1
|
Liu DA, Chen S, Hu R, Qiu Y, Chen K, Xu Y, Yuan J, Zhang X, Li X. Advances in diagnostic assays for Clostridioides difficile infection in adults. Front Cell Infect Microbiol 2024; 14:1492511. [PMID: 39720791 PMCID: PMC11666450 DOI: 10.3389/fcimb.2024.1492511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 11/13/2024] [Indexed: 12/26/2024] Open
Abstract
Clostridioides difficile (C. difficile) was a gram-positive anaerobic bacterium in the gut, exhibiting clinical manifestations ranging from mild diarrhoea to fatal pseudomembranous colitis. C. difficile infection (CDI) remains a serious public health problem and accounted for an estimated 360,075 cases in the United States in 2021. It has attracted the utmost attention of the world health organization (WHO). Since publication of a review of the diagnosis of CDI in adults, new clinical diagnostic assays have become available and clinical practice guidelines were updated. This paper presents a comprehensive review of contemporary laboratory diagnostic approaches for CDI in adult patients, with a focus on the utilisation and potential advancements of five sophisticated methodologies, CRISPR in conjunction with nucleic acid amplification tests (NAATs), gene sequencing technology, ultra-high performance liquid chromatography-mass spectrometry, Raman spectroscopy, and real-time cell analysis (RTCA). It can provide new perspectives and ideas for the early diagnosis of CDI in clinical settings.
Collapse
Affiliation(s)
- Dong-ang Liu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Shiyu Chen
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Ruiyao Hu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Yuting Qiu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Keyi Chen
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Yue Xu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Jinghua Yuan
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Xinling Zhang
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Xiaoping Li
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| |
Collapse
|
2
|
Bernabè G, Castagliuolo I, Porzionato A, Casarotto G, Monte RD, Carpi A, Brun P. Insoluble polysaccharides produced in plant cell cultures protect from Clostridioides difficile colitis. Microbiol Res 2024; 286:127812. [PMID: 38954992 DOI: 10.1016/j.micres.2024.127812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/18/2024] [Accepted: 06/16/2024] [Indexed: 07/04/2024]
Abstract
Clostridioides difficile infection (CDI) poses a significant health threat due to high recurrence rates. Antimicrobial agents are commonly used to manage CDI-related diarrhoea; however, by aggravating intestinal dysbiosis, antibiotics enable C. difficile spores germination and production of toxins, the main virulence factors. Therefore, the binding of exotoxins using adsorbents represents an attractive alternative medication for the prevention and treatment of relapses. In this study, we provided evidence that the natural insoluble polysaccharides, named ABR119, extracted by plant cell cultures, effectively trap C. difficile toxins. In our experiments, ABR119 exhibited no cytotoxicity in vitro and was safely administered in vivo. In the animal model of C. difficile-associated colitis, ABR119 (50 mg/kg body weight) significantly reduced the colonic myeloperoxidase activity and severity of inflammation, preventing body weight loss. These effects were not evident when we treated animals with wheat bran polysaccharides. We did not detect bacterial killing effects of ABR119 against C. difficile nor against bacterial species of the normal gut microbiota. Moreover, ABR119 did not interfere in vitro with the antimicrobial activities of most clinically used antibiotics. In summary, ABR119 holds promise for treating and preventing C. difficile colitis by trapping the bacterial toxins, warranting further studies to assess the ABR119 potential in human infections caused by C. difficile.
Collapse
Affiliation(s)
- Giulia Bernabè
- University of Padova, Department of Molecular Medicine via A. Gabelli, 63, Padova 35121, Italy
| | - Ignazio Castagliuolo
- University of Padova, Department of Molecular Medicine via A. Gabelli, 63, Padova 35121, Italy; Microbiology Unit of Padua University Hospital, via N. Giustiniani, 2, Padova 35128, Italy
| | - Andrea Porzionato
- University of Padova, Department of Neurosciences, via A. Gabelli, 65, Padova 35121, Italy
| | - Gino Casarotto
- Active Botanicals Research, Via dell'Impresa, 1, Brendola, Vicenza 36040, Italy
| | - Renzo Dal Monte
- Active Botanicals Research, Via dell'Impresa, 1, Brendola, Vicenza 36040, Italy
| | - Andrea Carpi
- Active Botanicals Research, Via dell'Impresa, 1, Brendola, Vicenza 36040, Italy
| | - Paola Brun
- University of Padova, Department of Molecular Medicine via A. Gabelli, 63, Padova 35121, Italy.
| |
Collapse
|
3
|
Shen Y, Lin S, You P, Chen Y, Luo Y, Song X, Chen Y, Jin D. Rapid discrimination between clinical Clostridioides difficile infection and colonization by quantitative detection of TcdB toxin using a real-time cell analysis system. Front Microbiol 2024; 15:1348892. [PMID: 38322317 PMCID: PMC10844495 DOI: 10.3389/fmicb.2024.1348892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/08/2024] [Indexed: 02/08/2024] Open
Abstract
Objectives It is important to accurately discriminate between clinical Clostridioides difficile infection (CDI) and colonization (CDC) for effective antimicrobial treatment. Methods In this study, 37 stool samples were collected from 17 CDC and 20 CDI cases, and each sample were tested in parallel through the real-time cell analysis (RTCA) system, real-time PCR assay (PCR), and enzyme-linked immunosorbent assay (ELISA). Results RTCA-measured functional and toxical C. difficile toxin B (TcdB) concentrations in the CDI group (302.58 ± 119.15 ng/mL) were significantly higher than those in the CDC group (18.15 ± 11.81 ng/mL) (p = 0.0008). Conversely, ELISA results revealed no significant disparities in TcdB concentrations between the CDC (26.21 ± 3.57 ng/mL) and the CDI group (17.07 ± 3.10 ng/mL) (p = 0.064). PCR results indicated no significant differences in tcdB gene copies between the CDC (774.54 ± 357.89 copies/μL) and the CDI group (4,667.69 ± 3,069.87 copies/μL) (p = 0.407). Additionally, the functional and toxical TcdB concentrations secreted from C. difficile isolates were measured by the RTCA. The results from the CDC (490.00 ± 133.29 ng/mL) and the CDI group (439.82 ± 114.66 ng/mL) showed no significant difference (p = 0.448). Notably, RTCA-measured functional and toxical TcdB concentration was significantly decreased when mixed with pooled CDC samples supernatant (p = 0.030). Conclusion This study explored the novel application of the RTCA assay in effectively discerning clinical CDI from CDC cases.
Collapse
Affiliation(s)
- Yuhang Shen
- School of Laboratory Medicine, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Biomarkers and In Vitro Diagnosis Translation of Zhejiang Province, Hangzhou, China
- Institute of Ageing Research, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
| | - Shan Lin
- School of Laboratory Medicine, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Biomarkers and In Vitro Diagnosis Translation of Zhejiang Province, Hangzhou, China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
| | - Peijun You
- School of Laboratory Medicine, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Biomarkers and In Vitro Diagnosis Translation of Zhejiang Province, Hangzhou, China
| | - Yu Chen
- School of Laboratory Medicine, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Biomarkers and In Vitro Diagnosis Translation of Zhejiang Province, Hangzhou, China
| | - Yun Luo
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Xiaojun Song
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Yunbo Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Dazhi Jin
- School of Laboratory Medicine, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Biomarkers and In Vitro Diagnosis Translation of Zhejiang Province, Hangzhou, China
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital, Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
4
|
Kordus SL, Kroh HK, Rodríguez RC, Shrem RA, Peritore-Galve FC, Shupe JA, Wadzinski BE, Lacy DB, Spiller BW. Nanobodies against C. difficile TcdA and TcdB reveal unexpected neutralizing epitopes and provide a toolkit for toxin quantitation in vivo. PLoS Pathog 2023; 19:e1011496. [PMID: 37871122 PMCID: PMC10621975 DOI: 10.1371/journal.ppat.1011496] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 11/02/2023] [Accepted: 10/07/2023] [Indexed: 10/25/2023] Open
Abstract
Clostridioides difficile is a leading cause of antibiotic-associated diarrhea and nosocomial infection in the United States. The symptoms of C. difficile infection (CDI) are associated with the production of two homologous protein toxins, TcdA and TcdB. The toxins are considered bona fide targets for clinical diagnosis as well as the development of novel prevention and therapeutic strategies. While there are extensive studies that document these efforts, there are several gaps in knowledge that could benefit from the creation of new research tools. First, we now appreciate that while TcdA sequences are conserved, TcdB sequences can vary across the span of circulating clinical isolates. An understanding of the TcdA and TcdB epitopes that drive broadly neutralizing antibody responses could advance the effort to identify safe and effective toxin-protein chimeras and fragments for vaccine development. Further, an understanding of TcdA and TcdB concentration changes in vivo can guide research into how host and microbiome-focused interventions affect the virulence potential of C. difficile. We have developed a panel of alpaca-derived nanobodies that bind specific structural and functional domains of TcdA and TcdB. We note that many of the potent neutralizers of TcdA bind epitopes within the delivery domain, a finding that could reflect roles of the delivery domain in receptor binding and/or the conserved role of pore-formation in the delivery of the toxin enzyme domains to the cytosol. In contrast, neutralizing epitopes for TcdB were found in multiple domains. The nanobodies were also used for the creation of sandwich ELISA assays that allow for quantitation of TcdA and/or TcdB in vitro and in the cecal and fecal contents of infected mice. We anticipate these reagents and assays will allow researchers to monitor the dynamics of TcdA and TcdB production over time, and the impact of various experimental interventions on toxin production in vivo.
