1
|
Bannantine JP, Etienne G, Lemassu A, Cochard T, Ganneau C, Melo S, Conde C, Marrakchi H, Bay S, Biet F. Genome Mining and Chemistry-Driven Discovery of a Cell Wall Lipopeptide Signature for Mycobacterium avium subsp. paratuberculosis Ancestral Lineage. ACS Infect Dis 2025. [PMID: 40397513 DOI: 10.1021/acsinfecdis.5c00181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2025]
Abstract
Mycobacterium avium subsp. paratuberculosis (Map) causes Johne's disease (JD), a chronic infection responsible for considerable economic losses to dairy industries worldwide. Genetically clonal, Map has evolved into three distinct genetic lineages designated CII, for bovine strains, and SI and SIII, for ovine strains. Previous studies have established that Map does not produce glycopeptidolipids, characteristic of the cell wall surface of mycobacteria belonging to the M. avium complex, but rather sugar-free lipopeptide compounds synthesized by nonribosomal peptide synthetases. In this study, we combined genomic, machine learning, (bio)chemical, and analytical approaches to identify the metabolites biosynthesized by NRPS in the most ancestral SI strains of Map. We thus characterized a lipotripeptide (L3P-2) signature for the SI genetic lineage, demonstrating that the evolution of this Map subspecies has been accompanied by a diversification of the cell wall lipopeptides. Finally, L3P-2 shows promise for improved serological diagnosis of JD.
Collapse
Affiliation(s)
- John P Bannantine
- USDA─Agricultural Research Service, National Animal Disease Center, Ames, Iowa 50010, United States
| | - Gilles Etienne
- Institut de Pharmacologie et de Biologie Structurale (IPBS) UMR-5089, CNRS/Université Toulouse, Toulouse 31000, France
| | - Anne Lemassu
- Institut de Pharmacologie et de Biologie Structurale (IPBS) UMR-5089, CNRS/Université Toulouse, Toulouse 31000, France
| | - Thierry Cochard
- INRAE, UMR ISP 1282, Université de Tours, Nouzilly 37380, France
| | - Christelle Ganneau
- Institut Pasteur, Université Paris Cité, CNRS UMR3523, Chimie des Biomolécules, Chem4Life, Paris 75015, France
| | - Sandrine Melo
- INRAE, UMR ISP 1282, Université de Tours, Nouzilly 37380, France
| | - Cyril Conde
- INRAE, UMR ISP 1282, Université de Tours, Nouzilly 37380, France
| | - Hedia Marrakchi
- Institut de Pharmacologie et de Biologie Structurale (IPBS) UMR-5089, CNRS/Université Toulouse, Toulouse 31000, France
| | - Sylvie Bay
- Institut Pasteur, Université Paris Cité, CNRS UMR3523, Chimie des Biomolécules, Chem4Life, Paris 75015, France
| | - Franck Biet
- INRAE, UMR ISP 1282, Université de Tours, Nouzilly 37380, France
| |
Collapse
|
2
|
Li MY, Meng WK, Ma W, Ding YL, Yang B, Zhao WH, Bayaer H, Bagen A, Chen RB, Tunala S, Zhang R, Du CG, Zhao L, Liu YH. Sheep challenged with sheep-derived type II Mycobacterium avium subsp. paratuberculosis: the first experimental model of paratuberculosis in China. BMC Vet Res 2025; 21:298. [PMID: 40301886 PMCID: PMC12039145 DOI: 10.1186/s12917-025-04765-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 04/17/2025] [Indexed: 05/01/2025] Open
Abstract
BACKGROUND Paratuberculosis (PTB), caused by Mycobacterium avium subsp. paratuberculosis (MAP), is difficult to diagnose in the early stages and poses substantial challenges in prevention, control, treatment, and eradication. A well-defined animal model can help identify disease markers and serve as a platform for vaccine and drug development. This study used sheep as a ruminant model for experimental MAP infection research. METHODS Nine 3-month-old lambs with negative MAP antigen and antibody were divided into three groups (control group A and inoculated groups B and C). The inoculated groups were challenged with sheep-derived type II MAP. After exposure, we recorded clinical signs, assessed fecal shedding, tested blood MAP levels, and performed fecal cultures. We also measured MAP-specific antibodies and monitored IFN-γ and IL-10 responses in vivo. At 255 days after inoculation, we performed autopsy, tissue culture, pathomorphological observation, and bacterial organ burden (BOB) testing. RESULTS All six sheep in groups B and C were infected, regardless of the challenge dose and exhibited emaciation; two had intermittent soft stools. Intermittent MAP shedding in feces was observed from 60 to 255 days after exposure. Typical MAP colonies formed after 4-6 weeks of fecal and tissue culture, and Ziehl-Neelsen staining showed positive results. In the groups challenged with MAP, some blood samples tested positive for MAP and MAP-specific antibodies were detected in some serum samples. IFN-γ response was significantly higher in groups B and C than that in group A from day 60 post-exposure, whereas the IL-10 response was higher than that in group A from day 120 post-exposure. In the infected groups, the ileal lesions were the most severe and were classified as grade 3 PTB granulomatous inflammation (multibacillary lesions). BOB levels varied across different tissues. CONCLUSIONS To the best of our knowledge, this is the first experimental MAP challenge study on sheep in China. Polymerase chain reaction detection was more sensitive than MAP culture, whereas enzyme-linked immunosorbent assay was less sensitive for detecting MAP-specific antibodies. IFN-γ and IL-10 responses may serve as targets for monitoring PTB progression. The severity of ileal lesions and acid-fast bacilli grading play crucial roles in the understanding of infection dynamics. Currently, early PTB diagnosis requires a combination of multiple sample types and detection methods.
Collapse
Affiliation(s)
- Meng-Yuan Li
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Wei-Kang Meng
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Wei Ma
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Yu-Lin Ding
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture and Rural Affairs, Hohhot, China
| | - Bo Yang
- Animal Disease Control Center of Ordos, Ordos, China
| | - Wei-Hong Zhao
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Hasi Bayaer
- Otok Banner Animal Disease Prevention and Control Center, Ordos, China
| | - Alateng Bagen
- Otok Banner Animal Disease Prevention and Control Center, Ordos, China
| | - Rui-Bin Chen
- Otok Banner Animal Disease Prevention and Control Center, Ordos, China
| | - Siqin Tunala
- Otok Banner Animal Disease Prevention and Control Center, Ordos, China
| | - Rong Zhang
- Otok Banner Animal Disease Prevention and Control Center, Ordos, China
| | - Chen-Guang Du
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Li Zhao
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China.
- Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture and Rural Affairs, Hohhot, China.
| | - Yong-Hong Liu
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China.
- Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture and Rural Affairs, Hohhot, China.
| |
Collapse
|
3
|
Zhang R, Lv YR, Yang B, Wang H, Jia JT, Wu ZH, Nie M, Sun LY, Xue SY, Ding YL, Chen RB, Tunala S, Zhao L, Liu YH. Prevalence and Genotyping of Mycobacterium avium subsp. paratuberculosis in Sheep from Inner Mongolia, China. Vet Sci 2025; 12:326. [PMID: 40284828 PMCID: PMC12031248 DOI: 10.3390/vetsci12040326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Revised: 03/24/2025] [Accepted: 04/01/2025] [Indexed: 04/29/2025] Open
Abstract
BACKGROUND Paratuberculosis (PTB) is a chronic wasting disease mainly caused by Mycobacterium avium subsp. paratuberculosis (MAP) in ruminants. It is difficult to diagnose, prevent, treat, and eradicate, thereby causing serious economic losses to the livestock industry. Therefore, finding a detection method with high sensitivity and specificity is crucial to preventing and controlling PTB. METHODS A total of 1585 fresh fecal samples were collected from 12 prefectures and cities across Inner Mongolia between March 2022 and October 2024. The samples were subjected to pretreatment, followed by DNA extraction. Subsequently, MAP detection and genotyping were performed using a two-step qPCR method. RESULTS The overall prevalence of MAP in ovines was 3.34% (53/1585), with the prevalence in 12 prefectures and cities ranging from 0% (0/100) to 7.73% (15/194). In the eastern, central, and western regions, the prevalence rates were 4.74% (31/654), 3.68% (14/394), and 1.49% (8/537); in small-scale and intensive farms, they were 3.23% (22/682), and 3.56% (31/903); and in goats and sheep, they were 0.91% (2/219) and 4.98% (36/723), respectively. The overall prevalence rates of C- and S-type MAP were 2.90% (46/1585) and 0.44% (7/1585), respectively. CONCLUSIONS To the best of our knowledge, this study is the first to conduct an epidemiological investigation of PTB in sheep across all nine cities and three leagues in Inner Mongolia and to perform MAP typing on a large scale. It elucidated the differences in the prevalence of PTB in different regions of Inner Mongolia and found that geographical location and sheep breed are potential risk factors for the differences in MAP prevalence. Furthermore, it has been shown that C- and S-type MAP coexist in the eastern and central regions of Inner Mongolia.
Collapse
Affiliation(s)
- Rong Zhang
- Otok Banner Animal Disease Prevention and Control Center, Ordos 016100, China; (R.Z.); (R.-B.C.); (S.T.)
| | - Yue-Rong Lv
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China; (Y.-R.L.); (H.W.); (S.-Y.X.); (Y.-L.D.)
| | - Bo Yang
- Animal Disease Control Center of Ordos, Ordos 017000, China;
| | - Hao Wang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China; (Y.-R.L.); (H.W.); (S.-Y.X.); (Y.-L.D.)
| | - Jun-Tao Jia
- Vocational and Technical College, Inner Mongolia Agricultural University, Baotou 014109, China;
| | - Zhi-Hong Wu
- Agriculture and Animal Husbandry Technology Popularization Center of Inner Mongolia Autonomous Region, Hohhot 010010, China;
| | - Ming Nie
- Alxa Left Banner Animal Disease Prevention and Control Center, Alxa Left Banner 750300, China;
| | - Lian-Yang Sun
- Zhalantun Animal Disease Prevention and Control Center, Zhalantun 162650, China;
| | - Shi-Yuan Xue
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China; (Y.-R.L.); (H.W.); (S.-Y.X.); (Y.-L.D.)
| | - Yu-Lin Ding
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China; (Y.-R.L.); (H.W.); (S.-Y.X.); (Y.-L.D.)
| | - Rui-Bin Chen
- Otok Banner Animal Disease Prevention and Control Center, Ordos 016100, China; (R.Z.); (R.-B.C.); (S.T.)
| | - Siqin Tunala
- Otok Banner Animal Disease Prevention and Control Center, Ordos 016100, China; (R.Z.); (R.-B.C.); (S.T.)
| | - Li Zhao
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China; (Y.-R.L.); (H.W.); (S.-Y.X.); (Y.-L.D.)
| | - Yong-Hong Liu
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China; (Y.-R.L.); (H.W.); (S.-Y.X.); (Y.-L.D.)
| |
Collapse
|
4
|
Rasper-Hössinger M, Scherrer S, Stephan R, Seehusen F. Stereotypic immune response in Mycobacterium avium ssp. paratuberculosis infection among different Swiss caprine genotypes. Vet Pathol 2025:3009858251322726. [PMID: 40094295 DOI: 10.1177/03009858251322726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Paratuberculosis is an infection with Mycobacterium avium ssp. paratuberculosis (MAP) causing chronic enteritis in domestic and wild ruminants worldwide. In goats, the infection is caused by C (cattle)-type and S (sheep)-type strains. In this study, the correlation between different MAP strains and histomorphological lesions in the small and large intestines, as well as the mesenteric lymph nodes, in Swiss goats (Caprae aegagrus hircus) was investigated. Ten Swiss caprine MAP isolates were characterized using polymerase chain reaction (PCR) and enzymatic restriction-based single nucleotide polymorphism (SNP) analysis. In addition, mycobacterial interspersed repetitive units and variable-number tandem repeats (MIRU-VNTR) profiling was performed, and the correlation with histologic lesions, scored as previously described for goats, was analyzed. Furthermore, immunohistochemical expression of CD3, CD79a, Iba1, cleaved caspase 3, and interleukin (IL)-17 was evaluated, and a morphometric analysis was conducted to quantify the different inflammatory cells. Diffuse multibacillary lesions were found in C-type/L'Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE) Nouzilly MIRU-VNTR (INMV)1 (2/10) and S-type/INMV220 (1/10) animals. Diffuse lymphocytic lesions occurred in C-type/INMV1 (2/10) animals, while diffuse mixed lesions were observed in S-type/INMV218 (3/10) and S-type/INMV220 (2/10) animals. No significant differences in intestinal histological lesion scores were detected between S- and C-type INMV strains. Morphometrical analysis revealed similar inflammatory and apoptotic cell numbers in the intestinal mucosa of C- and S-type animals; however, S-type animals exhibited significantly more Iba1- and cleaved caspase 3-positive cells in mesenteric lymph nodes. Lesions in mesenteric lymph nodes might indicate a differentially regulated course in MAP pathogenesis.
Collapse
|
5
|
Gàlvez-Morante A, Guéguen L, Natsidis P, Telford MJ, Richter DJ. Dollo Parsimony Overestimates Ancestral Gene Content Reconstructions. Genome Biol Evol 2024; 16:evae062. [PMID: 38518756 PMCID: PMC10995720 DOI: 10.1093/gbe/evae062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/15/2024] [Accepted: 03/19/2024] [Indexed: 03/24/2024] Open
Abstract
Ancestral reconstruction is a widely used technique that has been applied to understand the evolutionary history of gain and loss of gene families. Ancestral gene content can be reconstructed via different phylogenetic methods, but many current and previous studies employ Dollo parsimony. We hypothesize that Dollo parsimony is not appropriate for ancestral gene content reconstruction inferences based on sequence homology, as Dollo parsimony is derived from the assumption that a complex character cannot be regained. This premise does not accurately model molecular sequence evolution, in which false orthology can result from sequence convergence or lateral gene transfer. The aim of this study is to test Dollo parsimony's suitability for ancestral gene content reconstruction and to compare its inferences with a maximum likelihood-based approach that allows a gene family to be gained more than once within a tree. We first compared the performance of the two approaches on a series of artificial data sets each of 5,000 genes that were simulated according to a spectrum of evolutionary rates without gene gain or loss, so that inferred deviations from the true gene count would arise only from errors in orthology inference and ancestral reconstruction. Next, we reconstructed protein domain evolution on a phylogeny representing known eukaryotic diversity. We observed that Dollo parsimony produced numerous ancestral gene content overestimations, especially at nodes closer to the root of the tree. These observations led us to the conclusion that, confirming our hypothesis, Dollo parsimony is not an appropriate method for ancestral reconstruction studies based on sequence homology.
