1
|
Bahojb Mahdavi SZ, Jebelli A, Aghbash PS, Baradaran B, Amini M, Oroojalian F, Pouladi N, Baghi HB, de la Guardia M, Mokhtarzadeh AA. A comprehensive overview on the crosstalk between microRNAs and viral pathogenesis and infection. Med Res Rev 2025; 45:349-425. [PMID: 39185567 PMCID: PMC11796338 DOI: 10.1002/med.22073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 04/11/2023] [Accepted: 08/04/2024] [Indexed: 08/27/2024]
Abstract
Infections caused by viruses as the smallest infectious agents, pose a major threat to global public health. Viral infections utilize different host mechanisms to facilitate their own propagation and pathogenesis. MicroRNAs (miRNAs), as small noncoding RNA molecules, play important regulatory roles in different diseases, including viral infections. They can promote or inhibit viral infection and have a pro-viral or antiviral role. Also, viral infections can modulate the expression of host miRNAs. Furthermore, viruses from different families evade the host immune response by producing their own miRNAs called viral miRNAs (v-miRNAs). Understanding the replication cycle of viruses and their relation with host miRNAs and v-miRNAs can help to find new treatments against viral infections. In this review, we aim to outline the structure, genome, and replication cycle of various viruses including hepatitis B, hepatitis C, influenza A virus, coronavirus, human immunodeficiency virus, human papillomavirus, herpes simplex virus, Epstein-Barr virus, Dengue virus, Zika virus, and Ebola virus. We also discuss the role of different host miRNAs and v-miRNAs and their role in the pathogenesis of these viral infections.
Collapse
Affiliation(s)
- Seyedeh Zahra Bahojb Mahdavi
- Department of Biology, Faculty of Basic SciencesAzarbaijan Shahid Madani UniversityTabrizIran
- Immunology Research CenterTabriz University of Medical SciencesTabrizIran
| | - Asiyeh Jebelli
- Department of Biological Science, Faculty of Basic ScienceHigher Education Institute of Rab‐RashidTabrizIran
- Tuberculosis and Lung Diseases Research CenterTabriz University of Medical SciencesTabrizIran
| | | | - Behzad Baradaran
- Immunology Research CenterTabriz University of Medical SciencesTabrizIran
| | - Mohammad Amini
- Immunology Research CenterTabriz University of Medical SciencesTabrizIran
| | - Fatemeh Oroojalian
- Department of Advanced Sciences and Technologies in Medicine, School of MedicineNorth Khorasan University of Medical SciencesBojnurdIran
| | - Nasser Pouladi
- Department of Biology, Faculty of Basic SciencesAzarbaijan Shahid Madani UniversityTabrizIran
| | | | | | | |
Collapse
|
2
|
Wang Q, Liu M, Zhao J, Yuan J, Li S, Liu R. Development of a magnetic α-Fe 2O 3/Fe 3O 4 heterogeneous nanorod-based electrochemical biosensing platform for HPV16 E7 oncoprotein detection. Int J Biol Macromol 2025; 284:138085. [PMID: 39603292 DOI: 10.1016/j.ijbiomac.2024.138085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/09/2024] [Accepted: 11/24/2024] [Indexed: 11/29/2024]
Abstract
The prevention, diagnosis and treatment of cancer have always been the focus of medical research. In this study, a label-free, rapid, simple, sensitive, and specific method for the detection of HPV16 E7 oncoprotein was developed. The electrochemical biosensor platform was constructed by magnetic self-assembly of α-Fe2O3/Fe3O4@Au nanocomposites onto the surface of magnetic glass carbon electrode (MGCE), and the nanocomposite was connected to aptamer through AuS bond to construct a probe to capture HPV16 E7. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were applied to verify the performance of the constructed biosensor. The condition optimization and performance analysis were carried out by differential pulse voltammetry (DPV). Under optimal conditions, the biosensor exhibited a strong linearity between current value and the logarithm of HPV16 E7 oncoprotein concentration in the range of 10 pg/mL - 0.1 μg/mL, with a limit of detection (LOD) of 159 fg/mL and a limit of quantification (LOQ) of 530 fg/mL, and it also revealed excellent reproducibility, long-term stability, and anti-interference ability. In a word, the biosensor would contribute to the early diagnosis of oncoprotein HPV16 E7 and had promising application prospects.
Collapse
Affiliation(s)
- Qingxiang Wang
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China
| | - Min Liu
- The People's Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Zhenjiang 212300, PR China
| | - Jihong Zhao
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China
| | - Jiahao Yuan
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China
| | - Shasha Li
- Affiliated Kunshan Hospital, Jiangsu University, Suzhou 215300, PR China.
| | - Ruijiang Liu
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China.
| |
Collapse
|
3
|
Salgado-Hernández SV, Martínez-Retamoza L, Ocadiz-Delgado R, Pérez-Mora S, Cedeño-Arboleda GE, Gómez-García MDC, Gariglio P, Pérez-Ishiwara DG. miRNAs Dysregulated in Human Papillomavirus-Associated Benign Prostatic Lesions and Prostate Cancer. Cancers (Basel) 2024; 17:26. [PMID: 39796656 PMCID: PMC11718816 DOI: 10.3390/cancers17010026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/17/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025] Open
Abstract
Prostate pathologies, including chronic prostatitis, benign prostatic hyperplasia (BPH), and prostate cancer (PCa), are strongly associated with chronic inflammation, which is a key risk factor and hallmark of these diseases [...].
