1
|
Zou J, Guo J, Tian S, Tu S, Chen T, Jiang M, Sun H, Jin M, Chen H, Zhou H. Pre-mRNA cleavage complex II protein Pcf11 facilitates swine influenza virus replication by interacting with viral NP and promoting polymerase activity. Microbiol Res 2025; 297:128183. [PMID: 40252262 DOI: 10.1016/j.micres.2025.128183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 03/10/2025] [Accepted: 03/25/2025] [Indexed: 04/21/2025]
Abstract
Swine influenza virus (SIV) poses a significant threat to the pig industry and public health safety due to rapid viral evolution and potential interspecies transmission. Identifying the key host factors that involved in viral replication can not only provide new insights into the regulatory mechanism of viral replication, but also provide theoretical support for the development of new antiviral therapeutics. Here, the Pre-mRNA cleavage complex II protein Pcf11 (PCF11) was revealed to promote the proliferation of SIV and other influenza viruses. Mechanically, PCF11 promoted the synthesis of viral mRNA and the assembly of vRNP, thus facilitating the transcription and replication of viral genome. Furthermore, PCF11 can interact with viral NP proteins to promote the polymerase activity of SIV. Additionally, PCF11 was revealed to negatively regulate the IFN-β signaling pathway, facilitating the replication of RNA viruses. In conclusion, this study emphasizes that PCF11 promotes SIV proliferation by regulating viral genome replication, transcription, and innate immune responses, thus providing a potential target for developing antiviral therapeutics.
Collapse
Affiliation(s)
- Jiahui Zou
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Jinli Guo
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Shan Tian
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Shaoyu Tu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Tong Chen
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Meijun Jiang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Huimin Sun
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Meilin Jin
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Huanchun Chen
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China; Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, Hubei, China; Hubei Hongshan Laboratory, Wuhan, Hubei, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Hongbo Zhou
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China; Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, Hubei, China; Hubei Hongshan Laboratory, Wuhan, Hubei, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China.
| |
Collapse
|
2
|
Dirvin B, Noh H, Tomassoni L, Cao D, Zhou Y, Ke X, Qian J, Jangra S, Schotsaert M, García-Sastre A, Karan C, Califano A, Cardoso WV. Identification and targeting of regulators of SARS-CoV-2-host interactions in the airway epithelium. SCIENCE ADVANCES 2025; 11:eadu2079. [PMID: 40378209 PMCID: PMC12083520 DOI: 10.1126/sciadv.adu2079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 04/11/2025] [Indexed: 05/18/2025]
Abstract
The impact of SARS-CoV-2 in the lung has been extensively studied, yet the molecular regulators of host-cell programs hijacked by the virus in distinct human airway epithelial cell populations remain poorly understood. Some of the reasons include overreliance on transcriptomic profiling and use of nonprimary cell systems. Here we report a network-based analysis of single-cell transcriptomic profiles able to identify master regulator (MR) proteins controlling SARS-CoV-2-mediated reprogramming in pathophysiologically relevant human ciliated, secretory, and basal cells. This underscored chromatin remodeling, endosomal sorting, ubiquitin pathways, as well as proviral factors identified by CRISPR assays as components of the viral-host response in these cells. Large-scale drug perturbation screens revealed 11 candidate drugs able to invert the entire MR signature activated by SARS-CoV-2. Leveraging MR analysis and perturbational profiles of human primary cells represents an innovative approach to investigate pathogen-host interactions in multiple airway conditions for drug prioritization.
Collapse
Affiliation(s)
- Brooke Dirvin
- Columbia Center for Human Development, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Heeju Noh
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
- Institute for Systems Biology, Seattle, WA 98109, USA
| | - Lorenzo Tomassoni
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
- DarwinHealth Inc., New York, NY 10018, USA
| | - Danting Cao
- Columbia Center for Human Development, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Medicine, Pulmonary Allergy Critical Care, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Yizhuo Zhou
- Columbia Center for Human Development, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Medicine, Pulmonary Allergy Critical Care, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Xiangyi Ke
- Columbia Center for Human Development, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Pharmacology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Jun Qian
- Columbia Center for Human Development, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Medicine, Pulmonary Allergy Critical Care, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Sonia Jangra
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Rockefeller University, New York, NY 10065, USA
| | - Michael Schotsaert
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Rockefeller University, New York, NY 10065, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Charles Karan
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Systems Biology, J.P. Sulzberger Columbia Genome Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Andrea Califano
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
- DarwinHealth Inc., New York, NY 10018, USA
- Department of Systems Biology, J.P. Sulzberger Columbia Genome Center, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Biomedical Informatics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
- Chan Zuckerberg Biohub New York, New York, NY, USA
| | - Wellington V. Cardoso
- Columbia Center for Human Development, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Medicine, Pulmonary Allergy Critical Care, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
3
|
Dirvin B, Noh H, Tomassoni L, Cao D, Zhou Y, Ke X, Qian J, Jangra S, Schotsaert M, García-Sastre A, Karan C, Califano A, Cardoso WV. Identification and Targeting of Regulators of SARS-CoV-2-Host Interactions in the Airway Epithelium. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.11.617898. [PMID: 39464067 PMCID: PMC11507692 DOI: 10.1101/2024.10.11.617898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Although the impact of SARS-CoV-2 in the lung has been extensively studied, the molecular regulators and targets of the host-cell programs hijacked by the virus in distinct human airway epithelial cell populations remain poorly understood. This is in part ascribed to the use of nonprimary cell systems, overreliance on single-cell gene expression profiling that does not ultimately reflect protein activity, and bias toward the downstream effects rather than their mechanistic determinants. Here we address these issues by network-based analysis of single cell transcriptomic profiles of pathophysiologically relevant human adult basal, ciliated and secretory cells to identify master regulator (MR) protein modules controlling their SARS-CoV-2-mediated reprogramming. This uncovered chromatin remodeling, endosomal sorting, ubiquitin pathways, as well as proviral factors identified by CRISPR analyses as components of the host response collectively or selectively activated in these cells. Large-scale perturbation assays, using a clinically relevant drug library, identified 11 drugs able to invert the entire MR signature activated by SARS-CoV-2 in these cell types. Leveraging MR analysis and perturbational profiles of human primary cells represents a novel mechanism-based approach and resource that can be directly generalized to interrogate signatures of other airway conditions for drug prioritization.
Collapse
Affiliation(s)
- Brooke Dirvin
- Columbia Center for Human Development, Columbia University Irving Medical Center, New York, NY USA 10032
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, USA 10032
| | - Heeju Noh
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA 10032
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY USA 10032
- Institute for Systems Biology, Seattle, WA, USA
| | - Lorenzo Tomassoni
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA 10032
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY USA 10032
- DarwinHealth Inc., New York, NY USA
| | - Danting Cao
- Columbia Center for Human Development, Columbia University Irving Medical Center, New York, NY USA 10032
- Department of Medicine, Pulmonary Allergy Critical Care, Columbia University Irving Medical Center, New York, NY USA 10032
| | - Yizhuo Zhou
- Columbia Center for Human Development, Columbia University Irving Medical Center, New York, NY USA 10032
- Department of Medicine, Pulmonary Allergy Critical Care, Columbia University Irving Medical Center, New York, NY USA 10032
| | - Xiangyi Ke
- Columbia Center for Human Development, Columbia University Irving Medical Center, New York, NY USA 10032
- Department of Pharmacology, Columbia University Irving Medical Center, New York, NY, USA 1003
| | - Jun Qian
- Columbia Center for Human Development, Columbia University Irving Medical Center, New York, NY USA 10032
- Department of Medicine, Pulmonary Allergy Critical Care, Columbia University Irving Medical Center, New York, NY USA 10032
| | - Sonia Jangra
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Michael Schotsaert
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Charles Karan
- Department of Systems Biology, J.P. Sulzberger Columbia Genome Center, Columbia University Irving Medical Center, New York, NY, USA 10032
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY USA 10032
| | - Andrea Califano
- Department of Systems Biology, J.P. Sulzberger Columbia Genome Center, Columbia University Irving Medical Center, New York, NY, USA 10032
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY USA 10032
- DarwinHealth Inc., New York, NY USA
| | - Wellington V. Cardoso
- Columbia Center for Human Development, Columbia University Irving Medical Center, New York, NY USA 10032
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, USA 10032
- Department of Medicine, Pulmonary Allergy Critical Care, Columbia University Irving Medical Center, New York, NY USA 10032
| |
Collapse
|
4
|
Johnson RL, Graboski AL, Li F, Norris-Drouin JL, Walton WG, Arrowsmith CH, Redinbo MR, Frye SV, James LI. Discovery of CHD1 Antagonists for PTEN-Deficient Prostate Cancer. J Med Chem 2024; 67:20056-20075. [PMID: 39508435 DOI: 10.1021/acs.jmedchem.4c01172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
CHD1 is a chromodomain-helicase DNA-binding protein that preferentially recognizes di- and trimethylated lysine 4 on histone H3 (H3K4me2/3). Genetic studies have established CHD1 as a synthetic lethal target in phosphatase and tensin homologue (PTEN)-deficient cancers. Despite this attractive therapeutic link, no inhibitors or antagonists of CHD1 have been reported to date. Herein, we report the discovery of UNC10142, a first-in-class small molecule antagonist of the tandem chromodomains of CHD1 that binds with an IC50 of 1.7 ± 0.2 μM. A cocrystal structure revealed a unique binding mode and competition pull-down experiments in cell lysates confirmed endogenous target engagement. Treatment of PTEN-deficient prostate cancer cells with UNC10142 led to a dose-dependent reduction in viability while PTEN-intact prostate cancer cells were unaffected, phenocopying genetic loss of CHD1. Overall, this study demonstrates the ligandability of the CHD1 chromodomains and suggests more potent and selective antagonists could translate to compounds of therapeutic value in PTEN-deficient cancers.