Collapse
Affiliation(s)
- Alex Gàlvez-Morante
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona 08003, Spain
| | - Laurent Guéguen
- LBBE, UMR 5558, CNRS, Université Claude Bernard Lyon 1, Villeurbanne 69622, France
| | - Paschalis Natsidis
- Centre for Life's Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
| | - Maximilian J Telford
- Centre for Life's Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
| | - Daniel J Richter
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona 08003, Spain
| |
Collapse
|
6
|
Turco S, Russo S, Pietrucci D, Filippi A, Milanesi M, Luzzago C, Garbarino C, Palladini G, Chillemi G, Ricchi M. High clonality of Mycobacterium avium subsp. paratuberculosis field isolates from red deer revealed by two different methodological approaches of comparative genomic analysis. Front Vet Sci 2024; 11:1301667. [PMID: 38379925 PMCID: PMC10876796 DOI: 10.3389/fvets.2024.1301667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/10/2024] [Indexed: 02/22/2024] Open
Abstract
Mycobacterium avium subsp. paratuberculosis (MAP) is the aetiological agent of paratuberculosis (Johne's disease) in both domestic and wild ruminants. In the present study, using a whole-genome sequence (WGS) approach, we investigated the genetic diversity of 15 Mycobacterium avium field strains isolated in the last 10 years from red deer inhabiting the Stelvio National Park and affected by paratuberculosis. Combining de novo assembly and a reference-based method, followed by a pangenome analysis, we highlight a very close relationship among 13 MAP field isolates, suggesting that a single infecting event occurred in this population. Moreover, two isolates have been classified as Mycobacterium avium subsp. hominissuis, distinct from the other MAPs under comparison but close to each other. This is the first time that this subspecies has been found in Italy in samples without evident epidemiological correlations, having been isolated in two different locations of the Stelvio National Park and in different years. Our study highlights the importance of a multidisciplinary approach incorporating molecular epidemiology and ecology into traditional infectious disease knowledge in order to investigate the nature of infectious disease in wildlife populations.
Collapse
Affiliation(s)
- Silvia Turco
- Dipartimento di Scienze Agrarie e Forestali (DAFNE), Università degli Studi della Tuscia, Viterbo, Italy
| | - Simone Russo
- National Reference Centre and WOAH Reference Laboratory for Paratuberculosis, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna “Bruno Ubertini”, Piacenza, Italy
| | - Daniele Pietrucci
- Dipartimento per l'Innovazione nei Sistemi Biologici, Agroalimentari e Forestali (DIBAF), Università degli Studi della Tuscia, Viterbo, Italy
| | - Anita Filippi
- National Reference Centre and WOAH Reference Laboratory for Paratuberculosis, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna “Bruno Ubertini”, Piacenza, Italy
| | - Marco Milanesi
- Dipartimento per l'Innovazione nei Sistemi Biologici, Agroalimentari e Forestali (DIBAF), Università degli Studi della Tuscia, Viterbo, Italy
| | - Camilla Luzzago
- Department of Veterinary Medicine and Animal Sciences, Coordinated Research Centre "EpiSoMI", University of Milan, Lodi, Italy
| | - Chiara Garbarino
- National Reference Centre and WOAH Reference Laboratory for Paratuberculosis, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna “Bruno Ubertini”, Piacenza, Italy
| | - Giorgia Palladini
- National Reference Centre and WOAH Reference Laboratory for Paratuberculosis, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna “Bruno Ubertini”, Piacenza, Italy
| | - Giovanni Chillemi
- Dipartimento per l'Innovazione nei Sistemi Biologici, Agroalimentari e Forestali (DIBAF), Università degli Studi della Tuscia, Viterbo, Italy
- Institute of Translational Pharmacology, National Research Council, CNR, Rome, Italy
| | - Matteo Ricchi
- National Reference Centre and WOAH Reference Laboratory for Paratuberculosis, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna “Bruno Ubertini”, Piacenza, Italy
| |
Collapse
|
7
|
Singh VK, Das C, Kumar A, Prajapati MR, Yadav SK. Complete genome sequence of S-type Mycobacterium avium subsp. paratuberculosis isolated from an organized goat herd in India. 3 Biotech 2024; 14:38. [PMID: 38261846 PMCID: PMC10794674 DOI: 10.1007/s13205-023-03896-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 12/18/2023] [Indexed: 01/25/2024] Open
Abstract
The present report communicates the first complete genome sequence of S-type Mycobacterium avium subsp. paratuberculosis, isolated from an organised goat herd in Uttar Pradesh, India. Bacteria were isolated in pure culture on Herrold's egg yolk medium (HEYM) slants containing mycobactin J from the faecal sample collected per-rectally from a clinical diseased goat, and next-generation sequencing (NGS) revealed that the genome sequence length of the isolated strain named MAP-Gt-9 is 4,509,428 bp with no plasmid DNA, with a GC content of 69.5%, an N50 value of 125,474 bp, and an L50 value of 12, containing 4235 coding DNA sequences (CDSs), 44 tRNAs, 3 ncRNAs and 1 each 5S, 16S, 23S rRNA genes.
Collapse
Affiliation(s)
- Vinod Kumar Singh
- Department of Veterinary Microbiology, College of Veterinary Science and Animal Husbandry, U.P. Pt. Deen Dayal Uphadhayay Pashu Chikitsa Vigyan Viswavidhyalay Evam Go-Anusandhan Sansthan (DUVASU), Mathura, Uttar Pradesh India
| | - Chayanika Das
- Centre for Animal Disease Research and Diagnosis (CADRAD), Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh India
| | - Amit Kumar
- College of Biotechnology, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, Uttar Pradesh India
| | - Malyaj R. Prajapati
- College of Biotechnology, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, Uttar Pradesh India
| | - Sharad Kumar Yadav
- Department of Veterinary Microbiology, College of Veterinary Science and Animal Husbandry, U.P. Pt. Deen Dayal Uphadhayay Pashu Chikitsa Vigyan Viswavidhyalay Evam Go-Anusandhan Sansthan (DUVASU), Mathura, Uttar Pradesh India
| |
Collapse
|
8
|
Esteves A, Vieira-Pinto M, Quintas H, Orge L, Gama A, Alves A, Seixas F, Pires I, Pinto MDL, Mendonça AP, Lima C, Machado CN, Silva JC, Tavares P, Silva F, Bastos E, Pereira J, Gonçalves-Anjo N, Carvalho P, Sargo R, Matos A, Figueira L, Pires MDA. Scrapie at Abattoir: Monitoring, Control, and Differential Diagnosis of Wasting Conditions during Meat Inspection. Animals (Basel) 2021; 11:3028. [PMID: 34827761 PMCID: PMC8614523 DOI: 10.3390/ani11113028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 01/10/2023] Open
Abstract
Wasting disease in small ruminants is frequently detected at slaughterhouses. The wasting disorder is manifested by the deterioration of the nutritional and physiological state of the animal indicated by thinness, emaciation, and cachexia. Evidence of emaciation and cachexia, alone, are pathological conditions leading to carcass condemnation during an inspection. Several diseases are associated with a wasting condition, including scrapie, pseudotuberculosis, tuberculosis, paratuberculosis, Maedi Visna, and tumor diseases. On the other hand, parasitic diseases, nutrition disorders, exposure or ingestion of toxins, metabolic conditions, inadequate nutrition due to poor teeth, or poor alimentary diet are conditions contributing to poor body condition. Classical and atypical scrapie is naturally occurring transmissible spongiform encephalopathies in small ruminants. The etiological agent for each one is prions. However, each of these scrapie types is epidemiologically, pathologically, and biochemically different. Though atypical scrapie occurs at low incidence, it is consistently prevalent in the small ruminant population. Hence, it is advisable to include differential diagnosis of this disease, from other possibilities, as a cause of wasting conditions detected during meat inspection at the abattoir. This manuscript is a review of the measures in force at the abattoir for scrapie control, focusing on the differential diagnosis of gross lesions related to wasting conditions detected in small ruminants during meat inspection.
Collapse
Affiliation(s)
- Alexandra Esteves
- Animal and Veterinary Research Centre (CECAV), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (M.V.-P.); (L.O.); (A.G.); (A.A.); (F.S.); (I.P.); (M.d.L.P.); (F.S.); (J.P.); (R.S.)
| | - Madalena Vieira-Pinto
- Animal and Veterinary Research Centre (CECAV), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (M.V.-P.); (L.O.); (A.G.); (A.A.); (F.S.); (I.P.); (M.d.L.P.); (F.S.); (J.P.); (R.S.)
| | - Hélder Quintas
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal;
| | - Leonor Orge
- Animal and Veterinary Research Centre (CECAV), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (M.V.-P.); (L.O.); (A.G.); (A.A.); (F.S.); (I.P.); (M.d.L.P.); (F.S.); (J.P.); (R.S.)
- Pathology Laboratory, UEISPSA, National Institute for Agricultural and Veterinary Research (INIAV), I.P., 2780-157 Oeiras, Portugal; (A.P.M.); (C.N.M.); (J.C.S.); (P.C.)
| | - Adelina Gama
- Animal and Veterinary Research Centre (CECAV), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (M.V.-P.); (L.O.); (A.G.); (A.A.); (F.S.); (I.P.); (M.d.L.P.); (F.S.); (J.P.); (R.S.)
| | - Anabela Alves
- Animal and Veterinary Research Centre (CECAV), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (M.V.-P.); (L.O.); (A.G.); (A.A.); (F.S.); (I.P.); (M.d.L.P.); (F.S.); (J.P.); (R.S.)
| | - Fernanda Seixas
- Animal and Veterinary Research Centre (CECAV), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (M.V.-P.); (L.O.); (A.G.); (A.A.); (F.S.); (I.P.); (M.d.L.P.); (F.S.); (J.P.); (R.S.)
| | - Isabel Pires
- Animal and Veterinary Research Centre (CECAV), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (M.V.-P.); (L.O.); (A.G.); (A.A.); (F.S.); (I.P.); (M.d.L.P.); (F.S.); (J.P.); (R.S.)
| | - Maria de Lurdes Pinto
- Animal and Veterinary Research Centre (CECAV), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (M.V.-P.); (L.O.); (A.G.); (A.A.); (F.S.); (I.P.); (M.d.L.P.); (F.S.); (J.P.); (R.S.)
| | - Ana Paula Mendonça
- Pathology Laboratory, UEISPSA, National Institute for Agricultural and Veterinary Research (INIAV), I.P., 2780-157 Oeiras, Portugal; (A.P.M.); (C.N.M.); (J.C.S.); (P.C.)
| | - Carla Lima
- Pathology Laboratory, UEISPSA, National Institute for Agricultural and Veterinary Research (INIAV), I.P., 4485-655 Vila do Conde, Portugal; (C.L.); (P.T.)
| | - Carla Neves Machado
- Pathology Laboratory, UEISPSA, National Institute for Agricultural and Veterinary Research (INIAV), I.P., 2780-157 Oeiras, Portugal; (A.P.M.); (C.N.M.); (J.C.S.); (P.C.)
| | - João Carlos Silva
- Pathology Laboratory, UEISPSA, National Institute for Agricultural and Veterinary Research (INIAV), I.P., 2780-157 Oeiras, Portugal; (A.P.M.); (C.N.M.); (J.C.S.); (P.C.)
| | - Paula Tavares
- Pathology Laboratory, UEISPSA, National Institute for Agricultural and Veterinary Research (INIAV), I.P., 4485-655 Vila do Conde, Portugal; (C.L.); (P.T.)
| | - Filipe Silva
- Animal and Veterinary Research Centre (CECAV), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (M.V.-P.); (L.O.); (A.G.); (A.A.); (F.S.); (I.P.); (M.d.L.P.); (F.S.); (J.P.); (R.S.)
| | - Estela Bastos
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
- Genetic Department, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
| | - Jorge Pereira
- Animal and Veterinary Research Centre (CECAV), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (M.V.-P.); (L.O.); (A.G.); (A.A.); (F.S.); (I.P.); (M.d.L.P.); (F.S.); (J.P.); (R.S.)
| | - Nuno Gonçalves-Anjo
- Genetic Department, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
| | - Paulo Carvalho
- Pathology Laboratory, UEISPSA, National Institute for Agricultural and Veterinary Research (INIAV), I.P., 2780-157 Oeiras, Portugal; (A.P.M.); (C.N.M.); (J.C.S.); (P.C.)
| | - Roberto Sargo
- Animal and Veterinary Research Centre (CECAV), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (M.V.-P.); (L.O.); (A.G.); (A.A.); (F.S.); (I.P.); (M.d.L.P.); (F.S.); (J.P.); (R.S.)
| | - Ana Matos
- Research Center for Natural Resources, Environment and Society (CERNAS), Polytechnic Institute of Castelo Branco (IPCB), 6000-767 Castelo Branco, Portugal;
- Quality of Life in the Rural World (Q-Rural), Polytechnic Institute of Castelo Branco (IPCB), 6000-767 Castelo Branco, Portugal;
| | - Luís Figueira
- Quality of Life in the Rural World (Q-Rural), Polytechnic Institute of Castelo Branco (IPCB), 6000-767 Castelo Branco, Portugal;
| | - Maria dos Anjos Pires
- Animal and Veterinary Research Centre (CECAV), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (M.V.-P.); (L.O.); (A.G.); (A.A.); (F.S.); (I.P.); (M.d.L.P.); (F.S.); (J.P.); (R.S.)
| |
Collapse
|
9
|
Using Omics Approaches in the Discovery of Biomarkers for Early Diagnosis of Johne's Disease in Sheep and Goats. Animals (Basel) 2021; 11:ani11071912. [PMID: 34199073 PMCID: PMC8300312 DOI: 10.3390/ani11071912] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/18/2021] [Accepted: 06/23/2021] [Indexed: 12/16/2022] Open
Abstract
Simple Summary Johne’s disease (JD) is caused by Mycobacterium avium subsp. paratuberculosis (MAP) and is an important and emerging problem in livestock. Most JD research has been carried out on cattle, but interest in the pathogenesis and diagnosis of this disease in sheep and goats is greatest in developing countries. Sheep and goats are also a relevant part of livestock production in Europe and Australia, and these species provide an excellent resource to study and better understand the mechanism of survival of MAP and gain insights into possible approaches to control this disease. This review gives an overview of the literature on paratuberculosis in sheep and goats, highlighting the immunological aspects and the potential for “omics” approaches to identify effective biomarkers for the early detection of infection. Abstract Johne’s disease (JD) is caused by Mycobacterium avium subsp. paratuberculosis (MAP) and is an important and emerging problem in livestock; therefore, its control and prevention is a priority to reduce economic losses and health risks. Most JD research has been carried out on cattle, but interest in the pathogenesis and diagnosis of this disease in sheep and goats is greatest in developing countries. Sheep and goats are also a relevant part of livestock production in Europe and Australia, and these species provide an excellent resource to study and better understand the mechanism of survival of MAP and gain insights into possible approaches to control this disease. This review gives an overview of the literature on paratuberculosis in sheep and goats, highlighting the immunological aspects and the potential for “omics” approaches to identify effective biomarkers for the early detection of infection. As JD has a long incubation period before the disease becomes evident, early diagnosis is important to control the spread of the disease.