Collapse
Affiliation(s)
- Shannon L. Kordus
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Heather K. Kroh
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Rubén Cano Rodríguez
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Rebecca A. Shrem
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - F. Christopher Peritore-Galve
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - John A. Shupe
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Brian E. Wadzinski
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - D. Borden Lacy
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, Tennessee, United States of America
| | - Benjamin W. Spiller
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, United States of America
| |
Collapse
|
5
|
Mah R, Locher K, Steiner TS, Stefanovic A. Clostridioides difficile PCR Tcdb Cycle Threshold predicts toxin EIA positivity but not severity of infection. Anaerobe 2023; 82:102755. [PMID: 37406762 DOI: 10.1016/j.anaerobe.2023.102755] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 06/10/2023] [Accepted: 06/21/2023] [Indexed: 07/07/2023]
Abstract
BACKGROUND Diagnosis of Clostridioides difficile Infection (CDI) entails compatible clinical presentation and laboratory findings. We evaluated real-time polymerase chain reaction (qPCR) cycle threshold (CT) as a predictor for disease severity and TcdB enzyme immunoassay (EIA) results. METHODS Inpatients or emergency department patients who tested positive for tcdB gene by PCR were evaluated. Patients' stools underwent testing for GDH and TcdA/B by EIA. Medical health records were reviewed for demographic, clinical presentation, laboratory, treatment and outcome data. Severity of CDI was calculated using various severity score indexes. RESULTS The median CT of cases was 32.05 ± 5.45. The optimal cut-off for predicting toxin EIA positivity and severe CDI based on chart review was 32.6 and 29.8, respectively, with the area under the receiver operator characteristics curve (AUC) of 0.74 and 0.60 respectively. CONCLUSION CT value was an acceptable predictor for EIA toxin but less so for clinical severity. Our study potentially supports a diagnostic algorithm including CT value to reduce the number of EIA toxin assays performed.
Collapse
Affiliation(s)
- Regan Mah
- Faculty of Medicine, University of British Columbia, 899 W 12th Ave, Vancouver, BC V5Z 1M9, Canada.
| | - Kerstin Locher
- Department of Pathology and Laboratory Medicine, University of British Columbia, Rm. G227 - 2211 Wesbrook Mall, Vancouver, BC, V6T 2B5, Canada.
| | - Theodore S Steiner
- Division of Infectious Diseases, University of British Columbia, Rm. C328 Heather Pavilion East, VGH 2733 Heather Street, Vancouver, BC, Canada.
| | - Aleksandra Stefanovic
- Division of Medical Microbiology and Virology, St. Paul's Hospital, Providence Room 2150, 1081 Burrard Street, Vancouver, BC V6Z 1Y6, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Providence Room 2150, 1081 Burrard Street, Vancouver, BC V6Z 1Y6, Canada.
| |
Collapse
|
6
|
Icho S, Ward JS, Tam J, Kociolek LK, Theriot CM, Melnyk RA. Intestinal bile acids provide a surmountable barrier against C. difficile TcdB-induced disease pathogenesis. Proc Natl Acad Sci U S A 2023; 120:e2301252120. [PMID: 37126691 PMCID: PMC10175849 DOI: 10.1073/pnas.2301252120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 04/04/2023] [Indexed: 05/03/2023] Open
Abstract
Intestinal bile acids play an essential role in the Clostridioides difficile lifecycle having been shown in vitro to modulate various aspects of pathogenesis, including spore germination, vegetative growth, and more recently the action of the primary virulence determinant, TcdB. Here, we investigated whether physiological levels of the total pool of intestinal bile acids in mice and humans protect against TcdB action. Small molecules extracted from the lumenal contents of the small intestine, cecum, colon, and feces were found to inhibit TcdB in accordance with the differential amounts of total bile acids in each compartment. Extracts from antibiotic-treated and germ-free mice, despite harboring dramatically altered bile acid profiles, unexpectedly also prevented TcdB-induced cell rounding to similar extents. We show that protection, however, is surmountable and can be overcome at higher doses of TcdB-typical to those seen during severe C. difficile infection-suggesting that the protective properties of intestinal bile acids are operant primarily under low to moderate toxin levels. Taken together, these findings demonstrate a role for intestinal bile acids in attenuating virulence, provide insights into asymptomatic carriage of toxigenic C. difficile, and inform strategies to manipulate bile acid levels for therapeutic benefit.
Collapse
Affiliation(s)
- Simoun Icho
- Molecular Medicine Program, The Hospital for Sick Children Research Institute, Toronto, ONM5G 0A4
- Department of Biochemistry, University of Toronto, Toronto, ONM5S 1A8
| | - Jennifer S. Ward
- Molecular Medicine Program, The Hospital for Sick Children Research Institute, Toronto, ONM5G 0A4
- Department of Biochemistry, University of Toronto, Toronto, ONM5S 1A8
| | - John Tam
- Molecular Medicine Program, The Hospital for Sick Children Research Institute, Toronto, ONM5G 0A4
| | - Larry K. Kociolek
- Ann & Robert H. Lurie, Children’s Hospital of Chicago, Chicago, IL60611
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL60611
| | - Casey M. Theriot
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC27606
| | - Roman A. Melnyk
- Molecular Medicine Program, The Hospital for Sick Children Research Institute, Toronto, ONM5G 0A4
- Department of Biochemistry, University of Toronto, Toronto, ONM5S 1A8
| |
Collapse
|
7
|
Schwenk HT, Pollock NR, Vaughan-Malloy AM. Pediatric Clostridioides difficile Infection: Diagnosis and Diagnostic Stewardship. J Pediatric Infect Dis Soc 2021; 10:S16-S21. [PMID: 34791395 DOI: 10.1093/jpids/piab054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Although the pathogenesis of Clostridioides difficile infection (CDI) is complex and incompletely understood, it is believed that the elaboration of C. difficile toxins is necessary for disease. There are a variety of tests available for the detection of both the C. difficile organism and its toxins; however, each has limitations and the best application of these tests to the diagnosis of CDI in children remains uncertain. Nucleic acid amplification tests are unable to reliably discriminate between CDI and C. difficile colonization, while commercially available enzyme immunoassays for toxin detection lack sensitivity. An understanding of preanalytic factors, relevant patient features, and test performance characteristics is essential to the accurate diagnosis of CDI in children. Specific diagnostic stewardship strategies can also increase the likelihood that positive tests reflect disease rather than colonization. Ultimately, CDI remains a clinical diagnosis and clinical judgment is essential when interpreting test results, regardless of the methods used.
Collapse
Affiliation(s)
- Hayden T Schwenk
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Stanford University School of Medicine, Stanford, California, USA
| | - Nira R Pollock
- Department of Laboratory Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Ana M Vaughan-Malloy
- Department of Pediatrics, Boston Children's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
8
|
Alonso CD, Kelly CP, Garey KW, Gonzales-Luna AJ, Williams D, Daugherty K, Cuddemi C, Villafuerte-Gálvez J, White NC, Chen X, Xu H, Sprague R, Barrett C, Miller M, Foussadier A, Lantz A, Banz A, Pollock NR. Ultrasensitive and quantitative toxin measurement correlates with baseline severity, severe outcomes, and recurrence among hospitalized patients with Clostridioides difficile infection. Clin Infect Dis 2021; 74:2142-2149. [PMID: 34537841 DOI: 10.1093/cid/ciab826] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Stool toxin concentrations may impact Clostridioides difficile infection (CDI) severity and outcomes. We correlated fecal C. difficile toxin concentrations, measured by an ultrasensitive and quantitative assay, with CDI baseline severity, attributable outcomes, and recurrence. METHODS We enrolled 615 hospitalized adults (≥ 18y) with CDI (acute diarrhea, positive stool NAAT, and decision to treat). Baseline stool toxin A and B concentrations were measured by Single Molecule Array. Subjects were classified by baseline CDI severity (four scoring methods) and outcomes within 40 days (death, ICU stay, colectomy, and recurrence). RESULTS Among 615 patients (median 68.0 years), in all scoring systems, subjects with severe baseline disease had higher stool toxin A+B concentrations than those without (P<0.01). Nineteen subjects (3.1%) had a severe outcome primarily-attributed to CDI (group 1). This group had higher median toxin A+B [14,303 pg/mL (IQR 416.0, 141,967)] than subjects in whom CDI only contributed to the outcome [group 2, 163.2 pg/mL(0.0, 8423.3)], subjects with severe outcome unrelated to CDI [group 3, 158.6 pg/mL (0.0, 1795.2)], or no severe outcome [group 4, 209.5 pg/mL (0.0, 8566.3)](P=0.003). Group 1 was more likely to have detectable toxin (94.7%) than groups 2-4 (60.5-66.1%)(P=0.02). Individuals with recurrence had higher toxin A+B [2266.8 pg/mL(188.8, 29411)] than those without [154.0 pg/mL(0.0, 5864.3)](P<0.001) and higher rates of detectable toxin (85.7% versus 64.0%, P=0.004). CONCLUSIONS In CDI patients, ultrasensitive stool toxin detection and concentration correlated with severe baseline disease, severe CDI-attributable outcomes, and recurrence, confirming the contribution of toxin quantity to disease presentation and clinical course.
