1
|
Al-Abbasi Z, Bhuiyan SA, Renthal W, Molliver DC. A Transcriptomic Comparison of the HD10.6 Human Sensory Neuron-Derived Cell Line with Primary and iPSC Sensory Neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.03.643725. [PMID: 40236231 PMCID: PMC11996562 DOI: 10.1101/2025.04.03.643725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
A key concern in early-stage analgesic discovery efforts is the extent to which mechanisms identified in rodents will translate to humans. To evaluate an alternative approach to the use of rodent dissociated DRG neurons for in vitro analyses of nociceptive signaling, we performed a transcriptomic analysis of the HD10.6 human dorsal root ganglion (DRG)-derived immortalized cell line. We conducted RNA-seq on proliferating and mature HD10.6 cells to characterize transcriptional changes associated with maturation. We then compared the transcriptomes of HD10.6 cells and several recently developed lines of human induced pluripotent stem cell-derived sensory neurons (iPSC-SN) to single-nucleus RNA-seq data from human DRGs. HD10.6 cells showed the highest correlation with 3 human sensory neuron subtypes associated with nociception and pruriception. Each of the iPSC-SN lines evaluated showed a distinct pattern of correlation with human sensory neuron subtypes. We identified G protein-coupled receptors (GPCRs) and ion channels that are expressed in both HD10.6 cells and human DRG neurons, as well as numerous genes that are expressed in human DRG but not in rodent, underscoring the need for human sensory neuron in vitro models. Proof-of-concept evaluations of protein kinase A, protein kinase C and Erk signaling provide examples of scalable assays using HD10.6 cells to investigate well-established GPCR signaling pathways. We conclude that HD10.6 cells provide a versatile model for exploring human neuronal signaling mechanisms.
Collapse
|
2
|
Niemeyer CS, Frietze S, Coughlan C, Lewis SWR, Bustos Lopez S, Saviola AJ, Hansen KC, Medina EM, Hassell JE, Kogut S, Traina-Dorge V, Nagel MA, Bruce KD, Restrepo D, Mahalingam R, Bubak AN. Suppression of the host antiviral response by non-infectious varicella zoster virus extracellular vesicles. J Virol 2024; 98:e0084824. [PMID: 39051773 PMCID: PMC11334484 DOI: 10.1128/jvi.00848-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 06/17/2024] [Indexed: 07/27/2024] Open
Abstract
Varicella zoster virus (VZV) reactivates from ganglionic sensory neurons to produce herpes zoster (shingles) in a unilateral dermatomal distribution, typically in the thoracic region. Reactivation not only heightens the risk of stroke and other neurological complications but also increases susceptibility to co-infections with various viral and bacterial pathogens at sites distant from the original infection. The mechanism by which VZV results in complications remote from the initial foci remains unclear. Small extracellular vesicles (sEVs) are membranous signaling structures that can deliver proteins and nucleic acids to modify the function of distal cells and tissues during normal physiological conditions. Although viruses have been documented to exploit the sEV machinery to propagate infection, the role of non-infectious sEVs released from VZV-infected neurons in viral spread and disease has not been studied. Using multi-omic approaches, we characterized the content of sEVs released from VZV-infected human sensory neurons (VZV sEVs). One viral protein was detected (immediate-early 62), as well as numerous immunosuppressive and vascular disease-associated host proteins and miRNAs that were absent in sEVs from uninfected neurons. Notably, VZV sEVs are non-infectious yet transcriptionally altered primary human cells, suppressing the antiviral type 1 interferon response and promoting neuroinvasion of a secondary pathogen in vivo. These results challenge our understanding of VZV infection, proposing that the virus may contribute to distant pathologies through non-infectious sEVs beyond the primary infection site. Furthermore, this study provides a previously undescribed immune-evasion mechanism induced by VZV that highlights the significance of non-infectious sEVs in early VZV pathogenesis. IMPORTANCE Varicella zoster virus (VZV) is a ubiquitous human virus that predominantly spreads by direct cell-cell contact and requires efficient and immediate host immune evasion strategies to spread. The mechanisms of immune evasion prior to virion entry have not been fully elucidated and represent a critical gap in our complete understanding of VZV pathogenesis. This study describes a previously unreported antiviral evasion strategy employed by VZV through the exploitation of the infected host cell's small extracellular vesicle (sEV) machinery. These findings suggest that non-infectious VZV sEVs could travel throughout the body, affecting cells remote from the site of infection and challenging the current understanding of VZV clinical disease, which has focused on local effects and direct infection. The significance of these sEVs in early VZV pathogenesis highlights the importance of further investigating their role in viral spread and secondary disease development to reduce systemic complications following VZV infections.
Collapse
Affiliation(s)
- Christy S. Niemeyer
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Seth Frietze
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, Vermont, USA
| | - Christina Coughlan
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Serena W. R. Lewis
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Sara Bustos Lopez
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Anthony J. Saviola
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Kirk C. Hansen
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Eva M. Medina
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - James E. Hassell
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Sophie Kogut
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, Vermont, USA
| | - Vicki Traina-Dorge
- Division of Microbiology, Tulane National Primate Research Center, Tulane University, Covington, Louisiana, USA
| | - Maria A. Nagel
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Ophthalmology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Kimberley D. Bruce
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Diego Restrepo
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Ravi Mahalingam
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Andrew N. Bubak
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
3
|
Canova PN, Charron AJ, Leib DA. Models of Herpes Simplex Virus Latency. Viruses 2024; 16:747. [PMID: 38793628 PMCID: PMC11125678 DOI: 10.3390/v16050747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 04/29/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024] Open
Abstract
Our current understanding of HSV latency is based on a variety of clinical observations, and in vivo, ex vivo, and in vitro model systems, each with unique advantages and drawbacks. The criteria for authentically modeling HSV latency include the ability to easily manipulate host genetics and biological pathways, as well as mimicking the immune response and viral pathogenesis in human infections. Although realistically modeling HSV latency is necessary when choosing a model, the cost, time requirement, ethical constraints, and reagent availability are also equally important. Presently, there remains a pressing need for in vivo models that more closely recapitulate human HSV infection. While the current in vivo, ex vivo, and in vitro models used to study HSV latency have limitations, they provide further insights that add to our understanding of latency. In vivo models have shed light on natural infection routes and the interplay between the host immune response and the virus during latency, while in vitro models have been invaluable in elucidating molecular pathways involved in latency. Below, we review the relative advantages and disadvantages of current HSV models and highlight insights gained through each.