Collapse
|
10
|
Conde C, Price-Carter M, Cochard T, Branger M, Stevenson K, Whittington R, Bannantine JP, Biet F. Whole-Genome Analysis of Mycobacterium avium subsp. paratuberculosis IS 900 Insertions Reveals Strain Type- Specific Modalities. Front Microbiol 2021; 12:660002. [PMID: 34040595 PMCID: PMC8141618 DOI: 10.3389/fmicb.2021.660002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/07/2021] [Indexed: 01/14/2023] Open
Abstract
Mycobacterium avium subsp. paratuberculosis (Map) is the etiological agent of Johne’s disease in ruminants. The IS900 insertion sequence (IS) has been used widely as an epidemiological marker and target for PCR diagnosis. Updated DNA sequencing technologies have led to a rapid increase in available Map genomes, which makes it possible to analyze the distribution of IS900 in this slow-growing bacterium. The objective of this study is to characterize the distribution of the IS900 element and how it affects genomic evolution and gene function of Map. A secondary goal is to develop automated in silico restriction fragment length polymorphism (RFLP) analysis using IS900. Complete genomes from the major phylogenetic lineages known as C-type and S-type (including subtypes I and III), were chosen to represent the genetic diversity of Map. IS900 elements were located in these genomes using BLAST software and the relevant fragments extracted. An in silico RFLP analysis using the BstEII restriction site was performed to obtain exact sizes of the DNA fragments carrying a copy of IS900 and the resulting RFLP profiles were analyzed and compared by digital visualization of the separated restriction fragments. The program developed for this study allowed automated localization of IS900 sequences to identify their position within each genome along with the exact number of copies per genome. The number of IS900 copies ranged from 16 in the C-type isolate to 22 in the S-type subtype I isolate. A loci-by-loci sequence alignment of all IS900 copies within the three genomes revealed new sequence polymorphisms that define three sequevars distinguishing the subtypes. Nine IS900 insertion site locations were conserved across all genomes studied while smaller subsets were unique to a particular lineage. Preferential insertion motif sequences were identified for IS900 along with genes bordering all IS900 insertions. Rarely did IS900 insert within coding sequences as only three genes were disrupted in this way. This study makes it possible to automate IS900 distribution in Map genomes to enrich knowledge on the distribution dynamics of this IS for epidemiological purposes, for understanding Map evolution and for studying the biological implications of IS900 insertions.
Collapse
Affiliation(s)
- Cyril Conde
- INRAE, ISP, Université de Tours, Nouzilly, France
| | | | | | | | | | - Richard Whittington
- School of Veterinary Science, The University of Sydney, Sydney, NSW, Australia
| | | | - Franck Biet
- INRAE, ISP, Université de Tours, Nouzilly, France
| |
Collapse
|
11
|
Serological and Molecular Characterization of Mycobacterium avium Subsp. paratuberculosis (MAP) from Sheep, Goats, Cattle and Camels in the Eastern Province, Saudi Arabia. Animals (Basel) 2021; 11:ani11020323. [PMID: 33525431 PMCID: PMC7911684 DOI: 10.3390/ani11020323] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/21/2021] [Accepted: 01/25/2021] [Indexed: 01/09/2023] Open
Abstract
Simple Summary Mycobacterium avium subsp. paratuberculosis (MAP) is the causative agent of Johne’s disease, affecting small and large ruminants and causing chronic diarrhea and severe emaciation. MAP is prevalent in many countries, including Saudi Arabia. Serological and molecular characterization of MAP and determination of the prevalent strains are essential for the control strategies. The results obtained from 31 herds showed that the sheep type (S-type) was the most prevalent MAP type and the molecular characterization revealed different strain profiles distributed among the sheep, goat, cattle, and camel herds in Eastern Province, Saudi Arabia. Abstract The objectives of the present study were to characterize Mycobacterium avium subsp. paratuberculosis (MAP) infection using serological and molecular tools and investigate the distribution and molecular characterization of MAP strains (cattle (C) and sheep (S) types) in sheep, goat, cattle, and camel herds in Eastern Province, Saudi Arabia. Serum and fecal samples were collected from all animals aged >2 years old in 31 herds (sheep = 8, goats = 6, cattle = 8 and camels = 9) from January to December 2019. Serum samples were tested by ELISA for the detection of MAP antibodies. Fecal samples were tested by PCR for the detection of MAP IS900 gene and the identification of MAP strains. MAP antibodies were detected in 19 (61.3%) herds. At the animal level, antibodies against MAP were detected in 43 (19.5%) sheep, 21 (17.1%) goats, 13 (19.7%) cattle and 22 (9.1%) camels. The IS900 gene of MAP was detected in 23 (74.2%) herds and was directly amplified from fecal samples of 59 (26.8%) sheep, 34 (27.6%) goats, 20 (30.3%) cattle and 36 (15.0%) camels. The S-type was the most prevalent MAP type identified in 15 herds, and all were identified as type-I, while the C-type was identified in only 8 herds. The IS900 sequences revealed genetic differences among the MAP isolates recovered from sheep, goats, cattle and camels. Results from the present study show that MAP was prevalent and confirm the distribution of different MAP strains in sheep, goat, cattle and camel herds in Eastern Province, Saudi Arabia.
Collapse
|
12
|
Verma T, Podder S, Mehta M, Singh S, Singh A, Umapathy S, Nandi D. Raman spectroscopy reveals distinct differences between two closely related bacterial strains, Mycobacterium indicus pranii and Mycobacterium intracellulare. Anal Bioanal Chem 2019; 411:7997-8009. [PMID: 31732785 DOI: 10.1007/s00216-019-02197-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 09/24/2019] [Accepted: 10/07/2019] [Indexed: 02/07/2023]
Abstract
A common technique used to differentiate bacterial species and to determine evolutionary relationships is sequencing their 16S ribosomal RNA genes. However, this method fails when organisms exhibit high similarity in these sequences. Two such strains that have identical 16S rRNA sequences are Mycobacterium indicus pranii (MIP) and Mycobacterium intracellulare. MIP is of significance as it is used as an adjuvant for protection against tuberculosis and leprosy; in addition, it shows potent anti-cancer activity. On the other hand, M. intracellulare is an opportunistic pathogen and causes severe respiratory infections in AIDS patients. It is important to differentiate these two bacterial species as they co-exist in immuno-compromised individuals. To unambiguously distinguish these two closely related bacterial strains, we employed Raman and resonance Raman spectroscopy in conjunction with multivariate statistical tools. Phenotypic profiling for these bacterial species was performed in a kinetic manner. Differences were observed in the mycolic acid profile and carotenoid pigments to show that MIP is biochemically distinct from M. intracellulare. Resonance Raman studies confirmed that carotenoids were produced by both MIP as well as M. intracellulare, though the latter produced higher amounts. Overall, this study demonstrates the potential of Raman spectroscopy in differentiating two closely related mycobacterial strains. Graphical abstract.
Collapse
Affiliation(s)
- Taru Verma
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, 560012, India
| | - Santosh Podder
- Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, 560012, India
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Mansi Mehta
- Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, 560012, India
| | - Sarman Singh
- All India Institute of Medical Sciences, Bhopal, 462020, India
| | - Amit Singh
- Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, 560012, India
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012, India
| | - Siva Umapathy
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, 560012, India.
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India.
| | - Dipankar Nandi
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, 560012, India.
- Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, 560012, India.
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, India.
| |
Collapse
|
13
|
Scherrer S, Stephan R, Zumthor JP, Kipar A, Seehusen F. Morphological and Molecular Characterization of a New Mycobacterium avium Subsp. paratuberculosis S-Type Strain Genotype in Goats. Front Vet Sci 2019; 6:250. [PMID: 31417916 PMCID: PMC6684744 DOI: 10.3389/fvets.2019.00250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 07/10/2019] [Indexed: 11/13/2022] Open
Abstract
Paratuberculosis is a chronic bacterial disease of global importance mainly in domestic and wild ruminants, caused by Mycobacterium avium subsp. paratuberculosis (MAP). In goats, paratuberculosis is mostly caused by the "C-type" (cattle) and in a few cases by the "S-type" (sheep) strain of MAP. In 2017, a caprine S-type III isolate with a new VNTR profile was identified in a Swiss alpine region. In 2018, new caprine isolates with the same novel VNTR profile originating from a farm of a close by neighboring valley were analyzed. Here we report on this MAP S-type III outbreak in a Swiss dairy goat farm in which we investigated the pathological changes, distribution and genotype of MAP tissue homogenates. Full necropsy and histological examination were undertaken on two female adult goats with a history of weight loss and intermitting diarrhea. Routine and special stains were applied to characterize the morphological changes. DNA was extracted from 33 different tissue samples and tested for MAP by qPCR targeting IS900 and F57. Subtyping was performed, using the variable number tandem repeats (VNTR) and mycobacterial interspersed repetitive units (MIRU) approach. The goats showed moderate to marked emaciation and displayed typical clinical features of paratuberculosis. A moderate granulomatous enteritis and regional lymphadenitis with a small to moderate number of acid-fast bacteria within macrophages was detected. MAP detection was mainly restricted to the gastrointestinal tract, mesenteric and hepatic lymph nodes. Subtyping the S-type isolates using a panel of eight established MIRU-VNTR loci identified a new genotype, INMV 218.
Collapse
Affiliation(s)
- Simone Scherrer
- Section of Veterinary Bacteriology, University of Zurich, Zurich, Switzerland
| | - Roger Stephan
- Institute for Food Safety and Hygiene, University of Zurich, Zurich, Switzerland
| | | | - Anja Kipar
- Institute for Veterinary Pathology, University of Zurich, Zurich, Switzerland
| | - Frauke Seehusen
- Institute for Veterinary Pathology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
14
|
Genetic Variation/Evolution and Differential Host Responses Resulting from In-Patient Adaptation of Mycobacterium avium. Infect Immun 2019; 87:IAI.00323-18. [PMID: 30642899 PMCID: PMC6434124 DOI: 10.1128/iai.00323-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 01/04/2019] [Indexed: 12/20/2022] Open
Abstract
Members of the Mycobacterium avium complex (MAC) are characterized as nontuberculosis mycobacteria and are pathogenic mainly in immunocompromised individuals. MAC strains show a wide genetic variability, and there is growing evidence suggesting that genetic differences may contribute to a varied immune response that may impact the infection outcome. Members of the Mycobacterium avium complex (MAC) are characterized as nontuberculosis mycobacteria and are pathogenic mainly in immunocompromised individuals. MAC strains show a wide genetic variability, and there is growing evidence suggesting that genetic differences may contribute to a varied immune response that may impact the infection outcome. The current study aimed to characterize the genomic changes within M.avium isolates collected from single patients over time and test the host immune responses to these clinical isolates. Pulsed-field gel electrophoresis and whole-genome sequencing were performed on 40 MAC isolates isolated from 15 patients at the Department of Medical Microbiology at St. Olavs Hospital in Trondheim, Norway. Isolates from patients (patients 4, 9, and 13) for whom more than two isolates were available were selected for further analysis. These isolates exhibited extensive sequence variation in the form of single-nucleotide polymorphisms (SNPs), suggesting that M. avium accumulates mutations at higher rates during persistent infections than other mycobacteria. Infection of murine macrophages and mice with sequential isolates from patients showed a tendency toward increased persistence and the downregulation of inflammatory cytokines by host-adapted M. avium strains. The study revealed the rapid genetic evolution of M. avium in chronically infected patients, accompanied by changes in the virulence properties of the sequential mycobacterial isolates.
Collapse
|
15
|
Salem MA, El-Deeb WM, Zaghawa AA, Housawi FM, Alluwaimi AM. Investigation of Mycobacterium paratuberculosis in Arabian dromedary camels ( Camelus dromedarius). Vet World 2019; 12:218-223. [PMID: 31040561 PMCID: PMC6460865 DOI: 10.14202/vetworld.2019.218-223] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 12/20/2018] [Indexed: 11/16/2022] Open
Abstract
Aim: Mycobacterium avium subspecies paratuberculosis (MAP) causes Johne’s disease in ruminants. This study aimed to investigate Mycobacterium paratuberculosis infection in clinically infected camels on the immunological, conventional bacteriological, and molecular biological basis. Materials and Methods: A total of 30 Arabian camels (Camelus dromedarius) were examined in this study. The camels were suffering from signs ranging from mild to severe infections (that did not respond to antibiotic treatment) to chronic or intermittent diarrhea. Camels were grouped into three groups based on their age, sex, and breed. Detection of anti-MAP antibodies in camels’ serum, Ziehl–Neelsen (ZN) staining technique on rectal scraps, direct recognition of MAP in stool and tissue specimens by IS900 polymerase chain reaction (PCR) assay, and finally isolation and molecular description of MAP from fecal and tissue samples were carried out. Results: Five MAP isolates were recovered from these investigated camel samples giving an isolation rate of 16.6%, while eight camels were identified by PCR (26.6%). Five camels yielded MAP in their feces by ZN fecal staining (16.6%), whereas ELISA detected anti-MAP antibodies in nine camels only (30%). Conclusion: From the obtained results, we concluded that the gold standard for the diagnosis of MAP is the culture method despite its limitations. Molecular diagnosis (PCR) could be a useful tool in the identification of truly positive and negative camels; however, great care should be given regarding the primers specificity and sensitivity.