Collapse
Affiliation(s)
- Rebecca L Johnson
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Amanda L Graboski
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Fengling Li
- Structural Genomics Consortium, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Jacqueline L Norris-Drouin
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - William G Walton
- Departments of Chemistry, Biochemistry & Biophysics, and Microbiology & Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Cheryl H Arrowsmith
- Structural Genomics Consortium, University of Toronto, Toronto, ON M5G 1L7, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Matthew R Redinbo
- Departments of Chemistry, Biochemistry & Biophysics, and Microbiology & Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Stephen V Frye
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Lindsey I James
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
5
|
Zhao L, Li S, Deng L, Zhang Y, Jiang C, Wei Y, Xia J, Ping J. Host-specific SRSF7 regulates polymerase activity and replication of influenza A virus. Microbes Infect 2024; 26:105401. [PMID: 39134172 DOI: 10.1016/j.micinf.2024.105401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/19/2024] [Accepted: 08/01/2024] [Indexed: 08/17/2024]
Abstract
Avian influenza viruses crossing the host barrier to infect humans have caused great panic in human society and seriously threatened public health. Herein, we revealed that knockdown of SRSF7 significantly down-regulated influenza virus titers and viral protein expression. We further observed for the first time that human SRSF7, but not avian SRSF7, significantly inhibited polymerase activity (PB2627E). Molecular mapping demonstrated that amino acids 206 to 228 of human SRSF7 play a decisive role in regulating the polymerase activity, which contains the amino acid motif absent in avian SRSF7. Importantly, our results illustrated that the PB2627K-encoding influenza virus induces SRSF7 protein degradation more strongly via the lysosome pathway and not via the proteasome pathway. Functional enrichment analysis of SRSF7-related KEGG pathways indicated that SRSF7 is closely related to cell growth and death. Lastly, our results showed that knocking down SRSF7 interferes with normal polymerase activity. Taken together, our results advance our understanding of interspecies transmission and our findings point out new targets for the development of drugs preventing or treating influenza virus infection.
Collapse
Affiliation(s)
- Lingcai Zhao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Shengmin Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Lulu Deng
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Yijia Zhang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Chenfeng Jiang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Yurong Wei
- Xinjiang Key Laboratory of Animal Infectious Diseases, Institute of Veterinary Medicine, Xinjiang Academy of Animal Sciences, Urumqi, 830013, China.
| | - Jun Xia
- Key Laboratory of Herbivore Disease Prevention and Control, (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, China.
| | - Jihui Ping
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
6
|
Pawar P, Akolkar K, Saxena V. An integrated bioinformatics approach reveals the potential role of microRNA-30b-5p and let-7a-5p during SARS CoV-2 spike-1 mediated neuroinflammation. Int J Biol Macromol 2024; 277:134329. [PMID: 39098684 DOI: 10.1016/j.ijbiomac.2024.134329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/16/2024] [Accepted: 07/23/2024] [Indexed: 08/06/2024]
Abstract
SARS-CoV-2 induced neuroinflammation contributing to neurological sequelae is one of the critical outcomes of long-COVID, however underlying regulatory mechanisms involved therein are poorly understood. We deciphered the profile of dysregulated microRNAs, their targets, associated pathways, protein-protein interactions (PPI), transcription factor-hub genes interaction networks, hub genes-microRNA co-regulatory networks in SARS-CoV-2 Spike-1 (S1) stimulated microglial cells along with candidate drug prediction using RNA-sequencing and multiple bioinformatics approaches. We identified 11 dysregulated microRNAs in the S1-stimulated microglial cells (p < 0.05). KEGG analysis revealed involvement of important neuroinflammatory pathways such as MAPK signalling, PI3K-AKT signalling, Ras signalling and axon guidance. PPI analysis further identified 11 hub genes involved in these pathways. Real time PCR validation confirmed a significant upregulation of microRNA-30b-5p and let-7a-5p; proinflammatory cytokines- IL-6, TNF-α, IL-1β, GM-CSF; and inflammatory genes- PIK3CA and AKT in the S1-stimulated microglial cells, while PTEN and SHIP1 expression was decreased as compared to the non-stimulated cells. Drug prediction analysis further indicated resveratrol, diclofenac and rapamycin as the potential drugs based on their degree of interaction with hub genes. Thus, targeting of these microRNAs and/or their intermediate signalling molecules would be a prospective immunotherapeutic approach in alleviating SARS-CoV-2-S1 mediated neuroinflammation; and needs further investigations.
Collapse
Affiliation(s)
- Puja Pawar
- Division of Immunology and Serology, ICMR-National Institute of Translational Virology & AIDS Research (NITVAR), MIDC, Bhosari, Pune, Maharashtra, India
| | - Kadambari Akolkar
- Division of Immunology and Serology, ICMR-National Institute of Translational Virology & AIDS Research (NITVAR), MIDC, Bhosari, Pune, Maharashtra, India
| | - Vandana Saxena
- Division of Immunology and Serology, ICMR-National Institute of Translational Virology & AIDS Research (NITVAR), MIDC, Bhosari, Pune, Maharashtra, India.
| |
Collapse
|
7
|
Rehman UU, Ghafoor D, Ullah A, Ahmad R, Hanif S. Epigenetics regulation during virus-host interaction and their effects on the virus and host cell. Microb Pathog 2023; 182:106271. [PMID: 37517745 DOI: 10.1016/j.micpath.2023.106271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/07/2023] [Accepted: 07/24/2023] [Indexed: 08/01/2023]
Abstract
Epigenetics, a field of study focused on cellular gene regulation independent of DNA sequence alterations, encompasses DNA methylation, histone modification and microRNA modification. Epigenetics processes play a pivotal role in governing the life cycles of viruses, enabling their transmission, persistence, and maintenance with in host organisms. This review examines the epigenetics regulation of diverse virus including orthomoxyviruses, coronavirus, retroviridae, mononegavirales, and poxviruses among others. The investigation encompasses ten representative viruses from these families. Detailed exploration of the epigenetic mechanisms underlying each virus type, involving miRNA modification, histone modification and DNA methylation, sheds light on the intricate and multifaceted epigenetic interplay between viruses and their hosts. Furthermore, this review investigates the influence of these epigenetic processes on infection cycles, emphasizing the utilization of epigenetics by viruses such as Epstein-Barr virus and Human immunodeficiency virus (HIV) to regulate gene expression during chronic or latent infections, control latency, and transition to lytic infection. Finally, the paper explores the novel treatments possibilities stemming from this epigenetic understanding.