Collapse
Affiliation(s)
- Sandra Viridiana Salgado-Hernández
- Laboratorio de Biomedicina Molecular I, Programas de Doctorado en Ciencias en Biotecnología y Maestría en Biomedicina Molecular, Escuela Nacional de Medicina y Homeopatía (ENMyH), Instituto Politécnico Nacional, Mexico City 07320, Mexico; (S.V.S.-H.); (L.M.-R.); (S.P.-M.); (G.E.C.-A.); (M.d.C.G.-G.)
| | - Lucero Martínez-Retamoza
- Laboratorio de Biomedicina Molecular I, Programas de Doctorado en Ciencias en Biotecnología y Maestría en Biomedicina Molecular, Escuela Nacional de Medicina y Homeopatía (ENMyH), Instituto Politécnico Nacional, Mexico City 07320, Mexico; (S.V.S.-H.); (L.M.-R.); (S.P.-M.); (G.E.C.-A.); (M.d.C.G.-G.)
| | - Rodolfo Ocadiz-Delgado
- Department of Genetics and Molecular Biology, Centro de Investigación y de Estudios Avanzados del IPN (Cinvestav), Mexico City 07360, Mexico; (R.O.-D.); (P.G.)
| | - Salvador Pérez-Mora
- Laboratorio de Biomedicina Molecular I, Programas de Doctorado en Ciencias en Biotecnología y Maestría en Biomedicina Molecular, Escuela Nacional de Medicina y Homeopatía (ENMyH), Instituto Politécnico Nacional, Mexico City 07320, Mexico; (S.V.S.-H.); (L.M.-R.); (S.P.-M.); (G.E.C.-A.); (M.d.C.G.-G.)
| | - Gladys Edith Cedeño-Arboleda
- Laboratorio de Biomedicina Molecular I, Programas de Doctorado en Ciencias en Biotecnología y Maestría en Biomedicina Molecular, Escuela Nacional de Medicina y Homeopatía (ENMyH), Instituto Politécnico Nacional, Mexico City 07320, Mexico; (S.V.S.-H.); (L.M.-R.); (S.P.-M.); (G.E.C.-A.); (M.d.C.G.-G.)
| | - María del Consuelo Gómez-García
- Laboratorio de Biomedicina Molecular I, Programas de Doctorado en Ciencias en Biotecnología y Maestría en Biomedicina Molecular, Escuela Nacional de Medicina y Homeopatía (ENMyH), Instituto Politécnico Nacional, Mexico City 07320, Mexico; (S.V.S.-H.); (L.M.-R.); (S.P.-M.); (G.E.C.-A.); (M.d.C.G.-G.)
| | - Patricio Gariglio
- Department of Genetics and Molecular Biology, Centro de Investigación y de Estudios Avanzados del IPN (Cinvestav), Mexico City 07360, Mexico; (R.O.-D.); (P.G.)
| | - David Guillermo Pérez-Ishiwara
- Laboratorio de Biomedicina Molecular I, Programas de Doctorado en Ciencias en Biotecnología y Maestría en Biomedicina Molecular, Escuela Nacional de Medicina y Homeopatía (ENMyH), Instituto Politécnico Nacional, Mexico City 07320, Mexico; (S.V.S.-H.); (L.M.-R.); (S.P.-M.); (G.E.C.-A.); (M.d.C.G.-G.)
| |
Collapse
|
4
|
Rezaei M, Moghoofei M. The role of viral infection in implantation failure: direct and indirect effects. Reprod Biol Endocrinol 2024; 22:142. [PMID: 39529140 PMCID: PMC11552308 DOI: 10.1186/s12958-024-01303-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Implantation is the key initial complex stage of pregnancy. Several factors are involved in implantation, but acute and controlled inflammation has been shown to play as a key role. On the other hand, the role of viral infections in directly infecting blastocyst and trophoblast and inducing chronic and uncontrolled inflammation and disrupting microRNAs expression can make this review strongly attractive and practical. We aim to provide an overview of viral infections as the potential etiology of unsuccessful implantation pathophysiology through alteration of the cellular and molecular endometrial microenvironment. Based on our search, this is the first review to discuss the role of inflammation associated with viral infection in implantation failure.
Collapse
Affiliation(s)
- Marzieh Rezaei
- Department of Obstetrics and Gynecology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohsen Moghoofei
- Infectious Diseases Research Center, Health Research Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
- Department of Microbiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
5
|
Wang X, Zhao W. Research progress on miRNAs function in the interaction between human infectious viruses and hosts: A review. BIOMOLECULES & BIOMEDICINE 2024; 24:1452-1462. [PMID: 39101759 PMCID: PMC11496870 DOI: 10.17305/bb.2024.10821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/01/2024] [Accepted: 08/01/2024] [Indexed: 08/06/2024]
Abstract
MicroRNAs (miRNAs) represent a class of non-coding small RNAs that are prevalent in eukaryotes, typically comprising approximately 22 nucleotides, and have the ability to post-transcriptionally regulate gene expression. miRNAs exhibit diverse types and functions, with mechanisms of action that include cell differentiation, proliferation, apoptosis, and regulation of signaling pathways. Both viruses and their hosts can encode miRNAs, which serve as crucial effector molecules in the complex interaction between viruses and host cells. Host miRNAs can either directly interact with the virus genome to inhibit virus replication or facilitate virus replication by providing necessary substances. Viral miRNAs can directly bind to host mRNAs, thereby influencing translation efficiency, suppressing the immune response, and ultimately enhancing virus replication. This article comprehensively reviews the roles of miRNAs in virus-host interactions, aiming to provide valuable insights into viral pathogenic mechanisms and potential therapeutic approaches.