Collapse
Affiliation(s)
- Mohamed A Salem
- Veterinary Teaching Hospital, King Faisal University, Al-Hasa, Kingdom of Saudi Arabia.,Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt.,Department of Clinical Studies, College of Veterinary Medicine, King Faisal University, Al-Hasa, Kingdom of Saudi Arabia
| | - Wael M El-Deeb
- Department of Clinical Studies, College of Veterinary Medicine, King Faisal University, Al-Hasa, Kingdom of Saudi Arabia.,Department of Veterinary Medicine, Infectious Diseases and Fish Diseases, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Ahmed A Zaghawa
- Department of Infectious Diseases, Faculty of Veterinary Medicine, Sadat University, -Sadat, Egypt
| | - Fadel M Housawi
- Department of Clinical Studies, College of Veterinary Medicine, King Faisal University, Al-Hasa, Kingdom of Saudi Arabia
| | - Ahmed M Alluwaimi
- Department of Microbiology and Parasitology, College of Veterinary Medicine, King Faisal University, Al-Hasa, Kingdom of Saudi Arabia
| |
Collapse
|
16
|
Fawzy A, Zschöck M, Ewers C, Eisenberg T. Genotyping methods and molecular epidemiology of Mycobacterium avium subsp. paratuberculosis (MAP). Int J Vet Sci Med 2018; 6:258-264. [PMID: 30564606 PMCID: PMC6286618 DOI: 10.1016/j.ijvsm.2018.08.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 08/02/2018] [Accepted: 08/02/2018] [Indexed: 12/22/2022] Open
Abstract
Mycobacterium avium subsp. paratuberculosis (MAP) is the causative agent of Johne’s disease (JD) which affects mainly ruminants and is characterized by chronic diarrhea and emaciation. Johne’s disease is highly prevalent in many countries around the world and leads to high economic losses associated with decreased production. Genotyping of the involved pathogen could be used in the study of population genetics, pathogenesis and molecular epidemiology including disease surveillance and outbreak investigation. Principally, researchers have first assumed the presence of two different MAP strains that are associated with the animal host species (cattle and sheep). However, nowadays MAP characterization depends mainly upon genetic testing using genetic markers such as insertion elements, repetitive sequences and single nucleotide polymorphisms. This work aims to provide an overview of the advances in molecular biological tools used for MAP typing in the last two decades, discuss how these methods have been used to address interesting epidemiological questions, and explore the future prospects of MAP molecular epidemiology given the ever decreasing costs of the high throughput sequencing technology.
Collapse
Affiliation(s)
- Ahmad Fawzy
- Faculty of Veterinary Medicine, Department of Medicine and Infectious Diseases, Cairo University, Egypt
- Hessian State Laboratory (LHL), Giessen, Germany
- Institute of Hygiene and Animal Infectious Diseases, Justus-Liebig University, Giessen, Germany
- Corresponding author at: Institute of Hygiene and Animal Infectious Diseases, Justus-Liebig University, Giessen, Germany.
| | | | - Christa Ewers
- Institute of Hygiene and Animal Infectious Diseases, Justus-Liebig University, Giessen, Germany
| | - Tobias Eisenberg
- Hessian State Laboratory (LHL), Giessen, Germany
- Institute of Hygiene and Animal Infectious Diseases, Justus-Liebig University, Giessen, Germany
| |
Collapse
|
17
|
Fox NJ, Caldow GL, Liebeschuetz H, Stevenson K, Hutchings MR. Counterintuitive increase in observed Mycobacterium avium
subspecies paratuberculosis
prevalence in sympatric rabbits following the introduction of paratuberculosis control measures in cattle. Vet Rec 2018; 182:634. [DOI: 10.1136/vr.104638] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 10/26/2017] [Accepted: 01/21/2018] [Indexed: 11/03/2022]
Affiliation(s)
- Naomi J Fox
- Scotland's Rural College (SRUC); Edinburgh UK
| | | | | | | | | |
Collapse
|
18
|
Marquetoux N, Mitchell R, Ridler A, Heuer C, Wilson P. A synthesis of the patho-physiology of Mycobacterium avium subspecies paratuberculosis infection in sheep to inform mathematical modelling of ovine paratuberculosis. Vet Res 2018. [PMID: 29514687 PMCID: PMC5842600 DOI: 10.1186/s13567-018-0522-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
This literature review of exposure to Mycobacterium avium subsp. paratuberculosis (MAP) in sheep enabled a synthesis of the patho-physiology of ovine paratuberculosis (PTB). These results could be used to inform subsequent modelling of ovine PTB. We reviewed studies of both experimental and natural exposure. They were generally comparable. Possible outcomes following exposure were latent infection, i.e. mere colonization without lesions; active infection, with inflammatory histopathology in the intestinal tissues resulting in mild disease and low faecal shedding; and affection, with severe intestinal pathology, reduced production, clinical signs and high faecal shedding. Latent infection was an uninformative outcome for modelling. By contrast, histological lesions and their grade appeared to be a good marker of active infection and progression stages to clinical disease. The two possible pathways following infection are non-progression leading to recovery and progression to clinical disease, causing death. These pathways are mediated by different immune mechanisms. This synthesis suggested that host-related characteristics such as age at exposure and breed, combined with pathogen-related factors such as MAP dose, strain and inoculum type for experimental infection, have a strong influence on the outcome of exposure. The material reviewed consisted of disparate studies often with low numbers of sheep and study-level confounders. Hence comparisons between and across studies was difficult and this precluded quantitative model parameter estimation. Nevertheless, it allowed a robust synthesis of the current understanding of patho-physiology of ovine PTB, which can inform mathematical modelling of this disease.
Collapse
Affiliation(s)
- Nelly Marquetoux
- EpiCentre, Institute of Veterinary, Animal and Biomedical Sciences, Massey University, Palmerston North, New Zealand.
| | - Rebecca Mitchell
- Department of Mathematics and Computer Sciences, Emory College of Arts and Science, Atlanta, GA, USA.,Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, NY, USA
| | - Anne Ridler
- Institute of Veterinary, Animal and Biomedical Sciences, Massey University, Palmerston North, New Zealand
| | - Cord Heuer
- EpiCentre, Institute of Veterinary, Animal and Biomedical Sciences, Massey University, Palmerston North, New Zealand
| | - Peter Wilson
- Institute of Veterinary, Animal and Biomedical Sciences, Massey University, Palmerston North, New Zealand
| |
Collapse
|
19
|
Bannantine JP, Etienne G, Laval F, Stabel JR, Lemassu A, Daffé M, Bayles DO, Ganneau C, Bonhomme F, Branger M, Cochard T, Bay S, Biet F. Cell wall peptidolipids of Mycobacterium avium: from genetic prediction to exact structure of a nonribosomal peptide. Mol Microbiol 2017; 105:525-539. [PMID: 28558126 DOI: 10.1111/mmi.13717] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/22/2017] [Indexed: 10/19/2022]
Abstract
Mycobacteria have a complex cell wall structure that includes many lipids; however, even within a single subspecies of Mycobacterium avium these lipids can differ. Total lipids from an M. avium subsp. paratuberculosis (Map) ovine strain (S-type) contained no identifiable glycopeptidolipids or lipopentapeptide (L5P), yet both lipids are present in other M. avium subspecies. We determined the genetic and phenotypic basis for this difference using sequence analysis as well as biochemical and physico-chemical approaches. This strategy showed that a nonribosomal peptide synthase, encoded by mps1, contains three amino acid specifying modules in ovine strains, compared to five modules in bovine strains (C-type). Sequence analysis predicted these modules would produce the tripeptide Phe-N-Methyl-Val-Ala with a lipid moiety, termed lipotripeptide (L3P). Comprehensive physico-chemical analysis of Map S397 extracts confirmed the structural formula of the native L3P as D-Phe-N-Methyl-L-Val-L-Ala-OMe attached in N-ter to a 20-carbon fatty acid chain. These data demonstrate that S-type strains, which are more adapted in sheep, produce a unique lipid. There is a dose-dependent effect observed for L3P on upregulation of CD25+ CD8 T cells from infected cows, while L5P effects were static. In contrast, L5P demonstrated a significantly stronger induction of CD25+ B cells from infected animals compared to L3P.
Collapse
Affiliation(s)
- John P Bannantine
- National Animal Disease Center, USDA-Agricultural Research Service, Ames, IA, 50010, USA
| | - Gilles Etienne
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France.,Université de Toulouse, UPS, IPBS, Toulouse, 31000, France
| | - Françoise Laval
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France.,Université de Toulouse, UPS, IPBS, Toulouse, 31000, France
| | - Judith R Stabel
- National Animal Disease Center, USDA-Agricultural Research Service, Ames, IA, 50010, USA
| | - Anne Lemassu
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France.,Université de Toulouse, UPS, IPBS, Toulouse, 31000, France
| | - Mamadou Daffé
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France.,Université de Toulouse, UPS, IPBS, Toulouse, 31000, France
| | - Darrell O Bayles
- National Animal Disease Center, USDA-Agricultural Research Service, Ames, IA, 50010, USA
| | - Christelle Ganneau
- Institut Pasteur, Unité Chimie des Biomolécules, 75724 Paris Cedex 15, France.,CNRS UMR 3523, 75724 Paris Cedex 15, France
| | - Frédéric Bonhomme
- Institut Pasteur, Unité Chimie des Biomolécules, 75724 Paris Cedex 15, France.,CNRS UMR 3523, 75724 Paris Cedex 15, France
| | - Maxime Branger
- Infectiologie et Santé Publique, INRA, Université de Tours, UMR1282, Nouzilly, F-37380, France
| | - Thierry Cochard
- Infectiologie et Santé Publique, INRA, Université de Tours, UMR1282, Nouzilly, F-37380, France
| | - Sylvie Bay
- Institut Pasteur, Unité Chimie des Biomolécules, 75724 Paris Cedex 15, France.,CNRS UMR 3523, 75724 Paris Cedex 15, France
| | - Franck Biet
- Infectiologie et Santé Publique, INRA, Université de Tours, UMR1282, Nouzilly, F-37380, France
| |
Collapse
|
20
|
Hughes V, McNair J, Strain S, Barry C, McLuckie J, Nath M, Caldow G, Stevenson K. Gamma interferon responses to proteome-determined specific recombinant proteins in cattle experimentally- and naturally-infected with paratuberculosis. Res Vet Sci 2017; 114:244-253. [PMID: 28521263 DOI: 10.1016/j.rvsc.2017.04.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 04/19/2017] [Accepted: 04/20/2017] [Indexed: 11/19/2022]
Abstract
Johne's disease (JD), is a fatal enteritis of animals caused by infection with Mycobacterium avium subspecies paratuberculosis (Map). Diagnosis of subclinical JD is problematic as test sensitivity is limited. Th1 responses to Map are activated early, thus detection of a cell-mediated response, indicated by measuring interferon gamma (IFN-γ) stimulated by mycobacterial antigens, may give the first indication of sub-clinical infection. Crude extracts of Map (PPDJ) have been used to detect the cell-mediated response in infected cattle. More specific, quantifiable antigens may improve test specificity and reproducibility. Map-specific proteins, MAP_3651c and MAP_0268c, raised a cell-mediated immune response in sub-clinically infected sheep. Results presented in this manuscript demonstrate these proteins elicit a cell-mediated response in experimental and natural infections of cattle. Individual ranked IFN-γ responses of experimentally infected calves to PPDJ showed a high, statistically significant association with ranked responses of recombinant Map antigens. Responses of infected animals were higher than the control group. Threshold values determined using data from an experimental infection were applied to naturally infected animals. Some animals exhibited responses above these threshold values. Responses to MAP_3651c on a farm categorised as high-risk for JD showed strong evidence (P<0.001) that responses were significantly different to lower-risk farms. The IGRA test may prove to be an additional tool for the diagnosis of JD, and inclusion of specific antigens a refinement however, understanding and interpretation of IGRA results remain challenging and further investigation will be required to determine whether the IGRA test can detect exposure and hence predict clinical JD.
Collapse
Affiliation(s)
- Valerie Hughes
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik EH26 0PZ, United Kingdom.
| | - Jim McNair
- Veterinary Sciences Division, Agri-Food and Biosciences Institute, Stoney Road, Stormont Belfast BT4 3SD, United Kingdom
| | - Samuel Strain
- Veterinary Sciences Division, Agri-Food and Biosciences Institute, Stoney Road, Stormont Belfast BT4 3SD, United Kingdom
| | - Claire Barry
- Veterinary Sciences Division, Agri-Food and Biosciences Institute, Stoney Road, Stormont Belfast BT4 3SD, United Kingdom
| | - Joyce McLuckie
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik EH26 0PZ, United Kingdom
| | - Mintu Nath
- Biomathematics & Statistics Scotland, James Clerk Maxwell Building, The King's Building, Edinburgh EH9 3JZ, United Kingdom
| | - George Caldow
- SRUC, Greycrook, St Boswells, Roxburghshire TD6 0EQ, United Kingdom
| | - Karen Stevenson
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik EH26 0PZ, United Kingdom
| |
Collapse
|
21
|
Möbius P, Liebler-Tenorio E, Hölzer M, Köhler H. Evaluation of associations between genotypes of Mycobacterium avium subsp. paratuberculsis and presence of intestinal lesions characteristic of paratuberculosis. Vet Microbiol 2017; 201:188-194. [PMID: 28284609 DOI: 10.1016/j.vetmic.2017.01.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 12/15/2016] [Accepted: 01/18/2017] [Indexed: 10/20/2022]
Abstract
Mycobacterium avium subsp. paratuberculosis (MAP) is the causative agent of paratuberculosis affecting ruminants worldwide. Depending on the MAP-Type (MAP-C or MAP-S, cattle or sheep type), strains differ in virulence and host preference. There is not yet any strong evidence indicating that individual field strains of the same MAP-subgroup exhibit differences in virulence. The aim of this study was to evaluate a potential association between the genotype of individual field strains belonging to the MAP-C group and the presence of macroscopic intestinal lesions characteristic of paratuberculosis in the infected animals. 88 MAP-C isolates were sampled from clinically healthy cows at slaughter. Cows were grouped as A (n=46) with, and B (n=42) without macroscopic intestinal lesions. Sampled cows from both the A and B groups came from different farms and had a similar age distribution. MAP isolates were characterized by MIRU-VNTR and IS900-RFLP analysis. Resulting genotypes were examined for an association with the presence of macroscopic intestinal lesions characteristic of paratuberculosis. MAP isolates from groups A and B exhibited similar strain diversity: 20 and 18 combined genotypes, altogether 32 genotypes. Six of these genotypes were detected in both groups. Although no association was found between individual combined genotypes and presence of macroscopic intestinal lesions, IS900-RFLP-(BstEII)-Type-C1 (the most common type worldwide) was found more often in group A (p<0.01). The data give only weak indication for the existence of differences in virulence among MAP-cattle type isolates. Differences in the development and severity of lesions may rather depend on unknown host factors or inoculation dose. Virulence properties of IS900-RFLP-(BstEII)-Type-C1 isolates should be examined in more detail.