Collapse
Affiliation(s)
- Ubaid Ur Rehman
- Medical Genetics Research Laboratory, Department of Biotechnology, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| | - Dawood Ghafoor
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430064, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Asad Ullah
- Medical Genetics Research Laboratory, Department of Biotechnology, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Riaz Ahmad
- Medical Genetics Research Laboratory, Department of Biotechnology, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Sumaira Hanif
- Department of Biological Sciences, International Islamic University, Islamabad, 45320, Pakistan
| |
Collapse
|
8
|
Kleinehr J, Schöfbänker M, Daniel K, Günl F, Mohamed FF, Janowski J, Brunotte L, Boergeling Y, Liebmann M, Behrens M, Gerdemann A, Klotz L, Esselen M, Humpf HU, Ludwig S, Hrincius ER. Glycolytic interference blocks influenza A virus propagation by impairing viral polymerase-driven synthesis of genomic vRNA. PLoS Pathog 2023; 19:e1010986. [PMID: 37440521 DOI: 10.1371/journal.ppat.1010986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 06/10/2023] [Indexed: 07/15/2023] Open
Abstract
Influenza A virus (IAV), like any other virus, provokes considerable modifications of its host cell's metabolism. This includes a substantial increase in the uptake as well as the metabolization of glucose. Although it is known for quite some time that suppression of glucose metabolism restricts virus replication, the exact molecular impact on the viral life cycle remained enigmatic so far. Using 2-deoxy-d-glucose (2-DG) we examined how well inhibition of glycolysis is tolerated by host cells and which step of the IAV life cycle is affected. We observed that effects induced by 2-DG are reversible and that cells can cope with relatively high concentrations of the inhibitor by compensating the loss of glycolytic activity by upregulating other metabolic pathways. Moreover, mass spectrometry data provided information on various metabolic modifications induced by either the virus or agents interfering with glycolysis. In the presence of 2-DG viral titers were significantly reduced in a dose-dependent manner. The supplementation of direct or indirect glycolysis metabolites led to a partial or almost complete reversion of the inhibitory effect of 2-DG on viral growth and demonstrated that indeed the inhibition of glycolysis and not of N-linked glycosylation was responsible for the observed phenotype. Importantly, we could show via conventional and strand-specific qPCR that the treatment with 2-DG led to a prolonged phase of viral mRNA synthesis while the accumulation of genomic vRNA was strongly reduced. At the same time, minigenome assays showed no signs of a general reduction of replicative capacity of the viral polymerase. Therefore, our data suggest that the significant reduction in IAV replication by glycolytic interference occurs mainly due to an impairment of the dynamic regulation of the viral polymerase which conveys the transition of the enzyme's function from transcription to replication.
Collapse
Affiliation(s)
- Jens Kleinehr
- Institute of Virology Muenster (IVM), Westfaelische Wilhelms-University Muenster, Muenster, Germany
| | - Michael Schöfbänker
- Institute of Virology Muenster (IVM), Westfaelische Wilhelms-University Muenster, Muenster, Germany
| | - Katharina Daniel
- Institute of Virology Muenster (IVM), Westfaelische Wilhelms-University Muenster, Muenster, Germany
| | - Franziska Günl
- Institute of Virology Muenster (IVM), Westfaelische Wilhelms-University Muenster, Muenster, Germany
| | - Fakry Fahmy Mohamed
- Institute of Virology Muenster (IVM), Westfaelische Wilhelms-University Muenster, Muenster, Germany
- Department of Virology, Faculty of Veterinary Medicine, Zagazig University, Sharkia, Egypt
| | - Josua Janowski
- Institute of Virology Muenster (IVM), Westfaelische Wilhelms-University Muenster, Muenster, Germany
| | - Linda Brunotte
- Institute of Virology Muenster (IVM), Westfaelische Wilhelms-University Muenster, Muenster, Germany
| | - Yvonne Boergeling
- Institute of Virology Muenster (IVM), Westfaelische Wilhelms-University Muenster, Muenster, Germany
| | - Marie Liebmann
- Department of Neurology with Institute of Translational Neurology, University Hospital Muenster, Muenster, Germany
| | - Matthias Behrens
- Institute of Food Chemistry, Westfaelische Wilhelms-University Muenster, Muenster, Germany
| | - Andrea Gerdemann
- Institute of Food Chemistry, Westfaelische Wilhelms-University Muenster, Muenster, Germany
| | - Luisa Klotz
- Department of Neurology with Institute of Translational Neurology, University Hospital Muenster, Muenster, Germany
| | - Melanie Esselen
- Institute of Food Chemistry, Westfaelische Wilhelms-University Muenster, Muenster, Germany
| | - Hans-Ulrich Humpf
- Institute of Food Chemistry, Westfaelische Wilhelms-University Muenster, Muenster, Germany
| | - Stephan Ludwig
- Institute of Virology Muenster (IVM), Westfaelische Wilhelms-University Muenster, Muenster, Germany
| | - Eike R Hrincius
- Institute of Virology Muenster (IVM), Westfaelische Wilhelms-University Muenster, Muenster, Germany
| |
Collapse
|
9
|
Jennings MR, Parks RJ. Human Adenovirus Gene Expression and Replication Is Regulated through Dynamic Changes in Nucleoprotein Structure throughout Infection. Viruses 2023; 15:161. [PMID: 36680201 PMCID: PMC9863843 DOI: 10.3390/v15010161] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 12/31/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023] Open
Abstract
Human adenovirus (HAdV) is extremely common and can rapidly spread in confined populations such as daycare centers, hospitals, and retirement homes. Although HAdV usually causes only minor illness in otherwise healthy patients, HAdV can cause significant morbidity and mortality in certain populations, such as the very young, very old, or immunocompromised individuals. During infection, the viral DNA undergoes dramatic changes in nucleoprotein structure that promote the rapid expression of viral genes, replication of the DNA, and generation of thousands of new infectious virions-each process requiring a distinct complement of virus and host-encoded proteins. In this review, we summarize our current understanding of the nucleoprotein structure of HAdV DNA during the various phases of infection, the cellular proteins implicated in mediating these changes, and the role of epigenetics in HAdV gene expression and replication.
Collapse
Affiliation(s)
- Morgan R. Jennings
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Robin J. Parks
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Centre for Neuromuscular Disease, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Department of Medicine, The Ottawa Hospital, Ottawa, ON K1H 8L6, Canada
| |
Collapse
|
10
|
Sen R, Sarkar S, Chlamydas S, Garbati M, Barnes C. Epigenetic features, methods, and implementations associated with COVID-19. OMICS APPROACHES AND TECHNOLOGIES IN COVID-19 2023:161-175. [DOI: 10.1016/b978-0-323-91794-0.00008-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
11
|
Zhao D, Zhang M, Huang S, Liu Q, Zhu S, Li Y, Jiang W, Kiss DL, Cao Q, Zhang L, Chen K. CHD6 promotes broad nucleosome eviction for transcriptional activation in prostate cancer cells. Nucleic Acids Res 2022; 50:12186-12201. [PMID: 36408932 PMCID: PMC9757051 DOI: 10.1093/nar/gkac1090] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 11/19/2022] [Indexed: 11/22/2022] Open
Abstract
Despite being a member of the chromodomain helicase DNA-binding protein family, little is known about the exact role of CHD6 in chromatin remodeling or cancer disease. Here we show that CHD6 binds to chromatin to promote broad nucleosome eviction for transcriptional activation of many cancer pathways. By integrating multiple patient cohorts for bioinformatics analysis of over a thousand prostate cancer datasets, we found CHD6 expression elevated in prostate cancer and associated with poor prognosis. Further comprehensive experiments demonstrated that CHD6 regulates oncogenicity of prostate cancer cells and tumor development in a murine xenograft model. ChIP-Seq for CHD6, along with MNase-Seq and RNA-Seq, revealed that CHD6 binds on chromatin to evict nucleosomes from promoters and gene bodies for transcriptional activation of oncogenic pathways. These results demonstrated a key function of CHD6 in evicting nucleosomes from chromatin for transcriptional activation of prostate cancer pathways.
