1
|
Rocchi S, Scherer E, White PL, Guitton A, Alanio A, Botterel F, Bougnoux ME, Buitrago MJ, Cogliati M, Cornu M, Damiani C, Denis J, Dupont D, Fuchs S, Gorton R, Haas PJ, Hagen F, Hare R, Iriart X, Klaassen CHW, Lackner M, Lengerova M, Melchers WJG, Morio F, Poirier P, Springer J, Valot S, Willinger B, Mazzi C, Cruciani M, Barnes R, Donnelly JP, Loeffler J, Millon L. Interlaboratory assays from the fungal PCR Initiative and the Modimucor Study Group to improve qPCR detection of Mucorales DNA in serum: one more step toward standardization. J Clin Microbiol 2025; 63:e0152524. [PMID: 39745482 PMCID: PMC11837492 DOI: 10.1128/jcm.01525-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 12/05/2024] [Indexed: 02/20/2025] Open
Abstract
The aim of this study was to identify parameters influencing DNA extraction and PCR amplification efficiencies in an attempt to standardize Mucorales qPCR. The Fungal PCR Initiative Mucorales Laboratory Working Group distributed two panels of simulated samples to 26 laboratories: Panel A (six sera spiked with Mucorales DNA and one negative control serum) and Panel B (six Mucorales DNA extracts). Panel A underwent DNA extraction in each laboratory according to the local procedure and were sent to a central laboratory for testing using three different qPCR techniques: one in-house qPCR assay and two commercial assays (MucorGenius and Fungiplex). Panel B DNA extracts were PCR amplified in each laboratory using local procedures: nine in-house qPCR assays and two commercial kits (MucorGenius and MycoGENIE). All data were compiled and anonymously analyzed at the central laboratory. For Panel A, a total of six different automated platforms and five manual extraction methods were used. Positive rates were 64%, 70%, and 89%, for the MucorGenius, Fungiplex, and the in-house qPCR assay, respectively. Using a large volume of serum for DNA extraction provided the highest analytical sensitivity (82.5% for 1 mL compared with 62.7% for smaller volumes, P < 0.01). For Panel B, five in-house qPCR assays and two commercial kits had >78% positivity. Using larger PCR input volumes (≥7 µL) was associated with the highest sensitivity at 95.5% compared to 58.3% when lower input volumes were used (P < 0.01). Using larger sample volumes for nucleic acid extraction and DNA template volumes for PCR amplification significantly improves the performance of Mucorales qPCR when testing serum. IMPORTANCE Mucormycosis is a life-threatening mold infection affecting immunosuppressed patients but also other patients with diabetes or trauma. Better survival is linked to shorter delays in diagnosis and treatment initiation. Detection of Mucorales-free DNA in serum or plasma using quantitative PCR allows a prompt diagnosis and earlier treatment. Several techniques and protocols of quantitative Mucorales PCR are used in Europe, and improving performance remains a common objective of laboratories participating in the fungal PCR Initiative Working Group. This study, which combined results from 26 laboratories in Europe, showed that the main parameters underpinning sensitivity are the preanalytical variables (volume of serum used for DNA extraction and DNA template volume), irrespective of the extraction platforms and qPCR assay/platform.
Collapse
Affiliation(s)
- Steffi Rocchi
- Chrono-environnement UMR6249, CNRS, University of Franche-Comté, Besançon, Bourgogne-Franche-Comté, France
| | - Emeline Scherer
- Chrono-environnement UMR6249, CNRS, University of Franche-Comté, Besançon, Bourgogne-Franche-Comté, France
- Parasitology–Mycology Department, Besançon University Hospital, Besançon, Bourgogne-Franche-Comté, France
| | - P. Lewis White
- Public Health Wales Mycology Reference Laboratory, University Hospital of Wales, Cardiff, Wales, United Kingdom
- Division of Infection and Immunity, Centre for Trials Research, Cardiff, Wales, United Kingdom
| | - Audrey Guitton
- Chrono-environnement UMR6249, CNRS, University of Franche-Comté, Besançon, Bourgogne-Franche-Comté, France
| | - Alexandre Alanio
- Laboratoire de parasitologie-mycologie, AP-HP, Hôpital Saint-Louis, Paris, Île-de-France, France
- Mycology Department, Institut Pasteur, Université Paris Cité, National Reference Center for Invasive Mycoses and Antifungals, Translational Mycology research group, Paris, Île-de-France, France
| | - Françoise Botterel
- Unité de Parasitologie-Mycologie, Département de Prévention, Diagnostic et Traitement des Infections, CHU Henri Mondor, Assistance Publique des Hôpitaux de Paris (APHP), Créteil, France
| | | | - Maria José Buitrago
- Mycology Reference Laboratory, Centro Nacional de Microbiologia, Instituto de Salud Carlos III, Madrid, Community of Madrid, Spain
- CIBERINFEC, ISCIII-CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Community of Madrid, Spain
| | - Massimo Cogliati
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
| | - Marjorie Cornu
- Université de Lille, Inserm U1285, CHU Lille, Laboratoire de Parasitologie-Mycologie, CNRS, UMR 8576, UGSF—Unité de Glycobiologie Structurale et Fonctionnelle, Lille, Hauts-de-France, France
| | - Celine Damiani
- Laboratoire de Parasitologie et Mycologie Médicales, Centre de Biologie Humaine, CHU Amiens Picardie, Agents Infectieux, Résistance et Chimiothérapie (AGIR), UR 4294, Université de Picardie Jules Verne, Amiens, Hauts-de-France, France
| | - Julie Denis
- Laboratoire de Parasitologie et de Mycologie Médicale, Hôpitaux Universitaires de Strasbourg, Strasbourg, Grand Est, France
| | - Damien Dupont
- Institut des Agents Infectieux, Service de Parasitologie et Mycologie Médicale, Hospices Civils de Lyon, Hôpital Croix-Rousse, Lyon, Auvergne-Rhône-Alpes, France
| | - Stefan Fuchs
- Molecular Diagnostics, Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Tyrol, Austria
| | | | - Pieter-Jan Haas
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Ferry Hagen
- Westerdijk Fungal Biodiversity Institute, Utrecht, the Netherlands
| | - Rasmus Hare
- Mycology Unit, Department for Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Capital Region of Denmark, Denmark
| | - Xavier Iriart
- Service de Parasitologie-Mycologie, CHU Toulouse, Toulouse, France
- Institut Toulousain des Maladies Infectieuses et Inflammatoires (Infinity), Université de Toulouse, CNRS UMR5051, INSERM UMR1291, Universite Paul Sabatier, Toulouse, Occitanie, France
| | - Corné H. W. Klaassen
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC University Medical Center Rotterdam, Rotterdam, South Holland, The Netherlands
| | - Michaela Lackner
- Mycology Research Group, Institute for Hygiene and Medical Microbiology, Medical University of Innsbruck (MUI), Innsbruck, Tyrol, Austria
| | - Martina Lengerova
- Department of Internal Medicine—Hematology and Oncology, University Hospital Brno, Brno, South Moravian Region, Czechia
| | - Willem J. G. Melchers
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, Gelderland, the Netherlands
| | - Florent Morio
- Nantes Université, CHU Nantes, Cibles et Médicaments des Infections et de l'Immunité, Nantes, France
| | - Philippe Poirier
- Laboratoire de Parasitologie-Mycologie, CHU Clermont-Ferrand, 3IHP, Paris, France
| | - Jan Springer
- Department of Internal Medicine II, WÜ4i, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Stephane Valot
- Laboratoire de Parasitologie-Mycologie, Plateforme de Biologie Hospitalo-Universitaire Gérard Mack, Dijon, France
| | - Birgit Willinger
- Division of Clinical Microbiology, Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Cristina Mazzi
- IRCCS Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, Verona, Italy
| | | | - Rosemary Barnes
- Medical Microbiology and Infectious Diseases, Cardiff University School of Medicine, Cardiff, United Kingdom
| | | | - Jürgen Loeffler
- Department of Internal Medicine II, WÜ4i, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Laurence Millon
- Chrono-environnement UMR6249, CNRS, University of Franche-Comté, Besançon, Bourgogne-Franche-Comté, France
- Parasitology–Mycology Department, Besançon University Hospital, Besançon, Bourgogne-Franche-Comté, France
| |
Collapse
|
2
|
Wang T, Park B, Anderson G, Shaller B, Budvytiene I, Banaei N. Application of Diagnostic Stewardship to Fungal Polymerase Chain Reaction: Low Yield of Follow-up Testing on Plasma and Bronchoalveolar Lavage After a Negative Result. Clin Infect Dis 2024; 79:944-952. [PMID: 39162527 DOI: 10.1093/cid/ciae382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Indexed: 08/21/2024] Open
Abstract
BACKGROUND Early diagnosis of invasive fungal disease is essential for optimizing management. Although the clinical utility of fungal polymerase chain reaction (PCR) testing on plasma and bronchoalveolar lavage (BAL) has been established, the role of follow-up testing remains unclear. METHODS This was a retrospective single-center study. The yield of follow-up PCR for Aspergillus species, Mucorales agents, Fusarium species, Scedosporium species, dimorphic fungi, Pneumocystis jirovecii, and Candida species on plasma and/or BAL was measured at intervals of 1, 2, 3, and 4 weeks following a negative result. RESULTS A total of 1389 follow-up tests on 406 plasma specimens from 264 patients and 983 BAL specimens from 431 patients were evaluated. Overall, the positivity rate at 1, 2, 3, and 4 weeks was 2.7% (4/148), 3.3% (4/123), 5.1% (4/78), and 3.5% (2/57), respectively, on plasma, and 0% (0/333), 0.3% (1/288), 0.4% (1/228), and 0.7% (1/134), respectively, on BAL. Conversions occurred with Aspergillus species, Mucorales agents, and Fusarium species PCR on plasma and Aspergillus species and P jirovecii PCR on BAL. All patients who converted were immunocompromised. Within 1 week of a prior negative test, 2 Aspergillus and 2 Mucorales PCRs were positive on plasma, and zero tests were positive on BAL. In week 1, only 1 Aspergillus species that was positive on day 7 was classified as probable fungal disease. CONCLUSIONS Fungal PCR follow-up testing on plasma and BAL within 4 weeks of a prior negative result was of low yield and rarely generated a positive result considered clinically significant in the first week.