Collapse
Affiliation(s)
- Petra Möbius
- Friedrich-Loeffler-Institut (Federal Research Institute for Animal Health), Institute of Molecular Pathogenesis, 07743 Jena, Naumburger Str. 96a, Germany.
| | - Elisabeth Liebler-Tenorio
- Friedrich-Loeffler-Institut (Federal Research Institute for Animal Health), Institute of Molecular Pathogenesis, 07743 Jena, Naumburger Str. 96a, Germany.
| | - Martin Hölzer
- Friedrich Schiller University Jena, Faculty of Mathematics and Computer Science, RNA Bioinformatics and High Throughput Analysis, 07743 Jena, Leutragraben 1, Germany.
| | - Heike Köhler
- Friedrich-Loeffler-Institut (Federal Research Institute for Animal Health), Institute of Molecular Pathogenesis, 07743 Jena, Naumburger Str. 96a, Germany.
| |
Collapse
|
22
|
Marquetoux N, Heuer C, Wilson P, Ridler A, Stevenson M. Merging DNA typing and network analysis to assess the transmission of paratuberculosis between farms. Prev Vet Med 2016; 134:113-121. [PMID: 27836032 DOI: 10.1016/j.prevetmed.2016.09.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Revised: 08/04/2016] [Accepted: 09/13/2016] [Indexed: 11/18/2022]
Abstract
Paratuberculosis, a chronic enteric infection caused by Mycobacterium subsp. paratuberculosis (MAP), is endemic in all farmed ruminant species in New Zealand. The use of genotyping in combination with network analysis of livestock movement events from one farm location to another has the potential to contribute to our understanding of between-farm transmission events. We studied a population of 122 farms from a corporate commercial livestock enterprise in New Zealand, trading with each other in near isolation from other commercial farms. The data consisted of longitudinal movements to and from these farms between 2006 and 2010, as well as the results of cross-sectional MAP screening and genotyping performed in 2010. We explored associations between past livestock movements and current strain type distribution in this population of farms using quadratic assignment procedure. Our results show that measures of farm clustering within the movement network were significantly associated with sharing of MAP strains. For example, farms closely related by trade were twice as likely to share the same strains of MAP (p=0.033). Other covariates were also associated with the probability of sharing the same strains of MAP, such as being located on the same island (OR=5.8 to 8.7, p<0.01), farming the same livestock species and Euclidian distance between farms. The novel approach we used supports the hypothesis that livestock movement is indeed a significant contributor to farm-to-farm transmission of MAP.
Collapse
Affiliation(s)
- N Marquetoux
- EpiCentre, Institute of Veterinary, Animal and Biomedical Sciences, Massey University, Palmerston North, New Zealand.
| | - C Heuer
- EpiCentre, Institute of Veterinary, Animal and Biomedical Sciences, Massey University, Palmerston North, New Zealand
| | - P Wilson
- Institute of Veterinary, Animal and Biomedical Sciences, Massey University, New Zealand
| | - A Ridler
- Institute of Veterinary, Animal and Biomedical Sciences, Massey University, New Zealand
| | - M Stevenson
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Werribee, Victoria, Australia
| |
Collapse
|
23
|
Chaubey KK, Gupta RD, Gupta S, Singh SV, Bhatia AK, Jayaraman S, Kumar N, Goel A, Rathore AS, Sahzad, Sohal JS, Stephen BJ, Singh M, Goyal M, Dhama K, Derakhshandeh A. Trends and advances in the diagnosis and control of paratuberculosis in domestic livestock. Vet Q 2016; 36:203-227. [PMID: 27356470 DOI: 10.1080/01652176.2016.1196508] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Paratuberculosis (pTB) is a chronic granulomatous enteritis caused by Mycobacterium avium subsp. paratuberculosis (MAP) in a wide variety of domestic and wild animals. Control of pTB is difficult due to the lack of sensitive, efficacious and cost-effective diagnostics and marker vaccines. Microscopy, culture, and PCR have been used for the screening of MAP infection in animals for quite a long time. Besides, giving variable sensitivity and specificity, these tests have not been considered ideal for large-scale screening of domestic livestock. Serological tests like ELISA easily detects anti-MAP antibodies. However, it cannot differentiate between the vaccinated and infected animals. Nanotechnology-based diagnostic tests are underway to improve the sensitivity and specificity. Newer generation diagnostic tests based on recombinant MAP secretory proteins would open new paradigm for the differentiation between infected and vaccinated animals and for early detection of the infection. Due to higher seroreactivity of secretory proteins vis-à-vis cellular proteins, the secretory proteins may be used as marker vaccine, which may aid in the control of pTB infection in animals. Secretory proteins can be potentially used to develop future diagnostics, surveillance and monitoring of the disease progression in animals and the marker vaccine for the control and eradication of pTB.
Collapse
Affiliation(s)
- Kundan Kumar Chaubey
- a Microbiology Laboratory, Animal Health Division , Central Institute for Research on Goats , Mathura , India.,b Department of Microbiology and Immunology , GLA University , Mathura , India
| | - Rinkoo Devi Gupta
- c Department of Life sciences and Biotechnology , South Asian University , New Delhi , India
| | - Saurabh Gupta
- a Microbiology Laboratory, Animal Health Division , Central Institute for Research on Goats , Mathura , India.,b Department of Microbiology and Immunology , GLA University , Mathura , India
| | - Shoor Vir Singh
- a Microbiology Laboratory, Animal Health Division , Central Institute for Research on Goats , Mathura , India
| | - Ashok Kumar Bhatia
- b Department of Microbiology and Immunology , GLA University , Mathura , India
| | - Sujata Jayaraman
- d Amity Institutes of Microbial Technology , Amity University , Jaipur , India
| | - Naveen Kumar
- a Microbiology Laboratory, Animal Health Division , Central Institute for Research on Goats , Mathura , India
| | - Anjana Goel
- b Department of Microbiology and Immunology , GLA University , Mathura , India
| | - Abhishek Singh Rathore
- c Department of Life sciences and Biotechnology , South Asian University , New Delhi , India
| | - Sahzad
- a Microbiology Laboratory, Animal Health Division , Central Institute for Research on Goats , Mathura , India
| | - Jagdip Singh Sohal
- d Amity Institutes of Microbial Technology , Amity University , Jaipur , India
| | - Bjorn John Stephen
- a Microbiology Laboratory, Animal Health Division , Central Institute for Research on Goats , Mathura , India
| | - Manju Singh
- a Microbiology Laboratory, Animal Health Division , Central Institute for Research on Goats , Mathura , India
| | - Manish Goyal
- e Division of Parasitology , Central Drug Research Institute , Lucknow , India
| | - Kuldeep Dhama
- f Pathology Division , Indian Veterinary Research Institute (IVRI) , Bareilly , India
| | - Abdollah Derakhshandeh
- g Department of Pathobiology, School of Veterinary Medicine , Shiraz University , Shiraz , Iran
| |
Collapse
|
24
|
Yue R, Liu C, Barrow P, Liu F, Cui Y, Yang L, Zhao D, Zhou X. The isolation and molecular characterization of Mycobacterium avium subsp. paratuberculosis in Shandong province, China. Gut Pathog 2016; 8:9. [PMID: 27006704 PMCID: PMC4802609 DOI: 10.1186/s13099-016-0092-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 02/29/2016] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Mycobacterium avium subspecies paratuberculosis (Map) causes Johne's disease in domestic and wild ruminants. It has been a debate that whether Map can cause Crohn's disease in human. To our knowledge there is no report about molecular characterization of Map in China, although several Map strains have been reported in other country. The objectives of this study was to know the recent prevalence of Johne's disease in dairy farms in Shandong province, and have a better understanding of genotypic distribution of Map in China. METHODS Johne's disease was detected from 1038 individuals in 19 dairy farms by ELISA. Map in fecal and milk specimens was identified by Ziehl-Neelsen staining and confirmed using PCR-REA. In addition, frozen sections of ileum and mesenteric lymph nodes from two Map shedding cows were performed to observe the histopathological changes. Next-generation sequencing technology was performed to get whole genome sequences. RESULT A total of 121 (11.7 %) animals were positive for Map antibody from 1038 sera tested, and 11 (57.9 %) dairy herds were positive for Map antibody. Typically histopathologic changes were observed in mesenteric lymph nodes. We have successfully isolated two Map strains, which both were Map-C. The current genome-wide analysis showed that the genome size of our isolates are respectively 4,750,273 and 4,727,050 bp with a same G + C content of 69.3 %, and the numbers of single nucleotide polymorphisms (SNPs) against Map K-10 are respectively 292 and 296. CONCLUSION Map is a prevalent pathogen among dairy cattle in China. This study successfully isolated two Map strains from one Chinese dairy herd with signs of diarrhoea, and identified that the two isolates were both Map-C. Furthermore, these isolates were most closely related to Map K-10.
Collapse
Affiliation(s)
- Ruichao Yue
- State Key Laboratories for Agrobiotechnology, Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193 China
| | - Chunfa Liu
- State Key Laboratories for Agrobiotechnology, Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193 China
| | - Paul Barrow
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD UK
| | - Fei Liu
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Yongyong Cui
- State Key Laboratories for Agrobiotechnology, Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193 China
| | - Lifeng Yang
- State Key Laboratories for Agrobiotechnology, Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193 China
| | - Deming Zhao
- State Key Laboratories for Agrobiotechnology, Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193 China
| | - Xiangmei Zhou
- State Key Laboratories for Agrobiotechnology, Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193 China
| |
Collapse
|
25
|
Sonawane GG, Narnaware SD, Tripathi BN. Molecular epidemiology of Mycobacterium avium subspecies paratuberculosis in ruminants in different parts of India. Int J Mycobacteriol 2016; 5:59-65. [DOI: 10.1016/j.ijmyco.2015.11.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 11/24/2015] [Accepted: 11/28/2015] [Indexed: 11/28/2022] Open
|
26
|
Fawzy A, Zschöck M, Ewers C, Eisenberg T. New polymorphisms within the variable number tandem repeat (VNTR) 7 locus of Mycobacterium avium subsp. paratuberculosis. Mol Cell Probes 2016; 30:132-7. [PMID: 26872530 DOI: 10.1016/j.mcp.2016.02.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 02/04/2016] [Accepted: 02/04/2016] [Indexed: 02/07/2023]
Abstract
Variable number tandem repeat (VNTR) is a frequently employed typing method of Mycobacterium avium paratuberculosis (MAP) isolates. Based on whole genome sequencing in a previous study, allelic diversity at some VNTR loci seems to over- or under-estimate the actual phylogenetic variance among isolates. Interestingly, two closely related isolates on one farm showed polymorphism at the VNTR 7 locus, raising concerns about the misleading role that it might play in genotyping. We aimed to investigate the underlying basis of VNTR 7-polymorphism by analyzing sequence data for published genomes and field isolates of MAP and other M. avium complex (MAC) members. In contrast to MAP strains from cattle, strains from sheep displayed an "imperfect" repeat within VNTR 7, which was identical to respective allele types in other MAC genomes. Subspecies- and strain-specific single nucleotide polymorphisms (SNPs) and two novel (16 and 56 bp) repeats were detected. Given the combination of the three existing repeats, there are at least five different patterns for VNTR 7. The present findings highlight a higher polymorphism and probable instability of VNTR 7 locus that needs to be considered and challenged in future studies. Until then, sequencing of this locus in future studies is important to correctly assign the underlying allele types.(1).
Collapse
Affiliation(s)
- Ahmad Fawzy
- Justus Liebig Universität, Institut für Hygiene und Infektionskrankheiten der Tiere, Frankfurter Straße 85-89 35392, Gießen, Germany; Landesbetrieb Hessisches Landeslabor, Schubertstraße 60 D-35392 Gießen, Germany; Cairo University, Faculty of Veterinary Medicine, Department of Medicine and Infectious Diseases, Giza Square 12211, Egypt.
| | - Michael Zschöck
- Landesbetrieb Hessisches Landeslabor, Schubertstraße 60 D-35392 Gießen, Germany
| | - Christa Ewers
- Justus Liebig Universität, Institut für Hygiene und Infektionskrankheiten der Tiere, Frankfurter Straße 85-89 35392, Gießen, Germany
| | - Tobias Eisenberg
- Justus Liebig Universität, Institut für Hygiene und Infektionskrankheiten der Tiere, Frankfurter Straße 85-89 35392, Gießen, Germany; Landesbetrieb Hessisches Landeslabor, Schubertstraße 60 D-35392 Gießen, Germany
| |
Collapse
|
27
|
Bryant JM, Thibault VC, Smith DGE, McLuckie J, Heron I, Sevilla IA, Biet F, Harris SR, Maskell DJ, Bentley SD, Parkhill J, Stevenson K. Phylogenomic exploration of the relationships between strains of Mycobacterium avium subspecies paratuberculosis. BMC Genomics 2016; 17:79. [PMID: 26813574 PMCID: PMC4729121 DOI: 10.1186/s12864-015-2234-5] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 10/05/2015] [Indexed: 01/30/2023] Open
Abstract
Background Mycobacterium avium subspecies paratuberculosis (Map) is an infectious enteric pathogen that causes Johne’s disease in livestock. Determining genetic diversity is prerequisite to understanding the epidemiology and biology of Map. We performed the first whole genome sequencing (WGS) of 141 global Map isolates that encompass the main molecular strain types currently reported. We investigated the phylogeny of the Map strains, the diversity of the genome and the limitations of commonly used genotyping methods. Results Single nucleotide polymorphism (SNP) and phylogenetic analyses confirmed two major lineages concordant with the former Type S and Type C designations. The Type I and Type III strain groups are subtypes of Type S, and Type B strains are a subtype of Type C and not restricted to Bison species. We found that the genome-wide SNPs detected provided greater resolution between isolates than currently employed genotyping methods. Furthermore, the SNP used for IS1311 typing is not informative, as it is likely to have occurred after Type S and C strains diverged and does not assign all strains to the correct lineage. Mycobacterial Interspersed Repetitive Unit-Variable Number Tandem Repeat (MIRU-VNTR) differentiates Type S from Type C but provides limited resolution between isolates within these lineages and the polymorphisms detected do not necessarily accurately reflect the phylogenetic relationships between strains. WGS of passaged strains and coalescent analysis of the collection revealed a very high level of genetic stability, with the substitution rate estimated to be less than 0.5 SNPs per genome per year. Conclusions This study clarifies the phylogenetic relationships between the previously described Map strain groups, and highlights the limitations of current genotyping techniques. Map isolates exhibit restricted genetic diversity and a substitution rate consistent with a monomorphic pathogen. WGS provides the ultimate level of resolution for differentiation between strains. However, WGS alone will not be sufficient for tracing and tracking Map infections, yet importantly it can provide a phylogenetic context for affirming epidemiological connections. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2234-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Josephine M Bryant
- Wellcome Trust Sanger Institute, Genome Campus, Cambridge, UK. .,Division of Infection and Immunity, University College London, London, UK.