Collapse
Affiliation(s)
- Dongyu Zhao
- Department of Biomedical Informatics, MOE Key Lab of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
- Prostate Cancer Program, Dana-Farber and Harvard Cancer Center, Harvard University, Boston, MA 02115, USA
- Basic and Translational Research Division, Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX 77030, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Min Zhang
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Shaodong Huang
- Department of Biomedical Informatics, MOE Key Lab of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Qi Liu
- Department of Urology, and Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Sen Zhu
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Yanqiang Li
- Prostate Cancer Program, Dana-Farber and Harvard Cancer Center, Harvard University, Boston, MA 02115, USA
- Basic and Translational Research Division, Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX 77030, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Weihua Jiang
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Daniel L Kiss
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Qi Cao
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX 77030, USA
- Department of Urology, and Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Lili Zhang
- Basic and Translational Research Division, Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX 77030, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Kaifu Chen
- Prostate Cancer Program, Dana-Farber and Harvard Cancer Center, Harvard University, Boston, MA 02115, USA
- Basic and Translational Research Division, Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX 77030, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
12
|
Salgado-Albarrán M, Navarro-Delgado EI, Del Moral-Morales A, Alcaraz N, Baumbach J, González-Barrios R, Soto-Reyes E. Comparative transcriptome analysis reveals key epigenetic targets in SARS-CoV-2 infection. NPJ Syst Biol Appl 2021; 7:21. [PMID: 34031419 PMCID: PMC8144203 DOI: 10.1038/s41540-021-00181-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 03/08/2021] [Indexed: 02/04/2023] Open
Abstract
COVID-19 is an infection caused by SARS-CoV-2 (Severe Acute Respiratory Syndrome coronavirus 2), which has caused a global outbreak. Current research efforts are focused on the understanding of the molecular mechanisms involved in SARS-CoV-2 infection in order to propose drug-based therapeutic options. Transcriptional changes due to epigenetic regulation are key host cell responses to viral infection and have been studied in SARS-CoV and MERS-CoV; however, such changes are not fully described for SARS-CoV-2. In this study, we analyzed multiple transcriptomes obtained from cell lines infected with MERS-CoV, SARS-CoV, and SARS-CoV-2, and from COVID-19 patient-derived samples. Using integrative analyses of gene co-expression networks and de-novo pathway enrichment, we characterize different gene modules and protein pathways enriched with Transcription Factors or Epifactors relevant for SARS-CoV-2 infection. We identified EP300, MOV10, RELA, and TRIM25 as top candidates, and more than 60 additional proteins involved in the epigenetic response during viral infection that has therapeutic potential. Our results show that targeting the epigenetic machinery could be a feasible alternative to treat COVID-19.
Collapse
Affiliation(s)
- Marisol Salgado-Albarrán
- grid.7220.70000 0001 2157 0393Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana-Cuajimalpa (UAM-C), Mexico City, Mexico ,grid.6936.a0000000123222966Chair of Experimental Bioinformatics, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Munich, Germany
| | - Erick I. Navarro-Delgado
- grid.419167.c0000 0004 1777 1207Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología, Mexico City, Mexico
| | - Aylin Del Moral-Morales
- grid.7220.70000 0001 2157 0393Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana-Cuajimalpa (UAM-C), Mexico City, Mexico
| | - Nicolas Alcaraz
- grid.5254.60000 0001 0674 042XThe Bioinformatics Centre, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Jan Baumbach
- grid.9026.d0000 0001 2287 2617Chair of Computational Systems Biology, University of Hamburg, Hamburg, Germany ,grid.10825.3e0000 0001 0728 0170Computational BioMedicine Lab, Institute of Mathematics and Computer Science, University of Southern Denmark, Odense, Denmark
| | - Rodrigo González-Barrios
- grid.419167.c0000 0004 1777 1207Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología, Mexico City, Mexico
| | - Ernesto Soto-Reyes
- grid.7220.70000 0001 2157 0393Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana-Cuajimalpa (UAM-C), Mexico City, Mexico
| |
Collapse
|
13
|
Keshavarz M, Sabbaghi A, Koushki K, Miri SM, Sarshari B, Vahdat K, Ghaemi A. Epigenetic reprogramming mechanisms of immunity during influenza A virus infection. Microbes Infect 2021; 23:104831. [PMID: 33878459 DOI: 10.1016/j.micinf.2021.104831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 03/27/2021] [Accepted: 04/05/2021] [Indexed: 11/29/2022]
Abstract
This paper reviews epigenetic mechanisms by which influenza viruses affect cellular gene activity to control their life cycles, aiming to provide new insights into the complexity of functional interactions between viral and cellular factors, as well as to introduce novel targets for therapeutic intervention and vaccine development against influenza infections.
Collapse
Affiliation(s)
- Mohsen Keshavarz
- The Persian Gulf Tropical Medicine Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Ailar Sabbaghi
- Department of Influenza and Other Respiratory Viruses, Pasteur Institute of Iran, Tehran, Iran
| | - Khadijeh Koushki
- Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mohammad Miri
- Department of Influenza and Other Respiratory Viruses, Pasteur Institute of Iran, Tehran, Iran
| | - Behrang Sarshari
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Katayoun Vahdat
- The Persian Gulf Tropical Medicine Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Amir Ghaemi
- Department of Influenza and Other Respiratory Viruses, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
14
|
Krischuns T, Lukarska M, Naffakh N, Cusack S. Influenza Virus RNA-Dependent RNA Polymerase and the Host Transcriptional Apparatus. Annu Rev Biochem 2021; 90:321-348. [PMID: 33770447 DOI: 10.1146/annurev-biochem-072820-100645] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Influenza virus RNA-dependent RNA polymerase (FluPol) transcribes the viral RNA genome in the infected cell nucleus. In the 1970s, researchers showed that viral transcription depends on host RNA polymerase II (RNAP II) activity and subsequently that FluPol snatches capped oligomers from nascent RNAP II transcripts to prime its own transcription. Exactly how this occurs remains elusive. Here, we review recent advances in the mechanistic understanding of FluPol transcription and early events in RNAP II transcription that are relevant to cap-snatching. We describe the known direct interactions between FluPol and the RNAP II C-terminal domain and summarize the transcription-related host factors that have been found to interact with FluPol. We also discuss open questions regarding how FluPol may be targeted to actively transcribing RNAP II and the exact context and timing of cap-snatching, which is presumed to occur after cap completion but before the cap is sequestered by the nuclear cap-binding complex.
Collapse
Affiliation(s)
- Tim Krischuns
- Unité Biologie des ARN et Virus Influenza, Département de Virologie, Institut Pasteur, CNRS UMR 3569, F-75015 Paris, France; ,
| | - Maria Lukarska
- European Molecular Biology Laboratory, 38042 Grenoble CEDEX 9, France; .,Current affiliation: Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA;
| | - Nadia Naffakh
- Unité Biologie des ARN et Virus Influenza, Département de Virologie, Institut Pasteur, CNRS UMR 3569, F-75015 Paris, France; ,
| | - Stephen Cusack
- European Molecular Biology Laboratory, 38042 Grenoble CEDEX 9, France;
| |
Collapse
|
15
|
Rezinciuc S, Tian Z, Wu S, Hengel S, Pasa-Tolic L, Smallwood HS. Mapping Influenza-Induced Posttranslational Modifications on Histones from CD8+ T Cells. Viruses 2020; 12:v12121409. [PMID: 33302437 PMCID: PMC7762524 DOI: 10.3390/v12121409] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 11/23/2020] [Accepted: 12/02/2020] [Indexed: 12/25/2022] Open
Abstract
T cell function is determined by transcriptional networks that are regulated by epigenetic programming via posttranslational modifications (PTMs) to histone proteins and DNA. Bottom-up mass spectrometry (MS) can identify histone PTMs, whereas intact protein analysis by MS can detect species missed by bottom-up approaches. We used a novel approach of online two-dimensional liquid chromatography-tandem MS with high-resolution reversed-phase liquid chromatography (RPLC), alternating electron transfer dissociation (ETD) and collision-induced dissociation (CID) on precursor ions to maximize fragmentation of uniquely modified species. The first online RPLC separation sorted histone families, then RPLC or weak cation exchange hydrophilic interaction liquid chromatography (WCX-HILIC) separated species heavily clad in PTMs. Tentative identifications were assigned by matching proteoform masses to predicted theoretical masses that were verified with tandem MS. We used this innovative approach for histone-intact protein PTM mapping (HiPTMap) to identify and quantify proteoforms purified from CD8 T cells after in vivo influenza infection. Activation significantly altered PTMs following influenza infection, histone maps changed as T cells migrated to the site of infection, and T cells responding to secondary infections had significantly more transcription enhancing modifications. Thus, HiPTMap identified and quantified proteoforms and determined changes in CD8 T cell histone PTMs over the course of infection.