Collapse
Affiliation(s)
- Xiaotong Wang
- Heilongjiang University of Traditional Chinese Medicine, Heilongjiang, China
| | - Wenchang Zhao
- School of Pharmacy, Guangdong Medical University, Dongguan, China
| |
Collapse
|
6
|
Monemi M, Garrosi L, Mirzaei S, Farhadi B, Ataee Disfani R, Zabihi MR, Akhoondian M, Ghorbani Vajargah P, Khorshid A, Karkhah S. Identification of proteins' expression pathway and the effective miRNAs for the treatment of human papillomavirus-induced cervical cancer: in-silico analyses-experimental research. Ann Med Surg (Lond) 2024; 86:5784-5792. [PMID: 39359748 PMCID: PMC11444621 DOI: 10.1097/ms9.0000000000002513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 08/18/2024] [Indexed: 10/04/2024] Open
Abstract
Introduction Cervical cancer is the fourth most common cancer in women. The risk factors for cervical cancer include human papillomavirus (HPV) infection, age, smoking, number of pregnancies, use of oral contraceptives, and diet. However, long-term HPV infection appears to be the main risk factor for developing cervical cancer. This in-silico analysis aims to identify the expression network of proteins and the miRNAs that play a role in the development of HPV-induced cervical cancer. Methods The critical proteins and miRNAs were extracted using the DisGeNET and miRBase databases. String and Gephi were applied to the network analysis. The GTEx web tool was utilized to Identify tissue expression levels. The Enrichr website was used to explore the molecular function and pathways of found genes. Results Ten proteins, TP53, MYC, AKT1, TNF, IL6, EGFR, STAT3, CTNNB1, ESR1, and JUN, were identified as the most critical shared gene network among cervical cancer and HPV. Seven miRNAs were found, including hsa-mir-146a, hsa-mir-27, hsa-mir-203, hsa-mir-126, hsa-mir-145, hsa-mir-944, and hsa-mir-93, which have a common expression in cervical cancer and HPV. Conclusion Overall, the gene network, including TP53, MYC, AKT1, TNF, IL6, EGFR, STAT3, CTNNB1, ESR1, and JUN, and Also, hsa-mir-145, hsa-mir-93, hsa-mir-203, and hsa-mir-126 can be regarded as a gene expression pathway in HPV-induced cervical cancer.
Collapse
Affiliation(s)
- Marzieh Monemi
- Department of Basic Science, Faculty of Pharmacy and Pharmaceutical Science, Tehran Medical Science, Islamic Azad University, Tehran
| | - Lida Garrosi
- Department of Obstetrics and Gynecology, Zanjan University of Medical Sciences, Zanjan
| | - Samira Mirzaei
- Department of Obstetrics and Gynecology, Arash Women Hospital, Tehran University of Medical Sciences, Tehran
| | - Bahar Farhadi
- School of Medicine, Islamic Azad University, Mashhad Branch, Mashhad
| | - Reza Ataee Disfani
- Student Research Committee, Sabzevar University of Medical Sciences, Sabzevar
| | - Mohammad Reza Zabihi
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran
| | - Mohammad Akhoondian
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran
| | - Pooyan Ghorbani Vajargah
- Department of Medical-Surgical Nursing, School of Nursing and Midwifery, Guilan University of Medical Sciences, Rasht, Iran
| | - Alireza Khorshid
- Department of Clinical Laboratory Sciences, University of Texas Medical Branch, Galveston, TX, USA
| | - Samad Karkhah
- Department of Medical-Surgical Nursing, School of Nursing and Midwifery, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
7
|
Kirk A, Graham SV. The human papillomavirus late life cycle and links to keratinocyte differentiation. J Med Virol 2024; 96:e29461. [PMID: 38345171 DOI: 10.1002/jmv.29461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/21/2023] [Accepted: 01/25/2024] [Indexed: 02/15/2024]
Abstract
Regulation of human papillomavirus (HPV) gene expression is tightly linked to differentiation of the keratinocytes the virus infects. HPV late gene expression is confined to the cells in the upper layers of the epithelium where the virus capsid proteins are synthesized. As these proteins are highly immunogenic, and the upper epithelium is an immune-privileged site, this spatial restriction aids immune evasion. Many decades of work have contributed to the current understanding of how this restriction occurs at a molecular level. This review will examine what is known about late gene expression in HPV-infected lesions and will dissect the intricacies of late gene regulation. Future directions for novel antiviral approaches will be highlighted.