| | | | - David G E Smith
- Moredun Research Institute, Pentlands Science Park, Penicuik, EH26 0PZ, UK. .,Institute of Infection, Immunity & Inflammation, University of Glasgow, Glasgow, G12 8QQ, UK.
| | - Joyce McLuckie
- Moredun Research Institute, Pentlands Science Park, Penicuik, EH26 0PZ, UK.
| | - Ian Heron
- Moredun Research Institute, Pentlands Science Park, Penicuik, EH26 0PZ, UK.
| | - Iker A Sevilla
- Neiker-tecnalia, Dpto. de Producción y Sanidad Animal, Berreaga 1, 48160, Derio, Bizkaia, Spain.
| | - Franck Biet
- INRA, UMR1282, Infectiologie Santé Publique (ISP-311), F-37380, Nouzilly, France.
| | - Simon R Harris
- Wellcome Trust Sanger Institute, Genome Campus, Cambridge, UK.
| | - Duncan J Maskell
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK.
| | | | - Julian Parkhill
- Wellcome Trust Sanger Institute, Genome Campus, Cambridge, UK.
| | - Karen Stevenson
- Moredun Research Institute, Pentlands Science Park, Penicuik, EH26 0PZ, UK.
| |
Collapse
|
28
|
Novel Single Nucleotide Polymorphism-Based Assay for Genotyping Mycobacterium avium subsp. paratuberculosis. J Clin Microbiol 2015; 54:556-64. [PMID: 26677250 DOI: 10.1128/jcm.01958-15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Accepted: 11/26/2015] [Indexed: 11/20/2022] Open
Abstract
Typing of Mycobacterium avium subspecies paratuberculosis strains presents a challenge, since they are genetically monomorphic and traditional molecular techniques have limited discriminatory power. The recent advances and availability of whole-genome sequencing have extended possibilities for the characterization of Mycobacterium avium subspecies paratuberculosis, and whole-genome sequencing can provide a phylogenetic context to facilitate global epidemiology studies. In this study, we developed a single nucleotide polymorphism (SNP) assay based on PCR and restriction enzyme digestion or sequencing of the amplified product. The SNP analysis was performed using genome sequence data from 133 Mycobacterium avium subspecies paratuberculosis isolates with different genotypes from 8 different host species and 17 distinct geographic regions around the world. A total of 28,402 SNPs were identified among all of the isolates. The minimum number of SNPs required to distinguish between all of the 133 genomes was 93 and between only the type C isolates was 41. To reduce the number of SNPs and PCRs required, we adopted an approach based on sequential detection of SNPs and a decision tree. By the analysis of 14 SNPs Mycobacterium avium subspecies paratuberculosis isolates can be characterized within 14 phylogenetic groups with a higher discriminatory power than mycobacterial interspersed repetitive unit-variable number tandem repeat assay and other typing methods. Continuous updating of genome sequences is needed in order to better characterize new phylogenetic groups and SNP profiles. The novel SNP assay is a discriminative, simple, reproducible method and requires only basic laboratory equipment for the large-scale global typing of Mycobacterium avium subspecies paratuberculosis isolates.
Collapse
|
29
|
Möbius P, Hölzer M, Felder M, Nordsiek G, Groth M, Köhler H, Reichwald K, Platzer M, Marz M. Comprehensive insights in the Mycobacterium avium subsp. paratuberculosis genome using new WGS data of sheep strain JIII-386 from Germany. Genome Biol Evol 2015; 7:2585-2601. [PMID: 26384038 PMCID: PMC4607514 DOI: 10.1093/gbe/evv154] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Mycobacterium avium (M. a.) subsp. paratuberculosis (MAP)—the etiologic agent of Johne’s disease—affects cattle, sheep, and other ruminants worldwide. To decipher phenotypic differences among sheep and cattle strains (belonging to MAP-S [Type-I/III], respectively, MAP-C [Type-II]), comparative genome analysis needs data from diverse isolates originating from different geographic regions of the world. This study presents the so far best assembled genome of a MAP-S-strain: Sheep isolate JIII-386 from Germany. One newly sequenced cattle isolate (JII-1961, Germany), four published MAP strains of MAP-C and MAP-S from the United States and Australia, and M. a. subsp. hominissuis (MAH) strain 104 were used for assembly improvement and comparisons. All genomes were annotated by BacProt and results compared with NCBI (National Center for Biotechnology Information) annotation. Corresponding protein-coding sequences (CDSs) were detected, but also CDSs that were exclusively determined by either NCBI or BacProt. A new Shine–Dalgarno sequence motif (5′-AGCTGG-3′) was extracted. Novel CDSs including PE-PGRS family protein genes and about 80 noncoding RNAs exhibiting high sequence conservation are presented. Previously found genetic differences between MAP-types are partially revised. Four of ten assumed MAP-S-specific large sequence polymorphism regions (LSPSs) are still present in MAP-C strains; new LSPSs were identified. Independently of the regional origin of the strains, the number of individual CDSs and single nucleotide variants confirms the strong similarity of MAP-C strains and shows higher diversity among MAP-S strains. This study gives ambiguous results regarding the hypothesis that MAP-S is the evolutionary intermediate between MAH and MAP-C, but it clearly shows a higher similarity of MAP to MAH than to Mycobacterium intracellulare.
Collapse
Affiliation(s)
- Petra Möbius
- NRL for Paratuberculosis, Institute of Molecular Pathogenesis, Friedrich-Loeffler-Institut (Federal Research Institute for Animal Health), Naumburger Straße 96a, 07743 Jena, Germany
| | - Martin Hölzer
- RNA Bioinformatics and High Throughput Analysis, Faculty of Mathematics and Computer Science, Friedrich Schiller University Jena, Leutragraben 1, 07743 Jena, Germany
| | - Marius Felder
- Leibniz Institute for Age Research - Fritz-Lipmann-Institute (FLI), Beutenbergstraße 11, 07745 Jena, Germany
| | - Gabriele Nordsiek
- Department of Genome Analysis, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124 Braunschweig, Germany
| | - Marco Groth
- Leibniz Institute for Age Research - Fritz-Lipmann-Institute (FLI), Beutenbergstraße 11, 07745 Jena, Germany
| | - Heike Köhler
- NRL for Paratuberculosis, Institute of Molecular Pathogenesis, Friedrich-Loeffler-Institut (Federal Research Institute for Animal Health), Naumburger Straße 96a, 07743 Jena, Germany
| | - Kathrin Reichwald
- Leibniz Institute for Age Research - Fritz-Lipmann-Institute (FLI), Beutenbergstraße 11, 07745 Jena, Germany
| | - Matthias Platzer
- Leibniz Institute for Age Research - Fritz-Lipmann-Institute (FLI), Beutenbergstraße 11, 07745 Jena, Germany
| | - Manja Marz
- RNA Bioinformatics and High Throughput Analysis, Faculty of Mathematics and Computer Science, Friedrich Schiller University Jena, Leutragraben 1, 07743 Jena, Germany
| |
Collapse
|
30
|
Genetic diversity of Mycobacterium avium subspecies paratuberculosis and the influence of strain type on infection and pathogenesis: a review. Vet Res 2015; 46:64. [PMID: 26092160 PMCID: PMC4473831 DOI: 10.1186/s13567-015-0203-2] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 01/16/2015] [Indexed: 12/12/2022] Open
Abstract
Mycobacterium avium subspecies paratuberculosis (Map) is an important pathogen that causes a chronic, progressive granulomatous enteritis known as Johne's disease or paratuberculosis. The disease is endemic in many parts of the world and responsible for considerable losses to the livestock and associated industries. Diagnosis and control are problematic, due mostly to the long incubation period of the disease when infected animals show no clinical signs and are difficult to detect, and the ability of the organism to survive and persist in the environment. The existence of phenotypically distinct strains of Map has been known since the 1930s but the genetic differentiation of Map strain types has been challenging and only recent technologies have proven sufficiently discriminative for strain comparisons, tracing the sources of infection and epidemiological studies. It is important to understand the differences that exist between Map strains and how they influence both development and transmission of disease. This information is required to develop improved diagnostics and effective vaccines for controlling Johne's disease. Here I review the current classification of Map strain types, the sources of the genetic variability within strains, growth characteristics and epidemiological traits associated with strain type and the influence of strain type on infection and pathogenicity.
Collapse
|
31
|
Fernández M, Delgado L, Sevilla IA, Fuertes M, Castaño P, Royo M, Ferreras MC, Benavides J, Pérez V. Virulence attenuation of a Mycobacterium avium subspecies paratuberculosis S-type strain prepared from intestinal mucosa after bacterial culture. Evaluation in an experimental ovine model. Res Vet Sci 2015; 99:180-7. [DOI: 10.1016/j.rvsc.2015.02.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 01/19/2015] [Accepted: 02/06/2015] [Indexed: 10/24/2022]
|
32
|
Amin AS, Hsu CY, Darwish SF, Ghosh P, AbdEl-Fatah EM, Behour TS, Talaat AM. Ecology and genomic features of infection with Mycobacterium avium subspecies paratuberculosis in Egypt. MICROBIOLOGY-SGM 2015; 161:807-18. [PMID: 25667007 DOI: 10.1099/mic.0.000051] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 02/02/2015] [Indexed: 01/27/2023]
Abstract
Mycobacterium avium subspecies paratuberculosis (M. paratuberculosis) is the causative agent of paratuberculosis, or Johne's disease, in cattle, with potential involvement in cases of Crohn's disease in humans. Johne's disease is found worldwide and is economically important for both beef and dairy industries. In an effort to characterize this important infection in Egypt, we analysed the ecological and genomic features of recent isolates of M. paratuberculosis. In this report, we examined 26 Holstein dairy herds distributed throughout Egypt, from 2010 to 2013. Using PCR analysis of faecal samples, we estimated a mean herd-level prevalence of 65.4 %, with animal-level infection that reached a mean of 13.6 % among animals suffering from diarrhoea. Whole genome sequencing of field isolates identified numerous single nucleotide polymorphisms among field isolates relative to the standard M. paratuberculosis K10 genome. Interestingly, the virulence of M. paratuberculosis isolates from Egypt revealed diverse virulence phenotypes in the murine model of paratuberculosis, with significant differences in tissue colonization, particularly during the chronic stage of infection. Overall, our analysis confirmed that Johne's disease is a newly identified problem in Egypt and indicated that M. paratuberculosis has potentially diverse genotypes that impact its virulence. Further ecological mapping and genomic analysis of M. paratuberculosis will enhance our understanding of the transmission and evolutionary dynamics of this pathogen under natural field conditions.
Collapse
Affiliation(s)
- Adel S Amin
- Biotechnology Research Unit, Animal Reproduction Research Institute (ARRI), Giza, Egypt
| | - Chung-Yi Hsu
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Samah F Darwish
- Biotechnology Research Unit, Animal Reproduction Research Institute (ARRI), Giza, Egypt
| | - Pallab Ghosh
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Eman M AbdEl-Fatah
- Biotechnology Research Unit, Animal Reproduction Research Institute (ARRI), Giza, Egypt
| | - Tahani S Behour
- Biotechnology Research Unit, Animal Reproduction Research Institute (ARRI), Giza, Egypt
| | - Adel M Talaat
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, USA Department of Food Hygiene and Control, Faculty of Veterinary Medicine Cairo University, Giza, Egypt
| |
Collapse
|
33
|
Alluwaimi AM. Paratuberculosis Infection in Camel (<i>Camelus dromidarius</i>): Current and Prospective Overview. ACTA ACUST UNITED AC 2015. [DOI: 10.4236/ojvm.2015.57021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
34
|
Verdugo C, Pleydell E, Price-Carter M, Prattley D, Collins D, de Lisle G, Vogue H, Wilson P, Heuer C. Molecular epidemiology of Mycobacterium avium subsp. paratuberculosis isolated from sheep, cattle and deer on New Zealand pastoral farms. Prev Vet Med 2014; 117:436-46. [PMID: 25315761 DOI: 10.1016/j.prevetmed.2014.09.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 09/26/2014] [Accepted: 09/26/2014] [Indexed: 10/24/2022]
Abstract
The present study aimed to describe the molecular diversity of Mycobacterium avium subsp. paratuberculosis (MAP) isolates obtained from sheep, cattle (beef and dairy) and deer farms in New Zealand. A total of 206 independent MAP isolates (15 beef cattle, 89 dairy cattle, 35 deer, 67 sheep) were sourced from 172 species-mobs (15 beef cattle, 66 dairy cattle, 31 deer, 60 sheep). Seventeen subtypes were identified, using a combination of variable number of tandem repeats (VNTR) and short sequence repeat (SSR) methods. Rarefaction analysis, analysis of molecular variance (AMOVA), Fst pairwise comparisons and proportional similarity index (PSI) were used to describe subtype population richness, genetic structure and potential associations between livestock sectors and New Zealand two main islands (North and South). The rarefaction analysis suggests a significantly higher subtype richness in dairy cattle herds when compared to the other livestock sectors. AMOVA results indicate that the main source of subtype variation is attributable to the livestock sector from which samples were sourced suggesting that subtypes are generally sector-specific. The pairwise Fst results were similar, with low Fst values for island differences within a livestock sector when compared to between sector analyses, representing a low subtype differentiation between islands. However, for a given island, potential associations were seen between dominant subtypes and specific livestock sectors. Three subtypes accounted for 76% of the isolates. The most common of these was isolated from sheep and beef cattle in the North Island, the second most frequent subtype was mainly isolated from dairy cattle (either island), while the third most common subtype was associated with deer farmed in the South Island. The PSI analysis suggests similarities in subtypes sourced from sheep and beef cattle. This contrasted with the isolates sourced from other livestock sectors, which tended to present sector-specific subtypes. Sheep and beef cattle were mainly infected with MAP Type I, while dairy cattle and deer were almost exclusively infected with MAP Type II. However, when beef cattle and deer were both present at farm level, they harboured similar subtypes. This study indicates that cross-species transmission of MAP occurs on New Zealand farms although close contact between species appears to be required, as in the case of sheep and beef cattle which are commonly grazed together in New Zealand.