Collapse
Affiliation(s)
- Paige N. Canova
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA;
- Guarini School of Graduate and Advanced Studies at Dartmouth, Hanover, NH 03755, USA;
| | - Audra J. Charron
- Guarini School of Graduate and Advanced Studies at Dartmouth, Hanover, NH 03755, USA;
| | - David A. Leib
- Guarini School of Graduate and Advanced Studies at Dartmouth, Hanover, NH 03755, USA;
| |
Collapse
|
4
|
Kutle I, Dittrich A, Wirth D. Mouse Models for Human Herpesviruses. Pathogens 2023; 12:953. [PMID: 37513800 PMCID: PMC10384569 DOI: 10.3390/pathogens12070953] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/13/2023] [Accepted: 07/15/2023] [Indexed: 07/30/2023] Open
Abstract
More than one hundred herpesviruses have been isolated from different species so far, with nine infecting humans. Infections with herpesviruses are characterized by life-long latency and represent a significant challenge for human health. To investigate the consequences of infections and identify novel treatment options, in vivo models are of particular relevance. The mouse has emerged as an economical small animal model to investigate herpesvirus infections. However, except for herpes simplex viruses (HSV-1, HSV-2), human herpesviruses cannot infect mice. Three natural herpesviruses have been identified in mice: mouse-derived cytomegalovirus (MCMV), mouse herpesvirus 68 (MHV-68), and mouse roseolovirus (MRV). These orthologues are broadly used to investigate herpesvirus infections within the natural host. In the last few decades, immunocompromised mouse models have been developed, allowing the functional engraftment of various human cells and tissues. These xenograft mice represent valuable model systems to investigate human-restricted viruses, making them particularly relevant for herpesvirus research. In this review, we describe the various mouse models used to study human herpesviruses, thereby highlighting their potential and limitations. Emphasis is laid on xenograft mouse models, covering the development and refinement of immune-compromised mice and their application in herpesvirus research.
Collapse
Affiliation(s)
- Ivana Kutle
- Research Group Model Systems for Infection, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
| | - Anne Dittrich
- Research Group Model Systems for Infection, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
- InSCREENeX GmbH, Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Dagmar Wirth
- Research Group Model Systems for Infection, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
| |
Collapse
|
5
|
Mießner H, Seidel J, Smith ESJ. In vitro models for investigating itch. Front Mol Neurosci 2022; 15:984126. [PMID: 36385768 PMCID: PMC9644192 DOI: 10.3389/fnmol.2022.984126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 10/10/2022] [Indexed: 12/04/2022] Open
Abstract
Itch (pruritus) is a sensation that drives a desire to scratch, a behavior observed in many animals. Although generally short-lasting and not causing harm, there are several pathological conditions where chronic itch is a hallmark symptom and in which prolonged scratching can induce damage. Finding medications to counteract the sensation of chronic itch has proven difficult due to the molecular complexity that involves a multitude of triggers, receptors and signaling pathways between skin, immune and nerve cells. While much has been learned about pruritus from in vivo animal models, they have limitations that corroborate the necessity for a transition to more human disease-like models. Also, reducing animal use should be encouraged in research. However, conducting human in vivo experiments can also be ethically challenging. Thus, there is a clear need for surrogate models to be used in pre-clinical investigation of the mechanisms of itch. Most in vitro models used for itch research focus on the use of known pruritogens. For this, sensory neurons and different types of skin and/or immune cells are stimulated in 2D or 3D co-culture, and factors such as neurotransmitter or cytokine release can be measured. There are however limitations of such simplistic in vitro models. For example, not all naturally occurring cell types are present and there is also no connection to the itch-sensing organ, the central nervous system (CNS). Nevertheless, in vitro models offer a chance to investigate otherwise inaccessible specific cell–cell interactions and molecular pathways. In recent years, stem cell-based approaches and human primary cells have emerged as viable alternatives to standard cell lines or animal tissue. As in vitro models have increased in their complexity, further opportunities for more elaborated means of investigating itch have been developed. In this review, we introduce the latest concepts of itch and discuss the advantages and limitations of current in vitro models, which provide valuable contributions to pruritus research and might help to meet the unmet clinical need for more refined anti-pruritic substances.
Collapse
Affiliation(s)
- Hendrik Mießner
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
- Dermatological Skin Care, Beiersdorf AG, Hamburg, Germany
| | - Judith Seidel
- Dermatological Skin Care, Beiersdorf AG, Hamburg, Germany
| | - Ewan St. John Smith
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
- *Correspondence: Ewan St. John Smith,
| |
Collapse
|
6
|
Mazzara PG, Criscuolo E, Rasponi M, Massimino L, Muggeo S, Palma C, Castelli M, Clementi M, Burioni R, Mancini N, Broccoli V, Clementi N. A Human Stem Cell-Derived Neurosensory–Epithelial Circuitry on a Chip to Model Herpes Simplex Virus Reactivation. Biomedicines 2022; 10:biomedicines10092068. [PMID: 36140168 PMCID: PMC9495731 DOI: 10.3390/biomedicines10092068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 08/20/2022] [Indexed: 11/16/2022] Open
Abstract
Both emerging viruses and well-known viral pathogens endowed with neurotropism can either directly impair neuronal functions or induce physio-pathological changes by diffusing from the periphery through neurosensory–epithelial connections. However, developing a reliable and reproducible in vitro system modeling the connectivity between the different human sensory neurons and peripheral tissues is still a challenge and precludes the deepest comprehension of viral latency and reactivation at the cellular and molecular levels. This study shows a stable topographic neurosensory–epithelial connection on a chip using human stem cell-derived dorsal root ganglia (DRG) organoids. Bulk and single-cell transcriptomics showed that different combinations of key receptors for herpes simplex virus 1 (HSV-1) are expressed by each sensory neuronal cell type. This neuronal–epithelial circuitry enabled a detailed analysis of HSV infectivity, faithfully modeling its dynamics and cell type specificity. The reconstitution of an organized connectivity between human sensory neurons and keratinocytes into microfluidic chips provides a powerful in vitro platform for modeling viral latency and reactivation of human viral pathogens.