Collapse
Affiliation(s)
- Anna Kirk
- Centre for Virus Research, University of Glasgow, Glasgow, UK
| | - Sheila V Graham
- Centre for Virus Research, University of Glasgow, Glasgow, UK
| |
Collapse
|
8
|
Folliero V, Dell’Annunziata F, Chianese A, Morone MV, Mensitieri F, Di Spirito F, Mollo A, Amato M, Galdiero M, Dal Piaz F, Pagliano P, Rinaldi L, Franci G. Epigenetic and Genetic Keys to Fight HPV-Related Cancers. Cancers (Basel) 2023; 15:5583. [PMID: 38067286 PMCID: PMC10705756 DOI: 10.3390/cancers15235583] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/13/2023] [Accepted: 11/22/2023] [Indexed: 12/07/2024] Open
Abstract
Cervical cancer ranks as the fourth most prevalent cancer among women globally, with approximately 600,000 new cases being diagnosed each year. The principal driver of cervical cancer is the human papillomavirus (HPV), where viral oncoproteins E6 and E7 undertake the role of driving its carcinogenic potential. Despite extensive investigative efforts, numerous facets concerning HPV infection, replication, and pathogenesis remain shrouded in uncertainty. The virus operates through a variety of epigenetic mechanisms, and the epigenetic signature of HPV-related tumors is a major bottleneck in our understanding of the disease. Recent investigations have unveiled the capacity of viral oncoproteins to influence epigenetic changes within HPV-related tumors, and conversely, these tumors exert an influence on the surrounding epigenetic landscape. Given the escalating occurrence of HPV-triggered tumors and the deficiency of efficacious treatments, substantial challenges emerge. A promising avenue to address this challenge lies in epigenetic modulators. This review aggregates and dissects potential epigenetic modulators capable of combatting HPV-associated infections and diseases. By delving into these modulators, novel avenues for therapeutic interventions against HPV-linked cancers have come to the fore.
Collapse
Affiliation(s)
- Veronica Folliero
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (V.F.); (F.D.); (F.M.); (F.D.S.); (A.M.); (M.A.); (F.D.P.); (P.P.)
| | - Federica Dell’Annunziata
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (V.F.); (F.D.); (F.M.); (F.D.S.); (A.M.); (M.A.); (F.D.P.); (P.P.)
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.C.); (M.V.M.); (M.G.)
| | - Annalisa Chianese
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.C.); (M.V.M.); (M.G.)
| | - Maria Vittoria Morone
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.C.); (M.V.M.); (M.G.)
| | - Francesca Mensitieri
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (V.F.); (F.D.); (F.M.); (F.D.S.); (A.M.); (M.A.); (F.D.P.); (P.P.)
| | - Federica Di Spirito
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (V.F.); (F.D.); (F.M.); (F.D.S.); (A.M.); (M.A.); (F.D.P.); (P.P.)
| | - Antonio Mollo
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (V.F.); (F.D.); (F.M.); (F.D.S.); (A.M.); (M.A.); (F.D.P.); (P.P.)
| | - Massimo Amato
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (V.F.); (F.D.); (F.M.); (F.D.S.); (A.M.); (M.A.); (F.D.P.); (P.P.)
| | - Massimiliano Galdiero
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.C.); (M.V.M.); (M.G.)
| | - Fabrizio Dal Piaz
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (V.F.); (F.D.); (F.M.); (F.D.S.); (A.M.); (M.A.); (F.D.P.); (P.P.)
| | - Pasquale Pagliano
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (V.F.); (F.D.); (F.M.); (F.D.S.); (A.M.); (M.A.); (F.D.P.); (P.P.)
| | - Luca Rinaldi
- Department of Medicine and Health Sciences “Vincenzo Tiberio”, Università degli Studi del Molise, 86100 Campobasso, Italy
| | - Gianluigi Franci
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (V.F.); (F.D.); (F.M.); (F.D.S.); (A.M.); (M.A.); (F.D.P.); (P.P.)
| |
Collapse
|
9
|
Neugebauer E, Bastidas-Quintero AM, Weidl D, Full F. Pioneer factors in viral infection. Front Immunol 2023; 14:1286617. [PMID: 37876935 PMCID: PMC10591220 DOI: 10.3389/fimmu.2023.1286617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 09/25/2023] [Indexed: 10/26/2023] Open
Abstract
Pioneer factors are transcription factors sharing the fascinating ability to bind to compact chromatin and thereby alter its transcriptional fate. Most pioneer factors are known for their importance during embryonic development, for instance, in inducing zygotic genome activation or cell fate decision. Some pioneer factors are actively induced or downregulated by viral infection. With this, viruses are capable to modulate different signaling pathways resulting for example in MHC-receptor up/downregulation which contributes to viral immune evasion. In this article, we review the current state of research on how different viruses (Herpesviruses, Papillomaviruses and Hepatitis B virus) use pioneer factors for their viral replication and persistence in the host, as well as for the development of viral cancer.
Collapse
Affiliation(s)
- Eva Neugebauer
- Institute of Virology, University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- German Consulting Laboratory for Herpes-Simplex Virus (HSV) and Varizellla-Zoster Virus (VZV), Medical Center, University of Freiburg, Freiburg, Germany
| | - Aura M. Bastidas-Quintero
- Institute of Virology, University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Consulting Laboratory for Herpes-Simplex Virus (HSV) and Varizellla-Zoster Virus (VZV), Medical Center, University of Freiburg, Freiburg, Germany
| | - Daniel Weidl
- Institute for Clinical and Molecular Virology, University Hospital Erlangen, Erlangen, Germany
| | - Florian Full
- Institute of Virology, University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
- German Consulting Laboratory for Herpes-Simplex Virus (HSV) and Varizellla-Zoster Virus (VZV), Medical Center, University of Freiburg, Freiburg, Germany
| |
Collapse
|
10
|
Gelbard MK, Munger K. Human papillomaviruses: Knowns, mysteries, and unchartered territories. J Med Virol 2023; 95:e29191. [PMID: 37861365 PMCID: PMC10608791 DOI: 10.1002/jmv.29191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/09/2023] [Accepted: 10/11/2023] [Indexed: 10/21/2023]
Abstract
There has been an explosion in the number of papillomaviruses that have been identified and fully sequenced. Yet only a minute fraction of these has been studied in any detail. Most of our molecular research efforts have focused on the E6 and E7 proteins of "high-risk," cancer-associated human papillomaviruses (HPVs). Interactions of the high-risk HPV E6 and E7 proteins with their respective cellular targets, the p53 and the retinoblastoma tumor suppressors, have been investigated in minute detail. Some have thus questioned if research on papillomaviruses remains an exciting and worthwhile area of investigation. However, fundamentally new insights on the biological activities and cellular targets of the high-risk HPV E6 and E7 proteins have been discovered and previously unstudied HPVs have been newly associated with human diseases. HPV infections continue to be an important cause of human morbidity and mortality and since there are no antivirals to combat HPV infections, research on HPVs should remain attractive to new investigators and biomedical funding agencies, alike.