Collapse
Affiliation(s)
- Tong Wang
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Bosung Park
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
- Department of Laboratory Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Gavin Anderson
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Brian Shaller
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Indre Budvytiene
- Clinical Microbiology Laboratory, Stanford University Medical Center, Palo Alto, California, USA
| | - Niaz Banaei
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
- Clinical Microbiology Laboratory, Stanford University Medical Center, Palo Alto, California, USA
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
3
|
Peng H, Pan M, Zhou Z, Chen C, Xing X, Cheng S, Zhang S, Zheng H, Qian K. The impact of preanalytical variables on the analysis of cell-free DNA from blood and urine samples. Front Cell Dev Biol 2024; 12:1385041. [PMID: 38784382 PMCID: PMC11111958 DOI: 10.3389/fcell.2024.1385041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
Cell-free DNA (cfDNA), a burgeoning class of molecular biomarkers, has been extensively studied across a variety of biomedical fields. As a key component of liquid biopsy, cfDNA testing is gaining prominence in disease detection and management due to the convenience of sample collection and the abundant wealth of genetic information it provides. However, the broader clinical application of cfDNA is currently impeded by a lack of standardization in the preanalytical procedures for cfDNA analysis. A number of fundamental challenges, including the selection of appropriate preanalytical procedures, prevention of short cfDNA fragment loss, and the validation of various cfDNA measurement methods, remain unaddressed. These existing hurdles lead to difficulties in comparing results and ensuring repeatability, thereby undermining the reliability of cfDNA analysis in clinical settings. This review discusses the crucial preanalytical factors that influence cfDNA analysis outcomes, including sample collection, transportation, temporary storage, processing, extraction, quality control, and long-term storage. The review provides clarification on achievable consensus and offers an analysis of the current issues with the goal of standardizing preanalytical procedures for cfDNA analysis.
Collapse
Affiliation(s)
- Hongwei Peng
- Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei Province, Hubei Key Laboratory of Urological Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ming Pan
- Taihe Skills Training Center, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Zongning Zhou
- Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei Province, Hubei Key Laboratory of Urological Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Congbo Chen
- Department of Urology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Xing Xing
- Department of Urology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China
| | - Shaoping Cheng
- Department of Urology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China
| | - Shanshan Zhang
- Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei Province, Hubei Key Laboratory of Urological Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hang Zheng
- Department of Urology, Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Kaiyu Qian
- Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei Province, Hubei Key Laboratory of Urological Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Urology, Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
4
|
Moreno A, Mah J, Budvytiene I, Ho DY, Schwenk HT, Banaei N. Dynamics and prognostic value of plasma cell-free DNA PCR in patients with invasive aspergillosis and mucormycosis. J Clin Microbiol 2024; 62:e0039424. [PMID: 38602412 PMCID: PMC11237630 DOI: 10.1128/jcm.00394-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 03/19/2024] [Indexed: 04/12/2024] Open
Abstract
Aspergillus species and Mucorales agents are the primary etiologies of invasive fungal disease (IFD). Biomarkers that predict outcomes are needed to improve care. Patients diagnosed with invasive aspergillosis and mucormycosis using plasma cell-free DNA (cfDNA) PCR were retested weekly for 4 weeks. The primary outcome included all-cause mortality at 6 weeks and 6 months based on baseline cycle threshold (CT) values and results of follow-up cfDNA PCR testing. Forty-five patients with Aspergillus and 30 with invasive Mucorales infection were retested weekly for a total of 197 tests. Using the European Organization for Research and Treatment of Cancer and the Mycoses Study Group Education and Research Consortium (EORTC/MSG) criteria, 30.7% (23/75), 25.3% (19/75), and 38.7% (29/75) had proven, probable, and possible IFD, respectively. In addition, 97.3% (73/75) were immunocompromised. Baseline CT increased significantly starting at week 1 for Mucorales and week 2 for Aspergillus. Aspergillosis and mucormycosis patients with higher baseline CT (CT >40 and >35, respectively) had a nonsignificantly higher survival rate at 6 weeks, compared with patients with lower baseline CT. Mucormycosis patients with higher baseline CT had a significantly higher survival rate at 6 months. Mucormycosis, but not aspergillosis patients, with repeat positive cfDNA PCR results had a nonsignificantly lower survival rate at 6 weeks and 6 months compared with patients who reverted to negative. Aspergillosis patients with baseline serum Aspergillus galactomannan index <0.5 and <1.0 had significantly higher survival rates at 6 weeks when compared with those with index ≥0.5 and ≥1.0, respectively. Baseline plasma cfDNA PCR CT can potentially be used to prognosticate survival in patients with invasive Aspergillus and Mucorales infections. IMPORTANCE We show that Aspergillus and Mucorales plasma cell-free DNA PCR can be used not only to noninvasively diagnose patients with invasive fungal disease but also to correlate the baseline cycle threshold with survival outcomes, thus potentially allowing the identification of patients at risk for poor outcomes, who may benefit from more targeted therapies.
Collapse
Affiliation(s)
- Angel Moreno
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Jordan Mah
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Indre Budvytiene
- Clinical Microbiology Laboratory, Stanford Health Care, Palo Alto, California, USA
| | - Dora Y. Ho
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, California, USA
| | - Hayden T. Schwenk
- Division of Infectious Diseases, Department of Pediatrics, Stanford University School of Medicine, Stanford, California, USA
| | - Niaz Banaei
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
- Clinical Microbiology Laboratory, Stanford Health Care, Palo Alto, California, USA
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, California, USA
| |
Collapse
|
5
|
Mah J, Nicholas V, Tayyar R, Moreno A, Murugesan K, Budvytiene I, Banaei N. Superior Accuracy of Aspergillus Plasma Cell-Free DNA Polymerase Chain Reaction Over Serum Galactomannan for the Diagnosis of Invasive Aspergillosis. Clin Infect Dis 2023; 77:1282-1290. [PMID: 37450614 DOI: 10.1093/cid/ciad420] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/12/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023] Open
Abstract
BACKGROUND Invasive aspergillosis (IA) in immunocompromised hosts carries high morbidity and mortality. Diagnosis is often delayed because definitive diagnosis requires invasive specimen collection, while noninvasive testing with galactomannan is moderately accurate. Plasma cell-free DNA polymerase chain reaction (cfDNA PCR) represents a novel testing modality for the noninvasive diagnosis of invasive fungal disease (IFD). We directly compared the performance of Aspergillus plasma cfDNA PCR with serum galactomannan for the diagnosis of IA during routine clinical practice. METHODS We conducted a retrospective study of all patients with suspected IFD who had Aspergillus plasma cfDNA PCR testing at Stanford Health Care from 1 September 2020 to 30 October 2022. Patients were categorized into proven, probable, possible, and no IA based on the EORTC/MSG definitions. Primary outcomes included the clinical sensitivity and specificity for Aspergillus plasma cfDNA PCR and galactomannan. RESULTS Overall, 238 unique patients with Aspergillus plasma cfDNA PCR test results, including 63 positives and 175 nonconsecutive negatives, were included in this study. The majority were immunosuppressed (89.9%) with 22.3% 30-day all-cause mortality. The overall sensitivity and specificity of Aspergillus plasma cfDNA PCR were 86.0% (37 of 43; 95% confidence interval [CI], 72.7-95.7) and 93.1% (121 of 130; 95% CI, 87.4-96.3), respectively. The sensitivity and specificity of serum galactomannan in hematologic malignancies/stem cell transplants were 67.9% (19 of 28; 95% CI, 49.3-82.1) and 89.8% (53 of 59; 95% CI, 79.5-95.3), respectively. The sensitivity of cfDNA PCR was 93.0% (40 of 43; 95% CI, 80.9-98.5) in patients with a new diagnosis of IA. CONCLUSIONS Aspergillus plasma cfDNA PCR represents a more sensitive alternative to serum galactomannan for noninvasive diagnosis of IA.
Collapse
Affiliation(s)
- Jordan Mah
- Division of Pathology, Stanford University School of Medicine, Stanford, California, USA
- Clinical Microbiology Laboratory, Stanford Health Care, Stanford, California, USA
| | - Veronica Nicholas
- Division of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Ralph Tayyar
- Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Angel Moreno
- Division of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Kanagavel Murugesan
- Division of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Indre Budvytiene
- Clinical Microbiology Laboratory, Stanford Health Care, Stanford, California, USA
| | - Niaz Banaei
- Division of Pathology, Stanford University School of Medicine, Stanford, California, USA
- Clinical Microbiology Laboratory, Stanford Health Care, Stanford, California, USA
- Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
6
|
Ruppert T, Roth A, Kollmeier J, Mairinger T, Frost N. Cell-free DNA extraction from urine of lung cancer patients and healthy individuals: Evaluation of a simple method using sample volume up-scaling. J Clin Lab Anal 2023; 37:e24984. [PMID: 37991151 PMCID: PMC10749489 DOI: 10.1002/jcla.24984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 10/24/2023] [Indexed: 11/23/2023] Open
Abstract
BACKGROUND Urine holds promise as a source for cell-free DNA (cfDNA) analysis of cancer genetics due to its nature as a self-collectable biospecimen available in large quantities. However, pre-analytical variables such as preservation of cfDNA or efficiency of up-scaling specimen volume need to be better explored to increase analysis sensitivity. PATIENTS AND METHODS Initially effects of pH levels on cfDNA stability of urine preserved with EDTA were investigated in three healthy probands. Furthermore, the efficiency of urine volume up-scaling was examined using a simple DNA extraction method and cfDNA in urine of 32 individuals. Quantification was performed by PCR detection of three relevant targets used for EGFR and KRAS gene mutational analysis. RESULTS Only samples preserved with EDTA at alkaline pH levels showed cfDNA stability of up to 10 days at room temperature. Moreover, it was found that increasing the volume up to 100 mL was highly efficient. A similar amount of copies was detected in three different gene sites in all specimens indicating both a good availability and a non-random distribution pattern across genes. Since the median cfDNA copy number was 1642 copies/mL, abundance of cfDNA in this type of liquid biopsy is low. CONCLUSION Predictable sensitivities with different urine volumes on the ground of detectable cfDNA in our study population revealed that up-scaling (>5 mL) is mandatory if the mutation allele frequency is less than 1%.
Collapse
Affiliation(s)
- Tilman Ruppert
- Department of PathologyHelios Klinikum Emil von BehringBerlinGermany
| | - Andreas Roth
- Department of PathologyHelios Klinikum Emil von BehringBerlinGermany
| | - Jens Kollmeier
- Department of PneumologyHelios Klinikum Emil von BehringBerlinGermany
| | - Thomas Mairinger
- Department of PathologyHelios Klinikum Emil von BehringBerlinGermany
| | - Nikolaj Frost
- Department of PneumologyCharité ‐ Universitätsmedizin BerlinBerlinGermany
| |
Collapse
|
7
|
Gomez-Rioja R, Von Meyer A, Cornes M, Costelloe S, Vermeersch P, Simundic AM, Nybo M, Baird GS, Kristensen GBB, Cadamuro J. Recommendation for the design of stability studies on clinical specimens. Clin Chem Lab Med 2023; 61:1708-1718. [PMID: 37021544 DOI: 10.1515/cclm-2023-0221] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 03/22/2023] [Indexed: 04/07/2023]
Abstract
OBJECTIVES Knowledge of the stability of analytes in clinical specimens is a prerequisite for proper transport and preservation of samples to avoid laboratory errors. The new version of ISO 15189:2022 and the European directive 2017/746 increase the requirements on this topic for manufacturers and laboratories. Within the project to generate a stability database of European Federation of Clinical Chemistry and Laboratory Medicine (EFLM) Working Group Preanalytical Phase (WG-PRE), the need to standardise and improve the quality of published stability studies has been detected, being a manifest deficit the absence of international guidelines for the performance of stability studies on clinical specimens. METHODS These recommendations have been developed and summarised by consensus of the WG-PRE and are intended primarily to improve the quality of sample stability claims included in information for users provided by assay supplier companies, according to the requirements of the new European regulations and standards for accreditation. RESULTS This document provides general recommendations for the performance of stability studies, oriented to the estimation of instability equations in the usual working conditions, allowing flexible adaptation of the maximum permissible error specifications to obtain stability limits adapted to the intended use. CONCLUSIONS We present this recommendation based on the opinions of the EFLM WG-PRE group for the standardisation and improvement of stability studies, with the intention to improve the quality of the studies and the transferability of their results to laboratories.