Collapse
Affiliation(s)
| | - Elena Criscuolo
- Laboratory of Microbiology and Virology, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Marco Rasponi
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, 20133 Milan, Italy
| | - Luca Massimino
- Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Sharon Muggeo
- Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Cecilia Palma
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, 20133 Milan, Italy
| | - Matteo Castelli
- Laboratory of Microbiology and Virology, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Massimo Clementi
- Laboratory of Microbiology and Virology, Vita-Salute San Raffaele University, 20132 Milan, Italy
- Laboratory of Microbiology and Virology, IRCCS San Raffaele Hospital, 20132 Milan, Italy
| | - Roberto Burioni
- Laboratory of Microbiology and Virology, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Nicasio Mancini
- Laboratory of Microbiology and Virology, Vita-Salute San Raffaele University, 20132 Milan, Italy
- Laboratory of Microbiology and Virology, IRCCS San Raffaele Hospital, 20132 Milan, Italy
| | - Vania Broccoli
- Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy
- National Research Council (CNR), Institute of Neuroscience, 20129 Milan, Italy
- Correspondence: (V.B.); (N.C.); Tel.: +39-022-643-4616 (V.B.); +39-022-643-3144 (N.C.)
| | - Nicola Clementi
- Laboratory of Microbiology and Virology, Vita-Salute San Raffaele University, 20132 Milan, Italy
- Laboratory of Microbiology and Virology, IRCCS San Raffaele Hospital, 20132 Milan, Italy
- Correspondence: (V.B.); (N.C.); Tel.: +39-022-643-4616 (V.B.); +39-022-643-3144 (N.C.)
| |
Collapse
|
7
|
Chen YC, Li H, Martin-Caraballo M, Hsia SV. Establishing a Herpesvirus Quiescent Infection in Differentiated Human Dorsal Root Ganglion Neuronal Cell Line Mediated by Micro-RNA Overexpression. Pathogens 2022; 11:pathogens11070803. [PMID: 35890047 PMCID: PMC9317301 DOI: 10.3390/pathogens11070803] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/28/2022] [Accepted: 07/13/2022] [Indexed: 02/04/2023] Open
Abstract
HSV-1 is a neurotropic pathogen associated with severe encephalitis, excruciating orofacial sensation, and other chronic neuropathic complications. After the acute infection, the virus may establish a lifelong latency in the neurons of trigeminal ganglia (TG) and other sensory and autonomic ganglia, including the dorsal root ganglia (DRG), etc. The reactivation occurred periodically by a variety of physical or emotional stressors. We have been developing a human DRG neuronal cell-culture model HD10.6, which mimics the mature neurons for latency and reactivation with robust neuronal physiology. We found that miR124 overexpression without acyclovir (ACV) could maintain the virus in a quiescent infection, with the accumulation of latency-associate transcript (LAT). The immediate-early (IE) gene ICP0, on the other hand, was very low and the latent viruses could be reactivated by trichostatin A (TSA) treatment. Together, these observations suggested a putative role of microRNA in promoting HSV-1 latency in human neurons.
Collapse
Affiliation(s)
- Yu-Chih Chen
- Department of Pharmaceutical Sciences, School of Pharmacy and Health Professions, University of Maryland Eastern Shore, Princess Anne, MD 21853, USA; (Y.-C.C.); (M.M.-C.)
| | - Hedong Li
- Department of Neuroscience & Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Rm. CA4012, Augusta, GA 30912, USA;
| | - Miguel Martin-Caraballo
- Department of Pharmaceutical Sciences, School of Pharmacy and Health Professions, University of Maryland Eastern Shore, Princess Anne, MD 21853, USA; (Y.-C.C.); (M.M.-C.)
| | - Shaochung Victor Hsia
- Department of Pharmaceutical Sciences, School of Pharmacy and Health Professions, University of Maryland Eastern Shore, Princess Anne, MD 21853, USA; (Y.-C.C.); (M.M.-C.)
- Correspondence:
| |
Collapse
|
8
|
Dochnal S, Merchant HY, Schinlever AR, Babnis A, Depledge DP, Wilson AC, Cliffe AR. DLK-Dependent Biphasic Reactivation of Herpes Simplex Virus Latency Established in the Absence of Antivirals. J Virol 2022; 96:e0050822. [PMID: 35608347 PMCID: PMC9215246 DOI: 10.1128/jvi.00508-22] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 04/30/2022] [Indexed: 01/07/2023] Open
Abstract
Understanding the molecular mechanisms of herpes simplex virus 1 (HSV-1) latent infection and reactivation in neurons requires the use of in vitro model systems. Establishing a quiescent infection in cultured neurons is problematic, as any infectious virus released can superinfect the cultures. Previous studies have used the viral DNA replication inhibitor acyclovir to prevent superinfection and promote latency establishment. Data from these previous models have shown that reactivation is biphasic, with an initial phase I expression of all classes of lytic genes, which occurs independently of histone demethylase activity and viral DNA replication but is dependent on the cell stress protein DLK. Here, we describe a new model system using HSV-1 Stayput-GFP, a reporter virus that is defective for cell-to-cell spread and establishes latent infections without the need for acyclovir. The establishment of a latent state requires a longer time frame than previous models using DNA replication inhibitors. This results in a decreased ability of the virus to reactivate using established inducers, and as such, a combination of reactivation triggers is required. Using this system, we demonstrate that biphasic reactivation occurs even when latency is established in the absence of acyclovir. Importantly, phase I lytic gene expression still occurs in a histone demethylase and viral DNA replication-independent manner and requires DLK activity. These data demonstrate that the two waves of viral gene expression following HSV-1 reactivation are independent of secondary infection and not unique to systems that require acyclovir to promote latency establishment. IMPORTANCE Herpes simplex virus-1 (HSV-1) enters a latent infection in neurons and periodically reactivates. Reactivation manifests as a variety of clinical symptoms. Studying latency and reactivation in vitro is invaluable, allowing the molecular mechanisms behind both processes to be targeted by therapeutics that reduce the clinical consequences. Here, we describe a novel in vitro model system using a cell-to-cell spread-defective HSV-1, known as Stayput-GFP, which allows for the study of latency and reactivation at the single neuron level. We anticipate this new model system will be an incredibly valuable tool for studying the establishment and reactivation of HSV-1 latent infection in vitro. Using this model, we find that initial reactivation events are dependent on cellular stress kinase DLK but independent of histone demethylase activity and viral DNA replication. Our data therefore further validate the essential role of DLK in mediating a wave of lytic gene expression unique to reactivation.