Collapse
Affiliation(s)
- Maya K. Gelbard
- Genetics, Molecular and Cellular Biology Program, Graduate School of Biomedical Sciences
- Department of Developmental, Molecular and Cellular Biology, Tufts University School of Medicine, Boston, MA 02111
| | - Karl Munger
- Genetics, Molecular and Cellular Biology Program, Graduate School of Biomedical Sciences
- Department of Developmental, Molecular and Cellular Biology, Tufts University School of Medicine, Boston, MA 02111
| |
Collapse
|
11
|
Hu J, Liao D, Sun Z, Ren W, Zhao L, Fang Y, Hu K, Yu H, Liu S, Zhou L, He T, Zhang Y. The HPV16 E6, E7/miR-23b-3p/ICAT signaling axis promotes proliferation, migration, invasion and EMT of cervical cancer cells. Carcinogenesis 2023; 44:221-231. [PMID: 36847693 DOI: 10.1093/carcin/bgad008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/16/2023] [Accepted: 02/24/2023] [Indexed: 03/01/2023] Open
Abstract
Cervical cancer (CC) remains one of the most common female malignancies, with higher incidence and mortality rates. more than 99% of CCs are associated with persistent infection with high-risk human papillomavirus. In view of the growing evidence that HPV 16 E6 and E7, two key oncoproteins encoded by HPV 16, regulate the expression of many other multifunctional genes and downstream effectors that contribute to the development of CC. Herein, we undertook a comprehensive effort into how HPV16 E6, E7 oncogenes affect the progression of CC cells. Previous studies have shown that ICAT expression was significantly increased in CC and had a pro-cancer effect. We observed that knockdown of HPV16 E6, E7 expression in SiHa and CasKi cells resulted in significant inhibition of ICAT expression and upregulation of miR-23b-3p expression. Besides, dual luciferase assays confirmed that ICAT was a target gene of miR-23b-3p, and negatively modulated by miR-23b-3p. Functional experiments showed that the overexpression of miR-23b-3p suppressed malignant behaviors of CC cells, such as migration, invasion and EMT. The overexpression of ICAT counteracted the suppressive effect of miR-23b-3p on HPV16-positive CC cells. Furthermore, after the knockdown of HPV16 E6 and E7, the inhibition of miR-23b-3p could increase the ICAT expression and rescue the siRNA HPV16 E6, E7-mediated suppressive impact on the aggressiveness of SiHa and CaSki cells. Collectively, our findings uncover that HPV16 E6, E7/miR-23b-3p/ ICAT axis plays an important role in HPV16-positive CC pathogenesis, which may serve as a promising therapeutic target for HPV16-associated CC.
Collapse
Affiliation(s)
- Jing Hu
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, China
| | - Deyu Liao
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, China
| | - Zijiu Sun
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, China
| | - Wei Ren
- The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Ling Zhao
- The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yuting Fang
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, China
| | - Kai Hu
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, China
| | - Huomei Yu
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, China
| | - Shiyan Liu
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, China
| | - Lan Zhou
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, China
| | - Tongchuan He
- Molecular Oncology Laboratory, University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Yan Zhang
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
12
|
Guo D, Yang M, Li S, Zhu W, Chen M, Pan J, Long D, Liu Z, Zhang C. Expression and molecular regulation of non-coding RNAs in HPV-positive head and neck squamous cell carcinoma. Front Oncol 2023; 13:1122982. [PMID: 37064141 PMCID: PMC10090466 DOI: 10.3389/fonc.2023.1122982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/06/2023] [Indexed: 03/31/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth most prevalent malignancy worldwide. Accumulating evidence suggests that persistent HPV infection is closely related to a subset of HNSCC types, and the incidence of human papillomavirus (HPV)-positive HNSCC has been annually increasing in recent decades. Although the carcinogenesis of HPV-positive HNSCC has not been completely elucidated, it has been well confirmed that E6 and E7, the main viral oncoproteins are responsible for the maintenance of malignant transformation, promotion of cell proliferation, and increase in tumor invasion. Moreover, compared with HPV-negative HNSCC, HPV-positive HNSCC shows some special clinical-pathological features, which are possibly related to HPV infection and their specific regulatory mechanisms. Non-coding RNA (ncRNA) is a class of RNA lacking the protein-coding function and playing a critical regulatory role via multiple complex molecular mechanisms. NcRNA is an important regulatory pattern of epigenetic modification, which can exert significant effects on HPV-induced tumorigenesis and progression by deregulating downstream genes. However, the knowledge of ncRNAs is still limited, hence, a better understanding of ncRNAs could provide some insights for exploring the carcinogenesis mechanism and identifying valuable biomarkers in HPV-positive HNSCC. Therefore, in this review, we mainly focused on the expression profile of ncRNAs (including lncRNA, miRNA, and circRNA) and explored their regulatory role in HPV-positive HNSCC, aiming to clarify the regulatory mechanism of ncRNAs and identify valuable biomarkers for HPV-positive HNSCC.