Collapse
Affiliation(s)
- Carolyn D Alonso
- Division of Infectious Disease, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Ciarán P Kelly
- Harvard Medical School, Boston, MA, USA.,Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Kevin W Garey
- Department of Pharmacy Practice and Translational Research, University of Houston College, of Pharmacy, Houston, TX, USA
| | - Anne J Gonzales-Luna
- Department of Pharmacy Practice and Translational Research, University of Houston College, of Pharmacy, Houston, TX, USA
| | - David Williams
- Institutional Centers for Clinical and Translational Research, Boston Children's Hospital, Boston, MA, USA
| | - Kaitlyn Daugherty
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Christine Cuddemi
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Javier Villafuerte-Gálvez
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Nicole C White
- Division of Infectious Disease, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Xinhua Chen
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Hua Xu
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Rebecca Sprague
- Division of Infectious Disease, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA.,Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Caitlin Barrett
- Division of Infectious Disease, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA.,Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | | | | | | | | | - Nira R Pollock
- Division of Infectious Disease, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA.,Department of Laboratory Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
9
|
Hassanain WA, Spoors J, Johnson CL, Faulds K, Keegan N, Graham D. Rapid ultra-sensitive diagnosis of clostridium difficile infection using a SERS-based lateral flow assay. Analyst 2021; 146:4495-4505. [PMID: 34184680 DOI: 10.1039/d1an00726b] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Clostridium difficile (C. diff) infection is one of the most contagious diseases associated with high morbidity and mortality rates in hospitalised patients. Accurate diagnosis can slow its spread by determining the most effective treatment. Herein, we report a novel testing platform as a proof-of-concept for the selective, sensitive, rapid and cost-effective diagnosis of C. diff infection (CDI) based on a duplex measurement. This was achieved by detecting two specific biomarkers, surface layer protein A (SlpA) and toxin B (ToxB), using a surface enhanced Raman scattering-based lateral flow assay (SERS-based LFA). The simultaneous duplex detection of SlpA with ToxB has not been described for the clinical diagnosis of CDI previously. The SlpA biomarker "AKDGSTKEDQLVDALA" was first reported by our group in 2018 as a species-specific identification tool. The second biomarker, ToxB, is the essential virulence biomarker of C. diff pathogenic strains and is required to confirm true infection pathogenicity. The proposed SERS-based LFA platform enabled rapid duplex detection of SlpA and ToxB on separate test lines using a duplex LF test strip within 20 minutes. The use of a handheld Raman spectrometer to scan test lines allowed for the highly sensitive quantitative detection of both biomarkers with a lowest observable concentration of 0.01 pg μL-1. The use of a handheld device in this SERS-based LFA instead of benchtop machine paves the way for rapid, selective, sensitive and cheap clinical evaluation of CDI at the point of care (POC) with minimal sample backlog.
Collapse
Affiliation(s)
- Waleed A Hassanain
- Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, Glasgow, G1 1RD, UK.
| | - Julia Spoors
- Diagnostic and Therapeutic Technologies, Translational and Clinical Research Institute, Newcastle University, Newcastle-Upon-Tyne, NE2 4HH, UK.
| | - Christopher L Johnson
- Diagnostic and Therapeutic Technologies, Translational and Clinical Research Institute, Newcastle University, Newcastle-Upon-Tyne, NE2 4HH, UK.
| | - Karen Faulds
- Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, Glasgow, G1 1RD, UK.
| | - Neil Keegan
- Diagnostic and Therapeutic Technologies, Translational and Clinical Research Institute, Newcastle University, Newcastle-Upon-Tyne, NE2 4HH, UK.
| | - Duncan Graham
- Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, Glasgow, G1 1RD, UK.
| |
Collapse
|
10
|
Xu X, Luo Y, Chen H, Song X, Bian Q, Wang X, Liang Q, Zhao J, Li C, Song G, Yang J, Sun L, Jiang J, Wang H, Zhu B, Ye G, Chen L, Tang YW, Jin D. Genomic evolution and virulence association of Clostridioides difficile sequence type 37 (ribotype 017) in China. Emerg Microbes Infect 2021; 10:1331-1345. [PMID: 34125660 PMCID: PMC8253194 DOI: 10.1080/22221751.2021.1943538] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Clostridioides difficile sequence type (ST) 37 (ribotype 017) is one of the most prevalent genotypes circulating in China. However, its genomic evolution and virulence determinants were rarely explored. Whole-genome sequencing, phylogeographic and phylogenetic analyses were conducted for C. difficile ST37 isolates. The 325 ST37 genomes from six continents, including North America (n = 66), South America (n = 4), Oceania (n = 7), Africa (n = 9), Europe (n = 138) and Asia (n = 101), were clustered into six major lineages, with region-dependent distributions, harbouring an array of antibiotic-resistance genes. The ST37 strains from China were divided into four distinct sublineages, showing five importation times and international sources. Isolates associated with severe infections exhibited significantly higher toxin productions, tcdB mRNA levels, and sporulation capacities (P < 0.001). Kyoto Encyclopedia of Genes and Genomes analysis showed 10 metabolic pathways were significantly enriched in the mutations among isolates associated with severe CDI (P < 0.05). Gene mutations in glycometabolism, amino acid metabolism and biosynthesis virtually causing instability in protein activity were correlated positively to the transcription of tcdR and negatively to the expression of toxin repressor genes, ccpA and codY. In summary, our study firstly presented genomic insights into genetic characteristics and virulence association of C. difficile ST37 in China. Gene mutations in certain important metabolic pathways are associated with severe symptoms and correlated with higher virulence in C. difficile ST37 isolates.