Collapse
Affiliation(s)
- Sara Dochnal
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Husain Y. Merchant
- Department of Microbiology, New York University School of Medicine, New York, New York, USA
| | - Austin R. Schinlever
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Aleksandra Babnis
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Daniel P. Depledge
- Department of Microbiology, New York University School of Medicine, New York, New York, USA
| | - Angus C. Wilson
- Department of Microbiology, New York University School of Medicine, New York, New York, USA
| | - Anna R. Cliffe
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
9
|
Impact of Cultured Neuron Models on α-Herpesvirus Latency Research. Viruses 2022; 14:v14061209. [PMID: 35746680 PMCID: PMC9228292 DOI: 10.3390/v14061209] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 02/01/2023] Open
Abstract
A signature trait of neurotropic α-herpesviruses (α-HV) is their ability to establish stable non-productive infections of peripheral neurons termed latency. This specialized gene expression program is the foundation of an evolutionarily successful strategy to ensure lifelong persistence in the host. Various physiological stresses can induce reactivation in a subset of latently-infected neurons allowing a new cycle of viral productive cycle gene expression and synthesis of infectious virus. Recurring reactivation events ensure transmission of the virus to new hosts and contributes to pathogenesis. Efforts to define the molecular basis of α-HV latency and reactivation have been notoriously difficult because the neurons harboring latent virus in humans and in experimentally infected live-animal models, are rare and largely inaccessible to study. Increasingly, researchers are turning to cultured neuron infection models as simpler experimental platforms from which to explore latency and reactivation at the molecular level. In this review, I reflect on the strengths and weaknesses of existing neuronal models and briefly summarize the important mechanistic insights these models have provided. I also discuss areas where prioritization will help to ensure continued progress and integration.
Collapse
|
10
|
Goldstein RS, Kinchington PR. Varicella Zoster Virus Neuronal Latency and Reactivation Modeled in Vitro. Curr Top Microbiol Immunol 2021; 438:103-134. [PMID: 34904194 DOI: 10.1007/82_2021_244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Latency and reactivation in neurons are critical aspects of VZV pathogenesis that have historically been difficult to investigate. Viral genomes are retained in many human ganglia after the primary infection, varicella; and about one-third of the naturally infected VZV seropositive population reactivates latent virus, which most often clinically manifests as herpes zoster (HZ or Shingles). HZ is frequently complicated by acute and chronic debilitating pain for which there remains a need for more effective treatment options. Understanding of the latent state is likely to be essential in the design of strategies to reduce reactivation. Experimentally addressing VZV latency has been difficult because of the strict human species specificity of VZV and the fact that until recently, experimental reactivation had not been achieved. We do not yet know the neuron subtypes that harbor latent genomes, whether all can potentially reactivate, what the drivers of VZV reactivation are, and how immunity interplays with the latent state to control reactivation. However, recent advances have enabled a picture of VZV latency to start to emerge. The first is the ability to detect the latent viral genome and its expression in human ganglionic tissues with extraordinary sensitivity. The second, the subject of this chapter, is the development of in vitro human neuron systems permitting the modeling of latent states that can be experimentally reactivated. This review will summarize recent advances of in vitro models of neuronal VZV latency and reactivation, the limitations of the current systems, and discuss outstanding questions and future directions regarding these processes using these and yet to be developed models. Results obtained from the in vitro models to date will also be discussed in light of the recent data gleaned from studies of VZV latency and gene expression learned from human cadaver ganglia, especially the discovery of VZV latency transcripts that seem to parallel the long-studied latency-associated transcripts of other neurotropic alphaherpesviruses.
Collapse
Affiliation(s)
| | - Paul R Kinchington
- Department of Ophthalmology, and Department of Molecular Microbiology and Genetics, University of Pittsburgh, EEI 1020, 203 Lothrop Street, Pittsburgh, PA, 156213, USA.
| |
Collapse
|
11
|
De Novo Polycomb Recruitment: Lessons from Latent Herpesviruses. Viruses 2021; 13:v13081470. [PMID: 34452335 PMCID: PMC8402699 DOI: 10.3390/v13081470] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/22/2021] [Accepted: 07/24/2021] [Indexed: 12/11/2022] Open
Abstract
The Human Herpesviruses persist in the form of a latent infection in specialized cell types. During latency, the herpesvirus genomes associate with cellular histone proteins and the viral lytic genes assemble into transcriptionally repressive heterochromatin. Although there is divergence in the nature of heterochromatin on latent herpesvirus genomes, in general, the genomes assemble into forms of heterochromatin that can convert to euchromatin to permit gene expression and therefore reactivation. This reversible form of heterochromatin is known as facultative heterochromatin and is most commonly characterized by polycomb silencing. Polycomb silencing is prevalent on the cellular genome and plays a role in developmentally regulated and imprinted genes, as well as X chromosome inactivation. As herpesviruses initially enter the cell in an un-chromatinized state, they provide an optimal system to study how de novo facultative heterochromatin is targeted to regions of DNA and how it contributes to silencing. Here, we describe how polycomb-mediated silencing potentially assembles onto herpesvirus genomes, synergizing what is known about herpesvirus latency with facultative heterochromatin targeting to the cellular genome. A greater understanding of polycomb silencing of herpesviruses will inform on the mechanism of persistence and reactivation of these pathogenic human viruses and provide clues regarding how de novo facultative heterochromatin forms on the cellular genome.