Collapse
|
13
|
Insight into LncRNA- and CircRNA-Mediated CeRNAs: Regulatory Network and Implications in Nasopharyngeal Carcinoma—A Narrative Literature Review. Cancers (Basel) 2022; 14:cancers14194564. [PMID: 36230487 PMCID: PMC9559536 DOI: 10.3390/cancers14194564] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/16/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a kind of head-and-neck malignant tumor, and distant metastasis treatment resistance is the leading cause of patient death. In-depth understanding of NPC progression and treatment failure remains to be explored. Long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs) are noncoding RNAs that play key regulatory role in shaping tumor cell activities. Recent studies have revealed that lncRNA and circRNA function as competitive endogenous RNAs (ceRNAs) by regulating the posttranscriptional expression of genes as miRNA baits. The imbalanced ceRNA networks derived from lncRNA/circRNA-miRNA-mRNA interaction are widely found to contribute to NPC development. Herein, we summarize typical examples of lncRNA/circRNA-associated ceRNAs in recent years, which involved the potential molecular mechanisms in the regulation of proliferation, apoptosis, treatment resistance and metastasis of NPC, and discuss their potential clinical significance in the prognosis and treatment of NPC. Interpreting the involvement of ceRNAs networks will provide new insight into the pathogenesis and treatment strategies of NPC. However, ceRNA regulatory mechanism has some limitations currently. Screening the most effective ceRNA targets and the clinical application of ceRNA still has many challenges.
Collapse
|
14
|
Zhang H, Liu G, Mao X, Yang L, Wang B, Yuan X. LncRNA MEG3 induces endothelial differentiation of mouse derived adipose-derived stem cells by targeting MiR-145-5p/KLF4. Mol Biol Rep 2022; 49:8495-8505. [PMID: 35802277 DOI: 10.1007/s11033-022-07671-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 06/01/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND The present study aimed to investigate the mechanisms through which long non-coding RNA (lncRNA) maternally expressed 3 (MEG3) affected the endothelial differentiation of mouse derived adipose-derived stem cells (ADSCs). MATERIALS AND METHODS ADSCs were isolated and identified by specific surface marker detection. The effects of lncRNA MEG3 on endothelial differentiation of ADSCs were also detected via quantitative PCR, western blotting, immunofluorescence and Matrigel angiogenesis assays. In addition, using target gene prediction tools and luciferase reporter assays, the downstream target gene was demonstrated. RESULTS LncRNA MEG3 targeted and reduced the expression levels of microRNA-145-5p (miR-145-5p), which upregulated the expression levels of Krüppel like factor 4 (KLF4), promoting endothelial differentiation of ADSCs. CONCLUSION LncRNA MEG3 induced endothelial differentiation of ADSCs by targeting miR-145-5p/KLF4, which may provide novel insights to illustrate the mechanism of endothelial differentiation of ADSCs.
Collapse
Affiliation(s)
- Hailong Zhang
- Department of Dermatology, First Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin, 150006, Heilongjiang, People's Republic of China
| | - Gang Liu
- Department of Medicine, Second Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin, 150006, Heilongjiang, People's Republic of China
| | - Xu Mao
- Department of Health Center, Heilongjiang University of Traditional Chinese Medicine, Harbin, 150040, Heilongjiang, People's Republic of China
| | - Lei Yang
- Department of Medicine, Heilongjiang Academy of Traditional Chinese Medicine, No. 33 of West Dazhi Street, Harbin, 150001, Heilongjiang, People's Republic of China
| | - Bingyu Wang
- Department of Medicine, Heilongjiang Academy of Traditional Chinese Medicine, No. 33 of West Dazhi Street, Harbin, 150001, Heilongjiang, People's Republic of China.
| | - Xingxing Yuan
- Department of Medicine, Heilongjiang Academy of Traditional Chinese Medicine, No. 33 of West Dazhi Street, Harbin, 150001, Heilongjiang, People's Republic of China.
| |
Collapse
|
15
|
Choi PW, Liu TL, Wong CW, Liu SK, Lum YL, Ming WK. The Dysregulation of MicroRNAs in the Development of Cervical Pre-Cancer—An Update. Int J Mol Sci 2022; 23:ijms23137126. [PMID: 35806128 PMCID: PMC9266862 DOI: 10.3390/ijms23137126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/20/2022] [Accepted: 06/24/2022] [Indexed: 02/01/2023] Open
Abstract
Globally in 2020, an estimated ~600,000 women were diagnosed with and 340,000 women died from cervical cancer. Compared to 2012, the number of cases increased by 7.5% and the number of deaths increased by 17%. MiRNAs are involved in multiple processes in the pathogenesis of cervical cancer. Dysregulation of miRNAs in the pre-stage of cervical cancer is the focus of this review. Here we summarize the dysregulated miRNAs in clinical samples from cervical pre-cancer patients and relate them to the early transformation process owing to human papillomavirus (HPV) infection in the cervical cells. When HPV infects the normal cervical cells, the DNA damage response is initiated with the involvement of HPV’s E1 and E2 proteins. Later, cell proliferation and cell death are affected by the E6 and E7 proteins. We find that the expressions of miRNAs in cervical pre-cancerous tissue revealed by different studies seldom agreed with each other. The discrepancy in sample types, samples’ HPV status, expression measurement, and methods for analysis contributed to the non-aligned results across studies. However, several miRNAs (miR-34a, miR-9, miR-21, miR-145, and miR-375) were found to be dysregulated across multiple studies. In addition, there are hints that the DNA damage response and cell growth response induced by HPV during the early transformation of the cervical cells are related to these miRNAs. Currently, no review articles analyse the relationship between the dysregulated miRNAs in cervical pre-cancerous tissue and their possible roles in the early processes involving HPV’s protein encoded by the early genes and DNA damage response during normal cell transformation. Our review provides insight on spotting miRNAs involved in the early pathogenic processes and pointing out their potential as biomarker targets of cervical pre-cancer.