Collapse
Affiliation(s)
- Rubén Gomez-Rioja
- Department of Laboratory Medicine, La Paz-Carlos III-Cantoblanco University Hospital, Madrid, Spain
| | - Alexander Von Meyer
- Institute for Laboratory Medicine and Microbiology Munich Municipal Clinic Group, Munich, Germany
| | - Michael Cornes
- Biochemistry Department, Worcestershire Acute Hospitals NHS Trust, Worcester Royal Hospital, Worcester, UK
| | - Sean Costelloe
- Department of Clinical Biochemistry, Cork University Hospital Group, Cork, England
| | - Pieter Vermeersch
- Department of Laboratory Medicine, KU Leuven University Hospitals Leuven, Leuven, Belgium
| | - Ana-Maria Simundic
- Department of Medical Laboratory Diagnostics, University Hospital Sveti Duh, Zagreb, Croatia
| | - Mads Nybo
- Clinical Biochemistry and Pharmacology, Odense Universitetshospital, Odense, Denmark
| | | | - Gunn B B Kristensen
- Norwegian Quality Improvement of Laboratory Examinations (Noklus), Haraldsplass Deaconess Hospital, Bergen, Norway
| | - Janne Cadamuro
- Department of Laboratory Medicine, Paracelsus Medical University Salzburg, Salzburg, Austria
| |
Collapse
|
8
|
MacGregor SR, McManus DP, Sivakumaran H, Egwang TG, Adriko M, Cai P, Gordon CA, Duke MG, French JD, Collinson N, Olveda RM, Hartel G, Graeff-Teixeira C, Jones MK, You H. Development of CRISPR/Cas13a-based assays for the diagnosis of Schistosomiasis. EBioMedicine 2023; 94:104730. [PMID: 37487416 PMCID: PMC10382885 DOI: 10.1016/j.ebiom.2023.104730] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 07/11/2023] [Accepted: 07/13/2023] [Indexed: 07/26/2023] Open
Abstract
BACKGROUND Schistosomiasis is a disease that significantly impacts human health in the developing world. Effective diagnostics are urgently needed for improved control of this disease. CRISPR-based technology has rapidly accelerated the development of a revolutionary and powerful diagnostics platform, resulting in the advancement of a class of ultrasensitive, specific, cost-effective and portable diagnostics, typified by applications in COVID-19/cancer diagnosis. METHODS We developed CRISPR-based diagnostic platform SHERLOCK (Specific High-sensitivity Enzymatic Reporter unLOCKing) for the detection of Schistosoma japonicum and S. mansoni by combining recombinase polymerase amplification (RPA) with CRISPR-Cas13a detection, measured via fluorescent or colorimetric readouts. We evaluated SHERLOCK assays by using 150 faecal/serum samples collected from Schistosoma-infected ARC Swiss mice (female), and 189 human faecal/serum samples obtained from a S. japonicum-endemic area in the Philippines and a S. mansoni-endemic area in Uganda. FINDINGS The S. japonicum SHERLOCK assay achieved 93-100% concordance with gold-standard qPCR detection across all the samples. The S. mansoni SHERLOCK assay demonstrated higher sensitivity than qPCR and was able to detect infection in mouse serum as early as 3 weeks post-infection. In human samples, S. mansoni SHERLOCK had 100% sensitivity when compared to qPCR of faecal and serum samples. INTERPRETATION These schistosomiasis diagnostic assays demonstrate the potential of SHERLOCK/CRISPR-based diagnostics to provide highly accurate and field-friendly point-of-care tests that could provide the next generation of diagnostic and surveillance tools for parasitic neglected tropical diseases. FUNDING Australian Infectious Diseases Research Centre seed grant (2022) and National Health and Medical Research Council (NHMRC) of Australia (APP1194462, APP2008433).
Collapse
Affiliation(s)
- Skye R MacGregor
- Infection and Inflammation Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Donald P McManus
- Infection and Inflammation Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Haran Sivakumaran
- Genetics & Computational Biology Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Thomas G Egwang
- Department of Immunology and Parasitology, Med Biotech Laboratories, Kampala, Uganda
| | - Moses Adriko
- Vector Borne and NTD Control Division, Ministry of Health, Kampala, Uganda
| | - Pengfei Cai
- Infection and Inflammation Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Catherine A Gordon
- Infection and Inflammation Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia; School of Public Health, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Mary G Duke
- Infection and Inflammation Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Juliet D French
- Genetics & Computational Biology Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Natasha Collinson
- Infection and Inflammation Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Remigio M Olveda
- Department of Health, Research Institute for Tropical Medicine, Manila, Philippines
| | - Gunter Hartel
- School of Public Health, Faculty of Medicine, The University of Queensland, Brisbane, Australia; Statistics, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia; School of Nursing, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Carlos Graeff-Teixeira
- Department of Pathology, Infectious Diseases Unit, Health Sciences Center, Universidade Federal do Espírito Santo, Vitória, Brazil
| | - Malcolm K Jones
- Infection and Inflammation Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia; School of Veterinary Science, The University of Queensland, Gatton, Queensland, Australia
| | - Hong You
- Infection and Inflammation Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia; School of Veterinary Science, The University of Queensland, Gatton, Queensland, Australia.
| |
Collapse
|
9
|
Thakku SG, Lirette J, Murugesan K, Chen J, Theron G, Banaei N, Blainey PC, Gomez J, Wong SY, Hung DT. Genome-wide tiled detection of circulating Mycobacterium tuberculosis cell-free DNA using Cas13. Nat Commun 2023; 14:1803. [PMID: 37002219 PMCID: PMC10064635 DOI: 10.1038/s41467-023-37183-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/06/2023] [Indexed: 04/03/2023] Open
Abstract
Detection of microbial cell-free DNA (cfDNA) circulating in the bloodstream has emerged as a promising new approach for diagnosing infection. Microbial diagnostics based on cfDNA require assays that can detect rare and highly fragmented pathogen nucleic acids. We now report WATSON (Whole-genome Assay using Tiled Surveillance Of Nucleic acids), a method to detect low amounts of pathogen cfDNA that couples pooled amplification of genomic targets tiled across the genome with pooled CRISPR/Cas13-based detection of these targets. We demonstrate that this strategy of tiling improves cfDNA detection compared to amplification and detection of a single targeted locus. WATSON can detect cfDNA from Mycobacterium tuberculosis in plasma of patients with active pulmonary tuberculosis, a disease that urgently needs accurate, minimally-invasive, field-deployable diagnostics. We thus demonstrate the potential for translating WATSON to a lateral flow platform. WATSON demonstrates the ability to capitalize on the strengths of targeting microbial cfDNA to address the need for point-of-care diagnostic tests for infectious diseases.
Collapse
Affiliation(s)
| | | | - Kanagavel Murugesan
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Julie Chen
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Grant Theron
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research and SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Niaz Banaei
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Clinical Microbiology Laboratory, Stanford Health Care, Palo Alto, CA, USA
| | - Paul C Blainey
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA, USA
| | - James Gomez
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Sharon Y Wong
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Deborah T Hung
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
10
|
Stejskal P, Goodarzi H, Srovnal J, Hajdúch M, van ’t Veer LJ, Magbanua MJM. Circulating tumor nucleic acids: biology, release mechanisms, and clinical relevance. Mol Cancer 2023; 22:15. [PMID: 36681803 PMCID: PMC9862574 DOI: 10.1186/s12943-022-01710-w] [Citation(s) in RCA: 82] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 12/29/2022] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Despite advances in early detection and therapies, cancer is still one of the most common causes of death worldwide. Since each tumor is unique, there is a need to implement personalized care and develop robust tools for monitoring treatment response to assess drug efficacy and prevent disease relapse. MAIN BODY Recent developments in liquid biopsies have enabled real-time noninvasive monitoring of tumor burden through the detection of molecules shed by tumors in the blood. These molecules include circulating tumor nucleic acids (ctNAs), comprising cell-free DNA or RNA molecules passively and/or actively released from tumor cells. Often highlighted for their diagnostic, predictive, and prognostic potential, these biomarkers possess valuable information about tumor characteristics and evolution. While circulating tumor DNA (ctDNA) has been in the spotlight for the last decade, less is known about circulating tumor RNA (ctRNA). There are unanswered questions about why some tumors shed high amounts of ctNAs while others have undetectable levels. Also, there are gaps in our understanding of associations between tumor evolution and ctNA characteristics and shedding kinetics. In this review, we summarize current knowledge about ctNA biology and release mechanisms and put this information into the context of tumor evolution and clinical utility. CONCLUSIONS A deeper understanding of the biology of ctDNA and ctRNA may inform the use of liquid biopsies in personalized medicine to improve cancer patient outcomes.
