1
|
Chulkina M, Tran H, Uribe G, McAninch SB, McAninch C, Seideneck A, He B, Lanza M, Khanipov K, Golovko G, Powell DW, Davenport ER, Pinchuk IV. MyD88-mediated signaling in intestinal fibroblasts regulates macrophage antimicrobial defense and prevents dysbiosis in the gut. Cell Rep 2025; 44:115553. [PMID: 40257864 DOI: 10.1016/j.celrep.2025.115553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 02/03/2025] [Accepted: 03/20/2025] [Indexed: 04/23/2025] Open
Abstract
Fibroblasts that reside in the gut mucosa are among the key regulators of innate immune cells, but their role in the regulation of the defense functions of macrophages remains unknown. MyD88 is suggested to shape fibroblast responses in the intestinal microenvironment. We found that mice lacking MyD88 in fibroblasts showed a decrease in the colonic antimicrobial defense, developing dysbiosis and aggravated dextran sulfate sodium (DSS)-induced colitis. These pathological changes were associated with the accumulation of Arginase 1+ macrophages with low antimicrobial defense capability. Mechanistically, the production of interleukin (IL)-6 and CCL2 downstream of MyD88 was critically involved in fibroblast-mediated support of macrophage antimicrobial function, and IL-6/CCL2 neutralization resulted in the generation of macrophages with decreased production of the antimicrobial peptide cathelicidin and impaired bacterial clearance. Collectively, these findings revealed a critical role of fibroblast-intrinsic MyD88 signaling in regulating macrophage antimicrobial defense under colonic homeostasis, and its disruption results in dysbiosis, predisposing the host to the development of intestinal inflammation.
Collapse
Affiliation(s)
- Marina Chulkina
- The Pennsylvania State University, College of Medicine, Department of Medicine, Hershey, PA, USA
| | - Hanh Tran
- The Pennsylvania State University, Department of Biology, Huck Institute of the Life Sciences, University Park, PA, USA
| | - Gabriela Uribe
- The Pennsylvania State University, College of Medicine, Department of Medicine, Hershey, PA, USA
| | - Steven Bruce McAninch
- The Pennsylvania State University, College of Medicine, Department of Medicine, Hershey, PA, USA
| | - Christina McAninch
- The Pennsylvania State University, College of Medicine, Department of Medicine, Hershey, PA, USA
| | - Ashley Seideneck
- The Pennsylvania State University, College of Medicine, Department of Medicine, Hershey, PA, USA
| | - Bing He
- The Pennsylvania State University, College of Medicine, Department of Medicine, Hershey, PA, USA
| | - Matthew Lanza
- The Pennsylvania State University, College of Medicine, Department of Comparative Medicine, Hershey, PA, USA
| | - Kamil Khanipov
- The University of Texas Medical Branch, Department of Pharmacology, Galveston, TX, USA
| | - Georgiy Golovko
- The University of Texas Medical Branch, Department of Pharmacology, Galveston, TX, USA
| | - Don W Powell
- The University of Texas Medical Branch, Department of Internal Medicine, Galveston, TX, USA
| | - Emily R Davenport
- The Pennsylvania State University, Department of Biology, Huck Institute of the Life Sciences, University Park, PA, USA
| | - Irina V Pinchuk
- The Pennsylvania State University, College of Medicine, Department of Medicine, Hershey, PA, USA.
| |
Collapse
|
2
|
Zhai J, Fu R, Luo S, Liu X, Xie Y, Cao K, Ge W, Chen Y. Lactylation-related molecular subtyping reveals the immune heterogeneity and clinical characteristics in ulcerative colitis. Biochem Biophys Res Commun 2025; 756:151584. [PMID: 40081238 DOI: 10.1016/j.bbrc.2025.151584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 02/20/2025] [Accepted: 03/03/2025] [Indexed: 03/15/2025]
Abstract
BACKGROUND Ulcerative colitis (UC) is a chronic inflammatory disease linked to early-onset colorectal cancer and metabolic abnormalities. While intestinal lactate disturbances are observed in UC, the role of lactate and lactylation in its pathogenesis remains unclear. The lack of specific biomarkers reflecting these processes limits understanding of their biological significance. METHODS UC subtypes were classified using ConsensusClusterPlus and NMF based on LRGs. Immune infiltration was assessed with ssGSEA, xCell, and CIBERSORT. WGCNA identified subtype-specific gene modules, and Lasso regression pinpointed hub genes. Single-cell analysis determined cellular localization, while WB and IHC validated findings in clinical, mouse, and cell models. Prognostic machine learning models evaluated the clinical significance of these results. RESULTS LRGs distinguished UC patients from controls and stratified them into high and low immune infiltration groups. MSN and MAPRE1, strongly linked to UC, showed elevated expression in vitro and in vivo. They aid in diagnosing UC and UC-associated colorectal cancer and serve as predictors of UC severity and response to immunosuppressants. CONCLUSION Using high-throughput transcriptomic data, we identified hub LRGs and highlighted the role of lactate-mediated lactylation in UC. MSN and MAPRE1 were confirmed to be upregulated in an inflammatory environment, underscoring their potential for personalized UC diagnosis and treatment.
Collapse
Affiliation(s)
- Jinyang Zhai
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, PR China; Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, PR China
| | - Runxi Fu
- Department of Pediatric Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, PR China; Shanghai Institute for Pediatric Research, Shanghai, 200092, PR China
| | - Shangjian Luo
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, PR China; Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, PR China
| | - Xiaoman Liu
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, PR China; Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, PR China
| | - Yang Xie
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, PR China; Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, PR China
| | - Kejing Cao
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, PR China; Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, PR China
| | - Wensong Ge
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, PR China.
| | - Yingwei Chen
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, PR China; Shanghai Institute for Pediatric Research, Shanghai, 200092, PR China.
| |
Collapse
|
3
|
Florio M, Crudele L, Sallustio F, Moschetta A, Cariello M, Gadaleta RM. Disentangling the nutrition-microbiota liaison in inflammatory bowel disease. Mol Aspects Med 2025; 102:101349. [PMID: 39922085 DOI: 10.1016/j.mam.2025.101349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 10/24/2024] [Accepted: 01/24/2025] [Indexed: 02/10/2025]
Abstract
Inflammatory Bowel Disease (IBD) is a set of chronic intestinal inflammatory disorders affecting the gastrointestinal (GI) tract. Beside compromised intestinal barrier function and immune hyperactivation, a common IBD feature is dysbiosis, characterized by a reduction of some strains of Firmicutes, Bacteroidetes, Actinobacteria and an increase in Proteobacteria and pathobionts. Emerging evidence points to diet and nutrition-dependent gut microbiota (GM) modulation, as etiopathogenetic factors and adjuvant therapies in IBD. Currently, no nutritional regimen shows universal efficacy, and advice are controversial, especially those involving restrictive diets potentially resulting in malnutrition. This review provides an overview of the role of macronutrients, dietary protocols and GM modulation in IBD patients. A Western-like diet contributes to an aberrant mucosal immune response to commensal bacteria and impairment of the intestinal barrier integrity, thereby triggering intestinal inflammation. Conversely, a Mediterranean nutritional pattern appears to be one of the most beneficial dietetic regimens able to restore the host intestinal physiology, by promoting eubiosis and preserving the intestinal barrier and immune function, which in turn create a virtuous cycle improving patient adherence to the pattern. Further clinical studies are warranted, to corroborate current IBD nutritional guidelines, and develop more accurate models to move forward precision nutrition and ameliorate patients' quality of life.
Collapse
Affiliation(s)
- Marilina Florio
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", Piazza Giulio Cesare 11, 70124, Bari, Italy
| | - Lucilla Crudele
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", Piazza Giulio Cesare 11, 70124, Bari, Italy; INBB National Institute for Biostructure and Biosystems, Viale delle Medaglie D'Oro 305, 00136, Rome, Italy
| | - Fabio Sallustio
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, Piazza Giulio Cesare n. 11, 70124, Bari, Italy
| | - Antonio Moschetta
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", Piazza Giulio Cesare 11, 70124, Bari, Italy; INBB National Institute for Biostructure and Biosystems, Viale delle Medaglie D'Oro 305, 00136, Rome, Italy.
| | - Marica Cariello
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", Piazza Giulio Cesare 11, 70124, Bari, Italy; INBB National Institute for Biostructure and Biosystems, Viale delle Medaglie D'Oro 305, 00136, Rome, Italy.
| | - Raffaella M Gadaleta
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", Piazza Giulio Cesare 11, 70124, Bari, Italy; INBB National Institute for Biostructure and Biosystems, Viale delle Medaglie D'Oro 305, 00136, Rome, Italy.
| |
Collapse
|
4
|
Tahmasebi A, Beheshti R, Mahmoudi M, Jalilzadeh M, Salehi-Pourmehr H. Alterations in gut microbial community structure in obstructive sleep apnea /hypopnea syndrome (OSAHS): A systematic review and meta-analysis. Respir Med 2025; 241:108077. [PMID: 40158663 DOI: 10.1016/j.rmed.2025.108077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 03/27/2025] [Accepted: 03/28/2025] [Indexed: 04/02/2025]
Abstract
OBJECTIVES This systematic review investigates gut bacterial diversity and composition in patients with Obstructive Sleep Apnea-Hypopnea Syndrome (OSAHS) and examines how these changes may contribute to cardiovascular complications. METHODS A comprehensive search was conducted in PubMed, Web of Science, and Scopus up to March 2025. After removing duplicates, titles and abstracts were screened by two reviewers, and full texts were assessed for inclusion. Data extraction on study characteristics and outcomes was performed. Methodological quality was evaluated using the Joanna Briggs Institute checklist. α-diversity was assessed using richness and diversity indices, while β-diversity examined community structure differences. Meta-analysis was conducted using standardized mean differences (SMD) and confidence intervals (CIs), and heterogeneity was assessed with the Cochrane I2 test. RESULTS The review included 18 studies (16 adults, 2 pediatrics) examining the gut microbiome in OSAHS. Meta-analysis revealed significant reductions in α-diversity indices (Shannon, Chao1, observed species, ACE) in OSAHS patients, while Simpson's index showed no difference. β-diversity analyses showed distinct gut microbiome differences in OSA. Key differential bacteria included Bacteroides, Proteobacteria, Faecalibacterium, Ruminococcaceae, Megamonas, Oscillibacter, Dialister, Roseburia, and Lachnospira. Study quality was medium to high. CONCLUSION OSAHS is associated with significant gut microbiome alterations, including a reduction in beneficial bacteria and an increase in LPS-producing bacteria, leading to intestinal barrier dysfunction. These changes may contribute to systemic inflammation and elevate the risk of cardiovascular diseases.
Collapse
Affiliation(s)
- Ali Tahmasebi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Research Center for Evidence-Based Medicine, Iranian EBM Center: A Joanna Briggs Institute Center of Excellence, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Rasa Beheshti
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Research Center for Evidence-Based Medicine, Iranian EBM Center: A Joanna Briggs Institute Center of Excellence, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammadsina Mahmoudi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Research Center for Evidence-Based Medicine, Iranian EBM Center: A Joanna Briggs Institute Center of Excellence, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahan Jalilzadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Research Center for Evidence-Based Medicine, Iranian EBM Center: A Joanna Briggs Institute Center of Excellence, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hanieh Salehi-Pourmehr
- Research Center for Evidence-Based Medicine, Iranian EBM Center: A Joanna Briggs Institute Center of Excellence, Tabriz University of Medical Sciences, Tabriz, Iran; Medical Philosophy and History Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
5
|
Ma B, Barathan M, Ng MH, Law JX. Oxidative Stress, Gut Microbiota, and Extracellular Vesicles: Interconnected Pathways and Therapeutic Potentials. Int J Mol Sci 2025; 26:3148. [PMID: 40243936 PMCID: PMC11989138 DOI: 10.3390/ijms26073148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/26/2025] [Accepted: 03/27/2025] [Indexed: 04/18/2025] Open
Abstract
Oxidative stress (OS) and gut microbiota are crucial factors influencing human health, each playing a significant role in the development and progression of chronic diseases. This review provides a comprehensive analysis of the complex interplay between these two factors, focusing on how an imbalance between reactive oxygen species (ROS) and antioxidants leads to OS, disrupting cellular homeostasis and contributing to a range of conditions, including metabolic disorders, cardiovascular diseases, neurological diseases, and cancer. The gut microbiota, a diverse community of microorganisms residing in the gastrointestinal tract, is essential for regulating immune responses, metabolic pathways, and overall health. Dysbiosis, an imbalance in the gut microbiota composition, is closely associated with chronic inflammation, metabolic dysfunction, and various diseases. This review highlights how the gut microbiota influences and is influenced by OS, complicating the pathophysiology of many conditions. Furthermore, emerging evidence has identified extracellular vesicles (EVs) as critical facilitators of cellular crosstalk between the OS and gut microbiota. EVs also play a crucial role in signaling between the gut microbiota and host tissues, modulating immune responses, inflammation, and metabolic processes. The signaling function of EVs holds promise for the development of targeted therapies aimed at restoring microbial balance and mitigating OS. Personalized therapeutic approaches, including probiotics, antioxidants, and fecal microbiota transplantation-based strategies, can be used to address OS-related diseases and improve health outcomes. Nonetheless, further research is needed to study the molecular mechanisms underlying these interactions and the potential of innovative interventions to offer novel strategies for managing OS-related diseases and enhancing overall human health.
Collapse
Affiliation(s)
| | | | | | - Jia Xian Law
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (B.M.); (M.B.); (M.H.N.)
| |
Collapse
|
6
|
Ju HJ, Song WH, Shin JH, Lee JH, Bae JM, Lee YB, Lee M. Characterization of Gut Microbiota in Patients with Active Spreading Vitiligo Based on Whole-Genome Shotgun Sequencing. Int J Mol Sci 2025; 26:2939. [PMID: 40243573 PMCID: PMC11988336 DOI: 10.3390/ijms26072939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/19/2025] [Accepted: 03/19/2025] [Indexed: 04/18/2025] Open
Abstract
Vitiligo is an autoimmune skin disease with a significant psychological burden and complex pathogenesis. While genetic factors contribute approximately 30% to its development, recent evidence suggests a crucial role of the gut microbiome in autoimmune diseases. This study investigated differences in gut microbiome composition and metabolic pathways between active spreading vitiligo patients and healthy controls using shotgun whole-genome sequencing in a Korean cohort. Taxonomic profiling reveals distinct characteristics in microbial community structure, with vitiligo patients showing an imbalanced proportion dominated by Actinomycetota and Bacteroidota. The vitiligo group exhibited significantly reduced abundance of specific species including Faecalibacterium prausnitzii, Faecalibacteriumduncaniae, and Meamonas funiformis, and increased Bifidobacterium bifidum compared to healthy controls. Metabolic pathway analysis identified significant enrichment in O-glycan biosynthesis pathways in vitiligo patients, while healthy controls showed enrichment in riboflavin metabolism and bacterial chemotaxis pathways. These findings provide new insights into the gut-skin axis in vitiligo pathogenesis and suggest potential therapeutic targets through microbiota modulation.
Collapse
Affiliation(s)
- Hyun Jeong Ju
- Department of Dermatology, St. Vincent’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 16247, Republic of Korea; (H.J.J.); (J.H.S.); (J.H.L.); (J.M.B.)
| | - Woo Hyun Song
- Department of Life Science, Dongguk University-Seoul, Goyang 10326, Republic of Korea;
| | - Ji Hae Shin
- Department of Dermatology, St. Vincent’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 16247, Republic of Korea; (H.J.J.); (J.H.S.); (J.H.L.); (J.M.B.)
| | - Ji Hae Lee
- Department of Dermatology, St. Vincent’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 16247, Republic of Korea; (H.J.J.); (J.H.S.); (J.H.L.); (J.M.B.)
| | - Jung Min Bae
- Department of Dermatology, St. Vincent’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 16247, Republic of Korea; (H.J.J.); (J.H.S.); (J.H.L.); (J.M.B.)
| | - Young Bok Lee
- Department of Dermatology, Uijeongbu St. Mary’s Hospital, The Catholic University of Korea, Seoul 11765, Republic of Korea
| | - Minho Lee
- Department of Life Science, Dongguk University-Seoul, Goyang 10326, Republic of Korea;
| |
Collapse
|
7
|
Krueger ME, Boles JS, Simon ZD, Alvarez SD, McFarland NR, Okun MS, Zimmermann EM, Forsmark CE, Tansey MG. Comparative analysis of Parkinson's and inflammatory bowel disease gut microbiomes reveals shared butyrate-producing bacteria depletion. NPJ Parkinsons Dis 2025; 11:50. [PMID: 40108151 PMCID: PMC11923181 DOI: 10.1038/s41531-025-00894-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 02/19/2025] [Indexed: 03/22/2025] Open
Abstract
Epidemiological studies reveal that inflammatory bowel disease (IBD) is associated with an increased risk of Parkinson's disease (PD). Gut dysbiosis has been documented in both PD and IBD, however it is currently unknown whether gut dysbiosis underlies the epidemiological association between both diseases. To identify shared and distinct features of the PD and IBD microbiome, we recruited 54 PD, 26 IBD, and 16 healthy control individuals and performed the first joint analysis of gut metagenomes. Larger, publicly available PD and IBD metagenomic datasets were also analyzed to validate and extend our findings. Depletions in short-chain fatty acid (SCFA)-producing bacteria, including Roseburia intestinalis, Faecalibacterium prausnitzii, Anaerostipes hadrus, and Eubacterium rectale, as well depletion in SCFA-synthesis pathways were detected across PD and IBD datasets, suggesting that depletion of these microbes in IBD may influence the risk for PD development.
Collapse
Affiliation(s)
- Maeve E Krueger
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Jake Sondag Boles
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Zachary D Simon
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
| | - Stephan D Alvarez
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
| | - Nikolaus R McFarland
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
- Department of Medicine, Division of Gastroenterology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Michael S Okun
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
- Department of Medicine, Division of Gastroenterology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Ellen M Zimmermann
- Department of Medicine, Division of Gastroenterology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Christopher E Forsmark
- Department of Medicine, Division of Gastroenterology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Malú Gámez Tansey
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA.
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, USA.
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA.
- Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, USA.