Collapse
Affiliation(s)
- Svetlana Rezinciuc
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38163, USA;
| | - Zhixin Tian
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354, USA; (Z.T.); (S.W.); (S.H.); (L.P.-T.)
| | - Si Wu
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354, USA; (Z.T.); (S.W.); (S.H.); (L.P.-T.)
| | - Shawna Hengel
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354, USA; (Z.T.); (S.W.); (S.H.); (L.P.-T.)
| | - Ljiljana Pasa-Tolic
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354, USA; (Z.T.); (S.W.); (S.H.); (L.P.-T.)
| | - Heather S. Smallwood
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38163, USA;
- Children’s Foundation Research Institute, Memphis, TN 38105, USA
- Correspondence: ; Tel.: +1-(901)-448–3068
| |
Collapse
|
16
|
Bouhaddou M, Memon D, Meyer B, White KM, Rezelj VV, Correa Marrero M, Polacco BJ, Melnyk JE, Ulferts S, Kaake RM, Batra J, Richards AL, Stevenson E, Gordon DE, Rojc A, Obernier K, Fabius JM, Soucheray M, Miorin L, Moreno E, Koh C, Tran QD, Hardy A, Robinot R, Vallet T, Nilsson-Payant BE, Hernandez-Armenta C, Dunham A, Weigang S, Knerr J, Modak M, Quintero D, Zhou Y, Dugourd A, Valdeolivas A, Patil T, Li Q, Hüttenhain R, Cakir M, Muralidharan M, Kim M, Jang G, Tutuncuoglu B, Hiatt J, Guo JZ, Xu J, Bouhaddou S, Mathy CJP, Gaulton A, Manners EJ, Félix E, Shi Y, Goff M, Lim JK, McBride T, O'Neal MC, Cai Y, Chang JCJ, Broadhurst DJ, Klippsten S, De Wit E, Leach AR, Kortemme T, Shoichet B, Ott M, Saez-Rodriguez J, tenOever BR, Mullins RD, Fischer ER, Kochs G, Grosse R, García-Sastre A, Vignuzzi M, Johnson JR, Shokat KM, Swaney DL, Beltrao P, Krogan NJ. The Global Phosphorylation Landscape of SARS-CoV-2 Infection. Cell 2020; 182:685-712.e19. [PMID: 32645325 PMCID: PMC7321036 DOI: 10.1016/j.cell.2020.06.034] [Citation(s) in RCA: 774] [Impact Index Per Article: 154.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/09/2020] [Accepted: 06/23/2020] [Indexed: 02/07/2023]
Abstract
The causative agent of the coronavirus disease 2019 (COVID-19) pandemic, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has infected millions and killed hundreds of thousands of people worldwide, highlighting an urgent need to develop antiviral therapies. Here we present a quantitative mass spectrometry-based phosphoproteomics survey of SARS-CoV-2 infection in Vero E6 cells, revealing dramatic rewiring of phosphorylation on host and viral proteins. SARS-CoV-2 infection promoted casein kinase II (CK2) and p38 MAPK activation, production of diverse cytokines, and shutdown of mitotic kinases, resulting in cell cycle arrest. Infection also stimulated a marked induction of CK2-containing filopodial protrusions possessing budding viral particles. Eighty-seven drugs and compounds were identified by mapping global phosphorylation profiles to dysregulated kinases and pathways. We found pharmacologic inhibition of the p38, CK2, CDK, AXL, and PIKFYVE kinases to possess antiviral efficacy, representing potential COVID-19 therapies.
Collapse
Affiliation(s)
- Mehdi Bouhaddou
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Danish Memon
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Bjoern Meyer
- Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Institut Pasteur, 75724 Paris, Cedex 15, France
| | - Kris M White
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Veronica V Rezelj
- Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Institut Pasteur, 75724 Paris, Cedex 15, France
| | - Miguel Correa Marrero
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Benjamin J Polacco
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - James E Melnyk
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute
| | - Svenja Ulferts
- Institute for Clinical and Experimental Pharmacology and Toxicology, University of Freiburg, Freiburg 79104, Germany
| | - Robyn M Kaake
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jyoti Batra
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Alicia L Richards
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Erica Stevenson
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - David E Gordon
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Ajda Rojc
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Kirsten Obernier
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jacqueline M Fabius
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Margaret Soucheray
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Lisa Miorin
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Elena Moreno
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Cassandra Koh
- Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Institut Pasteur, 75724 Paris, Cedex 15, France
| | - Quang Dinh Tran
- Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Institut Pasteur, 75724 Paris, Cedex 15, France
| | - Alexandra Hardy
- Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Institut Pasteur, 75724 Paris, Cedex 15, France
| | - Rémy Robinot
- Virus & Immunity Unit, Department of Virology, CNRS UMR 3569, Institut Pasteur, 75724 Paris, Cedex 15, France; Vaccine Research Institute, 94000 Creteil, France
| | - Thomas Vallet
- Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Institut Pasteur, 75724 Paris, Cedex 15, France
| | | | - Claudia Hernandez-Armenta
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Alistair Dunham
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Sebastian Weigang
- Institute of Virology, Medical Center - University of Freiburg, Freiburg 79104, Germany
| | - Julian Knerr
- Institute for Clinical and Experimental Pharmacology and Toxicology, University of Freiburg, Freiburg 79104, Germany
| | - Maya Modak
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Diego Quintero
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Yuan Zhou
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Aurelien Dugourd
- Institute for Computational Biomedicine, Bioquant, Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Heidelberg 69120, Germany
| | - Alberto Valdeolivas
- Institute for Computational Biomedicine, Bioquant, Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Heidelberg 69120, Germany
| | - Trupti Patil
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Qiongyu Li
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Ruth Hüttenhain
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Merve Cakir
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Monita Muralidharan
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Minkyu Kim
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Gwendolyn Jang
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Beril Tutuncuoglu
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Joseph Hiatt
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jeffrey Z Guo
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jiewei Xu
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Sophia Bouhaddou
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA
| | - Christopher J P Mathy
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; Department of Bioengineering & Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Anna Gaulton
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Emma J Manners
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Eloy Félix
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Ying Shi
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute
| | - Marisa Goff
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jean K Lim
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | | | | | | | | | | | - Emmie De Wit
- NIH/NIAID/Rocky Mountain Laboratories, Hamilton, MT 59840, USA
| | - Andrew R Leach
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Tanja Kortemme
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; Department of Bioengineering & Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Brian Shoichet
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA
| | - Melanie Ott
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
| | - Julio Saez-Rodriguez
- Institute for Computational Biomedicine, Bioquant, Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Heidelberg 69120, Germany
| | - Benjamin R tenOever
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - R Dyche Mullins
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute
| | | | - Georg Kochs
- Institute of Virology, Medical Center - University of Freiburg, Freiburg 79104, Germany; Faculty of Medicine, University of Freiburg, Freiburg 79008, Germany
| | - Robert Grosse
- Institute for Clinical and Experimental Pharmacology and Toxicology, University of Freiburg, Freiburg 79104, Germany; Faculty of Medicine, University of Freiburg, Freiburg 79008, Germany; Centre for Integrative Biological Signalling Studies (CIBSS), Freiburg 79104, Germany.