Collapse
Affiliation(s)
- Pavel Stejskal
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University and University Hospital in Olomouc, Olomouc, 779 00 Czech Republic
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA 94158 USA
| | - Hani Goodarzi
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA 94158 USA
- Department of Urology, University of California San Francisco, San Francisco, CA 94158 USA
| | - Josef Srovnal
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University and University Hospital in Olomouc, Olomouc, 779 00 Czech Republic
| | - Marián Hajdúch
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University and University Hospital in Olomouc, Olomouc, 779 00 Czech Republic
| | - Laura J. van ’t Veer
- Department of Laboratory Medicine, University of California San Francisco, 2340 Sutter Street, San Francisco, CA USA
| | - Mark Jesus M. Magbanua
- Department of Laboratory Medicine, University of California San Francisco, 2340 Sutter Street, San Francisco, CA USA
| |
Collapse
|
11
|
West PT, Brooks EF, Costales C, Moreno A, Jensen TD, Budvytiene I, Khan A, Pham THM, Schwenk HT, Bhatt AS, Banaei N. Near-fatal Legionella pneumonia in a neonate linked to home humidifier by metagenomic next generation sequencing. MED 2022; 3:565-567. [PMID: 35863347 PMCID: PMC9769437 DOI: 10.1016/j.medj.2022.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 05/31/2022] [Accepted: 06/13/2022] [Indexed: 11/25/2022]
Affiliation(s)
- Patrick T West
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Erin F Brooks
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Cristina Costales
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Angel Moreno
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Tanner Dean Jensen
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Indre Budvytiene
- Clinical Microbiology Laboratory, Stanford University Medical Center, Palo Alto, CA, USA
| | - Aslam Khan
- Department of Pediatrics, Division of Infectious Diseases, Stanford University School of Medicine, Stanford, CA, USA
| | - Trung H M Pham
- Department of Pediatrics, Division of Infectious Diseases, Stanford University School of Medicine, Stanford, CA, USA
| | - Hayden T Schwenk
- Department of Pediatrics, Division of Infectious Diseases, Stanford University School of Medicine, Stanford, CA, USA
| | - Ami S Bhatt
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Niaz Banaei
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA; Clinical Microbiology Laboratory, Stanford University Medical Center, Palo Alto, CA, USA; Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
12
|
Huang Z, LaCourse SM, Kay AW, Stern J, Escudero JN, Youngquist BM, Zheng W, Vambe D, Dlamini M, Mtetwa G, Cranmer LM, Njuguna I, Wamalwa DC, Maleche-Obimbo E, Catanzaro DG, Lyon CJ, John-Stewart G, DiNardo A, Mandalakas AM, Ning B, Hu TY. CRISPR detection of circulating cell-free Mycobacterium tuberculosis DNA in adults and children, including children with HIV: a molecular diagnostics study. THE LANCET. MICROBE 2022; 3:e482-e492. [PMID: 35659882 PMCID: PMC9300929 DOI: 10.1016/s2666-5247(22)00087-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/17/2022] [Accepted: 03/23/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Tuberculosis remains a leading cause of global mortality, especially for adults and children living with HIV (CLHIV) underdiagnosed by sputum-based assays. Non-sputum-based assays are needed to improve tuberculosis diagnosis and tuberculosis treatment monitoring. Our aim in this study was to determine whether ultrasensitive detection of Mycobacterium tuberculosis cell-free DNA (Mtb-cfDNA) in blood can diagnose tuberculosis and evaluate tuberculosis treatment responses. METHODS In this molecular diagnostics study we analysed archived serum from two patient populations evaluated for tuberculosis in Eswatini and Kenya to detect Mtb-cfDNA, analysing serum from all individuals who had both sufficient serum volumes and clear diagnostic results. An optimised CRISPR-mediated tuberculosis (CRISPR-TB) assay was used to detect Mtb-cfDNA in serum at enrolment from adults and children with presumptive tuberculosis and their asymptomatic household contacts, and at enrolment and during tuberculosis treatment from a cohort of symptomatic CLHIV at high risk for tuberculosis, who provided longitudinal serum at enrolment and during tuberculosis treatment. FINDINGS CRISPR-TB identified microbiologically and clinically confirmed tuberculosis cases in the predominantly HIV-negative Eswatini adult cohort with 96% sensitivity (27 [96%] of 28, 95% CI 80-100) and 94% specificity (16 [94%] of 17, 71-100), and with 83% sensitivity (5 [83%] of 6, 36-100) and 95% specificity (21 [95%] of 22, 77-100) in the paediatric cohort, including all six cases of extrapulmonary tuberculosis. In the Kenyan CLHIV cohort, CRISPR-TB detected all (13 [100%] of 13, 75-100) confirmed tuberculosis cases and 85% (39 [85%] of 46, 71-94) of unconfirmed tuberculosis cases diagnosed by non-microbiological clinical findings. CLHIV who were CRISPR-TB positive at enrolment had a 2·4-times higher risk of mortality by 6 months after enrolment. Mtb-cfDNA signal decreased after tuberculosis treatment initiation, with near or complete Mtb-cfDNA clearance by 6 months after tuberculosis treatment initiation. INTERPRETATION CRISPR-mediated detection of circulating Mtb-cfDNA shows promise to increase the identification of paediatric tuberculosis and HIV-associated tuberculosis, and potential for early diagnosis and rapid monitoring of tuberculosis treatment responses. FUNDING US Department of Defense, National Institute of Child Health and Human Development, National Institute of Allergy and Infectious Diseases, University of Washington Center for AIDS Research, and the Weatherhead Presidential Endowment fund.
Collapse
Affiliation(s)
- Zhen Huang
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, LA, USA; Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, USA; State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
| | - Sylvia M LaCourse
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA, USA; Department of Global Health, University of Washington, Seattle, WA, USA
| | - Alexander W Kay
- Global TB Program, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA; Baylor Children's Foundation-Eswatini, Mbabane, Eswatini
| | - Joshua Stern
- Department of Global Health, University of Washington, Seattle, WA, USA
| | - Jaclyn N Escudero
- Department of Global Health, University of Washington, Seattle, WA, USA
| | - Brady M Youngquist
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, LA, USA; Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Wenshu Zheng
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, LA, USA; Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Debrah Vambe
- Eswatini National Tuberculosis Control Programme, Ministry of Health, Manzini, Eswatini
| | - Muyalo Dlamini
- National TB Reference Laboratory, Eswatini Health Laboratory Services, Ministry of Health, Mbabane, Eswatini
| | - Godwin Mtetwa
- Global TB Program, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA; Baylor Children's Foundation-Eswatini, Mbabane, Eswatini
| | - Lisa M Cranmer
- Department of Pediatrics, Division of Infectious Diseases, Emory University, Atlanta, GA, USA; Children's Healthcare of Atlanta, Atlanta, GA, USA; Department of Epidemiology, Emory Rollins School of Public Health, Atlanta, GA, USA
| | - Irene Njuguna
- Department of Global Health, University of Washington, Seattle, WA, USA; Research and Programmes, Kenyatta National Hospital, Nairobi, Kenya
| | - Dalton C Wamalwa
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, LA, USA; Department of Paediatrics and Child Health, University of Nairobi, Nairobi, Kenya
| | - Elizabeth Maleche-Obimbo
- Department of Global Health, University of Washington, Seattle, WA, USA; Department of Paediatrics and Child Health, University of Nairobi, Nairobi, Kenya
| | - Donald G Catanzaro
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, USA
| | - Christopher J Lyon
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, LA, USA; Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Grace John-Stewart
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA, USA; Department of Global Health, University of Washington, Seattle, WA, USA; Department of Epidemiology, University of Washington, Seattle, WA, USA; Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Andrew DiNardo
- Global TB Program, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Anna M Mandalakas
- Global TB Program, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Bo Ning
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, LA, USA; Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Tony Y Hu
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, LA, USA; Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, USA.
| |
Collapse
|
13
|
Abdulgader SM, Okunola AO, Ndlangalavu G, Reeve BW, Allwood BW, Koegelenberg CF, Warren RM, Theron G. Diagnosing Tuberculosis: What Do New Technologies Allow Us to (Not) Do? Respiration 2022; 101:797-813. [PMID: 35760050 PMCID: PMC9533455 DOI: 10.1159/000525142] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 05/10/2022] [Indexed: 12/11/2022] Open
Abstract
New tuberculosis (TB) diagnostics are at a crossroads: their development, evaluation, and implementation is severely damaged by resource diversion due to COVID-19. Yet several technologies, especially those with potential for non-invasive non-sputum-based testing, hold promise for efficiently triaging and rapidly confirming TB near point-of-care. Such tests are, however, progressing through the pipeline slowly and will take years to reach patients and health workers. Compellingly, such tests will create new opportunities for difficult-to-diagnose populations, including primary care attendees (all-comers in high burden settings irrespective of reason for presentation) and community members (with early stage disease or risk factors like HIV), many of whom cannot easily produce sputum. Critically, all upcoming technologies have limitations that implementers and health workers need to be cognizant of to ensure optimal deployment without undermining confidence in a technology that still offers improvements over the status quo. In this state-of-the-art review, we critically appraise such technologies for active pulmonary TB diagnosis. We highlight strengths, limitations, outstanding research questions, and how current and future tests could be used in the presence of these limitations and uncertainties. Among triage tests, CRP (for which commercial near point-of-care devices exist) and computer-aided detection software with digital chest X-ray hold promise, together with late-stage blood-based assays that detect host and/or microbial biomarkers; however, aside from a handful of prototypes, the latter category has a shortage of promising late-stage alternatives. Furthermore, positive results from new triage tests may have utility in people without TB; however, their utility for informing diagnostic pathways for other diseases is under-researched (most sick people tested for TB do not have TB). For confirmatory tests, few true point-of-care options will be available soon; however, combining novel approaches like tongue swabs with established tests like Ultra have short-term promise but first require optimizations to specimen collection and processing procedures. Concerningly, no technologies yet have compelling evidence of meeting the World Health Organization optimal target product profile performance criteria, especially for important operational criteria crucial for field deployment. This is alarming as the target product profile criteria are themselves almost a decade old and require urgent revision, especially to cater for technologies made prominent by the COVID-19 diagnostic response (e.g., at-home testing and connectivity solutions). Throughout the review, we underscore the importance of how target populations and settings affect test performance and how the criteria by which these tests should be judged vary by use case, including in active case finding. Lastly, we advocate for health workers and researchers to themselves be vocal proponents of the uptake of both new tests and those - already available tests that remain suboptimally utilized.
Collapse
Affiliation(s)
- Shima M. Abdulgader
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Anna O. Okunola
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Gcobisa Ndlangalavu
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Byron W.P. Reeve
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Brian W. Allwood
- Division of Pulmonology, Department of Medicine, Tygerberg Hospital, Stellenbosch University, Cape Town, South Africa
| | - Coenraad F.N. Koegelenberg
- Division of Pulmonology, Department of Medicine, Tygerberg Hospital, Stellenbosch University, Cape Town, South Africa
| | - Rob M. Warren
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Grant Theron
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
14
|
Yuwono NL, Boyd MAA, Henry CE, Werner B, Ford CE, Warton K. Circulating cell-free DNA undergoes significant decline in yield after prolonged storage time in both plasma and purified form. Clin Chem Lab Med 2022; 60:1287-1298. [DOI: 10.1515/cclm-2021-1152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 05/16/2022] [Indexed: 11/15/2022]
Abstract
Abstract
Objectives
Circulating DNA (cirDNA) is generally purified from plasma that has been biobanked for variable lengths of time. In long-term experiments or clinical trials, the plasma can be stored frozen for up to several years. Therefore, it is crucial to determine the stability of cirDNA to ensure confidence in sample quality upon analysis. Our main objective was to determine the effect of storage for up to 2 years on cirDNA yield and fragmentation.
Methods
We stored frozen EDTA plasma and purified cirDNA from 10 healthy female donors, then quantified cirDNA yield at baseline, and at regular intervals for up to 2 years, by qPCR and Qubit. We also compared cirDNA levels in non-haemolysed and haemolysed blood samples after 16 months of storage and tested the effect of varying DNA extraction protocol parameters.
Results
Storage up to two years caused an annual cirDNA yield decline of 25.5% when stored as plasma and 23% when stored as purified DNA, with short fragments lost more rapidly than long fragments. Additionally, cirDNA yield was impacted by plasma input and cirDNA elution volumes, but not by haemolysis.