Collapse
|
12
|
Herpes Simplex Virus 1 Strains 17 syn + and KOS(M) Differ Greatly in Their Ability To Reactivate from Human Neurons In Vitro. J Virol 2020; 94:JVI.00796-20. [PMID: 32461310 DOI: 10.1128/jvi.00796-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 05/18/2020] [Indexed: 01/17/2023] Open
Abstract
Herpes simplex virus 1 (HSV-1) establishes a lifelong latent infection in peripheral nerve ganglia. Periodically, the virus reactivates from this latent reservoir and is transported to the original site of infection. Strains of HSV-1 have been noted to vary greatly in their virulence and reactivation efficiencies in animal models. While HSV-1 strain 17syn + can be readily reactivated, strain KOS(M) shows little to no reactivation in the mouse and rabbit models of induced reactivation. Additionally, 17syn + is markedly more virulent in vivo than KOS. This has raised questions regarding potential strain-specific differences in neuroinvasion and neurovirulence and their contribution to differences in the establishment of latency (or ability to spread back to the periphery) and to the reactivation phenotype. To determine if any difference in the ability to reactivate between strains 17syn + and KOS(M) is manifest at the level of neurons, we utilized a recently characterized human neuronal cell line model of HSV latency and reactivation (LUHMES). We found that KOS(M) established latency with a higher number of viral genomes than strain 17syn + Strikingly, we show that the KOS(M) viral genomes have a higher burden of heterochromatin marks than strain 17syn + The increased heterochromatin profile for KOS(M) correlates with the reduced expression of viral lytic transcripts during latency and impaired induced reactivation compared to that of 17syn + These results suggest that genomes entering neurons from HSV-1 infections with strain KOS(M) are more prone to rapid heterochromatinization than those of 17syn + and that this results in a reduced ability to reactivate from latency.IMPORTANCE Herpes simplex virus 1 (HSV-1) establishes a lifelong infection in neuronal cells. The virus periodically reactivates and causes recurrent disease. Strains of HSV-1 vary greatly in their virulence and potential to reactivate in animal models. Although these differences are phenotypically well defined, factors contributing to the strains' abilities to reactivate are largely unknown. We utilized a human neuronal cell line model of HSV latency and reactivation (LUHMES) to characterize the latent infection of two HSV-1 wild-type strains. We find that strain-specific differences in reactivation are recapitulated in LUHMES. Additionally, these differences correlate with the degree of heterochromatinization of the latent genomes. Our data suggest that the epigenetic state of the viral genome is an important determinant of reactivation that varies in a strain-specific manner. This work also shows the first evidence of strain-specific differences in reactivation outside the context of the whole animal at a human neuronal cell level.
Collapse
|
13
|
Haberberger RV, Barry C, Matusica D. Immortalized Dorsal Root Ganglion Neuron Cell Lines. Front Cell Neurosci 2020; 14:184. [PMID: 32636736 PMCID: PMC7319018 DOI: 10.3389/fncel.2020.00184] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 05/28/2020] [Indexed: 12/14/2022] Open
Abstract
Pain is one of the most significant causes of suffering and disability world-wide, and arguably the most burdensome global health challenge. The growing number of patients suffering from chronic pain conditions such as fibromyalgia, complex regional pain syndrome, migraine and irritable bowel syndrome, not only reflect the complexity and heterogeneity of pain types, but also our lack of understanding of the underlying mechanisms. Sensory neurons within the dorsal root ganglia (DRG) have emerged as viable targets for effective chronic pain therapy. However, DRG's contain different classes of primary sensory neurons including pain-associated nociceptive neurons, non-nociceptive temperature sensing, mechanosensory and chemoreceptive neurons, as well as multiple types of immune and endothelial cells. This cell-population heterogeneity makes investigations of individual subgroups of DRG neurons, such as nociceptors, difficult. In attempts to overcome some of these difficulties, a limited number of immortalized DRG-derived cell lines have been generated over the past few decades. In vitro experiments using DRG-derived cell lines have been useful in understanding sensory neuron function. In addition to retaining phenotypic similarities to primary cultured DRG neurons, these cells offer greater suitability for high throughput assays due to ease of culture, maintenance, growth efficiency and cost-effectiveness. For accurate interpretation and translation of results it is critical, however, that phenotypic similarities and differences of DRG-derived cells lines are methodically compared to native neurons. Published reports to date show notable variability in how these DRG-derived cells are maintained and differentiated. Understanding the cellular and molecular differences stemming from different culture methods, is essential to validate past and future experiments, and enable these cells to be used to their full potential. This review describes currently available DRG-derived cell lines, their known sensory and nociceptor specific molecular profiles, and summarize their morphological features related to differentiation and neurite outgrowth.
Collapse
Affiliation(s)
- Rainer Viktor Haberberger
- Anatomy & Histology, College of Medicine and Public Health, Flinders Health & Medical Research Institute, Flinders University, Adelaide, SA, Australia
| | - Christine Barry
- Anatomy & Histology, College of Medicine and Public Health, Flinders Health & Medical Research Institute, Flinders University, Adelaide, SA, Australia
| | - Dusan Matusica
- Anatomy & Histology, College of Medicine and Public Health, Flinders Health & Medical Research Institute, Flinders University, Adelaide, SA, Australia
| |
Collapse
|
14
|
Pathophysiological roles and therapeutic potential of voltage-gated ion channels (VGICs) in pain associated with herpesvirus infection. Cell Biosci 2020; 10:70. [PMID: 32489585 PMCID: PMC7247163 DOI: 10.1186/s13578-020-00430-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 05/13/2020] [Indexed: 02/06/2023] Open
Abstract
Herpesvirus is ranked as one of the grand old members of all pathogens. Of all the viruses in the superfamily, Herpes simplex virus type 1 (HSV-1) is considered as a model virus for a variety of reasons. In a permissive non-neuronal cell culture, HSV-1 concludes the entire life cycle in approximately 18–20 h, encoding approximately 90 unique transcriptional units. In latency, the robust viral gene expression is suppressed in neurons by a group of noncoding RNA. Historically the lesions caused by the virus can date back to centuries ago. As a neurotropic pathogen, HSV-1 is associated with painful oral lesions, severe keratitis and lethal encephalitis. Transmission of pain signals is dependent on the generation and propagation of action potential in sensory neurons. T-type Ca2+ channels serve as a preamplifier of action potential generation. Voltage-gated Na+ channels are the main components for action potential production. This review summarizes not only the voltage-gated ion channels in neuropathic disorders but also provides the new insights into HSV-1 induced pain.