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
8
|
Zhao X, Xu J, Wu D, Chen N, Liu Y. Gut Microbiota in Different Treatment Response Types of Crohn's Disease Patients Treated with Biologics over a Long Disease Course. Biomedicines 2025; 13:708. [PMID: 40149684 PMCID: PMC11940770 DOI: 10.3390/biomedicines13030708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/06/2025] [Accepted: 03/11/2025] [Indexed: 03/29/2025] Open
Abstract
Background and Aims: Crohn's disease (CD) is a chronic inflammatory bowel disease (IBD) with a globally increasing prevalence, partially driven by alterations in gut microbiota. Although biological therapy is the first-line treatment for CD, a significant proportion of patients experience a primary non-response or secondary loss of response over time. This study aimed to explore the differences in gut microbiota among CD patients with divergent long-term responses to biological therapy, focusing on a long disease course. Methods: Sixteen CD patients who applied the biological agents for a while were enrolled in this study and were followed for one year, during which fecal specimens were collected monthly. Metagenomic analysis was used to determine the microbiota profiles in fecal samples. The response to biological therapy was evaluated both endoscopically and clinically. Patients were categorized into three groups based on their response: R (long-term remission), mA (mild active), and R2A group (remission to active). The differences in the gut microbiota among the groups were analyzed. Results: Significant differences in fecal bacterial composition were observed between the groups. The R2A group exhibited a notable decline in gut microbial diversity compared to the other two groups (p < 0.05). Patients in the R group had higher abundances of Akkermansia muciniphila, Bifidobacterium adolescentis, and Megasphaera elsdenii. In contrast, Veillonella parvula, Veillonella atypica, and Klebsiella pneumoniae were higher in the R2A group. Conclusions: Gut microbial diversity and specific bacterial significantly differed among groups, reflecting distinct characteristics between responders and non-responders.
Collapse
Affiliation(s)
- Xiaolei Zhao
- Department of Gastroenterology, Peking University People’s Hospital, Beijing 100044, China;
- Clinical Center of Immune-Mediated Digestive Diseases, Peking University People’s Hospital, Beijing 100044, China
| | - Jun Xu
- Department of Gastroenterology, Peking University People’s Hospital, Beijing 100044, China;
- Clinical Center of Immune-Mediated Digestive Diseases, Peking University People’s Hospital, Beijing 100044, China
| | - Dong Wu
- Department of Gastroenterology, Peking Union Medical College Hospital, Beijing 100730, China;
| | - Ning Chen
- Department of Gastroenterology, Peking University People’s Hospital, Beijing 100044, China;
- Clinical Center of Immune-Mediated Digestive Diseases, Peking University People’s Hospital, Beijing 100044, China
| | - Yulan Liu
- Department of Gastroenterology, Peking University People’s Hospital, Beijing 100044, China;
- Clinical Center of Immune-Mediated Digestive Diseases, Peking University People’s Hospital, Beijing 100044, China
| |
Collapse
|
9
|
Sharma B, Agriantonis G, Twelker K, Ebelle D, Kiernan S, Siddiqui M, Soni A, Cheerasarn S, Simon W, Jiang W, Cardona A, Chapelet J, Agathis AZ, Gamboa A, Dave J, Mestre J, Bhatia ND, Shaefee Z, Whittington J. Gut Microbiota Serves as a Crucial Independent Biomarker in Inflammatory Bowel Disease (IBD). Int J Mol Sci 2025; 26:2503. [PMID: 40141145 PMCID: PMC11942158 DOI: 10.3390/ijms26062503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/03/2025] [Accepted: 03/06/2025] [Indexed: 03/28/2025] Open
Abstract
Inflammatory bowel disease (IBD), encompassing Crohn's disease (CD), ulcerative colitis (UC), and IBD unclassified (IBD-U), is a complex intestinal disorder influenced by genetic, environmental, and microbial factors. Recent evidence highlights the gut microbiota as a pivotal biomarker and modulator in IBD pathogenesis. Dysbiosis, characterized by reduced microbial diversity and altered composition, is a hallmark of IBD. A consistent decrease in anti-inflammatory bacteria, such as Faecalibacterium prausnitzii, and an increase in pro-inflammatory species, including Escherichia coli, have been observed. Metabolomic studies reveal decreased short-chain fatty acids (SCFAs) and secondary bile acids, critical for gut homeostasis, alongside elevated pro-inflammatory metabolites. The gut microbiota interacts with host immune pathways, influencing morphogens, glycosylation, and podoplanin (PDPN) expression. The disruption of glycosylation impairs mucosal barriers, while aberrant PDPN activity exacerbates inflammation. Additionally, microbial alterations contribute to oxidative stress, further destabilizing intestinal barriers. These molecular and cellular disruptions underscore the role of the microbiome in IBD pathophysiology. Emerging therapeutic strategies, including probiotics, prebiotics, and dietary interventions, aim to restore microbial balance and mitigate inflammation. Advanced studies on microbiota-targeted therapies reveal their potential to reduce disease severity and improve patient outcomes. Nevertheless, further research is needed to elucidate the bidirectional interactions between the gut microbiome and host immune responses and to translate these insights into clinical applications. This review consolidates current findings on the gut microbiota's role in IBD, emphasizing its diagnostic and therapeutic implications, and advocates for the continued exploration of microbiome-based interventions to combat this debilitating disease.
Collapse
Affiliation(s)
- Bharti Sharma
- Department of Surgery, NYC Health and Hospitals—Elmhurst, New York, NY 11373, USA; (B.S.); (G.A.); (S.K.); (S.C.); (A.C.); (J.D.); (J.M.); (N.D.B.); (Z.S.)
- Department of Surgery, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (W.J.); (A.Z.A.)
| | - George Agriantonis
- Department of Surgery, NYC Health and Hospitals—Elmhurst, New York, NY 11373, USA; (B.S.); (G.A.); (S.K.); (S.C.); (A.C.); (J.D.); (J.M.); (N.D.B.); (Z.S.)
- Department of Surgery, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (W.J.); (A.Z.A.)
| | - Kate Twelker
- Department of Surgery, NYC Health and Hospitals—Elmhurst, New York, NY 11373, USA; (B.S.); (G.A.); (S.K.); (S.C.); (A.C.); (J.D.); (J.M.); (N.D.B.); (Z.S.)
- Department of Surgery, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (W.J.); (A.Z.A.)
| | - Danielle Ebelle
- Department of Medicine, St. George’s University, Grenada FZ818, West Indies; (D.E.); (M.S.); (W.S.); (J.C.)
| | - Samantha Kiernan
- Department of Surgery, NYC Health and Hospitals—Elmhurst, New York, NY 11373, USA; (B.S.); (G.A.); (S.K.); (S.C.); (A.C.); (J.D.); (J.M.); (N.D.B.); (Z.S.)
| | - Maham Siddiqui
- Department of Medicine, St. George’s University, Grenada FZ818, West Indies; (D.E.); (M.S.); (W.S.); (J.C.)
| | - Aditi Soni
- Department of Medicine, St. George’s University, Grenada FZ818, West Indies; (D.E.); (M.S.); (W.S.); (J.C.)
| | - Sittha Cheerasarn
- Department of Surgery, NYC Health and Hospitals—Elmhurst, New York, NY 11373, USA; (B.S.); (G.A.); (S.K.); (S.C.); (A.C.); (J.D.); (J.M.); (N.D.B.); (Z.S.)
| | - Whenzdjyny Simon
- Department of Medicine, St. George’s University, Grenada FZ818, West Indies; (D.E.); (M.S.); (W.S.); (J.C.)
| | - Winston Jiang
- Department of Surgery, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (W.J.); (A.Z.A.)
| | - Angie Cardona
- Department of Surgery, NYC Health and Hospitals—Elmhurst, New York, NY 11373, USA; (B.S.); (G.A.); (S.K.); (S.C.); (A.C.); (J.D.); (J.M.); (N.D.B.); (Z.S.)
| | - Jessica Chapelet
- Department of Medicine, St. George’s University, Grenada FZ818, West Indies; (D.E.); (M.S.); (W.S.); (J.C.)
| | - Alexandra Z. Agathis
- Department of Surgery, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (W.J.); (A.Z.A.)
| | - Alejandro Gamboa
- Department of Medicine, Medical University of the Americas, Devens, MA 01434, USA;
| | - Jasmine Dave
- Department of Surgery, NYC Health and Hospitals—Elmhurst, New York, NY 11373, USA; (B.S.); (G.A.); (S.K.); (S.C.); (A.C.); (J.D.); (J.M.); (N.D.B.); (Z.S.)
- Department of Surgery, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (W.J.); (A.Z.A.)
| | - Juan Mestre
- Department of Surgery, NYC Health and Hospitals—Elmhurst, New York, NY 11373, USA; (B.S.); (G.A.); (S.K.); (S.C.); (A.C.); (J.D.); (J.M.); (N.D.B.); (Z.S.)
- Department of Surgery, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (W.J.); (A.Z.A.)
| | - Navin D. Bhatia
- Department of Surgery, NYC Health and Hospitals—Elmhurst, New York, NY 11373, USA; (B.S.); (G.A.); (S.K.); (S.C.); (A.C.); (J.D.); (J.M.); (N.D.B.); (Z.S.)
- Department of Surgery, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (W.J.); (A.Z.A.)
| | - Zahra Shaefee
- Department of Surgery, NYC Health and Hospitals—Elmhurst, New York, NY 11373, USA; (B.S.); (G.A.); (S.K.); (S.C.); (A.C.); (J.D.); (J.M.); (N.D.B.); (Z.S.)
- Department of Surgery, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (W.J.); (A.Z.A.)
| | - Jennifer Whittington
- Department of Surgery, NYC Health and Hospitals—Elmhurst, New York, NY 11373, USA; (B.S.); (G.A.); (S.K.); (S.C.); (A.C.); (J.D.); (J.M.); (N.D.B.); (Z.S.)
- Department of Surgery, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (W.J.); (A.Z.A.)
| |
Collapse
|
10
|
Zhou X, Ganz AB, Rayner A, Cheng TY, Oba H, Rolnik B, Lancaster S, Lu X, Li Y, Johnson JS, Hoyd R, Spakowicz DJ, Slavich GM, Snyder MP. Dynamic human gut microbiome and immune shifts during an immersive psychosocial intervention program. Brain Behav Immun 2025; 125:428-443. [PMID: 39701328 PMCID: PMC11903166 DOI: 10.1016/j.bbi.2024.12.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 10/24/2024] [Accepted: 12/16/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND Although depression is a leading cause of disability worldwide, the pathophysiological mechanisms underlying this disorder-particularly those involving the gut microbiome-are poorly understood. METHOD To investigate, we conducted a community-based observational study to explore complex associations between changes in the gut microbiome, cytokine levels, and depression symptoms in 51 participants (Mage = 49.56, SD = 13.31) receiving an immersive psychosocial intervention. A total of 142 multi-omics samples were collected from participants before, during, and three months after the nine-day inquiry-based stress reduction program. RESULTS Results revealed that depression was associated with both an increased presence of putatively pathogenic bacteria and reduced microbial beta-diversity. Following the intervention, we observed reductions in neuroinflammatory cytokines and improvements in several mental health indicators. Interestingly, participants with a Prevotella-dominant microbiome showed milder symptoms when depressed, along with a more resilient microbiome and more favorable inflammatory cytokine profile, including reduced levels of CXCL-1. CONCLUSIONS These findings reveal a potentially protective link between the Prevotella-dominant microbiome and depression, as evidenced by a reduced pro-inflammatory environment and fewer depressive symptoms. These insights, coupled with observed improvements in neuroinflammatory markers and mental health from the intervention, may highlight potential avenues for microbiome-targeted therapies for managing depression.
Collapse
Affiliation(s)
- Xin Zhou
- Department of Genetics, Stanford University School of Medicine, CA, USA; Stanford Center for Genomics and Personalized Medicine, Stanford University School of Medicine, CA, USA
| | - Ariel B Ganz
- Department of Genetics, Stanford University School of Medicine, CA, USA; Stanford Healthcare Innovation Lab, Stanford University, CA, USA
| | - Andre Rayner
- Department of Genetics, Stanford University School of Medicine, CA, USA
| | - Tess Yan Cheng
- Department of Genetics, Stanford University School of Medicine, CA, USA; Department of Microbiology, College of Arts and Sciences, University of Washington, WA, USA
| | - Haley Oba
- Department of Genetics, Stanford University School of Medicine, CA, USA
| | - Benjamin Rolnik
- Department of Genetics, Stanford University School of Medicine, CA, USA; Stanford Healthcare Innovation Lab, Stanford University, CA, USA
| | - Samuel Lancaster
- Department of Genetics, Stanford University School of Medicine, CA, USA
| | - Xinrui Lu
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Sichuan, China
| | - Yizhou Li
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Sichuan, China
| | - Jethro S Johnson
- Oxford Centre for Microbiome Studies, Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Rebecca Hoyd
- The Ohio State University Comprehensive Cancer Center, OH, USA
| | | | - George M Slavich
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA
| | - Michael P Snyder
- Department of Genetics, Stanford University School of Medicine, CA, USA; Stanford Center for Genomics and Personalized Medicine, Stanford University School of Medicine, CA, USA; Stanford Healthcare Innovation Lab, Stanford University, CA, USA.
| |
Collapse
|
11
|
Ullah H, Arbab S, Chang C, Bibi S, Muhammad N, Rehman SU, Suleman, Ullah I, Hassan IU, Tian Y, Li K. Gut microbiota therapy in gastrointestinal diseases. Front Cell Dev Biol 2025; 13:1514636. [PMID: 40078367 PMCID: PMC11897527 DOI: 10.3389/fcell.2025.1514636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 02/03/2025] [Indexed: 03/14/2025] Open
Abstract
The human gut microbiota, consisting of trillions of microorganisms, plays a crucial role in gastrointestinal (GI) health and disease. Dysbiosis, an imbalance in microbial composition, has been linked to a range of GI disorders, including inflammatory bowel disease (IBD), irritable bowel syndrome (IBS), celiac disease, and colorectal cancer. These conditions are influenced by the interactions between the gut microbiota, the host immune system, and the gut-brain axis. Recent research has highlighted the potential for microbiome-based therapeutic strategies, such as probiotics, prebiotics, fecal microbiota transplantation (FMT), and dietary modifications, to restore microbial balance and alleviate disease symptoms. This review examines the role of gut microbiota in the pathogenesis of common gastrointestinal diseases and explores emerging therapeutic approaches aimed at modulating the microbiome. We discuss the scientific foundations of these interventions, their clinical effectiveness, and the challenges in their implementation. The review underscores the therapeutic potential of microbiome-targeted treatments as a novel approach to managing GI disorders, offering personalized and alternative options to conventional therapies. As research in this field continues to evolve, microbiome-based interventions hold promise for improving the treatment and prevention of gastrointestinal diseases.
Collapse
Affiliation(s)
- Hanif Ullah
- Medicine and Engineering Interdisciplinary Research Laboratory of Nursing & Materials, Nursing Key Laboratory of Sichuan Province, West China Hospital, West China School of Nursing, Sichuan University, Chengdu, Sichuan, China
| | - Safia Arbab
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Chengting Chang
- Medicine and Engineering Interdisciplinary Research Laboratory of Nursing & Materials, Nursing Key Laboratory of Sichuan Province, West China Hospital, West China School of Nursing, Sichuan University, Chengdu, Sichuan, China
| | - Saira Bibi
- Department of Zoology Hazara University Manshera, Dhodial, Pakistan
| | - Nehaz Muhammad
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, China
| | - Sajid Ur Rehman
- School of Public Health and Emergency Management, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Suleman
- Department of Zoology, Government Post Graduate Collage, Swabi, Pakistan
- Higher Education Department, Civil Secretariat Peshawar, Peshawar, Pakistan
| | - Irfan Ullah
- Department of Biotechnology and Genetics Engineering, Hazara University, Manshera, Pakistan
| | - Inam Ul Hassan
- Department of Microbiology, Hazara University Manshera, Manshera, Pakistan
| | - Yali Tian
- Medicine and Engineering Interdisciplinary Research Laboratory of Nursing & Materials, Nursing Key Laboratory of Sichuan Province, West China Hospital, West China School of Nursing, Sichuan University, Chengdu, Sichuan, China
| | - Ka Li
- Medicine and Engineering Interdisciplinary Research Laboratory of Nursing & Materials, Nursing Key Laboratory of Sichuan Province, West China Hospital, West China School of Nursing, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
12
|
Chen S, Zhang D, Li D, Zeng F, Chen C, Bai F. Microbiome characterization of patients with Crohn disease and the use of fecal microbiota transplantation: A review. Medicine (Baltimore) 2025; 104:e41262. [PMID: 39854760 PMCID: PMC11771716 DOI: 10.1097/md.0000000000041262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/19/2024] [Accepted: 11/15/2024] [Indexed: 01/26/2025] Open
Abstract
Inflammatory bowel disease is a chronic inflammatory condition predominantly affecting the intestines, encompassing both ulcerative colitis and Crohn disease (CD). As one of the most common gastrointestinal disorders, CD's pathogenesis is closely linked with the intestinal microbiota. Recently, fecal microbiota transplantation (FMT) has gained attention as a potential treatment for CD, with the effective reestablishment of intestinal microecology considered a crucial mechanism of FMT therapy. This article synthesizes the findings of population-based cohort studies to enhance our understanding of gut microbial characteristics in patients with CD. It delves into the roles of "beneficial" and "pathogenic" bacteria in CD's development. This article systematically reviews and compares data on clinical response rates, remission rates, adverse events, and shifts in bacterial microbiota. Among these studies, gut microbiome analysis was conducted in only 7, and a single study examined the metabolome. Overall, FMT has demonstrated a partial restoration of typical CD-associated microbiological alterations, leading to increased α-diversity in responders and a moderate shift in patient microbiota toward the donor profile. Several factors, including donor selection, delivery route, microbial state (fresh or frozen), and recipient condition, are identified as pivotal in influencing FMT's effectiveness. Future prospective clinical studies with larger patient cohorts and improved methodologies are imperative. In addition, standardization of FMT procedures, coupled with advanced genomic techniques such as macroproteomics and culture genomics, is necessary. These advancements will further clarify the bacterial microbiota alterations that significantly contribute to FMT's therapeutic effects in CD treatment, as well as elucidate the underlying mechanisms of action.