Conclusions
The design of long-term cirDNA-based studies and clinical trials should factor in the deterioration of cirDNA during storage.
Collapse
Affiliation(s)
- Nicole Laurencia Yuwono
- Gynaecological Cancer Research Group, Adult Cancer Program, School of Women’s and Children’s Health, Faculty of Medicine and Health, Lowy Cancer Research Centre, University of New South Wales , Sydney , Australia
| | - Mollie Ailie Acheson Boyd
- Gynaecological Cancer Research Group, Adult Cancer Program, School of Women’s and Children’s Health, Faculty of Medicine and Health, Lowy Cancer Research Centre, University of New South Wales , Sydney , Australia
| | - Claire Elizabeth Henry
- Gynaecological Cancer Research Group, Adult Cancer Program, School of Women’s and Children’s Health, Faculty of Medicine and Health, Lowy Cancer Research Centre, University of New South Wales , Sydney , Australia
| | - Bonnita Werner
- Gynaecological Cancer Research Group, Adult Cancer Program, School of Women’s and Children’s Health, Faculty of Medicine and Health, Lowy Cancer Research Centre, University of New South Wales , Sydney , Australia
| | - Caroline Elizabeth Ford
- Gynaecological Cancer Research Group, Adult Cancer Program, School of Women’s and Children’s Health, Faculty of Medicine and Health, Lowy Cancer Research Centre, University of New South Wales , Sydney , Australia
| | - Kristina Warton
- Gynaecological Cancer Research Group, Adult Cancer Program, School of Women’s and Children’s Health, Faculty of Medicine and Health, Lowy Cancer Research Centre, University of New South Wales , Sydney , Australia
| |
Collapse
|
15
|
Dermody SM, Bhambhani C, Swiecicki PL, Brenner JC, Tewari M. Trans-Renal Cell-Free Tumor DNA for Urine-Based Liquid Biopsy of Cancer. Front Genet 2022; 13:879108. [PMID: 35571046 PMCID: PMC9091346 DOI: 10.3389/fgene.2022.879108] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/07/2022] [Indexed: 11/13/2022] Open
Abstract
Cancer biomarkers are a promising tool for cancer detection, personalization of therapy, and monitoring of treatment response or recurrence. “Liquid biopsy” commonly refers to minimally invasive or non-invasive sampling of a bodily fluid (i.e., blood, urine, saliva) for detection of cancer biomarkers such as circulating tumor cells or cell-free tumor DNA (ctDNA). These methods offer a means to collect frequent tumor assessments without needing surgical biopsies. Despite much progress with blood-based liquid biopsy approaches, there are limitations—including the limited amount of blood that can be drawn from a person and challenges with collecting blood samples at frequent intervals to capture ctDNA biomarker kinetics. These limitations are important because ctDNA is present at extremely low levels in plasma and there is evidence that measuring ctDNA biomarker kinetics over time can be useful for clinical prediction. Additionally, blood-based assays require access to trained phlebotomists and often a trip to a healthcare facility. In contrast, urine is a body fluid that can be self-collected from a patient’s home, at frequent intervals, and mailed to a laboratory for analysis. Multiple reports indicate that fragments of ctDNA pass from the bloodstream through the kidney’s glomerular filtration system into the urine, where they are known as trans-renal ctDNA (TR-ctDNA). Accumulating studies indicate that the limitations of blood based ctDNA approaches for cancer can be overcome by measuring TR-ctDNA. Here, we review current knowledge about TR-ctDNA in urine as a cancer biomarker approach, and discuss its clinical potential and open questions in this research field.
Collapse
Affiliation(s)
- Sarah M. Dermody
- Department of Otolaryngology-Head and Neck Surgery, University of Michigan Health System, Ann Arbor, MI, United States
| | - Chandan Bhambhani
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Paul L. Swiecicki
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan Medical School, Ann Arbor, MI, United States
- Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, MI, United States
| | - J. Chad Brenner
- Department of Otolaryngology-Head and Neck Surgery, University of Michigan Health System, Ann Arbor, MI, United States
| | - Muneesh Tewari
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan Medical School, Ann Arbor, MI, United States
- Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, MI, United States
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
- Center for Computational Biology and Bioinformatics, University of Michigan, Ann Arbor, MI, United States
- *Correspondence: Muneesh Tewari,
| |
Collapse
|
16
|
Accuracy of Pneumocystis jirovecii Plasma Cell-Free DNA PCR for Noninvasive Diagnosis of Pneumocystis Pneumonia. J Clin Microbiol 2022; 60:e0010122. [PMID: 35387472 DOI: 10.1128/jcm.00101-22] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pneumocystis pneumonia (PCP) caused by Pneumocystis jirovecii is a serious infection in immunocompromised hosts which requires prompt diagnosis and treatment. The recommended specimen for diagnosis of PCP is bronchoalveolar lavage (BAL) fluid, which is invasive and may not be possible in unstable patients. The aim of this study was to evaluate the accuracy of noninvasive P. jirovecii plasma cell-free DNA (cfDNA) PCR using recently optimized preanalytical and analytical methods. Adult patients undergoing clinical testing for PCP with direct fluorescent antibody stain (DFA), respiratory PCR, and/or β-d-glucan were included in this study. Sensitivity and specificity P. jirovecii plasma cfDNA PCR was determined in PCP suspects categorized as proven and probable. A total of 149 patients were included in this study, of which 10 had proven and 27 had probable PCP. Most patients (95.9%, 143/149) were immunocompromised, including hematological malignancies (30.1%), bone marrow transplant (11.2%), solid organ transplantation (47.6%), and HIV/AIDS (4.2%). P. jirovecii plasma cfDNA PCR showed sensitivity and specificity of 100% (10/10; 95% confidence interval [CI], 69.2 to 100) and 93.4% (127/136; 95% CI, 87.8 to 96.9), and 48.6% (18/37; 95% CI, 31.9 to 65.6) and 99.1% (108/109; 95% CI, 94.9 to 100) in proven and proven/probable cases, respectively. P. jirovecii cell-free DNA PCR was similar in sensitivity but with substantially improved specificity over β-d-glucan (sensitivity, 60.0% [18/30; 95% CI, 40.6 to 77.3]); specificity, 66.7% [22/33; 95% CI, 48.2 to 82.0]) in patients with proven/probable PCP. Plasma cfDNA PCR offers a noninvasive testing option for early and accurate diagnosis of PCP, particularly in patients who cannot tolerate bronchoscopy.
Collapse
|
17
|
Nathavitharana RR, Garcia-Basteiro AL, Ruhwald M, Cobelens F, Theron G. Reimagining the status quo: How close are we to rapid sputum-free tuberculosis diagnostics for all? EBioMedicine 2022; 78:103939. [PMID: 35339423 PMCID: PMC9043971 DOI: 10.1016/j.ebiom.2022.103939] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/14/2022] [Accepted: 02/28/2022] [Indexed: 01/26/2023] Open
Abstract
Rapid, accurate, sputum-free tests for tuberculosis (TB) triage and confirmation are urgently needed to close the widening diagnostic gap. We summarise key technologies and review programmatic, systems, and resource issues that could affect the impact of diagnostics. Mid-to-early-stage technologies like artificial intelligence-based automated digital chest X-radiography and capillary blood point-of-care assays are particularly promising. Pitfalls in the diagnostic pipeline, included a lack of community-based tools. We outline how these technologies may complement one another within the context of the TB care cascade, help overturn current paradigms (eg, reducing syndromic triage reliance, permitting subclinical TB to be diagnosed), and expand options for extra-pulmonary TB. We review challenges such as the difficulty of detecting paucibacillary TB and the limitations of current reference standards, and discuss how researchers and developers can better design and evaluate assays to optimise programmatic uptake. Finally, we outline how leveraging the urgency and innovation applied to COVID-19 is critical to improving TB patients' diagnostic quality-of-care.
Collapse
Affiliation(s)
- Ruvandhi R Nathavitharana
- Division of Infectious Diseases, Beth Israel Deaconess Medical Center & Harvard Medical School, Boston, USA
| | - Alberto L Garcia-Basteiro
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain; Centro de Investigação em Saude de Manhiça, Maputo, Mozambique
| | - Morten Ruhwald
- FIND, the global alliance for diagnostics, Geneva, Switzerland
| | - Frank Cobelens
- Department of Global Health and Amsterdam Institute for Global Health and Development, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Grant Theron
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, South Africa.
| |
Collapse
|
18
|
Futai N, Fukazawa Y, Kashiwagi T, Tamaki S, Sakai R, Hogan CA, Murugesan K, Ramachandran A, Banaei N, Santiago JG. A modular and reconfigurable open-channel gated device for the electrokinetic extraction of cell-free DNA assays. Anal Chim Acta 2022; 1200:339435. [DOI: 10.1016/j.aca.2022.339435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 12/06/2021] [Accepted: 01/02/2022] [Indexed: 11/01/2022]
|
19
|
Chen H, Bai X, Gao Y, Liu W, Yao X, Wang J. Profile of Bacteria with ARGs Among Real-World Samples from ICU Admission Patients with Pulmonary Infection Revealed by Metagenomic NGS. Infect Drug Resist 2021; 14:4993-5004. [PMID: 34866919 PMCID: PMC8636693 DOI: 10.2147/idr.s335864] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 11/16/2021] [Indexed: 12/27/2022] Open
Abstract
Background Treatment of pulmonary infections in the intensive care unit (ICU) represents a great challenge, especially infections caused by antibiotic resistance pathogens. A thorough and up-to-date knowledge of the local spectrum of antibiotic resistant bacteria can improve the antibiotic treatment efficiency. In this study, we aimed to reveal the profile of bacteria with antibiotic resistance genes (ARGs) in real-world samples from ICU admission patients with pulmonary infection in Mainland, China, by metagenomic next-generation sequencing (mNGS). Methods A total of 504 different types of clinical samples from 452 ICU admission patients with pulmonary infection were detected by mNGS analysis. Results A total of 485 samples from 434 patients got successful mNGS results. Among 434 patients, one or more bacteria with ARGs were detected in 192 patients (44.24%, 192/434), and ≥2 bacteria with ARGs were detected in 85 (19.59%, 85/434) patients. The predominant detected bacteria were Corynebacterium striatum (C. striatum) (11.76%, 51/434), Acinetobacter baumannii (A. baumannii) (11.52%, 50/434) and Enterococcus faecium (E. faecium) (8.99%, 39/434). ermX conferred resistance to MSLB and cmx to phenicol were the only two ARGs detected in C. striatum; in A. baumannii, most of ARGs were resistance-nodulation-division (RND)-type efflux pumps genes, which conferred resistance to multi-drug; ermB conferred resistance to MSLB and efmA to multi-drug were the predominant ARGs in E. faecium. Bacteria with ARGs were detected in 50% (140/280) bronchoalveolar lavage fluid (BALF) and 50.5% (48/95) sputum samples, which were significantly higher than in blood and cerebrospinal fluid (CSF) samples. Conclusion High level of bacteria with ARGs was observed in clinical samples, especially BALF and sputum samples from ICU admission patients with pulmonary infection in Mainland, China. And C. striatum resistant to MSLB and/or phenicol, multi-drug resistance A. baumannii and E. faecium were the lead bacteria.