Collapse
Affiliation(s)
- Cristobal Verdugo
- Instituto de Medicina Preventiva Veterinaria, Universidad Austral de Chile, Valdivia, Chile; EpiCentre, Massey University, Private Bag 11-222, Palmerston North, New Zealand.
| | - Eve Pleydell
- Infectious Disease Research Centre, Massey University, Private Bag 11-222, Palmerston North, New Zealand
| | - Marian Price-Carter
- AgResearch, National Centre for Biosecurity and Infectious Disease, Wallaceville, P.O. Box 40063, Upper Hutt, New Zealand
| | - Deborah Prattley
- Infectious Disease Research Centre, Massey University, Private Bag 11-222, Palmerston North, New Zealand
| | - Desmond Collins
- AgResearch, National Centre for Biosecurity and Infectious Disease, Wallaceville, P.O. Box 40063, Upper Hutt, New Zealand
| | - Geoffrey de Lisle
- AgResearch, National Centre for Biosecurity and Infectious Disease, Wallaceville, P.O. Box 40063, Upper Hutt, New Zealand
| | - Hinrich Vogue
- Livestock Improvement Corporation, Private Bag 3016, Hamilton, New Zealand
| | - Peter Wilson
- Institute of Veterinary, Animal, and Biomedical Sciences, Massey University, Private Bag 11-222, Palmerston North, New Zealand
| | - Cord Heuer
- EpiCentre, Massey University, Private Bag 11-222, Palmerston North, New Zealand
| |
Collapse
|
35
|
Systematic review of the prevalence of paratuberculosis in cattle, sheep, and goats in Latin America and the Caribbean. Trop Anim Health Prod 2014; 46:1321-40. [DOI: 10.1007/s11250-014-0656-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 07/30/2014] [Indexed: 11/27/2022]
|
36
|
Mycobacterium Avium subsp. paratuberculosis isolates induce in vitro granuloma formation and show successful survival phenotype, common anti-inflammatory and antiapoptotic responses within ovine macrophages regardless of genotype or host of origin. PLoS One 2014; 9:e104238. [PMID: 25111300 PMCID: PMC4128652 DOI: 10.1371/journal.pone.0104238] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 07/09/2014] [Indexed: 11/19/2022] Open
Abstract
The analysis of the early macrophage responses, including bacterial growth within macrophages, represents a powerful tool to characterize the virulence of clinical isolates of Mycobcaterium avium susbp. paratuberculosis (Map). The present study represents the first assessment of the intracellular behaviour in ovine monocyte-derived macrophages (MDMs) of Map isolates representing distinct genotypes (C, S and B), and isolated from cattle, sheep, goat, fallow deer, deer, and wild boar. Intracellular growth and survival of the selected isolates in ovine MDMs was assessed by quantification of CFUs inside of the host cells at 2 h p.i. (day 0) and 7 d p. i. using an automatic liquid culture system (Bactec MGIT 960). Variations in bacterial counts over 7 days from the baseline were small, in a range between 1.63 to 1.05-fold. After 7 d of infection, variations in the estimated log10 CFUs between all the tested isolates were not statistically significant. In addition, ovine MDMs exhibited enhanced anti-inflammatory, antiapoptotic and antidestructive responses when infected with two ovine isolates of distinct genotype (C and S) or with two C-type isolates from distinct hosts (cattle and sheep); which correlated with the successful survival of these isolates within ovine MDMs. A second objective was to study, based on an in vitro granuloma model, latter stages of the infection by investigating the capacity of two Map isolates from cattle and sheep to trigger formation of microgranulomas. Upon 10 d p.i., both Map isolates were able to induce the formation of granulomas comparable to the granulomas observed in clinical specimens with respect to the cellular components involved. In summary, our results demonstrated that Map isolates from cattle, sheep, goats, deer, fallow-deer and wild boar were able not only to initiate but also to establish a successful infection in ovine macrophages regardless of genotype.
Collapse
|
37
|
SNP genotyping of animal and human derived isolates of Mycobacterium avium subsp. paratuberculosis. Vet Microbiol 2014; 172:479-85. [PMID: 24970365 DOI: 10.1016/j.vetmic.2014.05.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 05/13/2014] [Accepted: 05/17/2014] [Indexed: 10/25/2022]
Abstract
Mycobacterium avium subsp. paratuberculosis (MAP) is the aetiological agent of Johne's disease (JD), a chronic granulomatous enteritis that affects ruminants worldwide. While the ability of MAP to cause disease in animals is clear, the role of this bacterium in human inflammatory bowel diseases remains unresolved. Previous whole genome sequencing of MAP isolates derived from human and three animal hosts showed that human isolates were genetically similar and showed a close phylogenetic relationship to one bovine isolate. In contrast, other animal derived isolates were more genetically diverse. The present study aimed to investigate the frequency of this human strain across 52 wild-type MAP isolates, collected predominantly from Australia. A Luminex based SNP genotyping approach was utilised to genotype SNPs that had previously been shown to be specific to the human, bovine or ovine isolate types. Fourteen SNPs were initially evaluated across a reference panel of isolates with known genotypes. A subset of seven SNPs was chosen for analysis within the wild-type collection. Of the seven SNPs, three were found to be unique to paediatric human isolates. No wild-type isolates contain these SNP alleles. Interestingly, and in contrast to the paediatric isolates, three additional adult human isolates (derived from adult Crohn's disease patients) also did not contain these SNP alleles. Furthermore we identified two SNPs, which demonstrate extensive polymorphism within the animal-derived MAP isolates. One of which appears unique to ovine and a single camel isolate. From this study we suggest the existence of genetic heterogeneity between human derived MAP isolates, some of which are highly similar to those derived from bovine hosts, but others of which are more divergent.
Collapse
|
38
|
Genetic structure of Mycobacterium avium subsp. paratuberculosis population in cattle herds in Quebec as revealed by using a combination of multilocus genomic analyses. J Clin Microbiol 2014; 52:2764-75. [PMID: 24829229 DOI: 10.1128/jcm.00386-14] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Mycobacterium avium subsp. paratuberculosis is the etiological agent of paratuberculosis, a granulomatous enteritis affecting a wide range of domestic and wild ruminants worldwide. A variety of molecular typing tools are used to distinguish M. avium subsp. paratuberculosis strains, contributing to a better understanding of M. avium subsp. paratuberculosis epidemiology. In the present study, PCR-based typing methods, including mycobacterial interspersed repetitive units/variable-number tandem repeats (MIRU-VNTR) and small sequence repeats (SSR) in addition to IS1311 PCR-restriction enzyme analysis (PCR-REA), were used to investigate the genetic heterogeneity of 200 M. avium subsp. paratuberculosis strains from dairy herds located in the province of Quebec, Canada. The majority of strains were of the "cattle type," or type II, although 3 strains were of the "bison type." A total of 38 genotypes, including a novel one, were identified using a combination of 17 genetic markers, which generated a Simpson's index of genetic diversity of 0.876. Additional analyses revealed no differences in genetic diversity between environmental and individual strains. Of note, a spatial and spatiotemporal cluster was evidenced regarding the distribution of one of the most common genotypes. The population had an overall homogeneous genetic structure, although a few strains stemmed out of the consensus cluster, including the bison-type strains. The genetic structure of M. avium subsp. paratuberculosis populations within most herds suggested intraherd dissemination and microevolution, although evidence of interherd contamination was also revealed. The level of genetic diversity obtained by combining MIRU-VNTR and SSR markers shows a promising avenue for molecular epidemiology investigations of M. avium subsp. paratuberculosis transmission patterns.
Collapse
|
39
|
Elliott GN, Hough RL, Avery LM, Maltin CA, Campbell CD. Environmental risk factors in the incidence of Johne’s disease. Crit Rev Microbiol 2014; 41:488-507. [DOI: 10.3109/1040841x.2013.867830] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
40
|
Travería GE, Zumarraga M, Etchechoury I, Romano MI, Cataldi A, Pinedo MFA, Pavlik I, Pribylova R, Romero JR. First identification of Mycobacterium avium paratuberculosis sheep strain in Argentina. Braz J Microbiol 2014; 44:897-9. [PMID: 24516458 PMCID: PMC3910208 DOI: 10.1590/s1517-83822013005000066] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2011] [Accepted: 09/10/2012] [Indexed: 11/28/2022] Open
Abstract
We here identified for the first time the presence of Mycobacterium avium paratuberculosis (MAP) sheep (S) strain in Argentina. IS900 polymerase chain reaction (PCR) was positive. The S strain was compared with MAP cattle (C) strains by using IS1311 PCR-restriction endonuclease analysis (PCR-REA), multiplex PCR and restriction fragment length polymorphism (RFLP) analysis.
Collapse
Affiliation(s)
- G E Travería
- Veterinary Center of Diagnostic and Research, Faculty of Veterinary Science, University of La Plata, Chascomús, Buenos Aires, Argentina
| | - M Zumarraga
- Biotechnology Institute, National Institute of Agricultural Technology, Castelar, Argentina
| | - I Etchechoury
- Biotechnology Institute, National Institute of Agricultural Technology, Castelar, Argentina
| | - M I Romano
- Biotechnology Institute, National Institute of Agricultural Technology, Castelar, Argentina
| | - A Cataldi
- Biotechnology Institute, National Institute of Agricultural Technology, Castelar, Argentina
| | - M F Alvarado Pinedo
- Veterinary Center of Diagnostic and Research, Faculty of Veterinary Science, University of La Plata, Chascomús, Buenos Aires, Argentina
| | - I Pavlik
- Veterinary Research Institute, Hudcova, Brno, Czech Republic
| | - R Pribylova
- Veterinary Research Institute, Hudcova, Brno, Czech Republic
| | - J R Romero
- Veterinary Center of Diagnostic and Research, Faculty of Veterinary Science, University of La Plata, Chascomús, Buenos Aires, Argentina
| |
Collapse
|
41
|
Experimental infection of lambs with C and S-type strains of Mycobacterium avium subspecies paratuberculosis: immunological and pathological findings. Vet Res 2014; 45:5. [PMID: 24428881 PMCID: PMC3897920 DOI: 10.1186/1297-9716-45-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 01/08/2014] [Indexed: 11/26/2022] Open
Abstract
The two main genotypes of recognized isolates of Mycobacterium avium subsp. paratuberculosis (Map) are cattle (C) and sheep (S) strains. An experimental infection was conducted to establish the effect of Map strain on the pathogenesis of ovine paratuberculosis. Twenty-four out of thirty 1.5-month-old Assaf lambs were divided into 4 groups of 6 and infected orally with three low passage field isolates, two of S- (22G and the pigmented Ovicap49) and one of C– (764) type, and the reference K-10 strain (C type). The remaining six animals were unchallenged controls. Animals were euthanized at 150 and 390 days post-infection (dpi). Throughout the experiment, the peripheral immune response was assessed and histological and molecular (PCR) studies were conducted on samples of intestine and related lymphoid tissue. Specific antibody and IFN-γ production was significantly higher in animals infected with the C strains, while no consistent IFN- γ responses were observed in the S-type strain infected groups. A positive intradermal skin test response was detected in all infected groups. Lambs infected with S-type strains had granulomatous lesions restricted to the lymphoid tissue with no differences in the lesion intensity over time. In both C–type strain groups, lesions were more severe at 150 dpi while at 390 dpi lesions, characterized by well-demarcated granulomas with fibrosis, decreased in severity. Only infected lambs were positive to PCR. These results suggest that the strain of Map has a strong influence over the immune and pathological responses developed by the host. Lesions induced by C–type strains in lambs show a regressive character and tend to decrease as the infection progresses.
Collapse
|
42
|
Appana G, Das D, Veerasami M, Senthilkumar RL, Durishetty M, Ramalakshmi B, Bahekar V, Mukherjee F, Chandran D, Kumar PU, Sesikeran B, Srinivasan VA. Antemortem and postmortem examinations of the cattle calf naturally infected with Mycobacterium avium subsp. paratuberculosis. Eur J Microbiol Immunol (Bp) 2013; 3:241-51. [PMID: 24294493 DOI: 10.1556/eujmi.3.2013.4.2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2013] [Revised: 08/19/2013] [Accepted: 08/19/2013] [Indexed: 11/19/2022] Open
Abstract
A male cattle calf was detected as subclinically and naturally infected with Mycobacterium avium subspecies paratuberculosis (MAP) by a series of antemortem and postmortem tests. The MAP infection was identified by strong antibody and cell-mediated immune (CMI) response by a commercial ELISA kit and an intradermal Johnin test, respectively, in the initial antemortem examination. The antemortem status of the calf was further confirmed by MAP-specific interferon gamma (IFN-γ) response. For detection of IFN-γ response, MAP-specific IFN-γ release assays (IGRAs): (a) immuno capture ELISA (IC-ELISA) and (b) ELISPOT was employed. In addition, the presence of intracellular cytokine IFN-γ was detected by flow cytometry. For all cytokine assays, MAP-specific recombinant antigens HSP65 and 35 kDa were employed to overcome the poor sensitivity and specificity resulting from the use of Johnin, the crude protein purified derivative of MAP. Postmortem examination of the MAP-infected/suspected cattle calf did not reveal any pathognomonic gross lesions in the gastro-intestinal tract. Histopathological examination of multiple organs showed the presence of epithelioid cells/macrophages and edematous lesions in the mesenteric lymph nodes suggestive of MAP; however, no granulomas were observed in the intestinal tract. The necropsy samples of rectum and mesenteric lymph nodes were positive for isolation of MAP by culture in the BACTEC™ MGIT™ 960 system, and acid fast bacilli were demonstrated by fluorescence microscopy confirming the infection. Due to differential and complex expression patterns of MAP antigens reported in literature, a combination of assays such as those based on IGRAs and antibody detection is essential. Therefore, the current experimental evidence confirms the efficacy of the approach adopted. However, further studies will be needed to understand the optimal combination MAP-specific antigens for use in IGRAs or antibody assays that can be used for detecting MAP infection in every stage of the disease.