Collapse
Affiliation(s)
- Xingxing Xu
- Department of Clinical Laboratory, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.,School of Laboratory Medicine, Hangzhou Medical College, Hangzhou, People's Republic of China
| | - Yuo Luo
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Huan Chen
- Key Laboratory of Microorganism technology and bioinformatics research of Zhejiang Province, Hangzhou, People's Republic of China.,NMPA Key Laboratory For Testing and Risk Warning of Pharmaceutical Microbiology, Hangzhou, People's Republic of China
| | - Xiaojun Song
- Centre of Laboratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, People's Republic of China
| | - Qiao Bian
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, People's Republic of China
| | - Xianjun Wang
- Department of Laboratory Medicine, Hangzhou First People's Hospital, Hangzhou, People's Republic of China
| | - Qian Liang
- Key Laboratory of Microorganism technology and bioinformatics research of Zhejiang Province, Hangzhou, People's Republic of China.,NMPA Key Laboratory For Testing and Risk Warning of Pharmaceutical Microbiology, Hangzhou, People's Republic of China
| | - Jianhong Zhao
- Department of Clinical Microbiology, Second Hospital of Hebei Medical University, Hebei Provincial Center for Clinical Laboratories, Shijiazhuang, People's Republic of China
| | - Chunhui Li
- Infection Control Center, Xiangya Hospital of Central South University, Changsha, People's Republic of China
| | - Guangzhong Song
- School of Laboratory Medicine, Hangzhou Medical College, Hangzhou, People's Republic of China
| | - Jun Yang
- School of Laboratory Medicine, Hangzhou Medical College, Hangzhou, People's Republic of China
| | - Lingli Sun
- Key Laboratory of Microorganism technology and bioinformatics research of Zhejiang Province, Hangzhou, People's Republic of China.,NMPA Key Laboratory For Testing and Risk Warning of Pharmaceutical Microbiology, Hangzhou, People's Republic of China
| | - Jianmin Jiang
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, People's Republic of China
| | - Huanying Wang
- Key Laboratory of Microorganism technology and bioinformatics research of Zhejiang Province, Hangzhou, People's Republic of China.,NMPA Key Laboratory For Testing and Risk Warning of Pharmaceutical Microbiology, Hangzhou, People's Republic of China
| | - Bo Zhu
- Department of Clinical Laboratory, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Guangyong Ye
- Department of Clinical Laboratory, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Liang Chen
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA.,Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, NJ, USA
| | - Yi-Wei Tang
- Cepheid, Danaher Diagnostic Platform, Shanghai, People's Republic of China
| | - Dazhi Jin
- School of Laboratory Medicine, Hangzhou Medical College, Hangzhou, People's Republic of China.,Centre of Laboratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, People's Republic of China
| |
Collapse
|
11
|
Ranftler C, Nagl D, Sparer A, Röhrich A, Freissmuth M, El-Kasaby A, Nasrollahi Shirazi S, Koban F, Tschegg C, Nizet S. Binding and neutralization of C. difficile toxins A and B by purified clinoptilolite-tuff. PLoS One 2021; 16:e0252211. [PMID: 34043688 PMCID: PMC8158989 DOI: 10.1371/journal.pone.0252211] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 05/11/2021] [Indexed: 12/31/2022] Open
Abstract
Clostridioides difficile (C. difficile) infection is a major public health problem worldwide. The current treatment of C. difficile-associated diarrhea relies on the use of antibacterial agents. However, recurrences are frequent. The main virulence factors of C. difficile are two secreted cytotoxic proteins toxin A and toxin B. Alternative research exploring toxin binding by resins found a reduced rate of recurrence by administration of tolevamer. Hence, binding of exotoxins may be useful in preventing a relapse provided that the adsorbent is innocuous. Here, we examined the toxin binding capacity of G-PUR®, a purified version of natural clinoptilolite-tuff. Our observations showed that the purified clinoptilolite-tuff adsorbed clinically relevant amounts of C. difficile toxins A and B in vitro and neutralized their action in a Caco-2 intestinal model. This conclusion is based on four independent sets of findings: G-PUR® abrogated toxin-induced (i) RAC1 glucosylation, (ii) redistribution of occludin, (iii) rarefaction of the brush border as visualized by scanning electron microscopy and (iv) breakdown of the epithelial barrier recorded by transepithelial electrical resistance monitoring. Finally, we confirmed that the epithelial monolayer tolerated G-PUR® over a wide range of particle densities. Our findings justify the further exploration of purified clinoptilolite-tuff as a safe agent in the treatment and/or prevention of C. difficile-associated diarrhea.
Collapse
Affiliation(s)
- Carmen Ranftler
- GLOCK Health, Science and Research G.m.b.H., Deutsch-Wagram, Austria
| | - Dietmar Nagl
- GLOCK Health, Science and Research G.m.b.H., Deutsch-Wagram, Austria
| | - Andreas Sparer
- GLOCK Health, Science and Research G.m.b.H., Deutsch-Wagram, Austria
| | - Andreas Röhrich
- GLOCK Health, Science and Research G.m.b.H., Deutsch-Wagram, Austria
| | - Michael Freissmuth
- Institute of Pharmacology & Gaston H. Glock Research Laboratories for Explorative Drug Development, Centre of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Ali El-Kasaby
- Institute of Pharmacology & Gaston H. Glock Research Laboratories for Explorative Drug Development, Centre of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Shahrooz Nasrollahi Shirazi
- Institute of Pharmacology & Gaston H. Glock Research Laboratories for Explorative Drug Development, Centre of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Florian Koban
- Institute of Pharmacology & Gaston H. Glock Research Laboratories for Explorative Drug Development, Centre of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Cornelius Tschegg
- GLOCK Health, Science and Research G.m.b.H., Deutsch-Wagram, Austria
| | - Stephane Nizet
- GLOCK Health, Science and Research G.m.b.H., Deutsch-Wagram, Austria
- * E-mail:
| |
Collapse
|
12
|
Bernardo L, Corallo L, Caterini J, Su J, Gisonni-Lex L, Gajewska B. Application of xCELLigence real-time cell analysis to the microplate assay for pertussis toxin induced clustering in CHO cells. PLoS One 2021; 16:e0248491. [PMID: 33720984 PMCID: PMC7959359 DOI: 10.1371/journal.pone.0248491] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/27/2021] [Indexed: 02/06/2023] Open
Abstract
The microplate assay with Chinese Hamster Ovary (CHO) cells is currently used as a safety test to monitor the residual pertussis toxin (PT) amount in acellular pertussis antigens prior to vaccine formulation. The assay is based on the findings that the exposure of CHO cells to PT results in a concentration-dependent clustering response which can be used to estimate the amount of PT in a sample preparation. A major challenge with the current CHO cell assay methodology is that scoring of PT-induced clustering is dependent on subjective operator visual assessment using light microscopy. In this work, we have explored the feasibility of replacing the microscopy readout for the CHO cell assay with the xCELLigence Real-Time Cell Analysis system (ACEA BioSciences, a part of Agilent). The xCELLigence equipment is designed to monitor cell adhesion and growth. The electrical impedance generated from cell attachment and proliferation is quantified via gold electrodes at the bottom of the cell culture plate wells, which is then translated into a unitless readout called cell index. Results showed significant decrease in the cell index readouts of CHO cells exposed to PT compared to the cell index of unexposed CHO cells. Similar endpoint concentrations were obtained when the PT reference standard was titrated with either xCELLigence or microscopy. Testing genetically detoxified pertussis samples unspiked or spiked with PT further supported the sensitivity and reproducibility of the xCELLigence assay in comparison with the conventional microscopy assay. In conclusion, the xCELLigence RTCA system offers an alternative automated and higher throughput method for evaluating PT-induced clustering in CHO cells.
Collapse
Affiliation(s)
- Lidice Bernardo
- Department of Analytical Sciences, Sanofi Pasteur, Toronto, ON, Canada
- * E-mail:
| | - Lucas Corallo
- Department of Analytical Sciences, Sanofi Pasteur, Toronto, ON, Canada
| | - Judy Caterini
- Department of Analytical Sciences, Sanofi Pasteur, Toronto, ON, Canada
| | - Jin Su
- Department of Analytical Sciences, Sanofi Pasteur, Toronto, ON, Canada
| | - Lucy Gisonni-Lex
- Department of Analytical Sciences, Sanofi Pasteur, Toronto, ON, Canada
| | - Beata Gajewska
- Department of Analytical Sciences, Sanofi Pasteur, Toronto, ON, Canada
| |
Collapse
|
13
|
Faecal microbiota transplantation for Clostridioides difficile: mechanisms and pharmacology. Nat Rev Gastroenterol Hepatol 2021; 18:67-80. [PMID: 32843743 DOI: 10.1038/s41575-020-0350-4] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/07/2020] [Indexed: 12/14/2022]
Abstract
Faecal microbiota transplantation (FMT) has emerged as a remarkably successful treatment for recurrent Clostridioides difficile infection that cannot be cured with antibiotics alone. Understanding the complex biology and pathogenesis of C. difficile infection, which we discuss in this Perspective, is essential for understanding the potential mechanisms by which FMT cures this disease. Although FMT has already entered clinical practice, different microbiota-based products are currently in clinical trials and are vying for regulatory approval. However, all these therapeutics belong to an entirely new class of agents that require the development of a new branch of pharmacology. Characterization of microbiota therapeutics uses novel and rapidly evolving technologies and requires incorporation of microbial ecology concepts. Here, we consider FMT within a pharmacological framework, including its essential elements: formulation, pharmacokinetics and pharmacodynamics. From this viewpoint, multiple gaps in knowledge become apparent, identifying areas that require systematic research. This knowledge is needed to help clinical providers use microbiota therapeutics appropriately and to facilitate development of next-generation microbiota products with improved safety and efficacy. The discussion here is limited to FMT as a representative of microbiota therapeutics and recurrent C. difficile as the indication; however, consideration of the intrinsic basic principles is relevant to this entire class of microbiota-based therapeutics.
Collapse
|
14
|
Ultrasensitive Clostridioides difficile Toxin Testing for Higher Diagnostic Accuracy. J Clin Microbiol 2020; 58:JCM.01913-19. [PMID: 32269098 DOI: 10.1128/jcm.01913-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Currently available diagnostic tests for Clostridioides difficile infection (CDI) lack specificity or sensitivity, which has led to guideline recommendations for multistep testing algorithms. Ultrasensitive assays for detection of C. difficile toxins provide measurements of disease-specific markers at very low concentrations. These assays may show improved accuracy compared to that of current testing methods and offer a potential standalone solution for CDI diagnosis, although large studies of clinical performance and accuracy are lacking.