Collapse
Affiliation(s)
- Pui-Wah Choi
- Department of Research and Development, WomenX Biotech Limited, Hong Kong Science and Technology Park, Tai Po, Hong Kong; (P.-W.C.); (C.W.W.); (S.K.L.); (Y.-L.L.)
| | - Tin Lun Liu
- International School, Jinan University, Guangzhou 510632, China;
| | - Chun Wai Wong
- Department of Research and Development, WomenX Biotech Limited, Hong Kong Science and Technology Park, Tai Po, Hong Kong; (P.-W.C.); (C.W.W.); (S.K.L.); (Y.-L.L.)
| | - Sze Kei Liu
- Department of Research and Development, WomenX Biotech Limited, Hong Kong Science and Technology Park, Tai Po, Hong Kong; (P.-W.C.); (C.W.W.); (S.K.L.); (Y.-L.L.)
| | - Yick-Liang Lum
- Department of Research and Development, WomenX Biotech Limited, Hong Kong Science and Technology Park, Tai Po, Hong Kong; (P.-W.C.); (C.W.W.); (S.K.L.); (Y.-L.L.)
| | - Wai-Kit Ming
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong
- Correspondence: ; Tel.: +852-3442-6956
| |
Collapse
|
16
|
Jak HPV wysokiego ryzyka indukuje optymalne środowisko dla własnej replikacji w różnicującym się nabłonku. POSTEP HIG MED DOSW 2021. [DOI: 10.2478/ahem-2021-0049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstrakt
Wirusy brodawczaka ludzkiego (HPV) są często czynnikami wywołującymi niegroźne dla człowieka infekcje, ale przetrwałe zakażenie niektórymi typami HPV jest poważnym zagrożeniem dla zdrowia, ponieważ jest związane z wieloma nowotworami, w tym z rakiem szyjki macicy oraz rosnącą liczbą nowotworów głowy i szyi. Cykl replikacyjny HPV jest ściśle zależny od różnicowania komórek wielowarstwowego nabłonka, co oznacza, że genom wirusa musi być replikowany za pomocą różnych mechanizmów na różnych etapach różnicowania komórek. Ustanowienie infekcji i utrzymywanie genomu wirusa zachodzi w proliferujących komórkach nabłonka, gdzie dostępność czynników replikacji jest optymalna dla wirusa. Jednak produktywna faza cyklu rozwojowego wirusa, w tym produktywna replikacja, późna ekspresja genów i wytwarzanie wirionów, zachodzi w wyniku różnicowania się nabłonka w komórkach, które prawidłowo opuszczają cykl komórkowy. Wirus wykorzystuje wiele szlaków sygnalizacyjnych komórki, w tym odpowiedź na uszkodzenia DNA (DDR, DNA damage response) do realizacji produktywnej replikacji własnego genomu. Zrozumienie mechanizmów związanych z cyklem replikacyjnym HPV jest potrzebne do ustalenia właściwego podejścia terapeutycznego do zwalczania chorób powodowanych przez HPV.
Collapse
|
17
|
Aftab M, Poojary SS, Seshan V, Kumar S, Agarwal P, Tandon S, Zutshi V, Das BC. Urine miRNA signature as a potential non-invasive diagnostic and prognostic biomarker in cervical cancer. Sci Rep 2021; 11:10323. [PMID: 33990639 PMCID: PMC8121812 DOI: 10.1038/s41598-021-89388-w] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 04/23/2021] [Indexed: 12/21/2022] Open
Abstract
MicroRNAs as cancer biomarkers in serum, plasma, and other body fluids are often used but analysis of miRNA in urine is limited. We investigated the expression of selected miRNAs in the paired urine, serum, cervical scrape, and tumor tissue specimens from the women with cervical precancer and cancer with a view to identify if urine miRNAs could be used as reliable non-invasive biomarkers for an early diagnosis and prognosis of cervical cancer. Expression of three oncomiRs (miR-21, miR-199a, and miR-155-5p) and three tumor suppressors (miR-34a, miR-145, and miR-218) as selected by database search in cervical pre-cancer, cancer, and normal controls including cervical cancer cell lines were analyzed using qRT-PCR. The expression of miRNAs was correlated with various clinicopathological parameters, including HPV infection and survival outcome. We observed a significant overexpression of the oncomiRs and the downregulation of tumor suppressor miRNAs. A combination of miR-145-5p, miR-218-5p, and miR-34a-5p in urine yielded 100% sensitivity and 92.8% specificity in distinguishing precancer and cancer patients from healthy controls and it well correlates with those of serum and tumor tissues. The expression of miR-34a-5p and miR-218-5p were found to be independent prognostic factors for the overall survival of cervical cancer patients. We conclude that the evaluation of the above specific miRNA expression in non-invasive urine samples may serve as a reliable biomarker for early detection and prognosis of cervical cancer.