Collapse
Affiliation(s)
- Huijuan Chen
- Department of Biomedical Engineering, College of Life Science and Bioengineering, Beijing University of Technology, Beijing, People's Republic of China
| | - Xinhua Bai
- Department of Clinical Laboratory, Beijing Capitalbio Medlab, Beijing, People's Republic of China
| | - Yang Gao
- Department of Clinical Laboratory, Beijing Capitalbio Medlab, Beijing, People's Republic of China
| | - Wenxuan Liu
- Department of Clinical Laboratory, Beijing Capitalbio Medlab, Beijing, People's Republic of China
| | - Xuena Yao
- Department of Clinical Laboratory, Beijing Capitalbio Medlab, Beijing, People's Republic of China
| | - Jing Wang
- Department of Clinical Laboratory, Beijing Capitalbio Medlab, Beijing, People's Republic of China
| |
Collapse
|
20
|
Till JE, Black TA, Gentile C, Abdalla A, Wang Z, Sangha HK, Roth JJ, Sussman R, Yee SS, O'Hara MH, Thompson JC, Aggarwal C, Hwang WT, Elenitoba-Johnson KSJ, Carpenter EL. Optimization of Sources of Circulating Cell-Free DNA Variability for Downstream Molecular Analysis. J Mol Diagn 2021; 23:1545-1552. [PMID: 34454115 DOI: 10.1016/j.jmoldx.2021.08.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 06/10/2021] [Accepted: 08/09/2021] [Indexed: 02/08/2023] Open
Abstract
Circulating cell-free DNA (ccfDNA) is used increasingly as a cancer biomarker for prognostication, as a correlate for tumor volume, or as input for downstream molecular analysis. Determining optimal blood processing and ccfDNA quantification are crucial for ccfDNA to serve as an accurate biomarker as it moves into the clinical realm. Whole blood was collected from 50 subjects, processed to plasma, and used immediately or frozen at -80°C. Plasma ccfDNA was extracted and concentration was assessed by real-time quantitative PCR (qPCR), fluorimetry, and droplet digital PCR (ddPCR). For the 24 plasma samples from metastatic pancreatic cancer patients, the variant allele fractions (VAF) of KRAS G12/13 pathogenic variants in circulating tumor DNA (ctDNA) were measured by ddPCR. Using a high-speed (16,000 × g) or slower-speed (4100 × g) second centrifugation step showed no difference in ccfDNA yield or ctDNA VAF. A two- versus three-spin centrifugation protocol also showed no difference in ccfDNA yield or ctDNA VAF. A higher yield was observed from fresh versus frozen plasma by qPCR and fluorimetry, whereas a higher yield was observed for frozen versus fresh plasma by ddPCR, however, no difference was observed in ctDNA VAF. Overall, our findings suggest factors to consider when implementing a ccfDNA extraction and quantification workflow in a research or clinical setting.
Collapse
Affiliation(s)
- Jacob E Till
- Division of Hematology-Oncology, Department of Medicine, Raymond and Ruth Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Taylor A Black
- Division of Hematology-Oncology, Department of Medicine, Raymond and Ruth Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Caren Gentile
- Division of Precision and Computational Diagnostics, Department of Pathology and Laboratory Medicine, Raymond and Ruth Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Aseel Abdalla
- Division of Hematology-Oncology, Department of Medicine, Raymond and Ruth Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Zhuoyang Wang
- Division of Hematology-Oncology, Department of Medicine, Raymond and Ruth Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Hareena K Sangha
- Division of Hematology-Oncology, Department of Medicine, Raymond and Ruth Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jacquelyn J Roth
- Division of Precision and Computational Diagnostics, Department of Pathology and Laboratory Medicine, Raymond and Ruth Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Robyn Sussman
- Division of Precision and Computational Diagnostics, Department of Pathology and Laboratory Medicine, Raymond and Ruth Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Stephanie S Yee
- Division of Hematology-Oncology, Department of Medicine, Raymond and Ruth Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Mark H O'Hara
- Division of Hematology-Oncology, Department of Medicine, Raymond and Ruth Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jeffrey C Thompson
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Raymond and Ruth Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Charu Aggarwal
- Division of Hematology-Oncology, Department of Medicine, Raymond and Ruth Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Wei-Ting Hwang
- Department of Biostatistics, Epidemiology and Informatics, Raymond and Ruth Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kojo S J Elenitoba-Johnson
- Division of Precision and Computational Diagnostics, Department of Pathology and Laboratory Medicine, Raymond and Ruth Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Erica L Carpenter
- Division of Hematology-Oncology, Department of Medicine, Raymond and Ruth Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
21
|
Vogt SL, Patel M, Lakha A, Philip V, Omar T, Ashmore P, Pather S, Haley LM, Zheng G, Stone J, Mayne E, Stevens W, Wagner-Johnston N, Gocke CD, Martinson NA, Ambinder RF, Xian RR. Feasibility of Cell-Free DNA Collection and Clonal Immunoglobulin Sequencing in South African Patients With HIV-Associated Lymphoma. JCO Glob Oncol 2021; 7:611-621. [PMID: 33909482 PMCID: PMC8162966 DOI: 10.1200/go.20.00651] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
PURPOSE Diagnosis of AIDS lymphoma in low-resource settings, like South Africa, is often delayed, leaving patients with limited treatment options. In tuberculosis (TB) endemic regions, overlapping signs and symptoms often lead to diagnostic delays. Assessment of plasma cell-free DNA (cfDNA) by next-generation sequencing (NGS) may expedite the diagnosis of lymphoma but requires high-quality cfDNA. METHODS People living with HIV with newly diagnosed aggressive B-cell lymphoma and those with newly diagnosed TB seeking care at Chris Hani Baragwanath Academic Hospital and its surrounding clinics, in Soweto, South Africa, were enrolled in this study. Each participant provided a whole blood specimen collected in cell-stabilizing tubes. Quantity and quality of plasma cfDNA were assessed. NGS of the immunoglobulin heavy chain was performed. RESULTS Nine HIV+ patients with untreated lymphoma and eight HIV+ patients with TB, but without lymphoma, were enrolled. All cfDNA quantity and quality metrics were similar between the two groups, except that cfDNA accounted for a larger fraction of recovered plasma DNA in patients with lymphoma. The concentration of cfDNA in plasma also trended higher in patients with lymphoma. NGS of immunoglobulin heavy chain showed robust amplification of DNA, with large amplicons (> 250 bp) being more readily detected in patients with lymphoma. Clonal sequences were detected in five of nine patients with lymphoma, and none of the patients with TB. CONCLUSION This proof-of-principle study demonstrates that whole blood collected for cfDNA in a low-resource setting is suitable for sophisticated sequencing analyses, including clonal immunoglobulin NGS. The detection of clonal sequences in more than half of patients with lymphoma shows promise as a diagnostic marker that may be explored in future studies.
Collapse
Affiliation(s)
- Samantha L Vogt
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD
| | - Moosa Patel
- Clinical Haematology Unit, Department of Medicine, Chris Hani Baragwanath Academic Hospital and Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Atul Lakha
- Clinical Haematology Unit, Department of Medicine, Chris Hani Baragwanath Academic Hospital and Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Vinitha Philip
- Clinical Haematology Unit, Department of Medicine, Chris Hani Baragwanath Academic Hospital and Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Tanvier Omar
- Division of Anatomical Pathology, National Health Laboratory Service, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Philippa Ashmore
- Clinical Haematology, Netcare Olivedale Hospital, Johannesburg, South Africa
| | - Sugeshnee Pather
- Division of Anatomical Pathology, National Health Laboratory Service, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Lisa M Haley
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD
| | - Gang Zheng
- Department of Pathology, Mayo Clinic, Rochester, MN
| | - Jennifer Stone
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD
| | - Elizabeth Mayne
- Molecular Medicine and Haematology, University of the Witwatersrand, Johannesburg, South Africa
| | - Wendy Stevens
- Department of Immunology, Faculty of Health Sciences, University of Witwatersrand and National Health Laboratory Service, Johannesburg, South Africa
| | - Nina Wagner-Johnston
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD
| | - Christopher D Gocke
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD.,Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD
| | - Neil A Martinson
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD.,Perinatal HIV Research Unit (PHRU), University of the Witwatersrand, Johannesburg, South Africa
| | - Richard F Ambinder
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD.,Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD.,Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD
| | - Rena R Xian
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD.,Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD
| |
Collapse
|
22
|
Progress toward Developing Sensitive Non-Sputum-Based Tuberculosis Diagnostic Tests: the Promise of Urine Cell-Free DNA. J Clin Microbiol 2021; 59:e0070621. [PMID: 33980646 DOI: 10.1128/jcm.00706-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A highly accurate, non-sputum-based test for tuberculosis (TB) detection is a key priority for the field of TB diagnostics. A recent study in the Journal of Clinical Microbiology by Oreskovic and colleagues (J Clin Microbiol 59:e00074-21, 2021, https://doi.org/10.1128/JCM.00074-21) reports the performance of an optimized urine cell-free DNA (cfDNA) test using sequence-specific purification combined with short-target PCR to improve the accuracy of TB detection. Their retrospective clinical study utilized frozen urine samples (n = 73) from study participants diagnosed with active pulmonary TB in South Africa and compared results to non-TB patients in South Africa and the United States in an early-phase validation study. Overall, this cfDNA technique detected TB with a sensitivity of 83.7% (95% CI: 71.0 to 91.5) and specificity of 100% (95% CI: 86.2 to 100), which meet the World Health Organization's published performance criteria. Sensitivity was 73.3% in people without HIV (95% CI: 48.1 to 89.1) and 76% in people with smear-negative TB (95% CI: 56.5 to 88.5). In this commentary, we discuss the results of this optimized urine TB cfDNA assay within the larger context of TB diagnostics and pose additional questions for further research.