Collapse
|
43
|
Kasnitz N, Köhler H, Weigoldt M, Gerlach GF, Möbius P. Stability of genotyping target sequences of Mycobacterium avium subsp. paratuberculosis upon cultivation on different media, in vitro- and in vivo passage, and natural infection. Vet Microbiol 2013; 167:573-83. [PMID: 24095568 DOI: 10.1016/j.vetmic.2013.09.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 09/05/2013] [Accepted: 09/06/2013] [Indexed: 11/26/2022]
Abstract
Mycobacterium (M.) avium subsp. paratuberculosis - the causative agent of paratuberculosis (Johne's disease) - affects domestic and wild ruminants worldwide. Recently, different typing techniques have been combined to provide sufficient discriminatory power for the differentiation of isolates and for epidemiological studies. In order to challenge the reliability of this approach the stability of different M. avium subsp. paratuberculosis genotypes determined after primary isolation was investigated after sub-cultivation on six different media (A), twelve in vitro passages (B), or a singular in vivo passage (C). In addition, different isolates from a single animal or herd were investigated (D). Sub-cultures of type- and reference strains, re-isolated inoculation strain after in vivo passage, and 23 field isolates were genotyped by mycobacterial interspersed repetitive unit-variable-number of tandem-repeat (MIRU-VNTR)-, short-sequence-repeat (SSR)-, and IS900-based restriction-fragment length-polymorphism (IS900-RFLP)-analyses and compared with initial genotypes. MIRU-VNTR-alleles (at loci 292, X3, 25, 47, 7, and 32) were stable after in vitro cultivations and after animal passage. Results of SSR analysis at Locus 1 with 7G nucleotides and at Loci 8 and 9 (tri-nucleotides) were also stable. At Locus 2 9G repeats changed into 10G after goat passage. After in vitro subculture (A+B) but not after animal passage (C) IS900-RFLP-typing revealed changes of BstEII-patterns for 3 of 23 strains (including ATCC 19698). Multiple isolates from individual animals or from a single cattle herd with natural infection (D) which exhibited identical IS900-RFLP- and MIRU-VNTR- genotypes, showed different G repeat numbers at SSR locus 2. This implies strand slippage events during chromosomal duplication of bacteria in the course of bacterial spreading within hosts and herds. Consequently, SSR-Locus 2 is not suitable as genome marker for epidemiological studies.
Collapse
Affiliation(s)
- Nadine Kasnitz
- Institute of Molecular Pathogenesis, Friedrich-Loeffler-Institut (Federal Research Institute for Animal Health), Naumburger Str. 96a, 07743 Jena, Germany
| | | | | | | | | |
Collapse
|
44
|
Bannantine JP, Li LL, Sreevatsan S, Kapur V. How does a Mycobacterium change its spots? Applying molecular tools to track diverse strains of Mycobacterium avium subspecies paratuberculosis. Lett Appl Microbiol 2013; 57:165-73. [PMID: 23721475 DOI: 10.1111/lam.12109] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2013] [Revised: 05/22/2013] [Accepted: 05/23/2013] [Indexed: 11/28/2022]
Abstract
Defining genetic diversity in the wake of the release of several Mycobacterium avium subsp. paratuberculosis (MAP) genome sequences has become a major emphasis in the molecular biology and epidemiology of Johne's disease research. These data can now be used to define the extent of strain diversity on the farm. However, to perform these important tasks, researchers must have a way to distinguish the many MAP isolates/strains that are present in the environment or host to enable tracking over time. Recent studies have described genetic diversity of the Mycobacterium avium complex (MAC), of which MAP is a member, through pulsed-field gel electrophoresis, single sequence repeats, variable-number tandem repeats, genome rearrangements, single nucleotide polymorphisms and genomewide comparisons to identify insertions and deletions. Combinations of these methods can now provide discrimination sufficient for dependable strain tracking. These molecular epidemiology techniques are being applied to understand transmission of Johne's disease within dairy cattle herds as well as identify which strains predominate in wildlife.
Collapse
Affiliation(s)
- J P Bannantine
- National Animal Disease Center, USDA-ARS, Ames, IA, USA.
| | | | | | | |
Collapse
|
45
|
Liapi M, Botsaris G, Slana I, Moravkova M, Babak V, Avraam M, Di Provvido A, Georgiadou S, Pavlik I. Mycobacterium aviumsubsp.paratuberculosisSheep Strains Isolated from Cyprus Sheep and Goats. Transbound Emerg Dis 2013; 62:223-7. [DOI: 10.1111/tbed.12107] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Indexed: 11/27/2022]
Affiliation(s)
- M. Liapi
- Cyprus Veterinary Services; Nicosia Cyprus
| | - G. Botsaris
- Department of Agricultural Sciences, Biotechnology and Food Science; Cyprus University of Technology; Limassol Cyprus
| | - I. Slana
- Veterinary Research Institute; Brno Czech Republic
| | - M. Moravkova
- Veterinary Research Institute; Brno Czech Republic
| | - V. Babak
- Veterinary Research Institute; Brno Czech Republic
| | - M. Avraam
- Cyprus Veterinary Services; Nicosia Cyprus
| | - A. Di Provvido
- Istituto Zooprofilattico Sperimentale dell' Abruzzo e Molise; Teramo Italy
| | | | - I. Pavlik
- Veterinary Research Institute; Brno Czech Republic
| |
Collapse
|
46
|
Dimareli-Malli Z, Mazaraki K, Stevenson K, Tsakos P, Zdragas A, Giantzi V, Petridou E, Heron I, Vafeas G. Culture phenotypes and molecular characterization of Mycobacterium avium subsp. paratuberculosis isolates from small ruminants. Res Vet Sci 2013; 95:49-53. [PMID: 23587160 DOI: 10.1016/j.rvsc.2013.03.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 03/04/2013] [Accepted: 03/17/2013] [Indexed: 11/29/2022]
Abstract
In this study the suitability of different solid media was investigated for the isolation of Mycobacterium avium subsp. paratuberculosis (Map) in order to identify the optimum single or combination of media to permit the isolation of all strain types from small ruminants. A subset of these Map strains was then further characterized by molecular typing methods to assess the genetic diversity of Map strains in the study area (Northern Greece). Map strains were isolated from tissues and faeces of infected goats (n=52) and sheep (n=8) and were analysed for polymorphisms in IS1311 to classify the strain type as Type C or S. The study found that M7H11 supplemented with mycobactin j, OADC and new born calf serum (M7H11+Mj) is the best single choice of medium for the primary isolation of Map of both Type C and S from small ruminants. The combination of M7H11+Mj and Herrolds egg yolk medium supplemented with mycobactin j and sodium pyruvate allowed the detection of all Map isolates in this study. Nineteen Map isolates were characterised by pulsed-field gel electrophoresis and the isolates demonstrated significant genetic diversity. Twelve different SnaBI and 16 distinct SpeI profiles were detected of which 25 have not been described previously and are new profiles. The combination of both enzyme profiles gave 13 different multiplex profiles. Ten different multiplex profiles were detected in goats and three in sheep. One ovine isolate gave the same multiplex profile as a caprine isolate and two different profiles were found within a single goat herd.
Collapse
Affiliation(s)
- Z Dimareli-Malli
- Veterinary Research Institute of Thessaloniki, National Agricultural Research Foundation (NAGREF), Thessaloniki, Greece.
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Abendaño N, Sevilla IA, Prieto JM, Garrido JM, Juste RA, Alonso-Hearn M. Mycobacterium avium subspecies paratuberculosis isolates from sheep and goats show reduced persistence in bovine macrophages than cattle, bison, deer and wild boar strains regardless of genotype. Vet Microbiol 2013; 163:325-34. [PMID: 23415474 DOI: 10.1016/j.vetmic.2012.12.042] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 12/17/2012] [Accepted: 12/24/2012] [Indexed: 01/04/2023]
Abstract
Assessment of the virulence of isolates of Mycobacterium avium subsp. paratuberculosis (Map) exhibiting distinct genotypes and isolated from different hosts may help to clarify the degree to which clinical manifestations of the disease in cattle can be attributed to bacterial or to host factors. The objective of this study was to test the ability of 10 isolates of Map representing distinct genotypes and isolated from domestic (cattle, sheep, and goat), and wildlife animal species (fallow deer, deer, wild boar, and bison) to enter and grow in bovine macrophages. The isolates were previously typed using IS1311 PCR followed by restriction endonuclease analysis into types C, S or B. Intracellular growth of the isolates in a bovine macrophage-like cell line (BoMac) and in primary bovine monocyte-derived macrophages (MDM) was evaluated by quantification of CFU numbers in the initial inoculum and inside of the host cells at 2h and 7 d p.i. using an automatic liquid culture system (Bactec MGIT 960). Individual data illustrated that growth was less variable in BoMac than in MDM cells. All the isolates from goat and sheep hosts persisted within BoMac cells in lower CFU numbers than the other tested isolates after 7 days of infection regardless of genotype. In addition, BoMac cells exhibited differential inflammatory, apoptotic and destructive responses when infected with a bovine or an ovine isolate; which correlated with the differential survival of these strains within BoMac cells. Our results indicated that the survival of the tested Map isolates within bovine macrophages is associated with the specific host from which the isolates were initially isolated.
Collapse
Affiliation(s)
- Naiara Abendaño
- Department of Animal Health, Basque Institute for Agricultural Research and Development, NEIKER-Tecnalia, Technological Park of Bizkaia, Berreaga 1, Derio, E-48160 Bizkaia, Spain
| | | | | | | | | | | |
Collapse
|
48
|
Biet F, Sevilla IA, Cochard T, Lefrançois LH, Garrido JM, Heron I, Juste RA, McLuckie J, Thibault VC, Supply P, Collins DM, Behr MA, Stevenson K. Inter- and intra-subtype genotypic differences that differentiate Mycobacterium avium subspecies paratuberculosis strains. BMC Microbiol 2012; 12:264. [PMID: 23164429 PMCID: PMC3546927 DOI: 10.1186/1471-2180-12-264] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 11/05/2012] [Indexed: 11/10/2022] Open
Abstract
Background Mycobacterium avium subspecies paratuberculosis (Map) is the aetiological agent of Johne’s disease or paratuberculosis and is included within the Mycobacterium avium complex (MAC). Map strains are of two major types often referred to as ‘Sheep’ or ‘S-type’ and ‘Cattle’ or ‘C-type’. With the advent of more discriminatory typing techniques it has been possible to further classify the S-type strains into two groups referred to as Type I and Type III. This study was undertaken to genotype a large panel of S-type small ruminant isolates from different hosts and geographical origins and to compare them with a large panel of well documented C-type isolates to assess the genetic diversity of these strain types. Methods used included Mycobacterial Interspersed Repetitive Units - Variable-Number Tandem Repeat analysis (MIRU-VNTR), analysis of Large Sequence Polymorphisms by PCR (LSP analysis), Single Nucleotide Polymorphism (SNP) analysis of gyr genes, Pulsed-Field Gel Electrophoresis (PFGE) and Restriction Fragment Length Polymorphism analysis coupled with hybridization to IS900 (IS900-RFLP) analysis. Results The presence of LSPA4 and absence of LSPA20 was confirmed in all 24 Map S-type strains analysed. SNPs within the gyr genes divided the S-type strains into types I and III. Twenty four PFGE multiplex profiles and eleven different IS900-RFLP profiles were identified among the S-type isolates, some of them not previously published. Both PFGE and IS900-RFLP segregated the S-type strains into types I and III and the results concurred with those of the gyr SNP analysis. Nine MIRU-VNTR genotypes were identified in these isolates. MIRU-VNTR analysis differentiated Map strains from other members of Mycobacterium avium Complex, and Map S-type from C-type but not type I from III. Pigmented Map isolates were found of type I or III. Conclusion This is the largest panel of S-type strains investigated to date. The S-type strains could be further divided into two subtypes, I and III by some of the typing techniques (IS900-RFLP, PFGE and SNP analysis of the gyr genes). MIRU-VNTR did not divide the strains into the subtypes I and III but did detect genetic differences between isolates within each of the subtypes. Pigmentation is not exclusively associated with type I strains.
Collapse
Affiliation(s)
- Franck Biet
- INRA, UMR1282, Infectiologie Santé Publique (ISP-311), Nouzilly F-37380, France.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Fiorentino M, Gioffré A, Cirone K, Morsella C, Alonso B, Delgado F, Paolicchi F. First isolation of Mycobacterium avium subsp. paratuberculosis in a dairy goat in Argentina: Pathology and molecular characterization. Small Rumin Res 2012. [DOI: 10.1016/j.smallrumres.2012.06.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
50
|
Mycobacterium avium subsp. paratuberculosis invades through M cells and enterocytes across ileal and jejunal mucosa of lambs. Res Vet Sci 2012; 94:306-12. [PMID: 23122809 DOI: 10.1016/j.rvsc.2012.09.023] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 09/28/2012] [Accepted: 09/29/2012] [Indexed: 11/21/2022]
Abstract
Mechanism of Mycobacterium avium subsp. paratuberculosis (Map) invasion through intestinal mucosa is not completely understood. In the present study, we developed an in vivo multiple-intestinal loop model in lambs to investigate (i) the type of cells involved in the bacterial uptake across the intestinal mucosa, (ii) the efficiency of bacterial uptake in different segments of the small intestine and (iii) the ability of different strains of Map to invade the various segments of the small intestine. Four loops on ileum and four loops each on Peyer's patch and non-Peyer's patch areas of jejunum were constructed by surgical procedure. The caprine, bovine, and vaccine strains of Map were used for infection. Map-infected intestinal loop tissues were collected at 1, 3, 6, 12, and 24 h post-infection and processed for electron microscopy, histology, bacterial culture and bacterial counting. All these parameters revealed that Map invaded through M cells and the enterocytes and bacterial translocation across M cells was greater than the enterocytes. Bacterial invasion was greater in ileal loops when compared to jejunal loops. Within the jejunal loops, bacterial uptake was higher in Peyer's patch areas than that of non-Peyer's patch areas. The caprine and bovine strains of Map showed greater ability for invasion into the small intestinal mucosa than that of the vaccine strain.
Collapse
|