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA; The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| | - Marco Vignuzzi
- Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Institut Pasteur, 75724 Paris, Cedex 15, France.
| | - Jeffery R Johnson
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Kevan M Shokat
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute.
| | - Danielle L Swaney
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA.
| | - Pedro Beltrao
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK.
| | - Nevan J Krogan
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
17
|
Nishioka K, Daidoji T, Nakaya T. Demethylation around the transcriptional start site of the IFN-β gene induces IFN-β production and protection against influenza virus infection. Biochem Biophys Res Commun 2019; 520:269-276. [PMID: 31594636 DOI: 10.1016/j.bbrc.2019.09.136] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 09/29/2019] [Indexed: 01/10/2023]
Abstract
Seasonal influenza is related to lifestyle-associated risk factors and it has been suggested that the epigenetic state of the individual plays an important role in the severity of infection. It is well known that epigenetics stringently regulate gene expression in each tissue and that aberrant epigenetic states can influence disease development. Despite some studies, limited information is available on changes in epigenetic states before and after influenza virus infection; in particular, it is unknown whether the epigenetic state at specific sites affects subsequent infection. Here, we analyzed CpG methylation states in clones derived from human primary small airway epithelial cells with the same genetic background but different viral replication rates. Our study revealed that demethylating CpGs downstream of the IFN-β transcription start site using a CRISPR/dCas9 system suppressed viral replication during subsequent influenza virus infection. Thus, our observations suggest that epigenome editing might provide adequate protection against the influenza virus.
Collapse
Affiliation(s)
- Keisuke Nishioka
- Department of Infectious Diseases, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan.
| | - Tomo Daidoji
- Department of Infectious Diseases, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Takaaki Nakaya
- Department of Infectious Diseases, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
18
|
Abstract
Influenza viruses are a leading cause of seasonal and pandemic respiratory illness. Influenza is a negative-sense single-stranded RNA virus that encodes its own RNA-dependent RNA polymerase (RdRp) for nucleic acid synthesis. The RdRp catalyzes mRNA synthesis, as well as replication of the virus genome (viral RNA) through a complementary RNA intermediate. Virus propagation requires the generation of these RNA species in a controlled manner while competing heavily with the host cell for resources. Influenza virus appropriates host factors to enhance and regulate RdRp activity at every step of RNA synthesis. This review describes such host factors and summarizes our current understanding of the roles they play in viral synthesis of RNA.
Collapse
Affiliation(s)
- Thomas P Peacock
- Department of Medicine, Imperial College London, London W2 1PG, United Kingdom; , , ,
| | - Carol M Sheppard
- Department of Medicine, Imperial College London, London W2 1PG, United Kingdom; , , ,
| | - Ecco Staller
- Department of Medicine, Imperial College London, London W2 1PG, United Kingdom; , , ,
| | - Wendy S Barclay
- Department of Medicine, Imperial College London, London W2 1PG, United Kingdom; , , ,
| |
Collapse
|
19
|
Phosphoproteome Analysis of Cells Infected with Adapted and Nonadapted Influenza A Virus Reveals Novel Pro- and Antiviral Signaling Networks. J Virol 2019; 93:JVI.00528-19. [PMID: 30996098 DOI: 10.1128/jvi.00528-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 04/05/2019] [Indexed: 12/14/2022] Open
Abstract
Influenza A viruses (IAVs) quickly adapt to new environments and are well known to cross species barriers. To reveal a molecular basis for these phenomena, we compared the Ser/Thr and Tyr phosphoproteomes of murine lung epithelial cells early and late after infection with mouse-adapted SC35M virus or its nonadapted SC35 counterpart. With this analysis we identified a large set of upregulated Ser/Thr phosphorylations common to both viral genotypes, while Tyr phosphorylations showed little overlap. Most of the proteins undergoing massive changes of phosphorylation in response to both viruses regulate chromatin structure, RNA metabolism, and cell adhesion, including a focal adhesion kinase (FAK)-regulated network mediating the regulation of actin dynamics. IAV also affected phosphorylation of activation loops of 37 protein kinases, including FAK and several phosphatases, many of which were not previously implicated in influenza virus infection. Inhibition of FAK proved its contribution to IAV infection. Novel phosphorylation sites were found on IAV-encoded proteins, and the functional analysis of selected phosphorylation sites showed that they either support (NA Ser178) or inhibit (PB1 Thr223) virus propagation. Together, these data allow novel insights into IAV-triggered regulatory phosphorylation circuits and signaling networks.IMPORTANCE Infection with IAVs leads to the induction of complex signaling cascades, which apparently serve two opposing functions. On the one hand, the virus highjacks cellular signaling cascades in order to support its propagation; on the other hand, the host cell triggers antiviral signaling networks. Here we focused on IAV-triggered phosphorylation events in a systematic fashion by deep sequencing of the phosphoproteomes. This study revealed a plethora of newly phosphorylated proteins. We also identified 37 protein kinases and a range of phosphatases that are activated or inactivated following IAV infection. Moreover, we identified new phosphorylation sites on IAV-encoded proteins. Some of these phosphorylations support the enzymatic function of viral components, while other phosphorylations are inhibitory, as exemplified by PB1 Thr223 modification. Our global characterization of IAV-triggered patterns of phospho-proteins provides a rich resource to further understand host responses to infection at the level of phosphorylation-dependent signaling networks.
Collapse
|
20
|
Fundamental Contribution and Host Range Determination of ANP32A and ANP32B in Influenza A Virus Polymerase Activity. J Virol 2019; 93:JVI.00174-19. [PMID: 30996088 PMCID: PMC6580979 DOI: 10.1128/jvi.00174-19] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 04/09/2019] [Indexed: 12/14/2022] Open
Abstract
The polymerase of the influenza virus is part of the key machinery necessary for viral replication. However, the avian influenza virus polymerase is restricted in mammalian cells. The cellular protein ANP32A has been recently found to interact with viral polymerase and to influence both polymerase activity and interspecies restriction. We report here that either human ANP32A or ANP32B is indispensable for human influenza A virus RNA replication. The contribution of huANP32B is equal to that of huANP32A, and together they play a fundamental role in the activity of human influenza A virus polymerase, while neither human ANP32A nor ANP32B supports the activity of avian viral polymerase. Interestingly, we found that avian ANP32B was naturally inactive, leaving avian ANP32A alone to support viral replication. Two amino acid mutations at sites 129 to 130 in chicken ANP32B lead to the loss of support of viral replication and weak interaction with the viral polymerase complex, and these amino acids are also crucial in the maintenance of viral polymerase activity in other ANP32 proteins. Our findings strongly support ANP32A and ANP32B as key factors for both virus replication and adaptation.IMPORTANCE The key host factors involved in the influenza A viral polymerase activity and RNA replication remain largely unknown. We provide evidence here that ANP32A and ANP32B from different species are powerful factors in the maintenance of viral polymerase activity. Human ANP32A and ANP32B contribute equally to support human influenza viral RNA replication. However, unlike avian ANP32A, the avian ANP32B is evolutionarily nonfunctional in supporting viral replication because of a mutation at sites 129 and 130. These sites play an important role in ANP32A/ANP32B and viral polymerase interaction and therefore determine viral replication, suggesting a novel interface as a potential target for the development of anti-influenza strategies.
Collapse
|
21
|
Zheng J, Perlman S. Immune responses in influenza A virus and human coronavirus infections: an ongoing battle between the virus and host. Curr Opin Virol 2018; 28:43-52. [PMID: 29172107 PMCID: PMC5835172 DOI: 10.1016/j.coviro.2017.11.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 11/02/2017] [Indexed: 12/25/2022]
Abstract
Respiratory viruses, especially influenza A viruses and coronaviruses such as MERS-CoV, represent continuing global threats to human health. Despite significant advances, much needs to be learned. Recent studies in virology and immunology have improved our understanding of the role of the immune system in protection and in the pathogenesis of these infections and of co-evolution of viruses and their hosts. These findings, together with sophisticated molecular structure analyses, omics tools and computer-based models, have helped delineate the interaction between respiratory viruses and the host immune system, which will facilitate the development of novel treatment strategies and vaccines with enhanced efficacy.