Collapse
Affiliation(s)
- Shiju Chen
- Graduate School, Hainan Medical University, Haikou, China
| | - Daya Zhang
- Graduate School, Hainan Medical University, Haikou, China
| | - Da Li
- Graduate School, Hainan Medical University, Haikou, China
| | - Fan Zeng
- Graduate School, Hainan Medical University, Haikou, China
| | - Chen Chen
- Graduate School, Hainan Medical University, Haikou, China
| | - Feihu Bai
- Department of Gastroenterology, The Second Affiliated Hospital of Hainan Medical University, Haikou, China
- The Gastroenterology Clinical Medical Center of Hainan Province, Haikou, China
| |
Collapse
|
13
|
Tasoujlu M, Sharifi Y, Ghahremani M, Alizadeh K, Babaie F, Hosseiniazar MM. Evaluation of variations in predominant gut microbiota members in inflammatory bowel disease using real-time PCR. Mol Biol Rep 2025; 52:143. [PMID: 39836282 DOI: 10.1007/s11033-025-10254-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 01/13/2025] [Indexed: 01/22/2025]
Abstract
Inflammatory Bowel Disease (IBD) is a persistent ailment that impacts many individuals worldwide. The interaction between the immune system and gut microbiome is thought to influence IBD development. This study aimed to assess some microbiota in IBD patients compared to healthy individuals. The investigation involved a selected group of twenty patients suffering from IBD and an equal number of healthy participants. Stool specimens were obtained and analyzed for Lactobacillus, Bifidobacterium, Bacteroides, Clostridium leptum, Akkermansia muciniphila, Fusobacterium and Enterobacteriaceae using real-time PCR. The findings indicated significantly higher levels of Bifidobacterium in IBD patients (Pv = 0.009) and lower levels of A. muciniphila (Pv = 0.003) healthy individuals. Other bacteria tested did not show significant differences. The study suggests that the progression of IBD patients could be influenced by the rising of Bifidobacterium and the declining of A. muciniphila. Targeting these bacteria could lead to improved treatments and quality of life for those with IBD.
Collapse
Affiliation(s)
- Mina Tasoujlu
- Cellular and Molecular Research Center, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
- Department of Microbiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Yaeghob Sharifi
- Cellular and Molecular Research Center, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
- Department of Microbiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
| | - Maryam Ghahremani
- Department of Microbiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Kasra Alizadeh
- Department of Microbiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Farhad Babaie
- Department of Immunology and Genetics, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | | |
Collapse
|
14
|
Lin L, Li S, Liu Q, Zhang X, Xiong Y, Zhao S, Cao L, Gong J, Liu Y, Wu R. Traditional pediatric massage enhanced the skeletal muscle mass in OVA-exposed adolescent rats via regulating SCFAs-FFAR2-IGF-1/AKT pathway. Front Microbiol 2025; 15:1492783. [PMID: 39831118 PMCID: PMC11739148 DOI: 10.3389/fmicb.2024.1492783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 12/03/2024] [Indexed: 01/22/2025] Open
Abstract
Objective This study aimed to investigate the potential relation between the retarded growth of skeletal muscle (SM) and dysbiosis of gut microbiota (GM) in children with asthma, and to explore the potential action mechanisms of traditional pediatric massage (TPM) from the perspective of regulating GM and short-chain fatty acids (SCFAs) production by using an adolescent rat model of asthma. Methods Male Sprague-Dawley rats aged 3weeks were divided randomly into the 5 groups (n=6~7) of control, ovalbumin (OVA), OVA + TPM, OVA + methylprednisolone sodium succinate (MP) and OVA + SCFAs. Pulmonary function (PF) was detected by whole body plethysmograph, including enhanced pause and minute ventilation. Airway allergic inflammation (AAI) status was assessed by concentrations of OVA-specific immunoglobulin E in plasma, interleukin (IL)-4 and IL-1β in bronchoalveolar lavage fluid via ELISA assay. SM mass was assessed by using cross-sectional areas of diaphragm muscle and gastrocnemius via hematoxylin and eosin staining. GM and SCFAs production were detected by 16S rDNA sequencing and GC-MS, respectively. The protein and gene expressions of free fatty acid receptor 2 in SM were detected by using immunohistochemical staining and qRT-PCR, respectively. qRT-PCR was used to detect other relative gene expressions that were closely related with SM mass. The activity of insulin-like growth factor-1 (IGF-1)/protein kinase B (PKB/AKT) pathway in SM was detected by western blotting test. Results OVA exposure caused obvious AAI and poor PF in adolescent rats. OVA-exposed adolescent rats had a retarded growth of SM mass and inhibited activity of IGF-1/AKT pathway, which was related with GM dysbiosis, reduced SCFAs production and FFAR2 expressions in SM. TPM efficiently enhanced the SM mass, along with alleviating AAI and improving PF. TPM activated IGF-1/AKT pathway in SM, which was closely related with correcting GM dysbiosis, enhanced SCFAs production and FFAR2 expressions. Conclusion The retarded growth of SM mass and inhibition of IGF-1/AKT pathway existed in OVA-exposed adolescent rats, which was related with GM dysbiosis, reduced SCFAs production and FFAR2 expressions in SM. TPM efficiently enhanced the SM mass, at least, partially via regulating GM, enhancing SCFAs production and activating FFAR2-IGF-1/AKT pathway.
Collapse
Affiliation(s)
- Lin Lin
- Department of Traditional Chinese Medicine, Shijiazhuang Medical College, Shijiazhuang, Hebei, China
| | - Siyuan Li
- College of Acupuncture Moxibustion and Tuina, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Que Liu
- College of Acupuncture Moxibustion and Tuina, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Xingxing Zhang
- College of Acupuncture Moxibustion and Tuina, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Ying Xiong
- College of Acupuncture Moxibustion and Tuina, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Shaoyun Zhao
- College of Acupuncture Moxibustion and Tuina, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Liyue Cao
- College of Acupuncture Moxibustion and Tuina, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Jiaxuan Gong
- College of Acupuncture Moxibustion and Tuina, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yaping Liu
- Department of Acupuncture Moxibustion, Nantong First People's Hospital, Nantong, Jiangsu, China
| | - Rong Wu
- Department of Medicine, Qinghai University, Xining, Qinghai, China
| |
Collapse
|
15
|
Shankar S, Majumder S, Mukherjee S, Bhaduri A, Kasturi R, Ghosh S, Iacucci M, Shivaji UN. Inflammatory bowel disease: a narrative review of disease evolution in South Asia and India over the last decade. Therap Adv Gastroenterol 2024; 17:17562848241258360. [PMID: 39575157 PMCID: PMC11580062 DOI: 10.1177/17562848241258360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/14/2024] [Indexed: 11/24/2024] Open
Abstract
The rapid emergence of inflammatory bowel disease (IBD) in Asia in the last two decades is anticipated to pose significant challenges to the healthcare systems of developing countries including India. Several epidemiological factors in the Asia Pacific region have been explored as risk factors for the development of IBD. In this narrative review, we discuss the evolution of adult-onset and paediatric IBD in South Asia and India, in relation to the current global epidemiology, over the last decade. The focus lies on the changing epidemiological landscape of IBD in Asia which signals a paradigm shift in the disease trajectory of a chronic, relapsing, complex disease. We enumerate the disease burden of IBD in India and Asia, analyse the risk factors for its recent rise in incidence and briefly discuss the unique entity of very early-onset IBD. We also list the locoregional challenges in diagnosis and management along with suggestions to overcome them. We highlight the lacunae in data which warrants further research. The anticipated infrastructural challenges and disease evolution are likely to be similar in most newly industrialized countries across South Asia. A combined effort led by IBD experts in the region to understand the true disease burden is important. A strong collaborative network on research and formulation of preventive strategies relevant to the region will help reduce the burden in the future.
Collapse
Affiliation(s)
- Sahana Shankar
- Division of Paediatric Gastroenterology, Department of Paediatrics, Mazumdar Shaw Medical Center, NH Health City, Bangalore, India
| | - Snehali Majumder
- Department of Clinical Research, Narayana Hrudayalaya, NH Health City, Bangalore, India APC Microbiome Ireland, College of Medicine and Health, University College Cork, Cork, Ireland
| | - Suparna Mukherjee
- Department of Clinical Nutrition and Dietetics, Narayana Hrudayalaya, NH Health City, Bangalore, India
| | | | - Rangarajan Kasturi
- Department of Gastroenterology, Mazumdar Shaw Medical Center, a Unit of Narayana Health, Bangalore, India
| | - Subrata Ghosh
- APC Microbiome Ireland, College of Medicine and Health, University College Cork, Cork, Ireland
| | - Marietta Iacucci
- APC Microbiome Ireland, College of Medicine and Health, University College Cork, Cork, Ireland
| | - Uday N. Shivaji
- Institute of Immunology and Immunotherapy, University of Birmingham, 2nd Floor, Institute of Translational Medicine, Heritage Building, Mindelsohn Way, Birmingham B15 2TH, UK Department of Gastroenterology, Mazumdar Shaw Medical Center, a Unit of Narayana Health, Bangalore, India
| |
Collapse
|
16
|
Khalil M, Di Ciaula A, Mahdi L, Jaber N, Di Palo DM, Graziani A, Baffy G, Portincasa P. Unraveling the Role of the Human Gut Microbiome in Health and Diseases. Microorganisms 2024; 12:2333. [PMID: 39597722 PMCID: PMC11596745 DOI: 10.3390/microorganisms12112333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024] Open
Abstract
The human gut is a complex ecosystem that supports billions of living species, including bacteria, viruses, archaea, phages, fungi, and unicellular eukaryotes. Bacteria give genes and enzymes for microbial and host-produced compounds, establishing a symbiotic link between the external environment and the host at both the gut and systemic levels. The gut microbiome, which is primarily made up of commensal bacteria, is critical for maintaining the healthy host's immune system, aiding digestion, synthesizing essential nutrients, and protecting against pathogenic bacteria, as well as influencing endocrine, neural, humoral, and immunological functions and metabolic pathways. Qualitative, quantitative, and/or topographic shifts can alter the gut microbiome, resulting in dysbiosis and microbial dysfunction, which can contribute to a variety of noncommunicable illnesses, including hypertension, cardiovascular disease, obesity, diabetes, inflammatory bowel disease, cancer, and irritable bowel syndrome. While most evidence to date is observational and does not establish direct causation, ongoing clinical trials and advanced genomic techniques are steadily enhancing our understanding of these intricate interactions. This review will explore key aspects of the relationship between gut microbiota, eubiosis, and dysbiosis in human health and disease, highlighting emerging strategies for microbiome engineering as potential therapeutic approaches for various conditions.
Collapse
Affiliation(s)
- Mohamad Khalil
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), Medical School, University of Bari Aldo Moro, 70124 Bari, Italy; (M.K.); (A.D.C.); (L.M.); (N.J.)
| | - Agostino Di Ciaula
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), Medical School, University of Bari Aldo Moro, 70124 Bari, Italy; (M.K.); (A.D.C.); (L.M.); (N.J.)
| | - Laura Mahdi
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), Medical School, University of Bari Aldo Moro, 70124 Bari, Italy; (M.K.); (A.D.C.); (L.M.); (N.J.)
| | - Nour Jaber
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), Medical School, University of Bari Aldo Moro, 70124 Bari, Italy; (M.K.); (A.D.C.); (L.M.); (N.J.)
| | - Domenica Maria Di Palo
- Division of Hygiene, Department of Interdisciplinary Medicine, University of Bari Aldo Moro, Piazza Giulio Cesare 11, 70124 Bari, Italy;
| | - Annarita Graziani
- Institut AllergoSan Pharmazeutische Produkte Forschungs- und Vertriebs GmbH, 8055 Graz, Austria;
| | - Gyorgy Baffy
- Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02130, USA;
- Section of Gastroenterology, Department of Medicine, VA Boston Healthcare System, Boston, MA 02130, USA
| | - Piero Portincasa
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), Medical School, University of Bari Aldo Moro, 70124 Bari, Italy; (M.K.); (A.D.C.); (L.M.); (N.J.)
| |
Collapse
|
17
|
Bajaj A, Markandey M, Samal A, Goswami S, Vuyyuru SK, Mohta S, Kante B, Kumar P, Makharia G, Kedia S, Ghosh TS, Ahuja V. Depletion of core microbiome forms the shared background against diverging dysbiosis patterns in Crohn's disease and intestinal tuberculosis: insights from an integrated multi-cohort analysis. Gut Pathog 2024; 16:65. [PMID: 39511674 PMCID: PMC11545864 DOI: 10.1186/s13099-024-00654-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/06/2024] [Indexed: 11/15/2024] Open
Abstract
BACKGROUND/AIMS Crohn's disease (CD) and intestinal tuberculosis (ITB) are gastrointestinal (GI) inflammatory disorders with overlapping clinical presentations but diverging etiologies. The study aims to decipher CD and ITB-associated gut dysbiosis signatures and identify disease-associated co-occurring modules to evaluate whether this dysbiosis signature is a disease-specific trait or is a shared feature across diseases of diverging etiologies. METHODS Disease-associated gut microbial modules were identified using statistical machine learning and co-abundance network analysis in controls, CD and ITB patients recruited as part of this study. Module reproducibility was reinvestigated through meta-network analysis encompassing >5400 bacteriomes and ~900 mycobiomes. Subsequently, >1600 Indian gut microbiomes were analyzed to identify a central-core gut microbiome of 46 taxa, whose abundances aided in the formulation of an India-specific Core Gut Microbiome Score (CGMS) to measure the degree of core retention. RESULTS Both diseases witness similar patterns of alterations in [alpha]-diversity, characterized by a significant reduction in gut bacterial (i.e., bacterial/archaeal) diversity and a concomitant increase in the fungal [alpha]-diversity. Specific bacterial taxa, along with the diverging mycobiome enabled distinction between the diseases. Co-abundance network analysis of these taxa, validated by integrated meta-network analysis, revealed a 'disease-depleted' module, consistent across multiple cohorts, with >75% of this module constituting the central-core Indian gut microbiome. CGMS robustly assessed the core-microbiome loss across different stages of gut inflammatory disorders, in Indian and international cohorts. CONCLUSIONS While the disease-specific gain of detrimental bacteria forms an important component of gut dysbiosis, loss of the core microbiome is a shared phenomenon contributing to various GI disorders.
Collapse
Affiliation(s)
- Aditya Bajaj
- Department of Gastroenterology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Manasvini Markandey
- Department of Gastroenterology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Amit Samal
- Department of Computational Biology, Indraprastha Institute of Information Technology-Delhi, New Delhi, India
| | - Sourav Goswami
- Department of Computational Biology, Indraprastha Institute of Information Technology-Delhi, New Delhi, India
| | - Sudheer K Vuyyuru
- Department of Gastroenterology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Srikant Mohta
- Department of Gastroenterology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Bhaskar Kante
- Department of Gastroenterology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Peeyush Kumar
- Department of Gastroenterology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Govind Makharia
- Department of Gastroenterology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Saurabh Kedia
- Department of Gastroenterology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Tarini Shankar Ghosh
- Department of Computational Biology, Indraprastha Institute of Information Technology-Delhi, New Delhi, India.
| | - Vineet Ahuja
- Department of Gastroenterology, All India Institute of Medical Sciences, New Delhi, 110029, India.
| |
Collapse
|
18
|
Ventura I, Chomon-García M, Tomás-Aguirre F, Palau-Ferré A, Legidos-García ME, Murillo-Llorente MT, Pérez-Bermejo M. Therapeutic and Immunologic Effects of Short-Chain Fatty Acids in Inflammatory Bowel Disease: A Systematic Review. Int J Mol Sci 2024; 25:10879. [PMID: 39456661 PMCID: PMC11506931 DOI: 10.3390/ijms252010879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/04/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Inflammatory bowel disease is a chronic condition characterized by recurrent intestinal inflammation. Its etiopathogenesis is driven by a series of events that disrupt the mucosal barrier, alter the healthy balance of intestinal microbiota, and abnormally stimulate intestinal immune responses. Therefore, numerous studies suggest the use of short-chain fatty acids and their immunomodulatory effects as a therapeutic approach in this disease. The objective of this systematic review was to synthesize previous evidence on the relevance and therapeutic use of short-chain fatty acids, particularly butyrate, in the immune regulation of inflammatory bowel disease. This systematic review of articles linking inflammatory bowel disease with short-chain fatty acids was conducted according to the PRISMA-2020 guidelines. The Medline and the Web of Science databases were searched in August 2024. The risk of bias was assessed using the Joanna Briggs Institute checklists. A total of 1460 articles were reviewed, of which, 29 met the inclusion criteria. Short-chain fatty acids, particularly butyrate, play a critical role in the regulation of intestinal inflammation and can be used as a strategy to increase the levels of short-chain fatty acid-producing bacteria for use in therapeutic approaches.
Collapse
Affiliation(s)
- Ignacio Ventura
- Molecular and Mitochondrial Medicine Research Group, School of Medicine and Health Sciences, Catholic University of Valencia San Vicente Mártir, C/Quevedo No. 2, 46001 Valencia, Spain;
- Translational Research Center San Alberto Magno CITSAM, Catholic University of Valencia San Vicente Mártir, C/Quevedo No. 2, 46001 Valencia, Spain
| | - Miryam Chomon-García
- School of Medicine and Health Sciences, Catholic University of Valencia San Vicente Mártir, C/Quevedo No. 2, 46001 Valencia, Spain; (M.C.-G.); (F.T.-A.)
| | - Francisco Tomás-Aguirre
- School of Medicine and Health Sciences, Catholic University of Valencia San Vicente Mártir, C/Quevedo No. 2, 46001 Valencia, Spain; (M.C.-G.); (F.T.-A.)
| | - Alma Palau-Ferré
- SONEV Research Group, Faculty of Medicine and Health Sciences, Catholic University of Valencia San Vicente Mártir, C/Quevedo No. 2, 46001 Valencia, Spain; (A.P.-F.); (M.E.L.-G.); (M.T.M.-L.)
| | - María Ester Legidos-García
- SONEV Research Group, Faculty of Medicine and Health Sciences, Catholic University of Valencia San Vicente Mártir, C/Quevedo No. 2, 46001 Valencia, Spain; (A.P.-F.); (M.E.L.-G.); (M.T.M.-L.)
| | - María Teresa Murillo-Llorente
- SONEV Research Group, Faculty of Medicine and Health Sciences, Catholic University of Valencia San Vicente Mártir, C/Quevedo No. 2, 46001 Valencia, Spain; (A.P.-F.); (M.E.L.-G.); (M.T.M.-L.)
| | - Marcelino Pérez-Bermejo
- SONEV Research Group, Faculty of Medicine and Health Sciences, Catholic University of Valencia San Vicente Mártir, C/Quevedo No. 2, 46001 Valencia, Spain; (A.P.-F.); (M.E.L.-G.); (M.T.M.-L.)
| |
Collapse
|
19
|
Nenciarini S, Rivero D, Ciccione A, Amoriello R, Cerasuolo B, Pallecchi M, Bartolucci GL, Ballerini C, Cavalieri D. Impact of cooperative or competitive dynamics between the yeast Saccharomyces cerevisiae and lactobacilli on the immune response of the host. Front Immunol 2024; 15:1399842. [PMID: 39450162 PMCID: PMC11499123 DOI: 10.3389/fimmu.2024.1399842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 09/25/2024] [Indexed: 10/26/2024] Open
Abstract
Fungi and bacteria can be found coexisting in a wide variety of environments. The combination of their physical and molecular interactions can result in a broad range of outcomes for each partner, from competition to cooperative relationships. Most of these interactions can also be found in the human gastrointestinal tract. The gut microbiota is essential for humans, helping the assimilation of food components as well as the prevention of pathogen invasions through host immune system modulation and the production of beneficial metabolites such as short-chain fatty acids (SCFAs). Several factors, including changes in diet habits due to the progressive Westernization of the lifestyle, are linked to the onset of dysbiosis statuses that impair the correct balance of the gut environment. It is therefore crucial to explore the interactions between commensal and diet-derived microorganisms and their influence on host health. Investigating these interactions through co-cultures between human- and fermented food-derived lactobacilli and yeasts led us to understand how the strains' growth yield and their metabolic products rely on the nature and concentration of the species involved, producing either cooperative or competitive dynamics. Moreover, single cultures of yeasts and lactobacilli proved to be ideal candidates for developing immune-enhancing products, given their ability to induce trained immunity in blood-derived human monocytes in vitro. Conversely, co-cultures as well as mixtures of yeasts and lactobacilli have been shown to induce an anti-inflammatory response on the same immune cells in terms of cytokine profiles and activation surface markers, opening new possibilities in the design of probiotic and dietary therapies.