Collapse
|
23
|
Oreskovic A, Panpradist N, Marangu D, Ngwane MW, Magcaba ZP, Ngcobo S, Ngcobo Z, Horne DJ, Wilson DPK, Shapiro AE, Drain PK, Lutz BR. Diagnosing Pulmonary Tuberculosis by Using Sequence-Specific Purification of Urine Cell-Free DNA. J Clin Microbiol 2021; 59:e0007421. [PMID: 33789959 PMCID: PMC8373247 DOI: 10.1128/jcm.00074-21] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/19/2021] [Indexed: 01/17/2023] Open
Abstract
Transrenal urine cell-free DNA (cfDNA) is a promising tuberculosis (TB) biomarker, but is challenging to detect because of the short length (<100 bp) and low concentration of TB-specific fragments. We aimed to improve the diagnostic sensitivity of TB urine cfDNA by increasing recovery of short fragments during sample preparation. We developed a highly sensitive sequence-specific purification method that uses hybridization probes immobilized on magnetic beads to capture short TB cfDNA (50 bp) with 91.8% average efficiency. Combined with short-target PCR, the assay limit of detection was ≤5 copies of cfDNA in 10 ml urine. In a clinical cohort study in South Africa, our urine cfDNA assay had 83.7% sensitivity (95% CI: 71.0 to 91.5%) and 100% specificity (95% CI: 86.2 to 100%) for diagnosis of active pulmonary TB when using sputum Xpert MTB/RIF as the reference standard. The detected cfDNA concentration was 0.14 to 2,804 copies/ml (median 14.6 copies/ml) and was inversely correlated with CD4 count and days to culture positivity. Sensitivity was nonsignificantly higher in HIV-positive (88.2%) compared to HIV-negative patients (73.3%), and was not dependent on CD4 count. Sensitivity remained high in sputum smear-negative (76.0%) and urine lipoarabinomannan (LAM)-negative (76.5%) patients. With improved sample preparation, urine cfDNA is a viable biomarker for TB diagnosis. Our assay has the highest reported accuracy of any TB urine cfDNA test to date and has the potential to enable rapid non-sputum-based TB diagnosis across key underserved patient populations.
Collapse
Affiliation(s)
- Amy Oreskovic
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
| | - Nuttada Panpradist
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
| | - Diana Marangu
- Department of Paediatrics and Child Health, University of Nairobi, Nairobi, Kenya
| | - M. William Ngwane
- Umkhuseli Innovation and Research Management, Pietermaritzburg, South Africa
| | - Zanele P. Magcaba
- Umkhuseli Innovation and Research Management, Pietermaritzburg, South Africa
| | - Sindiswa Ngcobo
- Umkhuseli Innovation and Research Management, Pietermaritzburg, South Africa
| | - Zinhle Ngcobo
- Umkhuseli Innovation and Research Management, Pietermaritzburg, South Africa
| | - David J. Horne
- Department of Medicine, University of Washington, Seattle, Washington, USA
- Department of Global Health, University of Washington, Seattle, Washington, USA
| | - Douglas P. K. Wilson
- Umkhuseli Innovation and Research Management, Pietermaritzburg, South Africa
- Edendale Hospital, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| | - Adrienne E. Shapiro
- Department of Medicine, University of Washington, Seattle, Washington, USA
- Department of Global Health, University of Washington, Seattle, Washington, USA
| | - Paul K. Drain
- Department of Medicine, University of Washington, Seattle, Washington, USA
- Department of Global Health, University of Washington, Seattle, Washington, USA
| | - Barry R. Lutz
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
| |
Collapse
|
24
|
Assessment of Circulating Nucleic Acids in Cancer: From Current Status to Future Perspectives and Potential Clinical Applications. Cancers (Basel) 2021; 13:cancers13143460. [PMID: 34298675 PMCID: PMC8307284 DOI: 10.3390/cancers13143460] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/01/2021] [Accepted: 07/06/2021] [Indexed: 02/06/2023] Open
Abstract
Current approaches for cancer detection and characterization are based on radiological procedures coupled with tissue biopsies, despite relevant limitations in terms of overall accuracy and feasibility, including relevant patients' discomfort. Liquid biopsies enable the minimally invasive collection and analysis of circulating biomarkers released from cancer cells and stroma, representing therefore a promising candidate for the substitution or integration in the current standard of care. Despite the potential, the current clinical applications of liquid biopsies are limited to a few specific purposes. The lack of standardized procedures for the pre-analytical management of body fluids samples and the detection of circulating biomarkers is one of the main factors impacting the effective advancement in the applicability of liquid biopsies to clinical practice. The aim of this work, besides depicting current methods for samples collection, storage, quality check and biomarker extraction, is to review the current techniques aimed at analyzing one of the main circulating biomarkers assessed through liquid biopsy, namely cell-free nucleic acids, with particular regard to circulating tumor DNA (ctDNA). ctDNA current and potential applications are reviewed as well.
Collapse
|
25
|
Yu G, Shen Y, Ye B, Shi Y. Diagnostic accuracy of Mycobacterium tuberculosis cell-free DNA for tuberculosis: A systematic review and meta-analysis. PLoS One 2021; 16:e0253658. [PMID: 34161399 PMCID: PMC8221493 DOI: 10.1371/journal.pone.0253658] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 06/10/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Diagnosis of tuberculosis (TB) is still difficult. The purpose of our study was to evaluate the diagnostic accuracy of Mycobacterium tuberculosis cell-free DNA (cfDNA) for diagnosing of TB. METHODS We searched relevant databases for studies that used cfDNA to diagnose TB. We evaluated the accuracy of cfDNA compared with the composite reference standard (CRS) and culture. True positive, false positive, false negative, and true negative values for cfDNA were obtained first, then the estimated pooled sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), diagnostic odds ratio (DOR), and the area under the summary receiver operating characteristic (SROC) curve (AUC) of cfDNA for diagnosing TB were calculated with 95% confidence intervals (CIs). Heterogeneity was determined using the I2 statistic. When the heterogeneity was obvious, the source of heterogeneity was further discussed. RESULTS We included 14 independent studies comparing cfDNA with the CRS, and 4 studies compared with culture. The pooled sensitivity, specificity, PPV, NPV, DOR, and AUC of the SROC were 68%, 98%,99%, 62%, 83, and 0.97 as compared with the CRS, respectively. The pooled sensitivity, specificity, PPV, NPV, DOR, and AUC of the SROC were 48%, 91%, 92%, 60%, 5, and 0.88 as compared with culture, respectively. The heterogeneity between studies was significant. CONCLUSIONS The accuracy of cfDNA testing for TB diagnosis was good compared with CRS and culture. cfDNA can be used for rapid early diagnosis of TB.
Collapse
Affiliation(s)
- Guocan Yu
- Zhejiang Tuberculosis Diagnosis and Treatment Center, Affiliated Hangzhou Chest Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yanqin Shen
- Zhejiang Tuberculosis Diagnosis and Treatment Center, Affiliated Hangzhou Chest Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Bo Ye
- Zhejiang Tuberculosis Diagnosis and Treatment Center, Affiliated Hangzhou Chest Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yan Shi
- Zhejiang Tuberculosis Diagnosis and Treatment Center, Affiliated Hangzhou Chest Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
26
|
Satapathy S, Singh V, Nambirajan A, Malik PS, Tanwar P, Mehta A, Suryavanshi M, Thulkar S, Mohan A, Jain D. EGFR mutation testing on plasma and urine samples: A pilot study evaluating the value of liquid biopsy in lung cancer diagnosis and management. Curr Probl Cancer 2021; 45:100722. [PMID: 33712318 DOI: 10.1016/j.currproblcancer.2021.100722] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 11/30/2020] [Accepted: 02/01/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND Cell free DNA (cfDNA) shed by cancer cells into blood and body fluids is a potential substrate for molecular testing. While plasma is approved for EGFR mutation testing in certain clinical settings, mutation testing on urine is not well explored in lung cancer. In this study, we assess the feasibility and diagnostic accuracy of EGFR mutation analysis on plasma and urine samples. METHODS Matched plasma and urine were collected prospectively from TKI-naïve lung adenocarcinoma (ADCA) patients (Group A) with available tumor tissue. Only plasma was collected from TKI-treated, known EGFR mutant ADCA patients developing TKI resistance (Group B). qPCR (tumor tissue) or digital droplet-PCR (urine/plasma) was performed for exon 19 deletions, exon 21 L858R and exon 20 T790M. RESULTS Eighty-one patients (60 Group A, 21 Group B) were included. In Group A, EGFR mutations were detected in tissue in 34/60 (57%) patients. Mutations were detected in matched plasma in 24 (24/34, 70.5% sensitivity), and in matched urine in 15 (15/25, 60% sensitivity) of the 34 EGFR mutant cases, with no false positives (100% positive predictive value). Plasma and urine mutation results showed moderate agreement (70%) with a combined sensitivity of 88% (22/25). In Group B, new T790M mutations were detected in plasma in 61% (13/21) patients. CONCLUSION Liquid biopsies show moderate sensitivity (plasma > urine) with 100% positive predictive rates for EGFR mutations. Testing of more than one type of liquid biopsy sample increases sensitivity. In TKI-resistant settings, liquid biopsies can obviate need for invasive biopsies in >60% patients.
Collapse
Affiliation(s)
| | - Varsha Singh
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Aruna Nambirajan
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Prabhat Singh Malik
- Department of Medical Oncology, Dr BRAIRCH, All India Institute of Medical Sciences, New Delhi, India
| | - Pranay Tanwar
- Department of Laboratory Oncology, Dr BRAIRCH, All India Institute of Medical Sciences, New Delhi, India
| | - Anurag Mehta
- Department of Laboratory and Transfusion Services, Rajiv Gandhi Cancer Institute and Research Centre, New Delhi, India
| | - Moushumi Suryavanshi
- Department of Laboratory and Transfusion Services, Rajiv Gandhi Cancer Institute and Research Centre, New Delhi, India
| | - Sanjay Thulkar
- Department of Radiology, Dr BRAIRCH, All India Institute of Medical Sciences, New Delhi, India
| | - Anant Mohan
- Department of Pulmonary Medicine and Sleep Disorders, All India Institute of Medical Sciences, New Delhi, India
| | - Deepali Jain
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
27
|
Oreskovic A, Lutz BR. Ultrasensitive hybridization capture: Reliable detection of <1 copy/mL short cell-free DNA from large-volume urine samples. PLoS One 2021; 16:e0247851. [PMID: 33635932 PMCID: PMC7909704 DOI: 10.1371/journal.pone.0247851] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 02/12/2021] [Indexed: 12/19/2022] Open
Abstract
Urine cell-free DNA (cfDNA) is a valuable non-invasive biomarker with broad potential clinical applications, but there is no consensus on its optimal pre-analytical methodology, including the DNA extraction step. Due to its short length (majority of fragments <100 bp) and low concentration (ng/mL), urine cfDNA is not efficiently recovered by conventional silica-based extraction methods. To maximize sensitivity of urine cfDNA assays, we developed an ultrasensitive hybridization method that uses sequence-specific oligonucleotide capture probes immobilized on magnetic beads to improve extraction of short cfDNA from large-volume urine samples. Our hybridization method recovers near 100% (95% CI: 82.6-117.6%) of target-specific DNA from 10 mL urine, independent of fragment length (25-150 bp), and has a limit of detection of ≤5 copies of double-stranded DNA (0.5 copies/mL). Pairing hybridization with an ultrashort qPCR design, we can efficiently capture and amplify fragments as short as 25 bp. Our method enables amplification of cfDNA from 10 mL urine in a single qPCR well, tolerates variation in sample composition, and effectively removes non-target DNA. Our hybridization protocol improves upon both existing silica-based urine cfDNA extraction methods and previous hybridization-based sample preparation protocols. Two key innovations contribute to the strong performance of our method: a two-probe system enabling recovery of both strands of double-stranded DNA and dual biotinylated capture probes, which ensure consistent, high recovery by facilitating optimal probe density on the bead surface, improving thermostability of the probe-bead linkage, and eliminating interference by endogenous biotin. We originally designed the hybridization method for tuberculosis diagnosis from urine cfDNA, but expect that it will be versatile across urine cfDNA targets, and may be useful for other cfDNA sample types and applications beyond cfDNA. To make our hybridization method accessible to new users, we present a detailed protocol and straightforward guidelines for designing new capture probes.
