glucose introduced as a glucose residue in their lipopolysaccharide core. In this study, we found the unique origin of this UDP-glucose from a branched α-glucan surface polysaccharide. This glucan, surface attached through the O-antigen ligase (WaaL), is common to the mesophilic Aeromonas strains tested. The Aeromonas glucan is produced by the action of the glycogen synthase (GlgA) and the UDP-Glc pyrophosphorylase (GlgC), the latter wrongly indicated as an ADP-Glc pyrophosphorylase in the Aeromonas genomes available. The Aeromonas glycogen synthase is able to react with UDP or ADP-glucose, which is not the case of E. coli glycogen synthase only reacting with ADP-glucose. The Aeromonas surface glucan has a role enhancing biofilm formation. Finally, for the first time to our knowledge, a clear preference on behalf of bacterial survival and pathogenesis is observed when choosing to produce one or other surface saccharide molecules to produce (lipopolysaccharide core or glucan).
Collapse
Affiliation(s)
- Susana Merino
- Departamento de Microbiología, Facultad de Biología, Universidad de Barcelona, Diagonal, Barcelona, Spain
| | - Lamiaa Bouamama
- Departamento de Microbiología, Facultad de Biología, Universidad de Barcelona, Diagonal, Barcelona, Spain
| | - Yuriy A. Knirel
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Sofya N. Senchenkova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Miguel Regué
- Departamento de Microbiología y Parasitología Sanitarias, Facultad de Farmacia, Universidad de Barcelona, Barcelona, Spain
| | - Juan M. Tomás
- Departamento de Microbiología, Facultad de Biología, Universidad de Barcelona, Diagonal, Barcelona, Spain
| |
Collapse
|
50
|
Vedantam G, Clark A, Chu M, McQuade R, Mallozzi M, Viswanathan VK. Clostridium difficile infection: toxins and non-toxin virulence factors, and their contributions to disease establishment and host response. Gut Microbes 2012; 3:121-34. [PMID: 22555464 PMCID: PMC3370945 DOI: 10.4161/gmic.19399] [Citation(s) in RCA: 147] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Clostridium difficile infection is the leading cause of antibiotic- and healthcare-associated diarrhea, and its containment and treatment imposes a significant financial burden, estimated to be over $3 billion in the USA alone. Since the year 2000, CDI epidemics/outbreaks have occurred in North America, Europe and Asia. These outbreaks have been variously associated with, or attributed to, the emergence of Clostridium difficile strains with increased virulence, an increase in resistance to commonly used antimicrobials such as the fluoroquinolones, or host susceptibilities, including the use of gastric acid suppressants, to name a few. Efforts to elucidate C. difficile pathogenic mechanisms have been hampered by a lack of molecular tools, manipulatable animal models, and genetic intractability of clinical C. difficile isolates. However, in the past 5 y, painstaking efforts have resulted in the unraveling of multiple C. difficile virulence-associated pathways and mechanisms. We have recently reviewed the disease, its associated risk factors, transmission and interventions (Viswanathan, Gut Microbes 2010). This article summarizes genetics, non-toxin virulence factors, and host-cell biology associated with C. difficile pathogenesis as of 2011, and highlights those findings/factors that may be of interest as future intervention targets.
Collapse
Affiliation(s)
- Gayatri Vedantam
- Department of Veterinary Science and Microbiology; University of Arizona; Tucson, AZ USA,Department of Immunobiology; University of Arizona; Tucson, AZ USA,BIO5 Research Institute; University of Arizona; Tucson, AZ USA,Southern Arizona VA Healthcare System; Tucson, AZ USA,Correspondence to: Gayatri Vedantam,
| | - Andrew Clark
- Department of Veterinary Science and Microbiology; University of Arizona; Tucson, AZ USA
| | - Michele Chu
- Department of Veterinary Science and Microbiology; University of Arizona; Tucson, AZ USA
| | - Rebecca McQuade
- Department of Veterinary Science and Microbiology; University of Arizona; Tucson, AZ USA
| | - Michael Mallozzi
- Department of Veterinary Science and Microbiology; University of Arizona; Tucson, AZ USA
| | - V. K. Viswanathan
- Department of Veterinary Science and Microbiology; University of Arizona; Tucson, AZ USA,Department of Immunobiology; University of Arizona; Tucson, AZ USA,BIO5 Research Institute; University of Arizona; Tucson, AZ USA
| |
Collapse
|