Collapse
Affiliation(s)
| | - Damariz Rivero
- Department of Biology, University of Florence, Firenze, Italy
| | | | - Roberta Amoriello
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | | | - Marco Pallecchi
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Gian Luca Bartolucci
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Clara Ballerini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Duccio Cavalieri
- Department of Biology, University of Florence, Firenze, Italy
- Interuniversity Consortium for Biotechnologies, Trieste, Italy
| |
Collapse
|
20
|
Liang Y, Li Y, Lee C, Yu Z, Chen C, Liang C. Ulcerative colitis: molecular insights and intervention therapy. MOLECULAR BIOMEDICINE 2024; 5:42. [PMID: 39384730 PMCID: PMC11464740 DOI: 10.1186/s43556-024-00207-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/13/2024] [Indexed: 10/11/2024] Open
Abstract
Ulcerative colitis (UC) is a chronic inflammatory bowel disease characterized by abdominal pain, diarrhea, rectal bleeding, and weight loss. The pathogenesis and treatment of UC remain key areas of research interest. Various factors, including genetic predisposition, immune dysregulation, and alterations in the gut microbiota, are believed to contribute to the pathogenesis of UC. Current treatments for UC include 5-aminosalicylic acids, corticosteroids, immunosuppressants, and biologics. However, study reported that the one-year clinical remission rate is only around 40%. It is necessary to prompt the exploration of new treatment modalities. Biologic therapies, such as anti-TNF-α monoclonal antibody and JAK inhibitor, primarily consist of small molecules targeting specific pathways, effectively inducing and maintaining remission. Given the significant role of the gut microbiota, research into intestinal microecologics, such as probiotics and prebiotics, and fecal microbiota transplantation (FMT) shows promising potential in UC treatment. Additionally, medicinal herbs, such as chili pepper and turmeric, used in complementary therapy have shown promising results in UC management. This article reviews recent findings on the mechanisms of UC, including genetic susceptibility, immune cell dynamics and cytokine regulation, and gut microbiota alterations. It also discusses current applications of biologic therapy, herbal therapy, microecologics, and FMT, along with their prospects and challenges.
Collapse
Affiliation(s)
- Yuqing Liang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Yang Li
- Department of Respiratory, Sichuan Integrative Medicine Hospital, Chengdu, 610042, China
| | - Chehao Lee
- Department of Traditional Chinese Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Ziwei Yu
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Chongli Chen
- Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
| | - Chao Liang
- Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
| |
Collapse
|
21
|
Gu Q, Draheim M, Planchais C, He Z, Mu F, Gong S, Shen C, Zhu H, Zhivaki D, Shahin K, Collard JM, Su M, Zhang X, Mouquet H, Lo-Man R. Intestinal newborn regulatory B cell antibodies modulate microbiota communities. Cell Host Microbe 2024; 32:1787-1804.e9. [PMID: 39243760 DOI: 10.1016/j.chom.2024.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 07/08/2024] [Accepted: 08/12/2024] [Indexed: 09/09/2024]
Abstract
The role of immunoglobulins produced by IL-10-producing regulatory B cells remains unknown. We found that a particular newborn regulatory B cell population (nBreg) negatively regulates the production of immunoglobulin M (IgM) via IL-10 in an autocrine manner, limiting the intensity of the polyreactive antibody response following innate activation. Based on nBreg scRNA-seq signature, we identify these cells and their repertoire in fetal and neonatal intestinal tissues. By characterizing 205 monoclonal antibodies cloned from intestinal nBreg, we show that newborn germline-encoded antibodies display reactivity against bacteria representing six different phyla of the early microbiota. nBreg-derived antibodies can influence the diversity and the cooperation between members of early microbial communities, at least in part by modulating energy metabolism. These results collectively suggest that nBreg populations help facilitate early-life microbiome establishment and shed light on the paradoxical activities of regulatory B cells in early life.
Collapse
Affiliation(s)
- Qisheng Gu
- CAS Key Laboratory of Molecular Virology and Immunology, The Center for Microbes, Development and Health, Unit of Immunity and Pediatric Infectious Diseases, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China; Université Paris Cite, Paris, France
| | - Marion Draheim
- CAS Key Laboratory of Molecular Virology and Immunology, The Center for Microbes, Development and Health, Unit of Immunity and Pediatric Infectious Diseases, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Cyril Planchais
- Humoral Immunology Unit, Institut Pasteur, Université Paris Cite, INSERM U1222, Paris, France
| | - Zihan He
- CAS Key Laboratory of Molecular Virology and Immunology, The Center for Microbes, Development and Health, Unit of Immunity and Pediatric Infectious Diseases, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Fan Mu
- CAS Key Laboratory of Molecular Virology and Immunology, The Center for Microbes, Development and Health, Unit of Immunity and Pediatric Infectious Diseases, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Shijie Gong
- CAS Key Laboratory of Molecular Virology and Immunology, The Center for Microbes, Development and Health, Unit of Immunity and Pediatric Infectious Diseases, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Chun Shen
- Children's Hospital of Fudan University, Shanghai, China
| | - Haitao Zhu
- Children's Hospital of Fudan University (Xiamen Branch), Xiamen Children's Hospital, Xiamen, China
| | - Dania Zhivaki
- Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Khashayar Shahin
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan Microbiome Center, and Human Phenome Institute, Fudan University, Shanghai, China
| | - Jean-Marc Collard
- Enteric Bacterial Pathogens Unit & French National Reference Center for Escherichia Coli, Shigella and Salmonella, Institut Pasteur, Paris, France
| | - Min Su
- Obstetrics department, Affiliated Hospital of Nantong University, Nantong, China
| | - Xiaoming Zhang
- CAS Key Laboratory of Molecular Virology and Immunology, The Center for Microbes, Development and Health, Unit of Innate Defense and Immune Modulation, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
| | - Hugo Mouquet
- Humoral Immunology Unit, Institut Pasteur, Université Paris Cite, INSERM U1222, Paris, France.
| | - Richard Lo-Man
- CAS Key Laboratory of Molecular Virology and Immunology, The Center for Microbes, Development and Health, Unit of Immunity and Pediatric Infectious Diseases, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China; Université Paris Cite, Paris, France.
| |
Collapse
|
22
|
Liu J, Guo J, Whitmore MA, Tobin I, Kim DM, Zhao Z, Zhang G. Dynamic response of the intestinal microbiome to Eimeria maxima-induced coccidiosis in chickens. Microbiol Spectr 2024; 12:e0082324. [PMID: 39248475 PMCID: PMC11448223 DOI: 10.1128/spectrum.00823-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 08/10/2024] [Indexed: 09/10/2024] Open
Abstract
Eimeria maxima is a major cause of coccidiosis in chickens and a key predisposing factor for other economically significant diseases such as necrotic enteritis. However, a detailed understanding of the intestinal microbiome response to E. maxima infection is still lacking. This study aimed to comprehensively investigate the dynamic changes of the intestinal microbiome for 14 days post-infection (dpi) with E. maxima. Bacterial 16S rRNA gene sequencing was performed with the ileal and cecal digesta collected from mock and E. maxima-infected chickens at the prepatent (3 dpi), acute (5 and 7 dpi), and recovery phases (10 and 14 dpi) of infection. Although no notable changes were observed at 3 dpi, significant alterations of the microbiota occurred in both the ileum and cecum at 5 and 7 dpi. By 14 dpi, the intestinal microbiota tended to return to a healthy state. Notably, Lactobacillus was enriched in response to E. maxima infection in both the ileum and cecum, although individual Lactobacillus, Ligilactobacillus, and Limosilactobacillus species varied in the temporal pattern of response. Concurrently, major short-chain fatty acid-producing bacteria, such as Faecalibacterium, were progressively suppressed by E. maxima in the cecum. On the other hand, opportunistic pathogens such as Escherichia, Enterococcus, and Staphylococcus were significantly enriched in the ileum during acute infection. IMPORTANCE We have observed for the first time the dynamic response of the intestinal microbiota to Eimeria maxima infection, synchronized with its life cycle. Minimal changes occur in both the ileal and cecal microbiota during early infection, while significant alterations coincide with acute infection and disruption of the intestinal mucosal lining. As animals recover from coccidiosis, the intestinal microbiota largely returns to normal. E. maxima-induced intestinal inflammation likely creates an environment conducive to the growth of aerotolerant anaerobes such as Lactobacillus, as well as facultative anaerobes such as Escherichia, Enterococcus, and Staphylococcus, while suppressing the growth of obligate anaerobes such as short-chain fatty acid-producing bacteria. These findings expand our understanding of the temporal dynamics of the microbiota structure during Eimeria infection and offer insights into the pathogenesis of coccidiosis, supporting the rationale for microbiome-based strategies in the control and prevention of this condition.
Collapse
Affiliation(s)
- Jing Liu
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Jiaqing Guo
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Melanie A. Whitmore
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Isabel Tobin
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Dohyung M. Kim
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Zijun Zhao
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Guolong Zhang
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, Oklahoma, USA
| |
Collapse
|
23
|
Wang X, Peng J, Cai P, Xia Y, Yi C, Shang A, Akanyibah FA, Mao F. The emerging role of the gut microbiota and its application in inflammatory bowel disease. Biomed Pharmacother 2024; 179:117302. [PMID: 39163678 DOI: 10.1016/j.biopha.2024.117302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/08/2024] [Accepted: 08/13/2024] [Indexed: 08/22/2024] Open
Abstract
Inflammatory bowel disease (IBD), including Crohn's disease and ulcerative colitis, is a complex disorder with an unknown cause. However, the dysbiosis of the gut microbiome has been found to play a role in IBD etiology, including exacerbated immune responses and defective intestinal barrier integrity. The gut microbiome can also be a potential biomarker for several diseases, including IBD. Currently, conventional treatments targeting pro-inflammatory cytokines and pathways in IBD-associated dysbiosis do not yield effective results. Other therapies that directly target the dysbiotic microbiome for effective outcomes are emerging. We review the role of the gut microbiome in health and IBD and its potential as a diagnostic, prognostic, and therapeutic target for IBD. This review also explores emerging therapeutic advancements that target gut microbiome-associated alterations in IBD, such as nanoparticle or encapsulation delivery, fecal microbiota transplantation, nutritional therapies, microbiome/probiotic engineering, phage therapy, mesenchymal stem cells (MSCs), gut proteins, and herbal formulas.
Collapse
Affiliation(s)
- Xiu Wang
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China; Department of Laboratory Medicine, Lianyungang Clinical College, Jiangsu University, Lianyungang, Jiangsu 222006, China
| | - Jianhua Peng
- The People's Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Zhenjiang, Jiangsu 212300, China
| | - Peipei Cai
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yuxuan Xia
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Chengxue Yi
- School of Medical Technology, Zhenjiang College, Zhenjiang 212028, China
| | - Anquan Shang
- Department of Laboratory Medicine, Lianyungang Clinical College, Jiangsu University, Lianyungang, Jiangsu 222006, China
| | - Francis Atim Akanyibah
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Fei Mao
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China; Department of Laboratory Medicine, Lianyungang Clinical College, Jiangsu University, Lianyungang, Jiangsu 222006, China.
| |
Collapse
|
24
|
Park B, Kim JY, Riffey OF, Walsh TJ, Johnson J, Donohoe DR. Crosstalk between butyrate oxidation in colonocyte and butyrate-producing bacteria. iScience 2024; 27:110853. [PMID: 39310762 PMCID: PMC11416512 DOI: 10.1016/j.isci.2024.110853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/01/2024] [Accepted: 08/28/2024] [Indexed: 09/25/2024] Open
Abstract
The composition of gut microbiota, including butyrate-producing bacteria (BPB), is influenced by diet and physiological conditions. As such, given the importance of butyrate as an energetic substrate in colonocytes, it is unclear whether utilization of this substrate by the host would enhance BPB levels, thus defining a host-microbiome mutualistic relationship based on cellular metabolism. Here, it is shown through using a mouse model that lacks short-chain acyl dehydrogenase (SCAD), which is the first enzyme in the beta-oxidation pathway for short-chain fatty acids (SCFAs), that there is a significant diminishment in BPB at the phylum, class, species, and genus level compared to mice that have SCAD. Furthermore, SCAD-deficient mice do not show a prebiotic response from dietary fiber. Thus, oxidation of SCFAs by the host, which includes butyrate, is important in promoting BPB. These data help define the functional importance of diet-microbiome-host interactions toward microbiome composition, as it relates to function.
Collapse
Affiliation(s)
- Bohye Park
- Department of Nutrition, University of Tennessee, Knoxville, TN 37996, USA
| | - Ji Yeon Kim
- Department of Nutrition, University of Tennessee, Knoxville, TN 37996, USA
| | - Olivia F. Riffey
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA
| | - Triston J. Walsh
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA
| | - Jeremiah Johnson
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA
| | - Dallas R. Donohoe
- Department of Nutrition, University of Tennessee, Knoxville, TN 37996, USA
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA
| |
Collapse
|
25
|
Becht JM, Kohlleppel H, Schins RPF, Kämpfer AAM. Effect of Butyrate on Food-Grade Titanium Dioxide Toxicity in Different Intestinal In Vitro Models. Chem Res Toxicol 2024; 37:1501-1514. [PMID: 39213652 PMCID: PMC11409378 DOI: 10.1021/acs.chemrestox.4c00086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Short-chain fatty acids (SCFA) are an important energy source for colonocytes and crucial messenger molecules both locally in the intestine and systemically. Butyrate, one of the most prominent and best-studied SCFA, was demonstrated to exert anti-inflammatory effects, improve barrier integrity, enhance mucus synthesis in the intestine, and promote cell differentiation of intestinal epithelial cells in vitro. While the physiological relevance is undisputed, it remains unclear if and to what extent butyrate can influence the effects of xenobiotics, such as food-grade titanium dioxide (E171, fgTiO2), in the intestine. TiO2 has been controversially discussed for its DNA-damaging potential and banned as a food additive within the European Union (EU) since 2022. First, we used enterocyte Caco-2 monocultures to test if butyrate affects the cytotoxicity and inflammatory potential of fgTiO2 in a pristine state or following pretreatment under simulated gastric and intestinal pH conditions. We then investigated pretreated fgTiO2 in intestinal triple cultures of Caco-2, HT29-MTX-E12, and THP-1 cells in homeostatic and inflamed-like state for cytotoxicity, barrier integrity, cytokine release as well as gene expression of mucins, oxidative stress markers, and DNA repair. In Caco-2 monocultures, butyrate had an ambivalent role: pretreated but not pristine fgTiO2 induced cytotoxicity in Caco-2 cells, which was not observed in the presence of butyrate. Conversely, fgTiO2 induced the release of interleukin 8 in the presence but not in the absence of butyrate. In the advanced in vitro models, butyrate did not affect the characteristics of the healthy or inflamed states and caused negligible effects in the investigated end points following fgTiO2 exposure. Taken together, the effects of fgTiO2 strongly depend on the applied testing approach. Our findings underline the importance of the experimental setup, including the choice of in vitro model and the physiological relevance of the exposure scenario, for the hazard testing of food-grade pigments like TiO2.
Collapse
Affiliation(s)
- Janine M Becht
- IUF─Leibniz Research Institute for Environmental Medicine, Düsseldorf 40225, Germany
| | - Hendrik Kohlleppel
- IUF─Leibniz Research Institute for Environmental Medicine, Düsseldorf 40225, Germany
| | - Roel P F Schins
- IUF─Leibniz Research Institute for Environmental Medicine, Düsseldorf 40225, Germany
| | - Angela A M Kämpfer
- IUF─Leibniz Research Institute for Environmental Medicine, Düsseldorf 40225, Germany
| |
Collapse
|
26
|
Li D, Liu Z, Fan X, Zhao T, Wen D, Huang X, Li B. Lactic Acid Bacteria-Gut-Microbiota-Mediated Intervention towards Inflammatory Bowel Disease. Microorganisms 2024; 12:1864. [PMID: 39338538 PMCID: PMC11433943 DOI: 10.3390/microorganisms12091864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/01/2024] [Accepted: 09/02/2024] [Indexed: 09/30/2024] Open
Abstract
Inflammatory bowel disease (IBD), encompassing ulcerative colitis (UC) and Crohn's disease (CD), arises from intricate interactions involving genetics, environment, and pharmaceuticals with an ambiguous pathogenic mechanism. Recently, there has been an increasing utilization of lactic acid bacteria (LAB) in managing IBD, attributed to their ability to enhance intestinal barrier function, mitigate inflammatory responses, and modulate gut microbiota. This review initiates by elucidating the pathogenesis of IBD and its determinants, followed by an exploration of the mechanisms underlying LAB therapy in UC and CD. Special attention is directed towards their influence on intestinal barrier function and homeostasis regulated by gut microbiota. Furthermore, the review investigates the complex interplay among pivotal gut microbiota, metabolites, and pathways associated with inflammation. Moreover, it underscores the limitations of LAB in treating IBD, particularly in light of their varying roles in UC and CD. This comprehensive analysis endeavors to offer insights for the optimized application of LAB in IBD therapy.
Collapse
Affiliation(s)
- Diantong Li
- Institute of Animal Husbandry and Veterinary, Xizang Academy of Agricultural and Animal Husbandry Sciences, Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lhasa 850000, China; (D.L.); (Z.L.); (X.F.); (T.Z.); (D.W.)
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Zhenjiang Liu
- Institute of Animal Husbandry and Veterinary, Xizang Academy of Agricultural and Animal Husbandry Sciences, Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lhasa 850000, China; (D.L.); (Z.L.); (X.F.); (T.Z.); (D.W.)
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Xueni Fan
- Institute of Animal Husbandry and Veterinary, Xizang Academy of Agricultural and Animal Husbandry Sciences, Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lhasa 850000, China; (D.L.); (Z.L.); (X.F.); (T.Z.); (D.W.)