Collapse
|
15
|
The HSV-1 ubiquitin ligase ICP0: Modifying the cellular proteome to promote infection. Virus Res 2020; 285:198015. [PMID: 32416261 PMCID: PMC7303953 DOI: 10.1016/j.virusres.2020.198015] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/04/2020] [Accepted: 05/04/2020] [Indexed: 12/16/2022]
Abstract
ICP0 is a viral E3 ubiquitin ligase that promotes HSV-1 infection. ICP0 interacts with multiple component proteins of the ubiquitin pathway. ICP0 disrupts multiple cellular processes activated in response to infection ICP0 remodels the SUMO proteome to counteract host immune defences to infection. ICP0 is an attractive drug target for the development of antiviral HSV-1 therapeutics.
Herpes simplex virus 1 (HSV-1) hijacks ubiquitination machinery to modify the cellular proteome to create an environment permissive for virus replication. HSV-1 encodes its own RING-finger E3 ubiquitin (Ub) ligase, Infected Cell Protein 0 (ICP0), that directly interfaces with component proteins of the Ub pathway to inactivate host immune defences and cellular processes that restrict the progression of HSV-1 infection. Consequently, ICP0 plays a critical role in the infectious cycle of HSV-1 that is required to promote the efficient onset of lytic infection and productive reactivation of viral genomes from latency. This review will describe the current knowledge regarding the biochemical properties and known substrates of ICP0 during HSV-1 infection. We will highlight the gaps in the characterization of ICP0 function and propose future areas of research required to understand fully the biological properties of this important HSV-1 regulatory protein.
Collapse
|
16
|
Herpes Simplex Virus Latency Is Noisier the Closer We Look. J Virol 2020; 94:JVI.01701-19. [PMID: 31776275 DOI: 10.1128/jvi.01701-19] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 11/05/2019] [Indexed: 12/25/2022] Open
Abstract
During herpes simplex virus (HSV) latency, the viral genome is harbored in peripheral neurons in the absence of infectious virus but with the potential to restart infection. Advances in epigenetics have helped explain how viral gene expression is largely inhibited during latency. Paradoxically, at the same time, the view that latency is entirely silent has been eroding. This low-level noise has implications for our understanding of HSV latency and should not be ignored.
Collapse
|
17
|
Modulation of Voltage-Gated Sodium Channel Activity in Human Dorsal Root Ganglion Neurons by Herpesvirus Quiescent Infection. J Virol 2020; 94:JVI.01823-19. [PMID: 31694955 DOI: 10.1128/jvi.01823-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 10/25/2019] [Indexed: 12/15/2022] Open
Abstract
The molecular mechanisms of pain associated with alphaherpesvirus latency are not clear. We hypothesize that the voltage-gated sodium channels (VGSC) on the dorsal root ganglion (DRG) neurons controlling electrical impulses may have abnormal activity during latent viral infection and reactivation. We used herpes simplex virus 1 (HSV-1) to infect the human DRG-derived neuronal cell line HD10.6 in order to study the establishment and maintenance of viral latency, viral reactivation, and changes in the functional expression of VGSCs. Differentiated cells exhibited robust tetrodotoxin (TTX)-sensitive sodium currents, and acute infection significantly reduced the functional expression of VGSCs within 24 h and completely abolished VGSC activity within 3 days. A quiescent state of infection mimicking latency can be achieved in the presence of acyclovir (ACV) for 7 days followed by 5 days of ACV washout, and then the viruses can remain dormant for another 3 weeks. It was noted that during the establishment of HSV-1 latency, the loss of VGSC activity caused by HSV-1 infection could not be blocked by ACV treatment. However, neurons with continued ACV treatment for another 4 days showed a gradual recovery of VGSC functional expression. Furthermore, the latently infected neurons exhibited higher VGSC activity than controls. The overall regulation of VGSCs by HSV-1 during quiescent infection was proved by increased transcription and possible translation of Nav1.7. Together, these observations demonstrated a very complex pattern of electrophysiological changes during HSV infection of DRG neurons, which may have implications for understanding of the mechanisms of virus-mediated pain linked to latency and reactivation.IMPORTANCE The reactivation of herpesviruses, most commonly varicella-zoster virus (VZV) and pseudorabies virus (PRV), may cause cranial nerve disorder and unbearable pain. Clinical studies have also reported that HSV-1 causes postherpetic neuralgia and chronic occipital neuralgia in humans. The current work meticulously studies the functional expression profile changes of VGSCs during the processes of HSV-1 latency establishment and reactivation using human dorsal root ganglion-derived neuronal HD10.6 cells as an in vitro model. Our results indicated that VGSC activity was eliminated upon infection but steadily recovered during latency establishment and that latent neurons exhibited even higher VGSC activity. This finding advances our knowledge of how ganglion neurons generate uncharacteristic electrical impulses due to abnormal VGSC functional expression influenced by the latent virus.