Collapse
Affiliation(s)
- Jian Zheng
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, IA 52242, United States
| | - Stanley Perlman
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, IA 52242, United States.
| |
Collapse
|
22
|
Epigenetic control of influenza virus: role of H3K79 methylation in interferon-induced antiviral response. Sci Rep 2018; 8:1230. [PMID: 29352168 PMCID: PMC5775356 DOI: 10.1038/s41598-018-19370-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 12/29/2017] [Indexed: 12/13/2022] Open
Abstract
Influenza virus stablishes a network of virus-host functional interactions, which depends on chromatin dynamic and therefore on epigenetic modifications. Using an unbiased search, we analyzed the epigenetic changes at DNA methylation and post-translational histone modification levels induced by the infection. DNA methylation was unaltered, while we found a general decrease on histone acetylation, which correlates with transcriptional inactivation and may cooperate with the impairment of cellular transcription that causes influenza virus infection. A particular increase in H3K79 methylation was observed and the use of an inhibitor of the specific H3K79 methylase, Dot1L enzyme, or its silencing, increased influenza virus replication. The antiviral response was reduced in conditions of Dot1L downregulation, since decreased nuclear translocation of NF-kB complex, and IFN-β, Mx1 and ISG56 expression was detected. The data suggested a control of antiviral signaling by methylation of H3K79 and consequently, influenza virus replication was unaffected in IFN pathway-compromised, Dot1L-inhibited cells. H3K79 methylation also controlled replication of another potent interferon-inducing virus such as vesicular stomatitis virus, but did not modify amplification of respiratory syncytial virus that poorly induces interferon signaling. Epigenetic methylation of H3K79 might have an important role in controlling interferon-induced signaling against viral pathogens.
Collapse
|
23
|
Ren Y, Choi E, Zhang K, Chen Y, Ye S, Deng X, Zhang K, Bao X. Detection of Nuclear Protein Profile Changes by Human Metapneumovirus M2-2 Protein Using Quantitative Differential Proteomics. Vaccines (Basel) 2017; 5:vaccines5040045. [PMID: 29207503 PMCID: PMC5748611 DOI: 10.3390/vaccines5040045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 11/14/2017] [Accepted: 11/29/2017] [Indexed: 01/28/2023] Open
Abstract
Human metapneumovirus (hMPV) is a leading cause of lower respiratory infection in pediatric populations globally. This study examined proteomic profile changes in A549 cells infected with hMPV and two attenuated mutants with deleted PDZ domain-binding motif(s) in the M2-2 protein. These motifs are involved in the interruption of antiviral signaling, namely the interaction between the TNF receptor associated factor (TRAF) and mitochondrial antiviral-signaling (MAVS) proteins. The aim of this study was to provide insight into the overall and novel impact of M2-2 motifs on cellular responses via an unbiased comparison. Tandem mass tagging, stable isotope labeling, and high-resolution mass spectrometry were used for quantitative proteomic analysis. Using quantitative proteomics and Venn analysis, 1248 common proteins were detected in all infected samples of both technical sets. Hierarchical clustering of the differentiated proteome displayed distinct proteomic signatures that were controlled by the motif(s). Bioinformatics and experimental analysis confirmed the differentiated proteomes, revealed novel cellular biological events, and implicated key pathways controlled by hMPV M2-2 PDZ domain-binding motif(s). This provides further insight for evaluating M2-2 mutants as potent vaccine candidates.
Collapse
Affiliation(s)
- Yuping Ren
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX 77555, USA.
- Department of Plastic Surgery, TongJi Hospital, TongJi Medical College, Huazhong University of Science and Technology, Wuhan 430073, China.
| | - Eunjin Choi
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Ke Zhang
- Department of Biochemistry, Baylor University, Waco, TX 76706, USA.
| | - Yu Chen
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX 77555, USA.
- Department of Pediatrics, TongJi Hospital, TongJi Medical College, Huazhong University of Science and Technology, Wuhan 430073, China.
| | - Sha Ye
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX 77555, USA.
- Department of Gynecologic Oncology Ward V, Hunan Cancer Hospital, Xiangya School of Medicine, Central South University, Changsha 410008, China.
| | - Xiaoling Deng
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Kangling Zhang
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Xiaoyong Bao
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX 77555, USA.
- Sealy Center for Molecular Medicine, University of Texas Medical Branch, Galveston, TX 77555, USA.
- The Institute of Translational Science, University of Texas Medical Branch, Galveston, TX 77555, USA.
- The Institute for Human Infections & Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA.
| |
Collapse
|
24
|
Zou B, Sun Q, Zhang W, Ding Y, Yang DL, Shi Z, Hua J. The Arabidopsis Chromatin-Remodeling Factor CHR5 Regulates Plant Immune Responses and Nucleosome Occupancy. PLANT & CELL PHYSIOLOGY 2017; 58:2202-2216. [PMID: 29048607 DOI: 10.1093/pcp/pcx155] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Accepted: 10/03/2017] [Indexed: 05/17/2023]
Abstract
ATP-dependent chromatin-remodeling factors use the energy of ATP hydrolysis to alter the structure of chromatin and are important regulators of eukaryotic gene expression. One such factor encoded by CHR5 (Chromatin-Remodeling Factor 5) in Arabidopsis (Arabidopsis thaliana) was previously found to be involved in regulation of growth and development. Here we show that CHR5 is required for the up-regulation of the intracellular immune receptor gene SNC1 (SUPPRESSOR OF npr1-1, CONSTITUTIVE1) and consequently the autoimmunity induced by SNC1 up-regulation. CHR5 functions antagonistically with another chromatin-remodeling gene DDM1 (DECREASED DNA METHYLATION 1) and independently with a histone mono-ubiquitinase HUB1 (HISTONE MONOUBIQUITINATION 1) in SNC1 regulation. In addition, CHR5 is a positive regulator of SNC1-independent plant immunity against the bacterial pathogen Pseudomonas syringae. Furthermore, the chr5 mutant has increased nucleosome occupancy in the promoter region relative to the gene body region at the whole-genome level, suggesting a global role for CHR5 in remodeling nucleosome occupancy. Our study thus establishes CHR5 as a positive regulator of plant immune responses including the expression of SNC1 and reveals a role for CHR5 in nucleosome occupancy which probably impacts gene expression genome wide.
Collapse
Affiliation(s)
- Baohong Zou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Jiangsu 210095, China
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Qi Sun
- Cornell Biocomputing Service Unit, Cornell University, Ithaca, NY 14853, USA
| | - Wenli Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Jiangsu 210095, China
| | - Yuan Ding
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Jiangsu 210095, China
| | - Dong-Lei Yang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Jiangsu 210095, China
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Zhenying Shi
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
- Shanghai Institute of Plant Physiology and Ecology, Shanghai, 20032, China
| | - Jian Hua
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Jiangsu 210095, China
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
25
|
Reduced accumulation of defective viral genomes contributes to severe outcome in influenza virus infected patients. PLoS Pathog 2017; 13:e1006650. [PMID: 29023600 PMCID: PMC5638565 DOI: 10.1371/journal.ppat.1006650] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 09/15/2017] [Indexed: 12/13/2022] Open
Abstract
Influenza A virus (IAV) infection can be severe or even lethal in toddlers, the elderly and patients with certain medical conditions. Infection of apparently healthy individuals nonetheless accounts for many severe disease cases and deaths, suggesting that viruses with increased pathogenicity co-circulate with pandemic or epidemic viruses. Looking for potential virulence factors, we have identified a polymerase PA D529N mutation detected in a fatal IAV case, whose introduction into two different recombinant virus backbones, led to reduced defective viral genomes (DVGs) production. This mutation conferred low induction of antiviral response in infected cells and increased pathogenesis in mice. To analyze the association between low DVGs production and pathogenesis in humans, we performed a genomic analysis of viruses isolated from a cohort of previously healthy individuals who suffered highly severe IAV infection requiring admission to Intensive Care Unit and patients with fatal outcome who additionally showed underlying medical conditions. These viruses were compared with those isolated from a cohort of mild IAV patients. Viruses with fewer DVGs accumulation were observed in patients with highly severe/fatal outcome than in those with mild disease, suggesting that low DVGs abundance constitutes a new virulence pathogenic marker in humans. Influenza A viruses are the causative agents of annual epidemics, sporadic zoonotic outbreaks and occasionally pandemics. Worldwide, acute respiratory infections caused by influenza A viruses continue to be one of the main causes of acute illness and death. The appearance in 2009 of a new H1N1 pandemic influenza strain reinforced the search to identify viral pathogenicity determinants for evaluation of the consequences of virus epidemics and potential pandemics for human health. Here we identify a new general virulence determinant found in a cohort of severe/fatal influenza virus-infected patients, a reduced accumulation of viral defective genomes. These molecules are incomplete viral genome segments that activate the innate immune response. This data will contribute to the prediction of influenza disease severity, to improved guidance of patient treatment and will enable the development of risk-based prevention strategies and policies.