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Tingting Zhao
- Institute of Animal Husbandry and Veterinary, Xizang Academy of Agricultural and Animal Husbandry Sciences, Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lhasa 850000, China; (D.L.); (Z.L.); (X.F.); (T.Z.); (D.W.)
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Dongxu Wen
- Institute of Animal Husbandry and Veterinary, Xizang Academy of Agricultural and Animal Husbandry Sciences, Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lhasa 850000, China; (D.L.); (Z.L.); (X.F.); (T.Z.); (D.W.)
| | - Xiaodan Huang
- Institute of Animal Husbandry and Veterinary, Xizang Academy of Agricultural and Animal Husbandry Sciences, Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lhasa 850000, China; (D.L.); (Z.L.); (X.F.); (T.Z.); (D.W.)
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Bin Li
- Institute of Animal Husbandry and Veterinary, Xizang Academy of Agricultural and Animal Husbandry Sciences, Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lhasa 850000, China; (D.L.); (Z.L.); (X.F.); (T.Z.); (D.W.)
| |
Collapse
|
27
|
Chen X, Song W, Xiong P, Cheng D, Wei W, Zhou Q, Xu C, Song Q, Ji H, Hu Y, Zou Z. Effects of microencapsulated plant essential oils on growth performance, immunity, and intestinal health of weaned Tibetan piglets. Front Vet Sci 2024; 11:1456181. [PMID: 39229599 PMCID: PMC11368909 DOI: 10.3389/fvets.2024.1456181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 08/07/2024] [Indexed: 09/05/2024] Open
Abstract
Introduction Plant essential oils (PEOs) have received significant attention in animal production due to their diverse beneficial properties and hold potential to alleviate weaning stress. However, PEOs effectiveness is often compromised by volatility and degradation. Microencapsulation can enhance the stability and control release rate of essential oils. Whether different microencapsulation techniques affect the effectiveness remain unknown. This study aimed to investigate the effects of PEOs coated by different microencapsulation techniques on growth performance, immunity, and intestinal health of weaned Tibetan piglets. Methods A total of 120 Tibetan piglets, aged 30 days, were randomly divided into five groups with four replicates, each containing six piglets. The experimental period lasted for 32 days. The groups were fed different diets: a basal diet without antibiotics (NC), a basal diet supplemented with 10 mg/kg tylosin and 50 mg/kg colistin sulfate (PC), 300 mg/kg solidified PEO particles (SPEO), 300 mg/kg cold spray-coated PEO (CSPEO), or 300 mg/kg hot spray-coated PEO (HSPEO). Results The results showed that supplementation with SPEO, CSPEO, or HSPEO led to a notable decrease in diarrhea incidence and feed to gain ratio, as well as duodenum lipopolysaccharide content, while simultaneously increase in average daily gain, interleukin-10 (IL-10) levels and the abundance of ileum Bifidobacterium compared with the NC group (p < 0.05). Supplementation with SPEO, CSPEO, or HSPEO significantly elevated serum immunoglobulin G (IgG) levels and concurrently reduced serum lipopolysaccharide and interferon γ levels compared with the NC and PC groups (p < 0.05). Serum insulin-like growth factor 1 (IGF-1) levels in the SPEO and HSPEO groups significantly increased compared with the NC group (p < 0.05). Additionally, CSPEO and HSPEO significantly reduced jejunum pH value (p < 0.05) compared with the NC and PC groups (p<0.05). Additionally, Supplementation with HSPEO significantly elevated levels of serum immunoglobulin M (IgM) and interleukin-4 (IL-4), abundance of ileum Lactobacillus, along with decreased serum interleukin-1 beta (IL-1β) levels compared with both the NC and PC groups. Discussion Our findings suggest that different microencapsulation techniques affect the effectiveness. Dietary supplemented with PEOs, especially HSPEO, increased growth performance, improved immune function, and optimized gut microbiota composition of weaned piglets, making it a promising feed additive in piglet production.
Collapse
Affiliation(s)
- Xiaolian Chen
- Institute of Animal Husbandry and Veterinary Science, Jiangxi Academy of Agricultural Sciences, Nanchang, China
- Jiangxi Province Key Laboratory of Animal Green and Healthy Breeding, Nanchang, China
| | - Wenjing Song
- Institute of Animal Husbandry and Veterinary Science, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | - Pingwen Xiong
- Institute of Animal Husbandry and Veterinary Science, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | - Di Cheng
- Institute of Animal Science and Fisheries, Gannan Academy of Sciences, Ganzhou, China
| | - Weiqun Wei
- Jiangxi Tianjia Biological Engineering Co., Ltd., Nanchang, China
| | - Quanyong Zhou
- Institute of Animal Husbandry and Veterinary Science, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | - Chuanhui Xu
- Institute of Animal Husbandry and Veterinary Science, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | - Qiongli Song
- Institute of Animal Husbandry and Veterinary Science, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | - Huayuan Ji
- Institute of Animal Husbandry and Veterinary Science, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | - Yan Hu
- Institute of Animal Science and Fisheries, Gannan Academy of Sciences, Ganzhou, China
| | - Zhiheng Zou
- Institute of Animal Husbandry and Veterinary Science, Jiangxi Academy of Agricultural Sciences, Nanchang, China
- Jiangxi Province Key Laboratory of Animal Green and Healthy Breeding, Nanchang, China
| |
Collapse
|
28
|
Li J, Wang S, Yan K, Wang P, Jiao J, Wang Y, Chen M, Dong Y, Zhong J. Intestinal microbiota by angiotensin receptor blocker therapy exerts protective effects against hypertensive damages. IMETA 2024; 3:e222. [PMID: 39135690 PMCID: PMC11316932 DOI: 10.1002/imt2.222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/13/2024] [Accepted: 06/13/2024] [Indexed: 08/15/2024]
Abstract
Dysbiosis of the gut microbiota has been implicated in hypertension, and drug-host-microbiome interactions have drawn considerable attention. However, the influence of angiotensin receptor blocker (ARB)-shaped gut microbiota on the host is not fully understood. In this work, we assessed the alterations of blood pressure (BP), vasculatures, and intestines following ARB-modified gut microbiome treatment and evaluated the changes in the intestinal transcriptome and serum metabolome in hypertensive rats. Hypertensive patients with well-controlled BP under ARB therapy were recruited as human donors, spontaneously hypertensive rats (SHRs) receiving normal saline or valsartan were considered animal donors, and SHRs were regarded as recipients. Histological and immunofluorescence staining was used to assess the aorta and small intestine, and 16S rRNA amplicon sequencing was performed to examine gut bacteria. Transcriptome and metabonomic analyses were conducted to determine the intestinal transcriptome and serum metabolome, respectively. Notably, ARB-modified fecal microbiota transplantation (FMT), results in marked decreases in systolic BP levels, collagen deposition and reactive oxygen species accumulation in the vasculature, and alleviated intestinal structure impairments in SHRs. These changes were linked with the reconstruction of the gut microbiota in SHR recipients post-FMT, especially with a decreased abundance of Lactobacillus, Aggregatibacter, and Desulfovibrio. Moreover, ARB-treated microbes contributed to increased intestinal Ciart, Per1, Per2, Per3, and Cipc gene levels and decreased Nfil3 and Arntl expression were detected in response to ARB-treated microbes. More importantly, circulating metabolites were dramatically reduced in ARB-FMT rats, including 6beta-Hydroxytestosterone and Thromboxane B2. In conclusion, ARB-modified gut microbiota exerts protective roles in vascular remodeling and injury, metabolic abnormality and intestinal dysfunctions, suggesting a pivotal role in mitigating hypertension and providing insights into the cross-talk between antihypertensive medicines and the gut microbiome.
Collapse
Affiliation(s)
- Jing Li
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang HospitalCapital Medical UniversityBeijingChina
- Department of Cardiology, Beijing Chaoyang HospitalCapital Medical UniversityBeijingChina
| | - Si‐Yuan Wang
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang HospitalCapital Medical UniversityBeijingChina
- Department of Cardiology, Beijing Chaoyang HospitalCapital Medical UniversityBeijingChina
| | - Kai‐Xin Yan
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang HospitalCapital Medical UniversityBeijingChina
- Department of Cardiology, Beijing Chaoyang HospitalCapital Medical UniversityBeijingChina
| | - Pan Wang
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang HospitalCapital Medical UniversityBeijingChina
- Department of Cardiology, Beijing Chaoyang HospitalCapital Medical UniversityBeijingChina
| | - Jie Jiao
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang HospitalCapital Medical UniversityBeijingChina
- Department of Cardiology, Beijing Chaoyang HospitalCapital Medical UniversityBeijingChina
| | - Yi‐Dan Wang
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang HospitalCapital Medical UniversityBeijingChina
- Department of Cardiology, Beijing Chaoyang HospitalCapital Medical UniversityBeijingChina
| | - Mu‐Lei Chen
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang HospitalCapital Medical UniversityBeijingChina
- Department of Cardiology, Beijing Chaoyang HospitalCapital Medical UniversityBeijingChina
| | - Ying Dong
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang HospitalCapital Medical UniversityBeijingChina
- Department of Cardiology, Beijing Chaoyang HospitalCapital Medical UniversityBeijingChina
| | - Jiu‐Chang Zhong
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang HospitalCapital Medical UniversityBeijingChina
- Department of Cardiology, Beijing Chaoyang HospitalCapital Medical UniversityBeijingChina
| |
Collapse
|
29
|
Zachos KA, Gamboa JA, Dewji AS, Lee J, Brijbassi S, Andreazza AC. The interplay between mitochondria, the gut microbiome and metabolites and their therapeutic potential in primary mitochondrial disease. Front Pharmacol 2024; 15:1428242. [PMID: 39119601 PMCID: PMC11306032 DOI: 10.3389/fphar.2024.1428242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/10/2024] [Indexed: 08/10/2024] Open
Abstract
The various roles of the mitochondria and the microbiome in health and disease have been thoroughly investigated, though they are often examined independently and in the context of chronic disease. However, the mitochondria and microbiome are closely connected, namely, through their evolution, maternal inheritance patterns, overlapping role in many diseases and their importance in the maintenance of human health. The concept known as the "mitochondria-microbiome crosstalk" is the ongoing bidirectional crosstalk between these two entities and warrants further exploration and consideration, especially in the context of primary mitochondrial disease, where mitochondrial dysfunction can be detrimental for clinical manifestation of disease, and the role and composition of the microbiome is rarely investigated. A potential mechanism underlying this crosstalk is the role of metabolites from both the mitochondria and the microbiome. During digestion, gut microbes modulate compounds found in food, which can produce metabolites with various bioactive effects. Similarly, mitochondrial metabolites are produced from substrates that undergo biochemical processes during cellular respiration. This review aims to provide an overview of current literature examining the mitochondria-microbiome crosstalk, the role of commonly studied metabolites serve in signaling and mediating these biochemical pathways, and the impact diet has on both the mitochondria and the microbiome. As a final point, this review highlights the up-to-date implications of the mitochondria-microbiome crosstalk in mitochondrial disease and its potential as a therapeutic tool or target.
Collapse
Affiliation(s)
- Kassandra A. Zachos
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
- Mitochondrial Innovation Initiative, MITO2i, Toronto, ON, Canada
| | - Jann Aldrin Gamboa
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Aleena S. Dewji
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Jocelyn Lee
- Mitochondrial Innovation Initiative, MITO2i, Toronto, ON, Canada
| | - Sonya Brijbassi
- Mitochondrial Innovation Initiative, MITO2i, Toronto, ON, Canada
| | - Ana C. Andreazza
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
- Mitochondrial Innovation Initiative, MITO2i, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
30
|
Wang W, Zhang Q, Zhao J, Liu T, Yao J, Peng X, Zhi M, Zhang M. HLA-DQA1*05 correlates with increased risk of anti-drug antibody development and reduced response to infliximab in Chinese patients with Crohn's disease. Gastroenterol Rep (Oxf) 2024; 12:goae074. [PMID: 39055374 PMCID: PMC11269678 DOI: 10.1093/gastro/goae074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 03/30/2024] [Accepted: 05/07/2024] [Indexed: 07/27/2024] Open
Abstract
Background The efficacy of anti-TNF therapy in Crohn's disease (CD), such as infliximab, is often compromised by the development of anti-drug antibodies (ADAs). The genetic variation HLA-DQA1*05 has been linked to the immunogenicity of biologics, influencing ADA formation. This study investigates the correlation between HLA-DQA1*05 and ADA formation in CD patients treated with infliximab in a Chinese Han population and assesses clinical outcomes. Methods In this retrospective cohort study, 345 infliximab-exposed CD patients were genotyped for HLADQ A1*05A > G (rs2097432). We evaluated the risk of ADA development, loss of infliximab response, adverse events, and treatment discontinuation among variant and wild-type allele individuals. Results A higher percentage of patients with ADAs formation was observed in HLA-DQA1*05 G variant carriers compared with HLA-DQA1*05 wild-type carriers (58.5% vs 42.9%, P = 0.004). HLA-DQA1*05 carriage significantly increased the risk of ADAs development (adjusted hazard ratio = 1.65, 95% CI 1.18-2.30, P = 0.003) and was associated with a greater likelihood of infliximab response loss (adjusted HR = 2.55, 95% CI 1.78-3.68, P < 0.0001) and treatment discontinuation (adjusted HR = 2.21, 95% CI 1.59-3.06, P < 0.0001). Interestingly, combined therapy with immunomodulators increased the risk of response loss in HLA-DQA1*05 variant carriers. Conclusions HLA-DQA1*05 significantly predicts ADAs formation and impacts treatment outcomes in infliximab-treated CD patients. Pre-treatment screening for this genetic factor could therefore be instrumental in personalizing anti-TNF therapy strategies for these patients.
Collapse
Affiliation(s)
- Wei Wang
- Department of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510655, P. R. China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510655, P. R. China
| | - Qi Zhang
- Department of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510655, P. R. China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510655, P. R. China
| | - Junzhang Zhao
- Department of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510655, P. R. China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510655, P. R. China
| | - Tao Liu
- Department of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510655, P. R. China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510655, P. R. China
| | - Jiayin Yao
- Department of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510655, P. R. China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510655, P. R. China
| | - Xiang Peng
- Department of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510655, P. R. China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510655, P. R. China
| | - Min Zhi
- Department of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510655, P. R. China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510655, P. R. China
| | - Min Zhang
- Department of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510655, P. R. China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510655, P. R. China
| |
Collapse
|
31
|
Song M, Zhang S, Zhang Z, Guo L, Liang W, Li C, Wang Z. Bacillus coagulans restores pathogen-induced intestinal dysfunction via acetate-FFAR2-NF-κB-MLCK-MLC axis in Apostichopus japonicus. mSystems 2024; 9:e0060224. [PMID: 38940521 PMCID: PMC11265352 DOI: 10.1128/msystems.00602-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 04/30/2024] [Indexed: 06/29/2024] Open
Abstract
Skin ulceration syndrome (SUS) is currently the main disease threatening Apostichopus japonicus aquaculture due to its higher mortality rate and infectivity, which is caused by Vibrio splendidus. Our previous studies have demonstrated that SUS is accompanied by intestinal microbiota (IM) dysbiosis, alteration of short-chain fatty acids (SCFAs) content and the damage to the intestinal barrier. However, the mediating effect of IM on intestine dysfunction is largely unknown. Herein, we conducted comprehensive intestinal microbiota transplantation (IMT) to explore the link between IM and SUS development. Furthermore, we isolated and identified a Bacillus coagulans strain with an ability to produce acetic acid from both healthy individual and SUS individual with IM from healthy donors. We found that dysbiotic IM and intestinal barrier function in SUS recipients A. japonicus could be restored by IM from healthy donors. The B. coagulans strain could restore IM community and intestinal barrier function. Consistently, acetate supply also restores intestinal homeostasis of SUS-diseased and V. splendidus-infected A. japonicus. Mechanically, acetate was found to specifically bind to its receptor-free fatty acid receptor 2 (FFAR2) to mediate IM structure community and intestinal barrier function. Knockdown of FFAR2 by transfection of specific FFAR2 siRNA could hamper acetate-mediated intestinal homeostasis in vivo. Furthermore, we confirmed that acetate/FFAR2 could inhibit V. splendidus-activated NF-κB-MLCK-MLC signaling pathway to restore intestinal epithelium integrity and upregulated the expression of ZO-1 and Occludin. Our findings provide the first evidence that B. coagulans restores pathogen-induced intestinal barrier dysfunction via acetate/FFAR2-NF-κB-MLCK-MLC axis, which provides new insights into the control and prevention of SUS outbreak from an ecological perspective.IMPORTANCESkin ulceration syndrome (SUS) as a main disease in Apostichopus japonicus aquaculture has severely restricted the developmental A. japonicus aquaculture industry. Intestinal microbiota (IM) has been studied extensively due to its immunomodulatory properties. Short-chain fatty acids (SCFAs) as an essential signal molecule for microbial regulation of host health also have attracted wide attention. Therefore, it is beneficial to explore the link between IM and SUS for prevention and control of SUS. In the study, the contribution of IM to SUS development has been examined. Additionally, our research further validated the restoration of SCFAs on intestinal barrier dysfunction caused by SUS via isolating SCFAs-producing bacteria. Notably, this restoration might be achieved by inhibition of NF-κB-MLCK-MLC signal pathway, which could be activated by V. splendidus. These findings may have important implications for exploration of the role of IM in SUS occurrence and provide insight into the SUS treatment.