Collapse
|
15
|
Stefanowicz-Hajduk J, Ochocka JR. Real-time cell analysis system in cytotoxicity applications: Usefulness and comparison with tetrazolium salt assays. Toxicol Rep 2020; 7:335-344. [PMID: 32090021 PMCID: PMC7025972 DOI: 10.1016/j.toxrep.2020.02.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/31/2020] [Accepted: 02/06/2020] [Indexed: 01/08/2023] Open
Abstract
RTCA system allows to easily monitor cell adhesion and proliferation. The real-time impedance technique is widely used in many toxicological studies. RTCA results are generally comparable with results from tetrazolium salts assays. RTCA analysis should be limited when drugs with electroactive additives are tested. Tetrazolium salts assays should be avoided when colored compounds are studied.
Real-time cell analysis (RTCA) is a technique based on impedance and microsensor electrodes. RTCA system allows label-free, real-time, and continuous monitoring of cell adhesion, morphology, and rate of cell proliferation. The system offers a wide range of applications, mainly in toxicological studies, new drug screening, and microbiology. Here, we describe the usefulness of the system in different applications and compare this technology with conventional endpoint assays based on tetrazolium salts. We present advantages and disadvantages of the system and endpoint methods and their limitations in cytotoxicity investigations.
Collapse
Affiliation(s)
- Justyna Stefanowicz-Hajduk
- Department of Biology and Pharmaceutical Botany, Medical University of Gdańsk, Al. Hallera 107, 80-416, Gdańsk, Poland
| | - J Renata Ochocka
- Department of Biology and Pharmaceutical Botany, Medical University of Gdańsk, Al. Hallera 107, 80-416, Gdańsk, Poland
| |
Collapse
|
16
|
Zhao L, Luo Y, Bian Q, Wang L, Ye J, Song X, Jiang J, Tang YW, Wang X, Jin D. High-Level Resistance of Toxigenic Clostridioides difficile Genotype to Macrolide-Lincosamide- Streptogramin B in Community Acquired Patients in Eastern China. Infect Drug Resist 2020; 13:171-181. [PMID: 32021331 PMCID: PMC6974413 DOI: 10.2147/idr.s238916] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 12/26/2019] [Indexed: 01/02/2023] Open
Abstract
Background Clostridioides difficile resistant to macrolide-lincosamide-streptogramin B (MLSB) has not been reported in China. Methods In a cross-sectional study in two tertiary hospitals, C. difficile isolates from stool specimens from community-onset, hospital-associated diarrheal patients were analyzed for toxin genes, genotype, and antibiotic resistance, and the patients’ clinical charts were reviewed. Results A total of 190 (15.2%) isolates (102 A+B+ and 88 A−B+) from 1250 community acquired (CA) patients were recovered and all were susceptible to vancomycin and metronidazole. High-level resistance (minimum inhibitory concentration > 128 mg/L) to erythromycin and clindamycin was recorded in 77.9% and 88.4% of the tested isolates, respectively. Furthermore, 89.3% (159/178) of the isolates resistant to MLSB carried the erythromycin resistance methylase gene (ermB). The statistically significant factors associated with C. difficile infection (CDI) induced by A−B+ isolates with MLSB resistance included a severity score of >2 (odds ratio [95% confidence interval], 7.43 [2.31–23.87]) and platelet count (cells × 109 cells/L) < 100 [5.19 (1.58–17.04)]. The proportion of A−B+ increased with enhanced CDI severity (x2 = 21.62, P < 0.001), which was significantly higher than that of ermB-positive A+B+ in severity score of 4 (x2 = 8.61, P = 0.003). The average severity score of ermB-positive isolates was significantly higher than that of ermB-negative isolates in A−B+ (Z = −2.41, P = 0.016). Conclusion The ermB-positive A−B+C. difficile with MLSB resistance is described for the first time as a potential epidemic clone inducing severe CDI in CA diarrheal patients in Eastern China.
Collapse
Affiliation(s)
- Longyou Zhao
- Lishui Second People's Hospital, Lishui, Zhejiang, People's Republic of China
| | - Yun Luo
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Qiao Bian
- School of Medicine, Ningbo University, Ningbo, Zhejiang, People's Republic of China.,Centre of Laboratory Medicine, Zhejiang Provincial People Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, People's Republic of China
| | - Liqian Wang
- Department of Laboratory Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
| | - Julian Ye
- Department of Microbiology, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, People's Republic of China
| | - Xiaojun Song
- Centre of Laboratory Medicine, Zhejiang Provincial People Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, People's Republic of China.,School of Laboratory Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, People's Republic of China
| | - Jianmin Jiang
- Department of Microbiology, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, People's Republic of China.,Key Laboratory of Vaccine, Prevention and Control of Infectious Disease of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Yi-Wei Tang
- Department of Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, New York, NY, USA.,Cepheid, Danaher Diagnostic Platform, Shanghai, People's Republic of China
| | - Xianjun Wang
- Department of Laboratory Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
| | - Dazhi Jin
- Centre of Laboratory Medicine, Zhejiang Provincial People Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, People's Republic of China.,School of Laboratory Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, People's Republic of China
| |
Collapse
|
17
|
He T, Kaplan SE, Gomez LA, Lu X, Ramanathan LV, Kamboj M, Tang YW. Fecal calprotectin concentrations in cancer patients with Clostridium difficile infection. Eur J Clin Microbiol Infect Dis 2018; 37:2341-2346. [PMID: 30242543 PMCID: PMC6230305 DOI: 10.1007/s10096-018-3381-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 09/13/2018] [Indexed: 02/08/2023]
Abstract
Fecal calprotectin (fCPT) has been used as a surrogate marker for assessment of intestinal inflammation. We explore the utility of fCPT values as a diagnostic aid in cancer patients with suspected Clostridium difficile infection (CDI). A total of 232 stool specimens submitted for GeneXpert C. difficile PCR testing were included in the study. All specimens were tested for fCPT and toxin/GDH antigens. Clinical severity of CDI cases was determined by the IDSA/SHEA criteria. Significant differences of median fCPT values between CDI (n = 117, Median 183.6 μg/g) and non-CDI (n = 115, 145.6 μg/g, p = 0.006) patients were seen. In CDI patents, significantly lower fCPT values were found in patients with mild to moderate (n = 95, 182.1 μg/g) than those with severe and severe to complicated (n = 22, 218.5 μg/g, p = 0.014) scores, and among those that were toxin positive (n = 24, 200.2 μg/g) vs. toxin negative (n = 86, 182.8 μg/g, p = 0.044). Despite this overall trend, wide variations in fCPT values were found in all categories examined. A logistic regression analysis revealed that the fCPT values correlated independently with the severity of clinical manifestations (OR = 2.021, 95%CI = 1.132-3.608); however, it did not correlate with other clinical outcomes. Our study findings show that high fecal calprotectin levels correlate with toxin-positive and clinically severe CDI; however, wide variations in individual measurements preclude establishment of reliable cut-offs for routine diagnostic use in cancer patients.
Collapse
Affiliation(s)
- Taojun He
- The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Luz A Gomez
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Xuedong Lu
- The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | | | - Mini Kamboj
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Medical College of Cornell University, New York, NY, USA
| | - Yi-Wei Tang
- Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Weill Medical College of Cornell University, New York, NY, USA.
| |
Collapse
|
18
|
Ultrasensitive Detection of Clostridioides difficile Toxins A and B by Use of Automated Single-Molecule Counting Technology. J Clin Microbiol 2018; 56:JCM.00908-18. [PMID: 30158195 DOI: 10.1128/jcm.00908-18] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 08/27/2018] [Indexed: 12/12/2022] Open
Abstract
Current tests for the detection of Clostridioides (formerly Clostridium) difficile free toxins in feces lack sensitivity, while nucleic acid amplification tests lack clinical specificity. We have evaluated the Singulex Clarity C. diff toxins A/B assay (currently in development), an automated and rapid ultrasensitive immunoassay powered by single-molecule counting technology, for detection of C. difficile toxin A (TcdA) and toxin B (TcdB) in stool. The analytical sensitivity, analytical specificity, repeatability, and stability of the assay were determined. In a clinical evaluation, frozen stool samples from 311 patients with suspected C. difficile infection were tested with the Clarity C. diff toxins A/B assay, using an established cutoff value. Samples were tested with the Xpert C. difficile/Epi assay, and PCR-positive samples were tested with an enzyme immunoassay (EIA) (C. Diff Quik Chek Complete). EIA-negative samples were further tested with a cell cytotoxicity neutralization assay. The limits of detection for TcdA and TcdB were 0.8 and 0.3 pg/ml in buffer and 2.0 and 0.7 pg/ml in stool, respectively. The assay demonstrated reactivity to common C. difficile strains, did not show cross-reactivity to common gastrointestinal pathogens, was robust against common interferents, allowed detection in fresh and frozen stool samples and in samples after three freeze-thaw cycles, and provided results with high reproducibility. Compared to multistep PCR and toxin-testing procedures, the Singulex Clarity C. diff toxins A/B assay yielded 97.7% sensitivity and 100% specificity. The Singulex Clarity C. diff toxins A/B assay is ultrasensitive and highly specific and may offer a standalone solution for rapid detection and quantitation of free toxins in stool.