Collapse
Affiliation(s)
- Amy Oreskovic
- Department of Bioengineering, University of Washington, Seattle, Washington, United States of America
| | - Barry R. Lutz
- Department of Bioengineering, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
28
|
Senchyna F, Hogan CA, Murugesan K, Moreno A, Ho DY, Subramanian A, Schwenk HT, Budvytiene I, Costa HA, Gombar S, Banaei N. Clinical Accuracy and Impact of Plasma Cell-Free DNA Fungal PCR Panel for Non-Invasive Diagnosis of Fungal Infection. Clin Infect Dis 2021; 73:1677-1684. [PMID: 33606010 DOI: 10.1093/cid/ciab158] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Invasive fungal infection (IFI) is a growing cause of morbidity and mortality in oncology and transplant patients. Diagnosis of IFI is often delayed due to need for invasive biopsy and low sensitivity of conventional diagnostic methods. Fungal cell-free DNA (cfDNA) detection in plasma is a novel testing modality for the non-invasive diagnosis of IFI. METHODS A novel bioinformatic pipeline was created to interrogate fungal genomes and identify multicopy sequences for cfDNA PCR targeting. A real-time PCR panel was developed for 12 genera and species most commonly causing IFI. Sensitivity and specificity of the fungal PCR panel were determined using plasma samples from patients with IFI and non-IFI controls. Clinical impact of fungal PCR panel was evaluated prospectively based on the treating team's interpretation of the results. RESULTS Overall, the sensitivity and specificity were 56.5% (65/115, 95% confidence interval [CI], 47.4%-65.2%) and 99.5% (2064/2075; 95% CI, 99.0%-99.7%), respectively. In the subset of patients with an optimized plasma volume (2mL), sensitivity was 69.6% (48/69; 95% CI, 57.9%-79.2%). Sensitivity was 91.7% (11/12; 95% CI, 62.5%-100%) for detection of Mucorales agents, 56.3% (9/16; 95% CI, 33.2%-76.9%) for Aspergillus species, and 84.6% (11/13; 95% CI, 56.5%-96.9%) for Candida albicans. In a prospective evaluation of 226 patients with suspected IFI, cfDNA testing was positive in 47 (20.8%) patients and resulted in a positive impact on clinical management in 20/47 (42.6%). CONCLUSIONS The fungal cfDNA PCR panel offers a non-invasive approach to early diagnosis of IFI, providing actionable results for personalized care.
Collapse
Affiliation(s)
- Fiona Senchyna
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Catherine A Hogan
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.,Clinical Microbiology Laboratory, Stanford University Medical Center, Palo Alto, CA, USA
| | - Kanagavel Murugesan
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Angel Moreno
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Dora Y Ho
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Aruna Subramanian
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Hayden T Schwenk
- Division of Infectious Diseases, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Indre Budvytiene
- Clinical Microbiology Laboratory, Stanford University Medical Center, Palo Alto, CA, USA
| | - Helio A Costa
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.,Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA, USA
| | - Saurabh Gombar
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Niaz Banaei
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.,Clinical Microbiology Laboratory, Stanford University Medical Center, Palo Alto, CA, USA.,Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
29
|
Banaei N, Musser KA, Salfinger M, Somoskovi A, Zelazny AM. Novel Assays/Applications for Patients Suspected of Mycobacterial Diseases. Clin Lab Med 2020; 40:535-552. [DOI: 10.1016/j.cll.2020.08.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
30
|
Terzis A, Ramachandran A, Kang J, Santiago JG. Simultaneous optical and infrared thermal imaging of isotachophoresis. Anal Chim Acta 2020; 1131:9-17. [PMID: 32928483 DOI: 10.1016/j.aca.2020.07.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/05/2020] [Accepted: 07/06/2020] [Indexed: 11/28/2022]
Abstract
Joule heating in isotachophoresis (ITP) can limit minimum assay times and efforts to scale up processed sample volumes. Despite its significance, the dynamics of Joule heating on spatiotemporal temperature fields in ITP systems have not been investigated. We here present novel measurements of spatiotemporal temperature and electromigration fields in ITP. To achieve this, we obtain simultaneous and registered optical and infrared thermal images of the ITP process. We conduct a series of experiments at constant current operation and vary the leading electrolyte concentration to study and highlight the importance of buffer-dependent ionic conductivity on the resulted temperature rise. The measurements demonstrate a substantial increase of temperature in the adjusted trailing electrolyte region, and the propagation of a thermal wave in the ITP channel with a velocity equal to that of the electromigration front. We present scaling of the experimental data that indicates the dependence of front velocity and temperature rise on current density and ionic conductivity. The current study has direct application to the design and optimization of scaled-up ITP systems and the validation of numerical models of Joule heating.
Collapse
Affiliation(s)
- Alexandros Terzis
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Ashwin Ramachandran
- Department of Aeronautics & Astronautics, Stanford University, Stanford, CA, 94305, USA
| | - Jinliang Kang
- School of Aerospace Engineering, Tsinghua University, Beijing, 100084, China
| | - Juan G Santiago
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
31
|
Ouyang W, Han J. One‐Step Nucleic Acid Purification and Noise‐Resistant Polymerase Chain Reaction by Electrokinetic Concentration for Ultralow‐Abundance Nucleic Acid Detection. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201915788] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Wei Ouyang
- Department of Electrical Engineering and Computer Science and Research Laboratory of ElectronicsMassachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139 USA
| | - Jongyoon Han
- Department of Electrical Engineering and Computer Science and Research Laboratory of ElectronicsMassachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139 USA
- Department of Biological EngineeringMassachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139 USA
| |
Collapse
|
32
|
Ouyang W, Han J. One-Step Nucleic Acid Purification and Noise-Resistant Polymerase Chain Reaction by Electrokinetic Concentration for Ultralow-Abundance Nucleic Acid Detection. Angew Chem Int Ed Engl 2020; 59:10981-10988. [PMID: 32246546 PMCID: PMC7560970 DOI: 10.1002/anie.201915788] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 04/01/2020] [Indexed: 12/15/2022]
Abstract
Nucleic acid amplification tests (NAATs)integrated on a chip hold great promise for point-of-care diagnostics. Currently, nucleic acid (NA) purification remains time-consuming and labor-intensive, and it takes extensive efforts to optimize the amplification chemistry. Using selective electrokinetic concentration, we report one-step, liquid-phase NA purification that is simpler and faster than conventional solid-phase extraction. By further re-concentrating NAs and performing polymerase chain reaction (PCR) in a microfluidic chamber, our platform suppresses non-specific amplification caused by non-optimal PCR designs. We achieved the detection of 5 copies of M. tuberculosis genomic DNA (equaling 0.3 cell) in real biofluids using both optimized and non-optimal PCR designs, which is 10- and 1000-fold fewer than those of the standard bench-top method, respectively. By simplifying the workflow and shortening the development cycle of NAATs, our platform may find use in point-of-care diagnosis.
Collapse
Affiliation(s)
- Wei Ouyang
- Department of Electrical Engineering and Computer Science and Research Laboratory of Electronics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Jongyoon Han
- Department of Electrical Engineering and Computer Science and Research Laboratory of Electronics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| |
Collapse
|
33
|
Abstract
Abstract
It is well documented that in the chain from sample to the result in a clinical laboratory, the pre-analytical phase is the weakest and most vulnerable link. This also holds for the use and analysis of extracellular nucleic acids. In this short review, we will summarize and critically evaluate the most important steps of the pre-analytical phase, i.e. the choice of the best control population for the patients to be analyzed, the actual blood draw, the choice of tubes for blood drawing, the impact of delayed processing of blood samples, the best method for getting rid of cells and debris, the choice of matrix, i.e. plasma vs. serum vs. other body fluids, and the impact of long-term storage of cell-free liquids on the outcome. Even if the analysis of cell-free nucleic acids has already become a routine application in the area of non-invasive prenatal screening (NIPS) and in the care of cancer patients (search for resistance mutations in the EGFR gene), there are still many unresolved issues of the pre-analytical phase which need to be urgently tackled.
Collapse
Affiliation(s)
- Michael Fleischhacker
- DRK Kliniken Berlin Mitte , Klinik für Innere Medizin – Pneumologie und Schlafmedizin , Drontheimer Str. 39 – 40 , 13359 Berlin , Germany
| | - Bernd Schmidt
- DRK Kliniken Berlin Mitte , Klinik für Innere Medizin – Pneumologie und Schlafmedizin , Berlin , Germany
| |
Collapse
|
34
|
Han D, Li R, Shi J, Tan P, Zhang R, Li J. Liquid biopsy for infectious diseases: a focus on microbial cell-free DNA sequencing. Theranostics 2020; 10:5501-5513. [PMID: 32373224 PMCID: PMC7196304 DOI: 10.7150/thno.45554] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 03/29/2020] [Indexed: 12/19/2022] Open
Abstract
Metagenomic next-generation sequencing (mNGS) of microbial cell-free DNA (mcfDNA sequencing) is becoming an attractive diagnostic modality for infectious diseases, allowing broad-range pathogen detection, noninvasive sampling, and rapid diagnosis. At this key juncture in the translation of metagenomics into clinical practice, an integrative perspective is needed to understand the significance of emerging mcfDNA sequencing technology. In this review, we summarized the actual performance of the mcfDNA sequencing tests recently used in health care settings for the diagnosis of a variety of infectious diseases and further focused on the practice considerations (challenges and solutions) for improving the accuracy and clinical relevance of the results produced by this evolving technique. Such knowledge will be helpful for physicians, microbiologists and researchers to understand what is going on in this quickly progressing field of non-invasive pathogen diagnosis by mcfDNA sequencing and promote the routine implementation of this technique in the diagnosis of infectious disease.
Collapse
Affiliation(s)
- Dongsheng Han
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, P.R. China
- Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R. China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, P.R. China
| | - Rui Li
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, P.R. China
- Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R. China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, P.R. China
| | - Jiping Shi
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, P.R. China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, P.R. China
- Peking University Fifth School of Clinical Medicine, National Center for Clinical Laboratories, National Center of Gerontology, Beijing Hospital, Beijing, China
| | - Ping Tan
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, P.R. China
- Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R. China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, P.R. China
| | - Rui Zhang
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, P.R. China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, P.R. China
| | - Jinming Li
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, P.R. China
- Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R. China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, P.R. China
| |
Collapse
|