Collapse
Affiliation(s)
- Mingshan Song
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
| | - Shanshan Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
| | - Zhen Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
| | - Liyuan Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
| | - Weikang Liang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
| | - Chenghua Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Zhonghua Wang
- Shandong Beiyou Biotechnology Co.,Ltd., Weifang, China
| |
Collapse
|
32
|
Bosselaar S, Dhelin L, Dautel E, Titecat M, Duthoy S, Stelmaszczyk M, Delory N, De Sousa Violante M, Machuron F, Ait-Abderrahim H, Desreumaux P, Foligné B, Monnet C. Taxonomic and phenotypic analysis of bifidobacteria isolated from IBD patients as potential probiotic strains. BMC Microbiol 2024; 24:233. [PMID: 38951788 PMCID: PMC11218132 DOI: 10.1186/s12866-024-03368-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 06/12/2024] [Indexed: 07/03/2024] Open
Abstract
BACKGROUND Inflammatory Bowel Diseases (IBD) are a major public health issue with unclear aetiology. Changes in the composition and functionality of the intestinal microbiota are associated with these pathologies, including the depletion of strict anaerobes such as Feacalibacterium prausnitzii. Less evidence is observed for depletion in other anaerobes, among which bifidobacteria. This study characterized the taxonomic and functional diversity of bifidobacteria isolated from the human intestinal microbiota in active and non-active IBD patients by a culturomics approach and evaluated if these bifidobacteria might be used as probiotics for gut health. RESULTS A total of 341 bifidobacteria were isolated from the intestinal microbiota of IBD patients (52 Crohn's disease and 26 ulcerative colitis patients), with a high proportion of Bifidobacterium dentium strains (28% of isolated bifidobacteria). In ulcerative colitis, the major species identified was B. dentium (39% of isolated bifidobacteria), in active and non-active ulcerative colitis. In Crohn's disease, B. adolescentis was the major species isolated from non-active patients (40%), while similar amounts of B. dentium and B. adolescentis were found in active Crohn's disease patients. The relative abundance of B. dentium was increased with age, both in Crohn's disease and ulcerative colitis and active and non-active IBD patients. Antibacterial capacities of bifidobacteria isolated from non-active ulcerative colitis against Escherichia coli LF82 and Salmonella enterica ATCC 14028 were observed more often compared to strains isolated from active ulcerative colitis. Finally, B. longum were retained as strains with the highest probiotic potential as they were the major strains presenting exopolysaccharide synthesis, antibacterial activity, and anti-inflammatory capacities. Antimicrobial activity and EPS synthesis were further correlated to the presence of antimicrobial and EPS gene clusters by in silico analysis. CONCLUSIONS Different bifidobacterial taxonomic profiles were identified in the microbiota of IBD patients. The most abundant species were B. dentium, mainly associated to the microbiota of ulcerative colitis patients and B. adolescentis, in the intestinal microbiota of Crohn's disease patients. Additionally, the relative abundance of B. dentium significantly increased with age. Furthermore, this study evidenced that bifidobacteria with probiotic potential (antipathogenic activity, exopolysaccharide production and anti-inflammatory activity), especially B. longum strains, can be isolated from the intestinal microbiota of both active and non-active Crohn's disease and ulcerative colitis patients.
Collapse
Affiliation(s)
- Sabine Bosselaar
- Lesaffre International - Lesaffre Institute of Science and Technology, 101 Rue de Menin, 59706, Marcq-en-Barœul, France.
- Univ. Lille, Inserm, CHU Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, 59000, Lille, France.
| | - Lucile Dhelin
- Lesaffre International - Lesaffre Institute of Science and Technology, 101 Rue de Menin, 59706, Marcq-en-Barœul, France
| | - Ellena Dautel
- Lesaffre International - Lesaffre Institute of Science and Technology, 101 Rue de Menin, 59706, Marcq-en-Barœul, France
| | - Marie Titecat
- Univ. Lille, Inserm, CHU Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, 59000, Lille, France
| | - Stéphanie Duthoy
- Lesaffre International - Lesaffre Institute of Science and Technology, 101 Rue de Menin, 59706, Marcq-en-Barœul, France
| | - Marie Stelmaszczyk
- Lesaffre International - Lesaffre Institute of Science and Technology, 101 Rue de Menin, 59706, Marcq-en-Barœul, France
| | - Nathan Delory
- Lesaffre International - Lesaffre Institute of Science and Technology, 101 Rue de Menin, 59706, Marcq-en-Barœul, France
| | - Madeleine De Sousa Violante
- Lesaffre International - Lesaffre Institute of Science and Technology, 101 Rue de Menin, 59706, Marcq-en-Barœul, France
| | - François Machuron
- Lesaffre International - Lesaffre Institute of Science and Technology, 101 Rue de Menin, 59706, Marcq-en-Barœul, France
| | - Hassina Ait-Abderrahim
- Lesaffre International - Lesaffre Institute of Science and Technology, 101 Rue de Menin, 59706, Marcq-en-Barœul, France
| | - Pierre Desreumaux
- Univ. Lille, Inserm, CHU Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, 59000, Lille, France
- Department of Hepato-Gastroenterology, Lille University Hospital, 59037, Lille, France
| | - Benoit Foligné
- Univ. Lille, Inserm, CHU Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, 59000, Lille, France
| | - Céline Monnet
- Lesaffre International - Lesaffre Institute of Science and Technology, 101 Rue de Menin, 59706, Marcq-en-Barœul, France
| |
Collapse
|
33
|
Zhou X, Ganz AB, Rayner A, Cheng TY, Oba H, Rolnik B, Lancaster S, Lu X, Li Y, Johnson JS, Hoyd R, Spakowicz DJ, Slavich GM, Snyder MP. Dynamic Human Gut Microbiome and Immune Shifts During an Immersive Psychosocial Therapeutic Program. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.26.600881. [PMID: 38979211 PMCID: PMC11230355 DOI: 10.1101/2024.06.26.600881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Background Depression is a leading cause of disability worldwide yet its underlying factors, particularly microbial associations, are poorly understood. Methods We examined the longitudinal interplay between the microbiome and immune system in the context of depression during an immersive psychosocial intervention. 142 multi-omics samples were collected from 52 well-characterized participants before, during, and three months after a nine-day inquiry-based stress reduction program. Results We found that depression was associated with both an increased presence of putatively pathogenic bacteria and reduced microbial beta-diversity. Following the intervention, we observed reductions in neuroinflammatory cytokines and improvements in several mental health indicators. Interestingly, participants with a Prevotella-dominant microbiome showed milder symptoms when depressed, along with a more resilient microbiome and more favorable inflammatory cytokine profile, including reduced levels of CXCL-1. Conclusions Our findings reveal a protective link between the Prevotella-dominant microbiome and depression, associated with a less inflammatory environment and moderated symptoms. These insights, coupled with observed improvements in neuroinflammatory markers and mental health from the intervention, highlight potential avenues for microbiome-targeted therapies in depression management.
Collapse
Affiliation(s)
- Xin Zhou
- Department of Genetics, Stanford University School of Medicine, CA, USA
- Stanford Center for Genomics and Personalized Medicine, Stanford university School of Medicine, CA, USA
- These authors contributed equally to the work
| | - Ariel B. Ganz
- Department of Genetics, Stanford University School of Medicine, CA, USA
- Stanford Healthcare Innovation Lab, Stanford University, CA, USA
- These authors contributed equally to the work
| | - Andre Rayner
- Department of Genetics, Stanford University School of Medicine, CA, USA
| | - Tess Yan Cheng
- Department of Genetics, Stanford University School of Medicine, CA, USA
- Department of Microbiology, College of Arts and Sciences, University of Washington, WA, USA
| | - Haley Oba
- Department of Genetics, Stanford University School of Medicine, CA, USA
| | - Benjamin Rolnik
- Department of Genetics, Stanford University School of Medicine, CA, USA
- Stanford Healthcare Innovation Lab, Stanford University, CA, USA
| | - Samuel Lancaster
- Department of Genetics, Stanford University School of Medicine, CA, USA
| | - Xinrui Lu
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Sichuan, China
| | - Yizhou Li
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Sichuan, China
| | - Jethro S. Johnson
- Oxford Centre for Microbiome Studies, Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Rebecca Hoyd
- The Ohio State University Comprehensive Cancer Center, OH, USA
| | | | - George M. Slavich
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA
| | - Michael P. Snyder
- Department of Genetics, Stanford University School of Medicine, CA, USA
- Stanford Center for Genomics and Personalized Medicine, Stanford university School of Medicine, CA, USA
- Stanford Healthcare Innovation Lab, Stanford University, CA, USA
| |
Collapse
|
34
|
Nieva C, Pryor J, Williams GM, Hoedt EC, Burns GL, Eslick GD, Talley NJ, Duncanson K, Keely S. The Impact of Dietary Interventions on the Microbiota in Inflammatory Bowel Disease: A Systematic Review. J Crohns Colitis 2024; 18:920-942. [PMID: 38102104 PMCID: PMC11147801 DOI: 10.1093/ecco-jcc/jjad204] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/12/2023] [Accepted: 12/09/2023] [Indexed: 12/17/2023]
Abstract
BACKGROUND AND AIMS Diet plays an integral role in the modulation of the intestinal environment, with the potential to be modified for management of individuals with inflammatory bowel disease [IBD]. It has been hypothesised that poor 'Western-style' dietary patterns select for a microbiota that drives IBD inflammation and, that through dietary intervention, a healthy microbiota may be restored. This study aimed to systematically review the literature and assess current available evidence regarding the influence of diet on the intestinal microbiota composition in IBD patients, and how this may affect disease activity. METHODS MEDLINE, EMBASE, Scopus, Web of Science, and Cochrane Library were searched from January 2013 to June 2023, to identify studies investigating diet and microbiota in IBD. RESULTS Thirteen primary studies met the inclusion criteria and were selected for narrative synthesis. Reported associations between diet and microbiota in IBD were conflicting due to the considerable degree of heterogeneity between studies. Nine intervention studies trialled specific diets and did not demonstrate significant shifts in the diversity and abundance of intestinal microbial communities or improvement in disease outcomes. The remaining four cross-sectional studies did not find a specific microbial signature associated with habitual dietary patterns in IBD patients. CONCLUSIONS Diet modulates the gut microbiota, and this may have implications for IBD; however, the body of evidence does not currently support clear dietary patterns or food constituents that are associated with a specific microbiota profile or disease marker in IBD patients. Further research is required with a focus on robust and consistent methodology to achieve improved identification of associations.
Collapse
Affiliation(s)
- Cheenie Nieva
- College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
- National Health and Medical Research Council [NHMRC], Centre of Research Excellence in Digestive Health, University of Newcastle, Newcastle, NSW, Australia
- Immune Health Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Jennifer Pryor
- College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
- National Health and Medical Research Council [NHMRC], Centre of Research Excellence in Digestive Health, University of Newcastle, Newcastle, NSW, Australia
- Immune Health Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Georgina M Williams
- College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
- National Health and Medical Research Council [NHMRC], Centre of Research Excellence in Digestive Health, University of Newcastle, Newcastle, NSW, Australia
- Immune Health Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Emily C Hoedt
- College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
- National Health and Medical Research Council [NHMRC], Centre of Research Excellence in Digestive Health, University of Newcastle, Newcastle, NSW, Australia
- Immune Health Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Grace L Burns
- College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
- National Health and Medical Research Council [NHMRC], Centre of Research Excellence in Digestive Health, University of Newcastle, Newcastle, NSW, Australia
- Immune Health Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Guy D Eslick
- College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
- National Health and Medical Research Council [NHMRC], Centre of Research Excellence in Digestive Health, University of Newcastle, Newcastle, NSW, Australia
| | - Nicholas J Talley
- College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
- National Health and Medical Research Council [NHMRC], Centre of Research Excellence in Digestive Health, University of Newcastle, Newcastle, NSW, Australia
- Immune Health Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Kerith Duncanson
- College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
- National Health and Medical Research Council [NHMRC], Centre of Research Excellence in Digestive Health, University of Newcastle, Newcastle, NSW, Australia
- Immune Health Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Simon Keely
- College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
- National Health and Medical Research Council [NHMRC], Centre of Research Excellence in Digestive Health, University of Newcastle, Newcastle, NSW, Australia
- Immune Health Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| |
Collapse
|
35
|
Jeong C, Baek H, Bae J, Hwang N, Ha J, Cho YS, Lim DJ. Gut microbiome in the Graves' disease: Comparison before and after anti-thyroid drug treatment. PLoS One 2024; 19:e0300678. [PMID: 38820506 PMCID: PMC11142679 DOI: 10.1371/journal.pone.0300678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 03/01/2024] [Indexed: 06/02/2024] Open
Abstract
While several studies have proposed a connection between the gut microbiome and the pathogenesis of Graves's disease (GD), there has been a lack of reports on alteration in microbiome following using anti-thyroid drug treatment (ATD) to treat GD. Stool samples were collected from newly diagnosed GD patients provided at baseline and after 6 months of ATD treatment. The analysis focused on investigating the association between the changes in the gut microbiome and parameter including thyroid function, thyroid-related antibodies, and the symptom used to assess hyperthyroidism before and after treatment. A healthy control (HC) group consisting of data from 230 healthy subjects (110 males and 120 females) sourced from the open EMBL Nucleotide Sequence Database was included. Twenty-nine GD patients (14 males and 15 females) were enrolled. The analysis revealed a significant reduction of alpha diversity in GD patients. However, after ATD treatment, alpha diversity exhibited a significant increase, restored to levels comparable to the HC levels. Additionally, GD patients displayed lower levels of Firmicutes and higher levels of Bacteroidota. Following treatment, there was an increased in Firmicutes and a decrease in Bacteroidota, resembling levels found in the HC levels. The symptoms of hyperthyroidism were negatively associated with Firmicutes and positively associated with Bacteroidota. GD had significantly lower levels of Roseburia, Lachnospiraceaea, Sutterella, Escherichia-shigella, Parasuterella, Akkermansia, and Phascolarctobacterium compared to HC (all p < 0.05). Post-treatment, Subdoligranulum increased (p = 0.010), while Veillonella and Christensenellaceaea R-7 group decreased (p = 0.023, p = 0.029, respectively). Anaerostipes showed a significant association with both higher smoking pack years and TSHR-Ab levels, with greater abundantce observed in smokers among GD (p = 0.16). Although reduced ratio of Firmicutes/Bacteroidetes was evident in GD, this ratio recovered after treatment. This study postulates the involvement of the gut microbiome in the pathogenesis of GD, suggesting potential restoration after treatment.
Collapse
Affiliation(s)
- Chaiho Jeong
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hansang Baek
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jaewoong Bae
- R&D Institute, BioEleven Co., Ltd., Seoul, Republic of Korea
| | - Nakwon Hwang
- R&D Institute, BioEleven Co., Ltd., Seoul, Republic of Korea
| | - Jeonghoon Ha
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Young-Seok Cho
- Division of Gastroenterology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Dong-Jun Lim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
36
|
Lin Z, Luo W, Zhang K, Dai S. Environmental and Microbial Factors in Inflammatory Bowel Disease Model Establishment: A Review Partly through Mendelian Randomization. Gut Liver 2024; 18:370-390. [PMID: 37814898 PMCID: PMC11096900 DOI: 10.5009/gnl230179] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/09/2023] [Accepted: 07/24/2023] [Indexed: 10/11/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a complex condition resulting from environmental, microbial, immunologic, and genetic factors. With the advancement of Mendelian randomization research in IBD, we have gained new insights into the relationship between these factors and IBD. Many animal models of IBD have been developed using different methods, but few studies have attempted to model IBD by combining environmental factors and microbial factors. In this review, we examine how environmental factors and microbial factors affect the development and progression of IBD, and how they interact with each other and with the intestinal microbiota. We also summarize the current methods for creating animal models of IBD and compare their advantages and disadvantages. Based on the latest findings from Mendelian randomization studies on the role of environmental factors in IBD, we discuss which environmental and microbial factors could be used to construct a more realistic and reliable IBD experimental model. We propose that animal models of IBD should consider both environmental and microbial factors to better mimic human IBD pathogenesis and to reveal the underlying mechanisms of IBD at the immune and genetic levels. We highlight the importance of environmental and microbial factors in IBD pathogenesis and offer new perspectives and suggestions for improving experimental animal modeling. Our goal is to create a model that closely resembles the clinical picture of IBD.
Collapse
Affiliation(s)
- Zesheng Lin
- The First Clinical Medical School, Southern Medical University, Guangzhou, China
| | - Wenjing Luo
- The Second Clinical Medical School, Southern Medical University, Guangzhou, China
| | - Kaijun Zhang
- Department of Gastroenterology, Guangdong Provincial Geriatrics Institute, Guangzhou, ChinaNational Key Clinical Specialty, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Shixue Dai
- Department of Gastroenterology, Guangdong Provincial Geriatrics Institute, Guangzhou, ChinaNational Key Clinical Specialty, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Department of Gastroenterology, Geriatric Center, National Regional Medical Center, Ganzhou Hospital Affiliated to Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Ganzhou, China
| |
Collapse
|
37
|
San Gabriel PT, O’Neil TR, Au A, Tan JK, Pinget GV, Liu Y, Fong G, Ku J, Glaros E, Macia L, Witting PK, Thomas SR, Chami B. Myeloperoxidase Gene Deletion Causes Drastic Microbiome Shifts in Mice and Does Not Mitigate Dextran Sodium Sulphate-Induced Colitis. Int J Mol Sci 2024; 25:4258. [PMID: 38673843 PMCID: PMC11050303 DOI: 10.3390/ijms25084258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/03/2024] [Accepted: 04/06/2024] [Indexed: 04/28/2024] Open
Abstract
Neutrophil-myeloperoxidase (MPO) is a heme-containing peroxidase which produces excess amounts of hypochlorous acid during inflammation. While pharmacological MPO inhibition mitigates all indices of experimental colitis, no studies have corroborated the role of MPO using knockout (KO) models. Therefore, we investigated MPO deficient mice in a murine model of colitis. Wild type (Wt) and MPO-deficient mice were treated with dextran sodium sulphate (DSS) in a chronic model of experimental colitis with three acute cycles of DSS-induced colitis over 63 days, emulating IBD relapse and remission cycles. Mice were immunologically profiled at the gut muscoa and the faecal microbiome was assessed via 16S rRNA amplicon sequencing. Contrary to previous pharmacological antagonist studies targeting MPO, MPO-deficient mice showed no protection from experimental colitis during cyclical DSS-challenge. We are the first to report drastic faecal microbiota shifts in MPO-deficient mice, showing a significantly different microbiome profile on Day 1 of treatment, with a similar shift and distinction on Day 29 (half-way point), via qualitative and quantitative descriptions of phylogenetic distances. Herein, we provide the first evidence of substantial microbiome shifts in MPO-deficiency, which may influence disease progression. Our findings have significant implications for the utility of MPO-KO mice in investigating disease models.