Collapse
|
19
|
Multidrug resistant Clostridium difficile ribotype 027 in southwestern Virginia, 2007 to 2013. Anaerobe 2018; 52:16-21. [DOI: 10.1016/j.anaerobe.2018.05.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 04/30/2018] [Accepted: 05/08/2018] [Indexed: 12/12/2022]
|
20
|
Xu X, Luo Y, Song X, Ying J, Ye J, Lu Y, Cai J, Ma J, Wang X, Yu W, Wang Y, Jin D. Evaluation of an UltraFast LabChip V280 assay for detection of toxigenic Clostridium difficile. Diagn Microbiol Infect Dis 2018; 92:279-283. [PMID: 30029809 DOI: 10.1016/j.diagmicrobio.2018.06.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 06/21/2018] [Accepted: 06/23/2018] [Indexed: 01/03/2023]
Abstract
In this study, we compared the performance of an UltraFast LabChip (UL) V280 system for Clostridium difficile detection in stool with that of Xpert C. difficile/Epi and VIDAS CDAB. Among 176 stool specimens, UL V280 detected toxigenic C. difficile in 22 (22/176, 12.5%) with a sensitivity, specificity, positive predictive value, negative predictive value (NPV) of 100.0%, 99.4%, 99.5% and 100.0%, respectively, which were higher than 95.2%, 97.4%, 83.3%, and 99.3% of Xpert C. difficile/Epi (P > 0.05). Notably, the sensitivity and NPV of ULV280 were significantly higher than those of VIDAS CDAB 52.4% (P < 0.001, odds ratio [OR] = 20.0, 95% confidence interval [CI] = 2.26-176.81) and 93.8% (P = 0.002, OR = 10.27, 95% CI = 1.30-81.17). UL V280 turnaround time (35 min) and cost (6.24 Dollars [$]) per specimen were less than those for Xpert C. difficile/Epi (47 min, 59.26 $) and VIDAS CDAB (65 min, 11.70 $). UL V280 possessed an analytical sensitivity limit of 2500 CFU/ml, 95% [CI] = (Ct: 30.76-34.90), and no cross-reactions with other pathogens were found. The study demonstrates that UL V280 based on a microfluidic chip is a rapid, accurate, easy, and cost-effective diagnostic test for toxigenic C. difficile in stool.
Collapse
Affiliation(s)
- Xingxing Xu
- Department of Laboratory Medicine, Zhejiang Chinese Medical University affiliated Hangzhou First Hospital, Hangzhou, Zhejiang, 310006, China; Department of Microbiology, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, 310051, China
| | - Yun Luo
- Department of Microbiology, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, 310051, China
| | - Xiaojun Song
- Department of Microbiology, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, 310051, China
| | - Jianfei Ying
- Department of Laboratory Medicine, Ningbo Yinzhou People's Hospital, Ningbo, Zhejiang, 315040, China
| | - Julian Ye
- Department of Microbiology, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, 310051, China
| | - Yong Lu
- Department of Laboratory Medicine, Ningbo Yinzhou People's Hospital, Ningbo, Zhejiang, 315040, China
| | - Jian Cai
- Department of Disease Control and Prevention, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, 310051, China
| | - Jian Ma
- Department of Respiratory Medicine, Ningbo Yinzhou People's Hospital, Ningbo, Zhejiang, 315040, China
| | - Xianjun Wang
- Department of Laboratory Medicine, Zhejiang Chinese Medical University affiliated Hangzhou First Hospital, Hangzhou, Zhejiang, 310006, China
| | - Wanjun Yu
- Department of Respiratory Medicine, Ningbo Yinzhou People's Hospital, Ningbo, Zhejiang, 315040, China
| | - Yiping Wang
- Department of Laboratory Medicine, Ningbo Yinzhou People's Hospital, Ningbo, Zhejiang, 315040, China
| | - Dazhi Jin
- Department of Microbiology, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, 310051, China.
| |
Collapse
|
21
|
Hryckowian AJ, Van Treuren W, Smits SA, Davis NM, Gardner JO, Bouley DM, Sonnenburg JL. Microbiota-accessible carbohydrates suppress Clostridium difficile infection in a murine model. Nat Microbiol 2018; 3:662-669. [PMID: 29686297 PMCID: PMC6126909 DOI: 10.1038/s41564-018-0150-6] [Citation(s) in RCA: 166] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 03/21/2018] [Indexed: 12/18/2022]
Abstract
Clostridium difficile is an opportunistic diarrhoeal pathogen, and C. difficile infection (CDI) represents a major health care concern, causing an estimated 15,000 deaths per year in the United States alone 1 . Several enteric pathogens, including C. difficile, leverage inflammation and the accompanying microbial dysbiosis to thrive in the distal gut 2 . Although diet is among the most powerful available tools for affecting the health of humans and their relationship with their microbiota, investigation into the effects of diet on CDI has been limited. Here, we show in mice that the consumption of microbiota-accessible carbohydrates (MACs) found in dietary plant polysaccharides has a significant effect on CDI. Specifically, using a model of antibiotic-induced CDI that typically resolves within 12 days of infection, we demonstrate that MAC-deficient diets perpetuate CDI. We show that C. difficile burdens are suppressed through the addition of either a diet containing a complex mixture of MACs or a simplified diet containing inulin as the sole MAC source. We show that switches between these dietary conditions are coincident with changes to microbiota membership, its metabolic output and C. difficile-mediated inflammation. Together, our data demonstrate the outgrowth of MAC-utilizing taxa and the associated end products of MAC metabolism, namely, the short-chain fatty acids acetate, propionate and butyrate, are associated with decreased C. difficile fitness despite increased C. difficile toxin expression in the gut. Our findings, when placed into the context of the known fibre deficiencies of a human Western diet, provide rationale for pursuing MAC-centric dietary strategies as an alternate line of investigation for mitigating CDI.
Collapse
Affiliation(s)
- Andrew J Hryckowian
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - William Van Treuren
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Samuel A Smits
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Nicole M Davis
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Jackson O Gardner
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Donna M Bouley
- Department of Comparative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Justin L Sonnenburg
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
22
|
Identification and Characterization of Clostridium difficile Sequence Type 37 Genotype by Matrix-Assisted Laser Desorption Ionization -Time of Flight Mass Spectrometry. J Clin Microbiol 2018; 56:JCM.01990-17. [PMID: 29467194 DOI: 10.1128/jcm.01990-17] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 02/15/2018] [Indexed: 01/05/2023] Open
Abstract
Clostridium difficile multilocus sequence type 37 (ST37), which mainly corresponds to ribotype 017, has been a dominant genotype circulating in China. In this study, we report the use of matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) to analyze and characterize 204 C. difficile clinical isolates, including 49 ST37 and 155 non-ST37 isolates collected in China and other countries. The distributions of two major protein peaks (m/z 3,242 and 3,286) were significantly different between ST37 and non-ST37 prototype strains and clinical isolates. This difference was reproducible when analysis was performed on different colonies in different runs. This finding was repeated and confirmed by both bioMérieux Vitek MS and Bruker Microflex LT systems on isolates recovered from a variety of geographic regions worldwide. The combination of the two peaks was present in 47 of 49 ST37 isolates, resulting in a sensitivity of 95.9%. In contrast, the peak combination was absent in 153 of 155 non-ST37 isolates, resulting in a specificity of 98.7%. Our results suggest that MALDI-TOF MS is a rapid and reliable tool to identify C. difficile genotype ST37. Work is in progress to characterize the two molecules having peaks at m/z 3,242 and 3,286, which appear to be specific to C. difficile genotype ST37.
Collapse
|
23
|
Peng Z, Ling L, Stratton CW, Li C, Polage CR, Wu B, Tang YW. Advances in the diagnosis and treatment of Clostridium difficile infections. Emerg Microbes Infect 2018; 7:15. [PMID: 29434201 PMCID: PMC5837143 DOI: 10.1038/s41426-017-0019-4] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 12/22/2017] [Accepted: 12/27/2017] [Indexed: 12/14/2022]
Abstract
Clostridium difficile is a leading cause of antibiotic-associated diarrhea worldwide. The diagnosis of C. difficile infection (CDI) requires both clinical manifestations and a positive laboratory test for C. difficile and/or its toxins. While antibiotic therapy is the treatment of choice for CDI, there are relatively few classes of effective antibiotics currently available. Therefore, the development of novel antibiotics and/or alternative treatment strategies for CDI has received a great deal of attention in recent years. A number of emerging agents such as cadazolid, surotomycin, ridinilazole, and bezlotoxumab have demonstrated activity against C. difficile; some of these have been approved for limited clinical use and some are in clinical trials. In addition, other approaches such as early and accurate diagnosis of CDI as well as disease prevention are important for clinical management. While the toxigenic culture and the cell cytotoxicity neutralization assay are still recognized as the gold standard for the diagnosis of CDI, new diagnostic approaches such as nucleic acid amplification methods have become available. In this review, we will discuss both current and emerging diagnostic and therapeutic modalities for CDI.