Collapse
|
18
|
Lee JH, Pasquarella JR, Kalejta RF. Cell Line Models for Human Cytomegalovirus Latency Faithfully Mimic Viral Entry by Macropinocytosis and Endocytosis. J Virol 2019; 93:e01021-19. [PMID: 31391271 PMCID: PMC6803280 DOI: 10.1128/jvi.01021-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 08/05/2019] [Indexed: 02/06/2023] Open
Abstract
Human cytomegalovirus (HCMV) enters primary CD34+ hematopoietic progenitor cells by macropinocytosis, where it establishes latency in part because its tegument-transactivating protein, pp71, remains associated with endosomes and is therefore unable to initiate productive, lytic replication. Here we show that multiple HCMV strains also enter cell line models used to study latency by macropinocytosis and endocytosis. In all latency models tested, tegument-delivered pp71 was found to be colocalized with endosomal markers and was not associated with the seven other cytoplasmic localization markers tested. Like the capsid-associated pp150 tegument protein, we initially detected capsid proteins in association with endosomes but later detected them in the nucleus. Inhibitors of macropinocytosis and endocytosis reduced latent viral gene expression and precluded reactivation. Importantly, we utilized electron microscopy to observe entry by macropinocytosis and endocytosis, providing additional visual corroboration of the findings of our functional studies. Our demonstration that HCMV enters cell line models for latency in a manner indistinguishable from that of its entry into primary cells illustrates the utility of these cell lines for probing the mechanisms, host genetics, and small-molecule-mediated inhibition of HCMV entry into the cell types where it establishes latency.IMPORTANCE Primary cells cultured in vitro currently provide the highest available relevance for examining molecular and genetic requirements for the establishment, maintenance, and reactivation of HCMV latency. However, their expense, heterogeneity, and intransigence to both long-term culture and molecular or genetic modification create rigor and reproducibility challenges for HCMV latency studies. There are several cell line models for latency not obstructed by deficiencies inherent in primary cells. However, many researchers view cell line studies of latency to be physiologically irrelevant because of the perception that these models display numerous and significant differences from primary cells. Here, we show that the very first step in a latent HCMV infection, entry of the virus into cells, occurs in cell line models in a manner indistinguishable from that in which it occurs in primary CD34+ hematopoietic progenitor cells. Our data argue that experimental HCMV latency is much more similar than it is different in cell lines and primary cells.
Collapse
Affiliation(s)
- Jeong-Hee Lee
- Institute for Molecular Virology and McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Joseph R Pasquarella
- Institute for Molecular Virology and McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Robert F Kalejta
- Institute for Molecular Virology and McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
19
|
Pollard KJ, Sharma AD, Moore MJ. Neural microphysiological systems for in vitro modeling of peripheral nervous system disorders. ACTA ACUST UNITED AC 2019. [DOI: 10.2217/bem-2019-0018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
PNS disease pathology is diverse and underappreciated. Peripheral neuropathy may result in sensory, motor or autonomic nerve dysfunction and can be induced by metabolic dysfunction, inflammatory dysfunction, cytotoxic pharmaceuticals, rare hereditary disorders or may be idiopathic. Current preclinical PNS disease research relies heavily on the use of rodent models. In vivo methods are effective but too time-consuming and expensive for high-throughput experimentation. Conventional in vitro methods can be performed with high throughput but lack the biological complexity necessary to directly model in vivo nerve structure and function. In this review, we survey in vitro PNS model systems and propose that 3D-bioengineered microphysiological nerve tissue can improve in vitro–in vivo extrapolation and expand the capabilities of in vitro PNS disease modeling.
Collapse
Affiliation(s)
- Kevin J Pollard
- Department of Biomedical Engineering, Tulane University, New Orleans, LA 70118, USA
| | | | - Michael J Moore
- Department of Biomedical Engineering, Tulane University, New Orleans, LA 70118, USA
- AxoSim, Inc., New Orleans, LA 70112, USA
- Tulane Brain Institute, Tulane University, New Orleans, LA 70118, USA
| |
Collapse
|
20
|
Herpes Simplex Virus 1 Infection Promotes the Growth of a Subpopulation of Tumor Cells in Three-Dimensional Uveal Melanoma Cultures. J Virol 2018; 92:JVI.00700-18. [PMID: 30045986 PMCID: PMC6146807 DOI: 10.1128/jvi.00700-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 07/18/2018] [Indexed: 12/12/2022] Open
Abstract
Cancer cells are exposed to HSV-1 during oncolytic virotherapy with the intention of killing tumor cells. Our observations reported here suggest that potential dangers of HSV-1 oncolytic therapy include promotion of growth of some tumor cells. Furthermore, our findings raise the possibility that HSV-1 infection of neoplastic cells during natural infections or vaccinations may promote the growth of tumors. Our study indicates that HSV-1 infection of 3D tumor cell cultures provides an experimental platform in which mechanisms of HSV-1-mediated promotion of tumor cell growth can be effectively studied. Herpes simplex virus 1 (HSV-1)-mediated oncolytic therapy is an emerging cancer treatment modality with potential effectiveness against a variety of malignancies. To better understand the interaction of HSV-1 with neoplastic cells, we inoculated three-dimensional (3D) cultures of human uveal melanoma cells with HSV-1. 3D melanoma cultures were established by placing tumor cells on the surface of a Matrigel matrix, which was followed by the growth of tumor cells on the matrix surface and invasion of the Matrigel matrix by some tumor cells to form multicellular tumor spheroids within the matrix. When established 3D melanoma cultures were inoculated with HSV-1 by placing virus on the surface of cultures, virus infection caused extensive death of melanoma cells growing on the surface of the 3D matrix and significantly decreased the number of tumor cell spheroids within the matrix. However, HSV-1 infection did not lead to a complete destruction of tumor cells in the 3D cultures during a 17-day observation period and, surprisingly, HSV-1 infection promoted the growth of some melanoma cells within the matrix as determined by the significantly increased size of residual viable multicellular tumor spheroids in virus-inoculated 3D cultures at 17 days after virus inoculation. Acyclovir treatment inhibited HSV-1-induced tumor cell killing but did not block the virus infection-induced increase in spheroid size. These findings suggest that although HSV-1 oncolytic virotherapy may cause extensive tumor cell killing, it may also be associated with the unintended promotion of the growth of some tumor cells. IMPORTANCE Cancer cells are exposed to HSV-1 during oncolytic virotherapy with the intention of killing tumor cells. Our observations reported here suggest that potential dangers of HSV-1 oncolytic therapy include promotion of growth of some tumor cells. Furthermore, our findings raise the possibility that HSV-1 infection of neoplastic cells during natural infections or vaccinations may promote the growth of tumors. Our study indicates that HSV-1 infection of 3D tumor cell cultures provides an experimental platform in which mechanisms of HSV-1-mediated promotion of tumor cell growth can be effectively studied.