Collapse
Affiliation(s)
- Patrick T. San Gabriel
- Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2000, Australia (P.K.W.)
| | - Thomas R. O’Neil
- Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2000, Australia (P.K.W.)
| | - Alice Au
- Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2000, Australia (P.K.W.)
| | - Jian K. Tan
- Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2000, Australia (P.K.W.)
| | - Gabriela V. Pinget
- Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2000, Australia (P.K.W.)
| | - Yuyang Liu
- Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2000, Australia (P.K.W.)
| | - Genevieve Fong
- Rheumatology Department, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia
| | - Jacqueline Ku
- Cardiometabolic Disease Research Group, Department of Pathology, School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia (E.G.)
| | - Elias Glaros
- Cardiometabolic Disease Research Group, Department of Pathology, School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia (E.G.)
| | - Laurence Macia
- Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2000, Australia (P.K.W.)
| | - Paul K. Witting
- Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2000, Australia (P.K.W.)
| | - Shane R. Thomas
- Cardiometabolic Disease Research Group, Department of Pathology, School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia (E.G.)
| | - Belal Chami
- Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2000, Australia (P.K.W.)
| |
Collapse
|
38
|
Cicchinelli S, Gemma S, Pignataro G, Piccioni A, Ojetti V, Gasbarrini A, Franceschi F, Candelli M. Intestinal Fibrogenesis in Inflammatory Bowel Diseases: Exploring the Potential Role of Gut Microbiota Metabolites as Modulators. Pharmaceuticals (Basel) 2024; 17:490. [PMID: 38675450 PMCID: PMC11053610 DOI: 10.3390/ph17040490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/08/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Fibrosis, sustained by the transformation of intestinal epithelial cells into fibroblasts (epithelial-to-mesenchymal transition, EMT), has been extensively studied in recent decades, with the molecular basis well-documented in various diseases, including inflammatory bowel diseases (IBDs). However, the factors influencing these pathways remain unclear. In recent years, the role of the gut microbiota in health and disease has garnered significant attention. Evidence suggests that an imbalanced or dysregulated microbiota, along with environmental and genetic factors, may contribute to the development of IBDs. Notably, microbes produce various metabolites that interact with host receptors and associated signaling pathways, influencing physiological and pathological changes. This review aims to present recent evidence highlighting the emerging role of the most studied metabolites as potential modulators of molecular pathways implicated in intestinal fibrosis and EMT in IBDs. These studies provide a deeper understanding of intestinal inflammation and fibrosis, elucidating the molecular basis of the microbiota role in IBDs, paving the way for future treatments.
Collapse
Affiliation(s)
- Sara Cicchinelli
- Department of Emergency, S.S. Filippo e Nicola Hospital, 67051 Avezzano, Italy;
| | - Stefania Gemma
- Department of Emergency, Anesthesiological and Reanimation Sciences, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Giulia Pignataro
- Department of Emergency, Anesthesiological and Reanimation Sciences, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Andrea Piccioni
- Department of Emergency, Anesthesiological and Reanimation Sciences, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Veronica Ojetti
- Department of Emergency, Anesthesiological and Reanimation Sciences, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Antonio Gasbarrini
- Department of Translational Medicine and Surgery, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Francesco Franceschi
- Department of Emergency, Anesthesiological and Reanimation Sciences, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Marcello Candelli
- Department of Emergency, Anesthesiological and Reanimation Sciences, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| |
Collapse
|
39
|
Ariaee A, Koentgen S, Wardill HR, Hold GL, Prestidge CA, Armstrong HK, Joyce P. Prebiotic selection influencing inflammatory bowel disease treatment outcomes: a review of the preclinical and clinical evidence. EGASTROENTEROLOGY 2024; 2:e100055. [PMID: 39944472 PMCID: PMC11731074 DOI: 10.1136/egastro-2023-100055] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/18/2024] [Indexed: 03/19/2025]
Abstract
Inflammatory bowel disease (IBD) is characterised by chronic inflammation in the gastrointestinal tract, with unclear aetiology but with known factors contributing to the disease, including genetics, immune responses, environmental factors and dysbiosis of the gut microbiota. Existing pharmacotherapies mainly target the inflammatory symptoms of disease, but recent research has highlighted the capacity for microbial-accessible carbohydrates that confer health benefits (ie, prebiotics) to selectively stimulate the growth of beneficial gut bacteria for improved IBD management. However, since prebiotics vary in source, chemical composition and microbiota effects, there is a clear need to understand the impact of prebiotic selection on IBD treatment outcomes. This review subsequently explores and contrasts the efficacy of prebiotics from various sources (β-fructans, galacto-oligosaccharides, xylo-oligosaccharides, resistant starch, pectin, β-glucans, glucomannans and arabinoxylans) in mitigating IBD symptomatology, when used as either standalone or adjuvant therapies. In preclinical animal colitis models, prebiotics have revealed type-dependent effects in positively modulating gut microbiota composition and subsequent attenuation of disease indicators and proinflammatory responses. While prebiotics have demonstrated therapeutic potential in animal models, clinical evidence for their precise efficacy remains limited, stressing the need for further investigation in human patients with IBD to facilitate their widespread clinical translation as microbiota-targeting IBD therapies.
Collapse
Affiliation(s)
- Amin Ariaee
- Centre for Pharmaceutical Innovation, UniSA Clinical & Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Sabrina Koentgen
- University of New South Wales, Sydney, New South Wales, Australia
| | - Hannah R Wardill
- School of Biomedicine, The University of Adelaide, Adelaide, South Australia, Australia
| | - Georgina L Hold
- Microbiome Research Centre, University of New South Wales, Sydney, New South Wales, Australia
| | - Clive A Prestidge
- Centre for Pharmaceutical Innovation, UniSA Clinical & Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Heather K Armstrong
- Department of Internal Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Immunology, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Manitoba IBD Clinical and Research Centre, Winnipeg, Manitoba, Canada
- Manitoba Centre for Proteomics and Systems Biology, Winnipeg, Manitoba, Canada
- Manitoba Multiple Sclerosis Research Centre, Winnipeg, Manitoba, Canada
- Children’s Health Research Institute Manitoba, Winnipeg, Manitoba, Canada
| | - Paul Joyce
- Centre for Pharmaceutical Innovation, UniSA Clinical & Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| |
Collapse
|
40
|
Wu Z, Li Y, Jiang M, Sang L, Chang B. Selenium Yeast Alleviates Dextran Sulfate Sodium-Induced Chronic Colitis in Mice by Reducing Proinflammatory Cytokines and Regulating the Gut Microbiota and Their Metabolites. J Inflamm Res 2024; 17:2023-2037. [PMID: 38577691 PMCID: PMC10992675 DOI: 10.2147/jir.s449335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/29/2024] [Indexed: 04/06/2024] Open
Abstract
Background Inflammatory bowel disease (IBD) is a chronic recurrent gastrointestinal inflammatory disease. Selenium has been reported to have therapeutic potential in IBD. Selenium yeast is a common selenium supplement that is convenient to access. This study explored the effect of selenium yeast on dextran sulfate sodium- (DSS-)induced chronic colitis in mice. Methods Mice were randomly divided into four groups: the control group, selenium yeast group, chronic colitis group, and chronic colitis+selenium yeast group (n=6). Mice were killed on the 26th day. The disease activity index (DAI) score and histological damage score were calculated. Cytokines, serum selenium, colonic tissue selenium, gut microbiota and their metabolites short-chain fatty acids (SCFAs) were evaluated. Results Selenium yeast lowered IL-1β, IL-6, TNF-α, IL-17A, IL-22 and IFN-γ (P<0.05). In addition, selenium yeast significantly elevated Turicibacter, Bifidobacterium, Allobaculum, Prevotella, Halomonas, Adlercreutzia (P<0.05), and butyric acid (P<0.05). Conclusion Selenium yeast could improve DSS-induced chronic colitis in mice by regulating cytokines, gut microbiota and their metabolites.
Collapse
Affiliation(s)
- Zeyu Wu
- Department of Gastroenterology, First Affiliated Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Yan Li
- Department of Gastroenterology, First Affiliated Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Min Jiang
- Department of Gastroenterology, First Affiliated Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Lixuan Sang
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Bing Chang
- Department of Gastroenterology, First Affiliated Hospital of China Medical University, Shenyang, People’s Republic of China
| |
Collapse
|
41
|
Wang Y, Wymond B, Tandon H, Belobrajdic DP. Swapping White for High-Fibre Bread Increases Faecal Abundance of Short-Chain Fatty Acid-Producing Bacteria and Microbiome Diversity: A Randomized, Controlled, Decentralized Trial. Nutrients 2024; 16:989. [PMID: 38613022 PMCID: PMC11013647 DOI: 10.3390/nu16070989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
A low-fibre diet leads to gut microbiota imbalance, characterized by low diversity and reduced ability to produce beneficial metabolites, such as short-chain fatty acids (SCFAs). This imbalance is associated with poor gastrointestinal and metabolic health. We aimed to determine whether one dietary change, substitution of white bread with high-fibre bread, improves gut microbiota diversity and SCFA-producing capability. Twenty-two healthy adults completed a two-phase randomized, cross-over trial. The participants consumed three slices of a high-fibre bread (Prebiotic Cape Seed Loaf with BARLEYmax®) or control white bread as part of their usual diet for 2 weeks, with the treatment periods separated by a 4-week washout. High-fibre bread consumption increased total dietary fibre intake to 40 g/d, which was double the amount of fibre consumed at baseline or during the white bread intervention. Compared to white bread, the high-fibre bread intervention resulted in higher faecal alpha diversity (Shannon, p = 0.014) and relative abundance of the Lachnospiracae ND3007 group (p < 0.001, FDR = 0.019) and tended to increase the butyrate-producing capability (p = 0.062). In conclusion, substituting white bread with a high-fibre bread improved the diversity of gut microbiota and specific microbes involved in SCFA production and may enhance the butyrate-producing capability of gut microbiota in healthy adults. These findings suggest that a single dietary change involving high-fibre bread provides a practical way for adults to exceed recommended dietary fibre intake levels that improve gut microbiota composition and support gastrointestinal and metabolic health.
Collapse
Affiliation(s)
- Yanan Wang
- CSIRO, Microbiomes for One Systems Health-Future Science Platform, Health and Biosecurity, Adelaide 5000, Australia;
| | - Brooke Wymond
- CSIRO Health and Biosecurity, Adelaide 5000, Australia; (B.W.); (H.T.)
| | - Himanshu Tandon
- CSIRO Health and Biosecurity, Adelaide 5000, Australia; (B.W.); (H.T.)
| | | |
Collapse
|
42
|
Vita AA, Roberts KM, Gundersen A, Farris Y, Zwickey H, Bradley R, Weir TL. Relationships between Habitual Polyphenol Consumption and Gut Microbiota in the INCLD Health Cohort. Nutrients 2024; 16:773. [PMID: 38542685 PMCID: PMC10974568 DOI: 10.3390/nu16060773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/01/2024] [Accepted: 03/05/2024] [Indexed: 04/01/2024] Open
Abstract
While polyphenol consumption is often associated with an increased abundance of beneficial microbes and decreased opportunistic pathogens, these relationships are not completely described for polyphenols consumed via habitual diet, including culinary herb and spice consumption. This analysis of the International Cohort on Lifestyle Determinants of Health (INCLD Health) cohort uses a dietary questionnaire and 16s microbiome data to examine relationships between habitual polyphenol consumption and gut microbiota in healthy adults (n = 96). In this exploratory analysis, microbial taxa, but not diversity measures, differed by levels of dietary polyphenol consumption. Taxa identified as exploratory biomarkers of daily polyphenol consumption (mg/day) included Lactobacillus, Bacteroides, Enterococcus, Eubacterium ventriosum group, Ruminococcus torques group, and Sutterella. Taxa identified as exploratory biomarkers of the frequency of polyphenol-weighted herb and spice use included Lachnospiraceae UCG-001, Lachnospiraceae UCG-004, Methanobrevibacter, Lachnoclostridium, and Lachnotalea. Several of the differentiating taxa carry out activities important for human health, although out of these taxa, those with previously described pro-inflammatory qualities in certain contexts displayed inverse relationships with polyphenol consumption. Our results suggest that higher quantities of habitual polyphenol consumption may support an intestinal environment where opportunistic and pro-inflammatory bacteria are represented in a lower relative abundance compared to those with less potentially virulent qualities.
Collapse
Affiliation(s)
- Alexandra Adorno Vita
- Helfgott Research Institute, National University of Natural Medicine, Portland, OR 97201, USA
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO 80523, USA
| | - Kristen M. Roberts
- School of Health and Rehabilitation Sciences, Ohio State University, Columbus, OH 43210, USA
| | - Anders Gundersen
- Helfgott Research Institute, National University of Natural Medicine, Portland, OR 97201, USA
| | - Yuliya Farris
- Pacific Northwest National Laboratory, Biological Sciences Division, Richland, WA 99352, USA
| | - Heather Zwickey
- Helfgott Research Institute, National University of Natural Medicine, Portland, OR 97201, USA
| | - Ryan Bradley
- Helfgott Research Institute, National University of Natural Medicine, Portland, OR 97201, USA
- Herbert Wertheim School of Public Health, University of California, San Diego, CA 92037, USA
| | - Tiffany L. Weir
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
43
|
Lai J, Liang J, Chen K, Guan B, Chen Z, Chen L, Fan J, Zhang Y, Li Q, Su J, Chen Q, Lin J. Carrimycin ameliorates lipopolysaccharide and cecal ligation and puncture-induced sepsis in mice. Chin J Nat Med 2024; 22:235-248. [PMID: 38553191 DOI: 10.1016/s1875-5364(24)60600-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Indexed: 04/02/2024]
Abstract
Carrimycin (CA), sanctioned by China's National Medical Products Administration (NMPA) in 2019 for treating acute bronchitis and sinusitis, has recently been observed to exhibit multifaceted biological activities, encompassing anti-inflammatory, antiviral, and anti-tumor properties. Despite these applications, its efficacy in sepsis treatment remains unexplored. This study introduces a novel function of CA, demonstrating its capacity to mitigate sepsis induced by lipopolysaccharide (LPS) and cecal ligation and puncture (CLP) in mice models. Our research employed in vitro assays, real-time quantitative polymerase chain reaction (RT-qPCR), and RNA-seq analysis to establish that CA significantly reduces the levels of pro-inflammatory cytokines, namely tumor necrosis factor-alpha (TNF-α), interleukin 1 beta (IL-1β), and interleukin 6 (IL-6), in response to LPS stimulation. Additionally, Western blotting and immunofluorescence assays revealed that CA impedes Nuclear Factor Kappa B (NF-κB) activation in LPS-stimulated RAW264.7 cells. Complementing these findings, in vivo experiments demonstrated that CA effectively alleviates LPS- and CLP-triggered organ inflammation in C57BL/6 mice. Further insights were gained through 16S sequencing, highlighting CA's pivotal role in enhancing gut microbiota diversity and modulating metabolic pathways, particularly by augmenting the production of short-chain fatty acids in mice subjected to CLP. Notably, a comparative analysis revealed that CA's anti-inflammatory efficacy surpasses that of equivalent doses of aspirin (ASP) and TIENAM. Collectively, these findings suggest that CA exhibits significant therapeutic potential in sepsis treatment. This discovery provides a foundational theoretical basis for the clinical application of CA in sepsis management.
Collapse
Affiliation(s)
- Junzhong Lai
- The Cancer Center, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Jiadi Liang
- The Cancer Center, Fujian Medical University Union Hospital, Fuzhou 350001, China; Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou 350117, China
| | - Kunsen Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou 350117, China
| | - Biyun Guan
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou 350117, China
| | - Zhirong Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou 350117, China
| | - Linqin Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou 350117, China
| | - Jiqiang Fan
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou 350117, China
| | - Yong Zhang
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou 350117, China
| | - Qiumei Li
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou 350117, China
| | - Jingqian Su
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou 350117, China
| | - Qi Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou 350117, China.
| | - Jizhen Lin
- The Cancer Center, Fujian Medical University Union Hospital, Fuzhou 350001, China; The Department of Otolaryngology, Head & Neck Surgery, University of Minnesota Medical School, Minneapolis, MN 55455, USA.
| |
Collapse
|
44
|
Jang JH, Jang SY, Ahn S, Oh JY, Yeom M, Ko SJ, Park JW, Kwon SK, Kim K, Lee IS, Hahm DH, Park HJ. Chronic Gut Inflammation and Dysbiosis in IBS: Unraveling Their Contribution to Atopic Dermatitis Progression. Int J Mol Sci 2024; 25:2753. [PMID: 38473999 DOI: 10.3390/ijms25052753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
Emerging evidence suggests a link between atopic dermatitis (AD) and gastrointestinal disorders, particularly in relation to gut microbial dysbiosis. This study explored the potential exacerbation of AD by gut inflammation and microbial imbalances using an irritable bowel syndrome (IBS) mouse model. Chronic gut inflammation was induced in the model by intrarectal injection of 2,4,6-trinitrobenzene sulfonic acid (TNBS), followed by a 4-week development period. We noted significant upregulation of proinflammatory cytokines in the colon and evident gut microbial dysbiosis in the IBS mice. Additionally, these mice exhibited impaired gut barrier function, increased permeability, and elevated systemic inflammation markers such as IL-6 and LPS. A subsequent MC903 challenge on the right cheek lasting for 7 days revealed more severe AD symptoms in IBS mice compared to controls. Further, fecal microbial transplantation (FMT) from IBS mice resulted in aggravated AD symptoms, a result similarly observed with FMT from an IBS patient. Notably, an increased abundance of Alistipes in the feces of IBS mice correlated with heightened systemic and localized inflammation in both the gut and skin. These findings collectively indicate that chronic gut inflammation and microbial dysbiosis in IBS are critical factors exacerbating AD, highlighting the integral relationship between gut and skin health.