Collapse
Affiliation(s)
- Zhong Peng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Lifen Ling
- The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518000, Guangdong, China
- Department of Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Charles W Stratton
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Chunhui Li
- Infection Control Center, Xiangya Hospital of Central South University, Changsha, 410008, Hunan, China
| | - Christopher R Polage
- Departments of Pathology and Laboratory Medicine and Internal Medicine, University of California Davis School of Medicine, Sacramento, CA, 95817, USA
| | - Bin Wu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Yi-Wei Tang
- Department of Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
- Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, New York, NY, 10065, USA.
| |
Collapse
|
24
|
Lai H, Huang C, Cai J, Ye J, She J, Zheng Y, Wang L, Wei Y, Fang W, Wang X, Tang YW, Luo Y, Jin D. Simultaneous detection and characterization of toxigenic Clostridium difficile directly from clinical stool specimens. Front Med 2017; 12:196-205. [PMID: 29058256 DOI: 10.1007/s11684-017-0560-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Accepted: 05/17/2017] [Indexed: 02/08/2023]
Abstract
We employed a multiplex polymerase chain reaction (PCR) coupled with capillary electrophoresis (mPCR-CE) targeting six Clostridium difficile genes, including tpi, tcdA, tcdB, cdtA, cdtB, and a deletion in tcdC for simultaneous detection and characterization of toxigenic C. difficile directly from fecal specimens. The mPCR-CE had a limit of detection of 10 colony-forming units per reaction with no cross-reactions with other related bacterial genes. Clinical validation was performed on 354 consecutively collected stool specimens from patients with suspected C. difficile infection and 45 isolates. The results were compared with a reference standard combined with BD MAX Cdiff, real-time cell analysis assay (RTCA), and mPCR-CE. The toxigenic C. difficile species were detected in 36 isolates and 45 stool specimens by the mPCR-CE, which provided a positive rate of 20.3% (81/399). The mPCR-CE had a specificity of 97.2% and a sensitivity of 96.0%, which was higher than RTCA (x2 = 5.67, P = 0.017) but lower than BD MAX Cdiff (P = 0.245). Among the 45 strains, 44 (97.8%) were determined as nonribotype 027 by the mPCR-CE, which was fully agreed with PCR ribotyping. Even though ribotypes 017 (n = 8, 17.8%), 001 (n = 6, 13.3%), and 012 (n = 7, 15.6%) were predominant in this region, ribotype 027 was an important genotype monitored routinely. The mPCR-CE provided an alternative diagnosis tool for the simultaneous detection of toxigenic C. difficile in stool and potentially differentiated between RT027 and non-RT027.
Collapse
Affiliation(s)
- Hanjiang Lai
- The First People's Hospital of Xiaoshan District, Hangzhou, 311021, China
| | - Chen Huang
- Department of Microbiology, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, 310051, China
| | - Jian Cai
- Department of Disease Control and Prevention, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, 310051, China
| | - Julian Ye
- Department of Microbiology, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, 310051, China
| | - Jun She
- The First People's Hospital of Xiaoshan District, Hangzhou, 311021, China
| | - Yi Zheng
- Biotherapy Center for Medical Oncology, the First Affiliated Hospital, Zhejiang University, Hangzhou, 310003, China
| | - Liqian Wang
- Department of Laboratory Medicine, Hangzhou First People's Hospital, Hangzhou, 310006, China
| | - Yelin Wei
- The First People's Hospital of Xiaoshan District, Hangzhou, 311021, China
| | - Weijia Fang
- Biotherapy Center for Medical Oncology, the First Affiliated Hospital, Zhejiang University, Hangzhou, 310003, China
| | - Xianjun Wang
- Department of Laboratory Medicine, Hangzhou First People's Hospital, Hangzhou, 310006, China
| | - Yi-Wei Tang
- Department of Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.,Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, New York, NY, 10065, USA
| | - Yun Luo
- Department of Microbiology, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, 310051, China.
| | - Dazhi Jin
- Department of Microbiology, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, 310051, China.
| |
Collapse
|
25
|
Neemann K, Freifeld A. Clostridium difficile–Associated Diarrhea in the Oncology Patient. J Oncol Pract 2017; 13:25-30. [DOI: 10.1200/jop.2016.018614] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Clostridium difficile is the most common cause of nosocomial diarrhea, resulting in significant morbidity and mortality in hospitalized patients. Oncology patients are particularly at risk of this infection secondary to frequent exposure to known risk factors. In a population in which diarrhea is a common adverse effect of chemotherapeutic regimens, diagnosis can be challenging secondary to current limitations in testing to differentiate between colonization and active infection. Although several currently available antimicrobial therapies achieve resolution of symptoms in this population, further research is needed to determine which agent least affects the host intestinal microbiota, especially in times of neutropenia and mucosal barrier injury. The purpose of this article is to review the current literature on the epidemiology, pathogenesis, and management of C difficile–associated diarrhea in the oncology population.
Collapse
Affiliation(s)
- Kari Neemann
- University of Nebraska Medical Center, Omaha, NE
| | | |
Collapse
|
26
|
Molecular Epidemiology of Clostridium difficile Infection in Hospitalized Patients in Eastern China. J Clin Microbiol 2016; 55:801-810. [PMID: 27974547 DOI: 10.1128/jcm.01898-16] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 12/09/2016] [Indexed: 12/18/2022] Open
Abstract
Few studies on risk factors for and transmission of Clostridium difficile infection (CDI) in China have been reported. A cross-sectional study was conducted for 3 years in eastern China. Consecutive stool specimens from hospitalized patients with diarrhea were cultured for C. difficile. C. difficile isolates from these patients then were analyzed for toxin genes, genotypes, and antimicrobial resistance. A severity score for the CDI in each patient was determined by a blinded review of the medical record, and these scores ranged from 1 to 6. A total of 397 out of 3,953 patients (10.0%) with diarrhea were found to have CDI. Severity of CDI was mild to moderate, and the average (± standard deviation) severity score was 2.61 ± 1.01. C. difficile was isolated from stool specimens in 432 (10.9%) of all the patients who had diarrhea. C. difficile genotypes were determined by multilocus sequence analysis and PCR ribotyping; sequence type 37 (ST37)/ribotype 017 (RT017) (n = 68, 16.5%) was the dominant genotype. Eleven patients (16.2%) with this genotype had a CDI severity score of 5. Overall, three RTs and four STs were predominant; these genotypes were associated with significantly different antimicrobial resistance patterns in comparison to all genotypes (χ2 = 79.56 to 97.76; P < 0.001). Independent risk factors associated with CDI included age greater than 55 years (odds ratio [95% confidence interval], 26.80 [18.76 to 38.29]), previous hospitalization (12.42 [8.85 to 17.43]), previous antimicrobial treatment within 8 weeks (150.56 [73.11 to 310.06]), hospital stay more than 3 days before sampling (2.34 [1.71 to 3.22]), undergoing chemotherapy (3.31 [2.22 to 4.92]), and undergoing abdominal surgery (4.82 [3.54 to 6.55]). CDI is clearly a problem in eastern China and has a prevalence of 10.0% in hospitalized patients. Among risk factors for CDI, the advanced age threshold was younger for Chinese patients than that reported for patients in developed countries.
Collapse
|
27
|
Ultrasensitive Detection and Quantification of Toxins for Optimized Diagnosis of Clostridium difficile Infection. J Clin Microbiol 2015; 54:259-64. [PMID: 26659205 DOI: 10.1128/jcm.02419-15] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Recently developed ultrasensitive and quantitative methods for detection of Clostridium difficile toxins provide new tools for diagnosis and, potentially, for management of C. difficile infection (CDI). Compared to methods that detect toxigenic organism, ultrasensitive toxin detection may allow diagnosis of CDI with increased clinical specificity, without sacrificing clinical sensitivity; measurement of toxin levels may also provide information relevant to disease prognosis. This minireview provides an overview of these new toxin detection technologies and considers what these new tools might add to the field.