Collapse
|
26
|
Mok BWY, Liu H, Chen P, Liu S, Lau SY, Huang X, Liu YC, Wang P, Yuen KY, Chen H. The role of nuclear NS1 protein in highly pathogenic H5N1 influenza viruses. Microbes Infect 2017; 19:587-596. [PMID: 28903072 DOI: 10.1016/j.micinf.2017.08.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 08/31/2017] [Accepted: 08/31/2017] [Indexed: 11/28/2022]
Abstract
The non-structural protein (NS1) of influenza A viruses (IAV) performs multiple functions during viral infection. NS1 contains two nuclear localization signals (NLS): NLS1 and NLS2. The NS1 protein is located predominantly in the nucleus during the early stages of infection and subsequently exported to the cytoplasm. A nonsense mutation that results in a large deletion in the carboxy-terminal region of the NS1 protein that contains the NLS2 domain was found in some IAV subtypes, including highly pathogenic avian influenza (HPAI) H7N9 and H5N1 viruses. We introduced different mutations into the NLS domains of NS1 proteins in various strains of IAV, and demonstrated that mutation of the NLS2 region in the NS1 protein of HPAI H5N1 viruses severely affects its nuclear localization pattern. H5N1 viruses expressing NS1 protein that is unable to localize to the nucleus are less potent in antagonizing cellular antiviral responses than viruses expressing wild-type NS1. However, no significant difference was observed with respect to viral replication and pathogenesis. In contrast, the replication and antiviral defenses of H1N1 viruses are greatly attenuated when nuclear localization of the NS1 protein is blocked. Our data reveals a novel functional plasticity for NS1 proteins among different IAV subtypes.
Collapse
Affiliation(s)
- Bobo Wing-Yee Mok
- State Key Laboratory for Emerging Infectious Diseases and Department of Microbiology, The University of Hong Kong, Hong Kong, China
| | - Honglian Liu
- State Key Laboratory for Emerging Infectious Diseases and Department of Microbiology, The University of Hong Kong, Hong Kong, China
| | - Pin Chen
- State Key Laboratory for Emerging Infectious Diseases and Department of Microbiology, The University of Hong Kong, Hong Kong, China
| | - Siwen Liu
- State Key Laboratory for Emerging Infectious Diseases and Department of Microbiology, The University of Hong Kong, Hong Kong, China
| | - Siu-Ying Lau
- State Key Laboratory for Emerging Infectious Diseases and Department of Microbiology, The University of Hong Kong, Hong Kong, China
| | - Xiaofeng Huang
- State Key Laboratory for Emerging Infectious Diseases and Department of Microbiology, The University of Hong Kong, Hong Kong, China
| | - Yen-Chin Liu
- State Key Laboratory for Emerging Infectious Diseases and Department of Microbiology, The University of Hong Kong, Hong Kong, China
| | - Pui Wang
- State Key Laboratory for Emerging Infectious Diseases and Department of Microbiology, The University of Hong Kong, Hong Kong, China
| | - Kwok-Yung Yuen
- State Key Laboratory for Emerging Infectious Diseases and Department of Microbiology, The University of Hong Kong, Hong Kong, China
| | - Honglin Chen
- State Key Laboratory for Emerging Infectious Diseases and Department of Microbiology, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
27
|
Abstract
At every step of their replication cycle influenza viruses depend heavily on their host cells. The multifaceted interactions that occur between the virus and its host cell determine the outcome of the infection, including efficiency of progeny virus production, tropism, and pathogenicity. In order to understand viral disease and develop therapies for influenza it is therefore pertinent to study the intricate interplay between influenza viruses and their required host factors. Here, we review the current knowledge on host cell factors required by influenza virus at the different stages of the viral replication cycle. We also discuss the roles of host factors in zoonotic transmission of influenza viruses and their potential for developing novel antivirals.
Collapse
|
28
|
Downregulation of Aedes aegypti chromodomain helicase DNA binding protein 7/Kismet by Wolbachia and its effect on dengue virus replication. Sci Rep 2016; 6:36850. [PMID: 27827425 PMCID: PMC5101808 DOI: 10.1038/srep36850] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 10/19/2016] [Indexed: 12/23/2022] Open
Abstract
Dengue virus (DENV) is a mosquito-transmitted virus imposing a significant burden on human health around the world. Since current control strategies are not sufficient, there is an urgent need to find alternative methods to control DENV transmission. It has been demonstrated that introduction of Wolbachia pipientis in Aedes aegypti mosquitoes can impede DENV transmission with the mechanism(s) not fully understood. Recently, a number of studies have found the involvement of chromodomain DNA binding helicases in case of Human Immunodeficiency virus (HIV) and Influenza A virus infection. In this study, we have identified three chromodomain helicase DNA binding protein (CHD) genes in Ae. aegypti and looked at their response in the case of Wolbachia and DENV infections. Foremost amongst them we have found that AeCHD7/Kismet is significantly downregulated in the presence of Wolbachia infection only in female mosquitoes. Furthermore, AeCHD7 levels showed significant increase during DENV infection, and AeCHD7 depletion led to severe reduction in the replication of DENV. Our data have identified AeCHD7 as a novel Ae. aegypti host factor that is important for DENV replication, and Wolbachia downregulates it, which may contribute towards the mechanism(s) of limiting DENV replication.
Collapse
|
29
|
Asaka MN, Kawaguchi A, Sakai Y, Mori K, Nagata K. Polycomb repressive complex 2 facilitates the nuclear export of the influenza viral genome through the interaction with M1. Sci Rep 2016; 6:33608. [PMID: 27646999 PMCID: PMC5028886 DOI: 10.1038/srep33608] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 08/30/2016] [Indexed: 12/15/2022] Open
Abstract
The organization of nuclear domains is crucial for biological events including virus infection. Newly synthesized influenza viral genome forms viral ribonucleoprotein (vRNP) complexes and is exported from the nucleus to the cytoplasm through a CRM1-dependent pathway mediated by viral proteins M1 and NS2. However, the spatio-temporal regulation of the progeny vRNP in the nucleus is still unclear. Here we found that polycomb repressive complex 2 (PRC2), which contains a methyltransferase subunit EZH2 and catalyzes histone H3K27me3 for the formation of facultative heterochromatin, is a positive factor for the virus production. Depletion of PRC2 complex showed the nuclear accumulation of vRNP and the reduction of M1-vRNP complex formation. We also found that PRC2 complex directly binds to M1, and facilitates the interaction of M1 with vRNP. In conclusion, we propose that the progeny vRNP could be recruited to facultative heterochromatin and assembled into the export complex mediated by PRC2 complex.
Collapse
Affiliation(s)
- Masamitsu N Asaka
- Department of Infection Biology, Faculty of Medicine and Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | - Atsushi Kawaguchi
- Department of Infection Biology, Faculty of Medicine and Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan.,Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Japan
| | - Yuri Sakai
- Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Japan
| | - Kotaro Mori
- Department of Infection Biology, Faculty of Medicine and Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | - Kyosuke Nagata
- Department of Infection Biology, Faculty of Medicine and Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
30
|
Te Velthuis AJW, Fodor E. Influenza virus RNA polymerase: insights into the mechanisms of viral RNA synthesis. Nat Rev Microbiol 2016; 14:479-93. [PMID: 27396566 DOI: 10.1038/nrmicro.2016.87] [Citation(s) in RCA: 316] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The genomes of influenza viruses consist of multiple segments of single-stranded negative-sense RNA. Each of these segments is bound by the heterotrimeric viral RNA-dependent RNA polymerase and multiple copies of nucleoprotein, which form viral ribonucleoprotein (vRNP) complexes. It is in the context of these vRNPs that the viral RNA polymerase carries out transcription of viral genes and replication of the viral RNA genome. In this Review, we discuss our current knowledge of the structure of the influenza virus RNA polymerase, and insights that have been gained into the molecular mechanisms of viral transcription and replication, and their regulation by viral and host factors. Furthermore, we discuss how advances in our understanding of the structure and function of polymerases could help in identifying new antiviral targets.
Collapse
Affiliation(s)
- Aartjan J W Te Velthuis
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Ervin Fodor
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| |
Collapse
|