Collapse
|
21
|
Suzich JB, Cliffe AR. Strength in diversity: Understanding the pathways to herpes simplex virus reactivation. Virology 2018; 522:81-91. [PMID: 30014861 DOI: 10.1016/j.virol.2018.07.011] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 07/05/2018] [Accepted: 07/09/2018] [Indexed: 01/09/2023]
Abstract
Herpes simplex virus (HSV) establishes a latent infection in peripheral neurons and can periodically reactivate to cause disease. Reactivation can be triggered by a variety of stimuli that activate different cellular processes to result in increased HSV lytic gene expression and production of infectious virus. The use of model systems has contributed significantly to our understanding of how reactivation of the virus is triggered by different physiological stimuli that are correlated with recrudescence of human disease. Furthermore, these models have led to the identification of both common and distinct mechanisms of different HSV reactivation pathways. Here, we summarize how the use of these diverse model systems has led to a better understanding of the complexities of HSV reactivation, and we present potential models linking cellular signaling pathways to changes in viral gene expression.
Collapse
Affiliation(s)
- Jon B Suzich
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA 22908, United States
| | - Anna R Cliffe
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA 22908, United States.
| |
Collapse
|
22
|
Pourchet A, Copin R, Mulvey MC, Shopsin B, Mohr I, Wilson AC. Shared ancestry of herpes simplex virus 1 strain Patton with recent clinical isolates from Asia and with strain KOS63. Virology 2017; 512:124-131. [PMID: 28957690 PMCID: PMC5653468 DOI: 10.1016/j.virol.2017.09.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 09/16/2017] [Accepted: 09/18/2017] [Indexed: 12/18/2022]
Abstract
Herpes simplex virus 1 (HSV-1) is a widespread pathogen that persists for life, replicating in surface tissues and establishing latency in peripheral ganglia. Increasingly, molecular studies of latency use cultured neuron models developed using recombinant viruses such as HSV-1 GFP-US11, a derivative of strain Patton expressing green fluorescent protein (GFP) fused to the viral US11 protein. Visible fluorescence follows viral DNA replication, providing a real time indicator of productive infection and reactivation. Patton was isolated in Houston, Texas, prior to 1973, and distributed to many laboratories. Although used extensively, the genomic structure and phylogenetic relationship to other strains is poorly known. We report that wild type Patton and the GFP-US11 recombinant contain the full complement of HSV-1 genes and differ within the unique regions at only eight nucleotides, changing only two amino acids. Although isolated in North America, Patton is most closely related to Asian viruses, including KOS63.
Collapse
Affiliation(s)
- Aldo Pourchet
- Department of Microbiology, New York University School of Medicine, New York, NY, USA
| | - Richard Copin
- Department of Medicine, New York University School of Medicine, New York, NY, USA
| | | | - Bo Shopsin
- Department of Microbiology, New York University School of Medicine, New York, NY, USA; Department of Medicine, New York University School of Medicine, New York, NY, USA
| | - Ian Mohr
- Department of Microbiology, New York University School of Medicine, New York, NY, USA
| | - Angus C Wilson
- Department of Microbiology, New York University School of Medicine, New York, NY, USA.
| |
Collapse
|
23
|
Thellman NM, Triezenberg SJ. Herpes Simplex Virus Establishment, Maintenance, and Reactivation: In Vitro Modeling of Latency. Pathogens 2017. [PMID: 28644417 PMCID: PMC5617985 DOI: 10.3390/pathogens6030028] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
All herpes viruses establish lifelong infections (latency) in their host, and herpes simplex viruses (HSVs) are highly prevalent worldwide. Recurrence of HSV infections contributes to significant disease burden in people and on rare occasion can be fatal. Cell culture models that recapitulate latent infection provide valuable insight on the host processes regulating viral establishment and maintenance of latency. More robust and rapid than infections in live animal studies, advancements in neuronal culture techniques have made the systematic analysis of viral reactivation mechanisms feasible. Only recently have human neuronal cell lines been available, but models in the natural host cell are a critical addition to the currently available models.
Collapse
|
24
|
Pourchet A, Modrek AS, Placantonakis DG, Mohr I, Wilson AC. Modeling HSV-1 Latency in Human Embryonic Stem Cell-Derived Neurons. Pathogens 2017; 6:E24. [PMID: 28594343 PMCID: PMC5488658 DOI: 10.3390/pathogens6020024] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 06/02/2017] [Accepted: 06/06/2017] [Indexed: 12/28/2022] Open
Abstract
Herpes simplex virus 1 (HSV-1) uses latency in peripheral ganglia to persist in its human host, however, recurrent reactivation from this reservoir can cause debilitating and potentially life-threatening disease. Most studies of latency use live-animal infection models, but these are complex, multilayered systems and can be difficult to manipulate. Infection of cultured primary neurons provides a powerful alternative, yielding important insights into host signaling pathways controlling latency. However, small animal models do not recapitulate all aspects of HSV-1 infection in humans and are limited in terms of the available molecular tools. To address this, we have developed a latency model based on human neurons differentiated in culture from an NIH-approved embryonic stem cell line. The resulting neurons are highly permissive for replication of wild-type HSV-1, but establish a non-productive infection state resembling latency when infected at low viral doses in the presence of the antivirals acyclovir and interferon-α. In this state, viral replication and expression of a late viral gene marker are not detected but there is an accumulation of the viral latency-associated transcript (LAT) RNA. After a six-day establishment period, antivirals can be removed and the infected cultures maintained for several weeks. Subsequent treatment with sodium butyrate induces reactivation and production of new infectious virus. Human neurons derived from stem cells provide the appropriate species context to study this exclusively human virus with the potential for more extensive manipulation of the progenitors and access to a wide range of preexisting molecular tools.
Collapse
Affiliation(s)
- Aldo Pourchet
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA.
| | - Aram S Modrek
- Department of Neurosurgery, New York University School of Medicine, New York, NY 10016, USA.
| | - Dimitris G Placantonakis
- Department of Neurosurgery, New York University School of Medicine, New York, NY 10016, USA.
- Kimmel Center for Stem Cell Biology, New York University School of Medicine, New York, NY 10016, USA.
- Brain Tumor Center, New York University School of Medicine, New York, NY 10016, USA.
- Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016, USA.
- Neuroscience Institute, New York University School of Medicine, New York, NY 10016, USA.
| | - Ian Mohr
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA.
- Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016, USA.
| | - Angus C Wilson
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA.
- Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016, USA.
| |
Collapse
|