Collapse
|
28
|
Polage CR, Gyorke CE, Kennedy MA, Leslie JL, Chin DL, Wang S, Nguyen HH, Huang B, Tang YW, Lee LW, Kim K, Taylor S, Romano PS, Panacek EA, Goodell PB, Solnick JV, Cohen SH. Overdiagnosis of Clostridium difficile Infection in the Molecular Test Era. JAMA Intern Med 2015; 175:1792-801. [PMID: 26348734 PMCID: PMC4948649 DOI: 10.1001/jamainternmed.2015.4114] [Citation(s) in RCA: 439] [Impact Index Per Article: 43.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
IMPORTANCE Clostridium difficile is a major cause of health care-associated infection, but disagreement between diagnostic tests is an ongoing barrier to clinical decision making and public health reporting. Molecular tests are increasingly used to diagnose C difficile infection (CDI), but many molecular test-positive patients lack toxins that historically defined disease, making it unclear if they need treatment. OBJECTIVE To determine the natural history and need for treatment of patients who are toxin immunoassay negative and polymerase chain reaction (PCR) positive (Tox-/PCR+) for CDI. DESIGN, SETTING, AND PARTICIPANTS Prospective observational cohort study at a single academic medical center among 1416 hospitalized adults tested for C difficile toxins 72 hours or longer after admission between December 1, 2010, and October 20, 2012. The analysis was conducted in stages with revisions from April 27, 2013, to January 13, 2015. MAIN OUTCOMES AND MEASURES Patients undergoing C difficile testing were grouped by US Food and Drug Administration-approved toxin and PCR tests as Tox+/PCR+, Tox-/PCR+, or Tox-/PCR-. Toxin results were reported clinically. Polymerase chain reaction results were not reported. The main study outcomes were duration of diarrhea during up to 14 days of treatment, rate of CDI-related complications (ie, colectomy, megacolon, or intensive care unit care) and CDI-related death within 30 days. RESULTS Twenty-one percent (293 of 1416) of hospitalized adults tested for C difficile were positive by PCR, but 44.7% (131 of 293) had toxins detected by the clinical toxin test. At baseline, Tox-/PCR+ patients had lower C difficile bacterial load and less antibiotic exposure, fecal inflammation, and diarrhea than Tox+/PCR+ patients (P < .001 for all). The median duration of diarrhea was shorter in Tox-/PCR+ patients (2 days; interquartile range, 1-4 days) than in Tox+/PCR+ patients (3 days; interquartile range, 1-6 days) (P = .003) and was similar to that in Tox-/PCR- patients (2 days; interquartile range, 1-3 days), despite minimal empirical treatment of Tox-/PCR+ patients. No CDI-related complications occurred in Tox-/PCR+ patients vs 10 complications in Tox+/PCR+ patients (0% vs 7.6%, P < .001). One Tox-/PCR+ patient had recurrent CDI as a contributing factor to death within 30 days vs 11 CDI-related deaths in Tox+/PCR+ patients (0.6% vs 8.4%, P = .001). CONCLUSIONS AND RELEVANCE Among hospitalized adults with suspected CDI, virtually all CDI-related complications and deaths occurred in patients with positive toxin immunoassay test results. Patients with a positive molecular test result and a negative toxin immunoassay test result had outcomes that were comparable to patients without C difficile by either method. Exclusive reliance on molecular tests for CDI diagnosis without tests for toxins or host response is likely to result in overdiagnosis, overtreatment, and increased health care costs.
Collapse
Affiliation(s)
- Christopher R Polage
- Department of Pathology and Laboratory Medicine, University of California Davis School of Medicine, Sacramento2Division of Infectious Diseases, Department of Internal Medicine, University of California Davis School of Medicine, Sacramento
| | - Clare E Gyorke
- Department of Pathology and Laboratory Medicine, University of California Davis School of Medicine, Sacramento
| | - Michael A Kennedy
- Department of Pathology and Laboratory Medicine, University of California Davis School of Medicine, Sacramento
| | - Jhansi L Leslie
- Department of Pathology and Laboratory Medicine, University of California Davis School of Medicine, Sacramento3Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor
| | - David L Chin
- Center for Healthcare Policy and Research, University of California Davis, Sacramento
| | - Susan Wang
- Department of Pathology and Laboratory Medicine, University of California Davis School of Medicine, Sacramento5Yolo County Health Department, Woodland, California
| | - Hien H Nguyen
- Division of Infectious Diseases, Department of Internal Medicine, University of California Davis School of Medicine, Sacramento
| | - Bin Huang
- Department of Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York7Department of Clinical Laboratory, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yi-Wei Tang
- Department of Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York8Weill Medical College of Cornell University, New York, New York
| | - Lenora W Lee
- Division of Infectious Diseases, Department of Internal Medicine, University of California Davis School of Medicine, Sacramento
| | - Kyoungmi Kim
- Division of Biostatistics, Department of Public Health Sciences, University of California Davis School of Medicine, Sacramento
| | - Sandra Taylor
- Division of Biostatistics, Department of Public Health Sciences, University of California Davis School of Medicine, Sacramento
| | - Patrick S Romano
- Center for Healthcare Policy and Research, University of California Davis, Sacramento10Division of General Medicine, Department of Internal Medicine, University of California Davis School of Medicine, Sacramento11Division of General Pediatrics, Department
| | - Edward A Panacek
- Department of Emergency Medicine, University of California Davis School of Medicine, Sacramento
| | - Parker B Goodell
- Department of Emergency Medicine, University of California Davis School of Medicine, Sacramento
| | - Jay V Solnick
- Division of Infectious Diseases, Department of Internal Medicine, University of California Davis School of Medicine, Sacramento13Department of Medical Microbiology and Immunology, University of California Davis School of Medicine, Sacramento
| | - Stuart H Cohen
- Division of Infectious Diseases, Department of Internal Medicine, University of California Davis School of Medicine, Sacramento
| |
Collapse
|
29
|
Monitoring in real time the cytotoxic effect of Clostridium difficile upon the intestinal epithelial cell line HT29. J Microbiol Methods 2015; 119:66-73. [PMID: 26436983 DOI: 10.1016/j.mimet.2015.09.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 09/29/2015] [Accepted: 09/29/2015] [Indexed: 01/05/2023]
Abstract
The incidence and severity of Clostridium difficile infections (CDI) has been increased not only among hospitalized patients, but also in healthy individuals traditionally considered as low risk population. Current treatment of CDI involves the use of antibiotics to eliminate the pathogen, although recurrent relapses have also been reported. For this reason, the search of new antimicrobials is a very active area of research. The strategy to use inhibitors of toxin's activity has however been less explored in spite of being a promising option. In this regard, the lack of fast and reliable in vitro screening methods to search for novel anti-toxin drugs has hampered this approach. The aim of the current study was to develop a method to monitor in real time the cytotoxicity of C. difficile upon the human colonocyte-like HT29 line, since epithelial intestinal cells are the primary targets of the toxins. The label-free, impedance based RCTA (real time cell analyser) technology was used to follow overtime the behaviour of HT29 in response to C. difficile LMG21717 producing both A and B toxins. Results obtained showed that the selection of the medium to grow the pathogen had a great influence in obtaining toxigenic supernatants, given that some culture media avoided the release of the toxins. A cytotoxic dose- and time-dependent effect of the supernatant obtained from GAM medium upon HT29 and Caco2 cells was detected. The sigmoid-curve fit of data obtained with HT29 allowed the calculation of different toxicological parameters, such as EC50 and LOAEL values. Finally, the modification in the behaviour of HT29 reordered in the RTCA was correlated with the cell rounding effect, typically induced by these toxins, visualized by time-lapsed captures using an optical microscope. Therefore, this RTCA method developed to test cytotoxicity kinetics of C. difficile supernatants upon IEC could be a valuable in vitro model for the screening of new anti-CDI agents.
Collapse
|
30
|
Huang B, Li H, Jin D, Stratton CW, Tang YW. Real-time cellular analysis for quantitative detection of functional Clostridium difficile toxin in stool. Expert Rev Mol Diagn 2014; 14:281-91. [PMID: 24649817 DOI: 10.1586/14737159.2014.900442] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Rapid and accurate diagnosis and monitoring of Clostridium difficile infection (CDI) is critical for patient care and infection control. We will briefly review current laboratory techniques for the diagnosis of CDI and identify aspects needing improvement. We will also introduce a real-time cellular analysis (RTCA) assay developed for the diagnosis and monitoring of CDI using electronic impedance to assess the cell status. The RTCA assay uses impedance measurement to detect minute physiological changes in cells cultured on gold microelectrodes embedded in glass substrates in the bottom of microtiter wells. This assay has been adapted for quantitative detection of C. difficile functional toxin directly from stool specimens. Compared to conventional techniques and molecular assays, the RTCA assay provides a valuable tool for the diagnosis of CDI as well as for the assessment of clinical severity and for monitoring therapeutic efficacies.
Collapse
Affiliation(s)
- Bin Huang
- Department of Laboratory Medicine, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | | | | | | | | |
Collapse
|