Collapse
Affiliation(s)
- Jae-Hwan Jang
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul 05854, Republic of Korea
| | - Sun-Young Jang
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Anatomy and Information Sciences, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sora Ahn
- Department of Anatomy and Information Sciences, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Acupuncture & Meridian Science Research Center, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Ju-Young Oh
- Department of Anatomy and Information Sciences, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Acupuncture & Meridian Science Research Center, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Mijung Yeom
- Acupuncture & Meridian Science Research Center, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Seok-Jae Ko
- Department of Gastroenterology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jae-Woo Park
- Department of Gastroenterology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Soon-Kyeong Kwon
- Division of Applied Life Science (BK21), Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Kyuseok Kim
- Department of Ophthalmology, Otorhinolaryngology, and Dermatology of Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - In-Seon Lee
- Acupuncture & Meridian Science Research Center, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Meridian & Acupoint, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Dae-Hyun Hahm
- Acupuncture & Meridian Science Research Center, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Physiology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hi-Joon Park
- Department of Anatomy and Information Sciences, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Acupuncture & Meridian Science Research Center, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of KHU-KIST Convergence Science & Technology, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| |
Collapse
|
45
|
Tanelian A, Nankova B, Miari M, Sabban EL. Microbial composition, functionality, and stress resilience or susceptibility: unraveling sex-specific patterns. Biol Sex Differ 2024; 15:20. [PMID: 38409102 PMCID: PMC10898170 DOI: 10.1186/s13293-024-00590-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 01/31/2024] [Indexed: 02/28/2024] Open
Abstract
BACKGROUND Following exposure to traumatic stress, women are twice as likely as men to develop mood disorders. Yet, individual responses to such stress vary, with some people developing stress-induced psychopathologies while others exhibit resilience. The factors influencing sex-related disparities in affective disorders as well as variations in resilience remain unclear; however, emerging evidence suggests differences in the gut microbiota play a role. In this study, using the single prolonged stress (SPS) model of post-traumatic stress disorder, we investigated pre- and post-existing differences in microbial composition, functionality, and metabolites that affect stress susceptibility or resilience in each sex. METHODS Male and female Sprague-Dawley rats were randomly assigned to control or SPS groups. Two weeks following SPS, the animals were exposed to a battery of behavioral tests and decapitated a day later. Based on their anxiety index, they were further categorized as SPS-resilient (SPS-R) or SPS-susceptible (SPS-S). On the day of dissection, cecum, and selected brain tissues were isolated. Stool samples were collected before and after SPS, whereas urine samples were taken before and 30 min into the SPS. RESULTS Before SPS exposure, the sympathoadrenal axis exhibited alterations within male subgroups only. Expression of tight junction protein claudin-5 was lower in brain of SPS-S males, but higher in SPS-R females following SPS. Across the study, alpha diversity remained consistently lower in males compared to females. Beta diversity revealed distinct separations between male and female susceptible groups before SPS, with this separation becoming evident in the resilient groups following SPS. At the genus level, Lactobacillus, Lachnospiraceae_Incertae_Sedis, and Barnesiella exhibited sex-specific alterations, displaying opposing abundances in each sex. Additionally, sex-specific changes were observed in microbial predictive functionality and targeted functional modules both before and after SPS. Alterations in the microbial short-chain fatty acids (SCFAs), were also observed, with major and minor SCFAs being lower in SPS-susceptible males whereas branched-chain SCFAs being higher in SPS-susceptible females. CONCLUSION This study highlights distinct pre- and post-trauma differences in microbial composition, functionality, and metabolites, associated with stress resilience in male and female rats. The findings underscore the importance of developing sex-specific therapeutic strategies to effectively address stress-related disorders. Highlights SPS model induces divergent anxiety and social behavioral responses to traumatic stress in both male and female rodents. SPS-resilient females displayed less anxiety-like behavior and initiated more interactions towards a juvenile rat than SPS-resilient males. Sex-specific pre-existing and SPS-induced differences in the gut microbial composition and predictive functionality were observed in susceptible and resilient rats. SPS-resilient males displayed elevated cecal acetate levels, whereas SPS-susceptible females exhibited heightened branched-chain SCFAs.
Collapse
Affiliation(s)
- Arax Tanelian
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY, 10595, USA
| | - Bistra Nankova
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY, 10595, USA
- Division of Newborn Medicine, Departments of Pediatrics, New York Medical College, Valhalla, NY, 10595, USA
| | - Mariam Miari
- Department of Clinical Sciences in Malmo, Lund University Diabetes Center, Malmo, Sweden
| | - Esther L Sabban
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY, 10595, USA.
- Department of Psychiatry and Behavioral Science, New York Medical College, Valhalla, NY, 10595, USA.
| |
Collapse
|
46
|
Li W, Zhang Y, Chen M, Guo X, Ding Z. The antioxidant strain Lactiplantibacillus plantarum AS21 and Clostridium butyricum ameliorate DSS-induced colitis in mice by remodeling the assembly of intestinal microbiota and improving gut functions. Food Funct 2024; 15:2022-2037. [PMID: 38289370 DOI: 10.1039/d3fo05337g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Probiotics are known for their beneficial effects on improving intestinal function by alleviating the gut microbial diversity. However, the influences of antioxidant lactic acid bacteria (LAB) and anti-inflammatory Clostridium butyricum (CB) on ameliorating enteritis remain unclear. In this study, we investigated the effects of the antioxidant strain Lactiplantibacillus plantarum AS21 and CB alone, or in combination on intestinal microbiota, barrier function, oxidative stress and inflammation in mice with DSS-induced colitis. All probiotic treatments relieved the pathological development of colitis by improving the integrity of the intestinal mucosal barrier and the length of the colon. The probiotics also suppressed inflammation and oxidative stress by improving gut short-chain fatty acids and inhibiting the p38-MAPK/NF-κB pathway in colon tissues. According to the meta-network analysis, three distinct modules containing sensitive OTUs of the gut bacterial community specific to the control, DSS and DSS + probiotics groups were observed, and unlike the other two modules, Lachnospiraceae and Clostridia dominated the sensitive OTUs in the DSS + probiotics group. In addition, administration of the present probiotics particularly increased antioxidant and anti-inflammatory microbes Muribaculaceae, Bifidobacterium, Prevotellaceae and Alloprevotella. Furthermore, combined probiotic strain treatment showed a more stable anti-colitis effect than a single probiotic strain. Collectively, the present probiotics exhibited protective effects against colitis by suppressing the inflammation and oxidative damage in the colon, improving the gut microbiota and their functions, and consequently preventing the gut leak. The results indicate that the combination of the antioxidant properties of LAB and the anti-inflammatory properties of CB as nutritional intervention and adjuvant therapy could be an effective strategy to prevent and alleviate colitis.
Collapse
Affiliation(s)
- Wenyuan Li
- School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China.
- Probiotics and Life Health Institute, Lanzhou University, Lanzhou 730000, PR China
| | - Ying Zhang
- School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China.
- Probiotics and Life Health Institute, Lanzhou University, Lanzhou 730000, PR China
| | - Mengyan Chen
- School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China.
- Probiotics and Life Health Institute, Lanzhou University, Lanzhou 730000, PR China
| | - Xusheng Guo
- School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China.
- Probiotics and Life Health Institute, Lanzhou University, Lanzhou 730000, PR China
| | - Zitong Ding
- School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China.
- Probiotics and Life Health Institute, Lanzhou University, Lanzhou 730000, PR China
| |
Collapse
|
47
|
Jangi S, Moyer J, Sandlow S, Fu M, Chen H, Shum A, Hsia K, Cersosimo L, Yeliseyev V, Zhao N, Bry L, Michaud DS. Microbial butyrate capacity is reduced in inflamed mucosa in patients with ulcerative colitis. Sci Rep 2024; 14:3479. [PMID: 38347087 PMCID: PMC10861456 DOI: 10.1038/s41598-024-54257-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/10/2024] [Indexed: 02/15/2024] Open
Abstract
Reduced butyrate-production capacity has been reported in fecal microbial communities in patients with active ulcerative colitis. However, the butyrate-production capacity of the mucosal microbiome from active vs quiescent mucosa in ulcerative colitis has been unexplored. We sought to determine the diversity and relative abundance of mucosal bacterial and fungal communities from endoscopically active vs quiescent mucosa in patients with UC, and aimed to predict contributions of mucosal microbial communities to butyrate synthesis. Systematic, segmental right- and left-sided biopsies were obtained from endoscopically active (n = 13) or quiescent (n = 17) colonic mucosa, among 15 patients with pan-colonic ulcerative colitis. Dietary fiber intake of patients was performed using the validated five-item FiberScreen questionnaire. Amplicon sequencing of mucosal bacteria and fungi was performed. The diversity and relative abundance of mucosal bacterial and fungal taxa were quantified, and predicted contributions to butyrate synthesis were ascertained. Bacterial alpha and beta diversity were similar between active vs quiescent mucosa. Butyrogenic taxa were significantly increased in quiescence, including Butyricimonas, Subdoligranulum, and Alistipes. Predicted butyrate kinase activity was significantly and concomitantly increased in quiescent mucosa. Fiber intake was positively correlated with butyrogenic microbes. Compared to mucosal bacterial prevalence, mucosal fungi were detected in low prevalence. Butyrogenic microbes are relatively increased in quiescent mucosa in ulcerative colitis, and may be related to increased fiber intake during quiescence. Manipulation of the mucosal microbiome towards butyrate-producing bacteria may be associated with endoscopic quiescence.
Collapse
Affiliation(s)
- Sushrut Jangi
- Department of Medicine, Tufts Medical Center, Boston, MA, USA.
- Proger 3, Division of Gastroenterology, Tufts Medical Center, 800 Washington Street, Boston, MA, 02111, USA.
| | - John Moyer
- Department of Medicine, Tufts Medical Center, Boston, MA, USA
| | - Sarah Sandlow
- Department of Medicine, Tufts Medical Center, Boston, MA, USA
| | - May Fu
- Pathology and Laboratory Medicine, Tufts Medical Center, Boston, MA, USA
| | - Hannah Chen
- Pathology and Laboratory Medicine, Tufts Medical Center, Boston, MA, USA
| | - Ann Shum
- Department of Medicine, Tufts Medical Center, Boston, MA, USA
| | - Katie Hsia
- Department of Medicine, Tufts Medical Center, Boston, MA, USA
| | - Laura Cersosimo
- Department of Pathology, Brigham and Women's Hospital, 221 Longwood Ave, Boston, MA, USA
| | - Vladimir Yeliseyev
- Department of Pathology, Brigham and Women's Hospital, 221 Longwood Ave, Boston, MA, USA
| | - Naisi Zhao
- Public Health and Community Medicine, Tufts University School of Medicine, Boston, Ma, USA
| | - Lynn Bry
- Department of Pathology, Brigham and Women's Hospital, 221 Longwood Ave, Boston, MA, USA
| | - Dominique S Michaud
- Public Health and Community Medicine, Tufts University School of Medicine, Boston, Ma, USA
| |
Collapse
|
48
|
Yao Y, Liu Y, Xu Q, Mao L. Short Chain Fatty Acids: Essential Weapons of Traditional Medicine in Treating Inflammatory Bowel Disease. Molecules 2024; 29:379. [PMID: 38257292 PMCID: PMC10818876 DOI: 10.3390/molecules29020379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic and recurrent intestinal inflammatory disease, mainly including Crohn's disease (CD) and ulcerative colitis (UC). In recent years, the incidence and prevalence of IBD have been on the rise worldwide and have become a significant concern of health and a huge economic burden on patients. The occurrence and development of IBD involve a variety of pathogenic factors. The changes in short-chain fatty acids (SCFAs) are considered to be an important pathogenic mechanism of this disease. SCFAs are important metabolites in the intestinal microbial environment, which are closely involved in regulating immune, anti-tumor, and anti-inflammatory activities. Changes in metabolite levels can reflect the homeostasis of the intestinal microflora. Recent studies have shown that SCFAs provide energy for host cells and intestinal microflora, shape the intestinal environment, and regulate the immune system, thereby regulating intestinal physiology. SCFAs can effectively reduce the incidence of enteritis, cardiovascular disease, colon cancer, obesity, and diabetes, and also play an important role in maintaining the balance of energy metabolism (mainly glucose metabolism) and improving insulin tolerance. In recent years, many studies have shown that numerous decoctions and natural compounds of traditional Chinese medicine have shown promising therapeutic activities in multiple animal models of colitis and thus attracted increasing attention from scientists in the study of IBD treatment. Some of these traditional Chinese medicines or compounds can effectively alleviate colonic inflammation and clinical symptoms by regulating the generation of SCFAs. This study reviews the effects of various traditional Chinese medicines or bioactive substances on the production of SCFAs and their potential impacts on the severity of colonic inflammation. On this basis, we discussed the mechanism of SCFAs in regulating IBD-associated inflammation, as well as the related regulatory factors and signaling pathways. In addition, we provide our understanding of the limitations of current research and the prospects for future studies on the development of new IBD therapies by targeting SCFAs. This review may widen our understanding of the effect of traditional medicine from the view of SCFAs and their role in alleviating IBD animal models, thus contributing to the studies of IBD researchers.
Collapse
Affiliation(s)
- Yuan Yao
- Department of Immunology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong 226001, China; (Y.Y.); (Y.L.)
| | - Yongchao Liu
- Department of Immunology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong 226001, China; (Y.Y.); (Y.L.)
| | - Qiuyun Xu
- Basic Medical Research Center, School of Medicine, Nantong University, Nantong 226019, China
| | - Liming Mao
- Department of Immunology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong 226001, China; (Y.Y.); (Y.L.)
| |
Collapse
|
49
|
Amara J, Itani T, Hajal J, Bakhos JJ, Saliba Y, Aboushanab SA, Kovaleva EG, Fares N, Mondragon AC, Miranda JM. Circadian Rhythm Perturbation Aggravates Gut Microbiota Dysbiosis in Dextran Sulfate Sodium-Induced Colitis in Mice. Nutrients 2024; 16:247. [PMID: 38257139 PMCID: PMC10819604 DOI: 10.3390/nu16020247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
Circadian rhythm disruption is increasingly considered an environmental risk factor for the development and exacerbation of inflammatory bowel disease. We have reported in a previous study that nychthemeral dysregulation is associated with an increase in intestinal barrier permeability and inflammation in mice with dextran sulfate sodium (DSS)-induced colitis. To investigate the effect of circadian rhythm disruption on the composition and diversity of the gut microbiota (GM), sixty male C57BL/6J mice were initially divided to two groups, with the shifted group (n = 30) exposed to circadian shifts for three months and the non-shifted group (n = 30) kept under a normal light-dark cycle. The mice of the shifted group were cyclically housed for five days under the normal 12:12 h light-dark cycle, followed by another five days under a reversed light-dark cycle. At the end of the three months, a colitis was induced by 2% DSS given in the drinking water of 30 mice. Animals were then divided into four groups (n = 15 per group): sham group non-shifted (Sham-NS), sham group shifted (Sham-S), DSS non-shifted (DSS-NS) and DSS shifted (DSS-S). Fecal samples were collected from rectal content to investigate changes in GM composition via DNA extraction, followed by high-throughput sequencing of the bacterial 16S rRNA gene. The mouse GM was dominated by three phyla: Firmicutes, Bacteroidetes and Actinobacteria. The Firmicutes/Bacteroidetes ratio decreased in mice with induced colitis. The richness and diversity of the GM were reduced in the colitis group, especially in the group with inverted circadian rhythm. Moreover, the GM composition was modified in the inverted circadian rhythm group, with an increase in Alloprevotella, Turicibacter, Bacteroides and Streptococcus genera. Circadian rhythm inversion exacerbates GM dysbiosis to a less rich and diversified extent in a DSS-induced colitis model. These findings show possible interplay between circadian rhythm disruption, GM dynamics and colitis pathogenesis.
Collapse
Affiliation(s)
- Joseph Amara
- Laboratoire de Recherche en Physiologie et Physiopathologie, Pôle Technologie Santé, Faculté de Médecine, Université Saint Joseph, Beirut 1104 2020, Lebanon; (J.A.); (J.H.); (Y.S.)
| | - Tarek Itani
- Laboratoire de Microbiologie, Faculté de Pharmacie, Université Saint Joseph, Beirut 1104 2020, Lebanon;
| | - Joelle Hajal
- Laboratoire de Recherche en Physiologie et Physiopathologie, Pôle Technologie Santé, Faculté de Médecine, Université Saint Joseph, Beirut 1104 2020, Lebanon; (J.A.); (J.H.); (Y.S.)
| | - Jules-Joel Bakhos
- Laboratoire de Recherche en Physiologie et Physiopathologie, Pôle Technologie Santé, Faculté de Médecine, Université Saint Joseph, Beirut 1104 2020, Lebanon; (J.A.); (J.H.); (Y.S.)
| | - Youakim Saliba
- Laboratoire de Recherche en Physiologie et Physiopathologie, Pôle Technologie Santé, Faculté de Médecine, Université Saint Joseph, Beirut 1104 2020, Lebanon; (J.A.); (J.H.); (Y.S.)
| | - Saied A. Aboushanab
- Institute of Chemical Engineering, Ural Federal University Named after the First President of Russia B. N. Yeltsin, Mira 19, Yekaterinburg 620002, Russia; (S.A.A.); (E.G.K.)
| | - Elena G. Kovaleva
- Institute of Chemical Engineering, Ural Federal University Named after the First President of Russia B. N. Yeltsin, Mira 19, Yekaterinburg 620002, Russia; (S.A.A.); (E.G.K.)
| | - Nassim Fares
- Laboratoire de Recherche en Physiologie et Physiopathologie, Pôle Technologie Santé, Faculté de Médecine, Université Saint Joseph, Beirut 1104 2020, Lebanon; (J.A.); (J.H.); (Y.S.)
| | - Alicia C. Mondragon
- Laboratorio de Higiene, Inspección y Control de Alimentos, Departamento de Química Analítica, Nutrición y Bromatología, Campus Terra, Universidade da Santiago de Compostela, 27002 Lugo, Spain;
| | - Jose Manuel Miranda
- Laboratorio de Higiene, Inspección y Control de Alimentos, Departamento de Química Analítica, Nutrición y Bromatología, Campus Terra, Universidade da Santiago de Compostela, 27002 Lugo, Spain;
| |
Collapse
|
50
|
Kandari A, Odat MA, Alzaid F, Scott KP. Biotics and bacterial function: impact on gut and host health. THE ISME JOURNAL 2024; 18:wrae226. [PMID: 39499657 PMCID: PMC11631128 DOI: 10.1093/ismejo/wrae226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/08/2024] [Accepted: 11/04/2024] [Indexed: 11/07/2024]
Abstract
The human gut microbiota, the vast community of microbes inhabiting the gastrointestinal tract, plays a pivotal role in maintaining health. Bacteria are the most abundant organism, and the composition of bacterial communities is strongly influenced by diet. Gut bacteria can degrade complex dietary carbohydrates to produce bioactive compounds such as short-chain fatty acids. Such products influence health, by acting on systemic metabolism, or by virtue of anti-inflammatory or anti-carcinogenic properties. The composition of gut bacteria can be altered through overgrowth of enteropathogens (e.g. Campylobacter, Salmonella spp.), leading to dysbiosis of the gut ecosystem, with some species thriving under the altered conditions whereas others decline. Various "biotics" strategies, including prebiotics, probiotics, synbiotics, and postbiotics, contribute to re-establishing balance within the gut microbial ecosystem conferring health benefits. Prebiotics enhance growth of beneficial members of the resident microbial community and can thus prevent pathogen growth by competitive exclusion. Specific probiotics can actively inhibit the growth of pathogens, either through the production of bacteriocins or simply by reducing the gastrointestinal pH making conditions less favorable for pathogen growth. This review discusses the importance of a balanced gut ecosystem, and strategies to maintain it that contribute to human health.
Collapse
Affiliation(s)
- Anwar Kandari
- Dasman Diabetes Institute, Al-Soor Street, Dasman, 15462, Kuwait
- Ministry of Health, Sulaibkhat, Jamal Abdel Nasser Street, PO Box 5, 13001, Kuwait
| | - Ma’en Al Odat
- Medical Laboratory Science, Mutah University, Mutah, Karak 61710, Jordan
| | - Fawaz Alzaid
- Dasman Diabetes Institute, Al-Soor Street, Dasman, 15462, Kuwait
- INSERM UMR-S1151, CNRS UMR-S8253, Université Paris Cité, Institut Necker Enfants Malades, Paris, France
| | - Karen P Scott
- Gut Microbiology Group, Rowett Institute, University of Aberdeen, Aberdeen AB25 2ZD, UK
| |
Collapse
|