Collapse
Affiliation(s)
- Mehreen Aftab
- Amity Institute of Molecular Medicine & Stem Cell Research (AIMMSCR), Amity University Campus, Sector-125, Noida, Uttar Pradesh, 201313, India
| | - Satish S Poojary
- Amity Institute of Molecular Medicine & Stem Cell Research (AIMMSCR), Amity University Campus, Sector-125, Noida, Uttar Pradesh, 201313, India
| | - Vaishnavi Seshan
- Department of Gynecology and Obstetrics, Safdarjung Hospital, New Delhi, 110029, India
| | - Sachin Kumar
- Depatment of Medical Oncology, Dr. B R Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Pallavi Agarwal
- Amity Institute of Molecular Medicine & Stem Cell Research (AIMMSCR), Amity University Campus, Sector-125, Noida, Uttar Pradesh, 201313, India
| | - Simran Tandon
- Amity Institute of Molecular Medicine & Stem Cell Research (AIMMSCR), Amity University Campus, Sector-125, Noida, Uttar Pradesh, 201313, India
| | - Vijay Zutshi
- Department of Gynecology and Obstetrics, Safdarjung Hospital, New Delhi, 110029, India
| | - Bhudev C Das
- Amity Institute of Molecular Medicine & Stem Cell Research (AIMMSCR), Amity University Campus, Sector-125, Noida, Uttar Pradesh, 201313, India.
| |
Collapse
|
18
|
Pinho JD, Barros Silva GE, Teixeira Júnior AAL, Belfort MRDC, Mendes JMM, Calixto JDRR, Nogueira LR, Burbano RR, Khayat AS. Downregulation of miR-145 is associated with perineural invasion in penile carcinoma. Transl Androl Urol 2021; 10:2019-2026. [PMID: 34159082 PMCID: PMC8185688 DOI: 10.21037/tau-20-1378] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Background Human papillomavirus (HPV) infection is a risk factor for penile cancer (PC). The miR-145 expression has been correlated to this virus genomic amplification. In this context, this work aims to determine the expression level of miR-145 in penile tumors infected by high-risk HPV and correlate it with the clinicopathological characteristics of the tumor and protein expression of p53. Methods Formalin-fixed paraffin-embedded from 52 patients with PC, at diagnosis and prior to any cancer treatment, were obtained. HPV identification was performed by nested type PCR, and miR-145 expression was obtained by qRT-PCR. Immunohistochemical analysis of p53 and Ki-67 was performed. Results Tumoral miR-145 expression was significantly lower compared to adjacent tissue. Additionally, there was a significant reduction of miR-145 expression in invasion perineural, histological associated HPV, and absence of p53 expression in positive HPV cases. HPV infection was detected in 86.5%, the most frequent HPV16. Reduced disease-free survival was observed in patients with low expression of miR-145. Conclusions Our data suggest that the underexpression of miR-145 may be triggered by HPV action, decreasing protein expression of p53, and being correlated with perineural invasion. Therefore, the deregulation of miR-145 provides clues as to the potential role in penile carcinogenesis and is also a potential candidate for validation in noninvasive samples.
Collapse
Affiliation(s)
- Jaqueline Diniz Pinho
- University State of Maranhão, Zé Doca, MA, Brazil.,Laboratory of Imunofluorescence and Electron Microscopy, Hospital Universitário Presidente Dutra (HUUFMA), São Luís, Brazil.,Núcleo de Pesquisa em Oncologia, João de Barros Barreto University Hospital, Belém, PA, Brazil
| | - Gyl Eanes Barros Silva
- Laboratory of Imunofluorescence and Electron Microscopy, Hospital Universitário Presidente Dutra (HUUFMA), São Luís, Brazil.,Department of Pathology, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Antonio Augusto Lima Teixeira Júnior
- Laboratory of Imunofluorescence and Electron Microscopy, Hospital Universitário Presidente Dutra (HUUFMA), São Luís, Brazil.,Departamento of Genetics, University of Sao Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Marta Regina de Castro Belfort
- Laboratory of Imunofluorescence and Electron Microscopy, Hospital Universitário Presidente Dutra (HUUFMA), São Luís, Brazil
| | - Juliana Melo Macedo Mendes
- Laboratory of Imunofluorescence and Electron Microscopy, Hospital Universitário Presidente Dutra (HUUFMA), São Luís, Brazil
| | | | | | | | - André Salim Khayat
- Núcleo de Pesquisa em Oncologia, João de Barros Barreto University Hospital, Belém, PA, Brazil
| |
Collapse
|
19
|
Okoye JO, Ngokere AA, Onyenekwe CC, Omotuyi O, Dada DI. Epstein-Barr virus, human papillomavirus and herpes simplex virus 2 co-presence severely dysregulates miRNA expression. Afr J Lab Med 2021; 10:975. [PMID: 33824853 PMCID: PMC8008003 DOI: 10.4102/ajlm.v10i1.975] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 10/20/2020] [Indexed: 11/01/2022] Open
Abstract
This cross-sectional study evaluated the expression of miR-let-7b, miR-21, miR-125b, miR-143, miR-145, miR-155, miR-182, miR-200c, p53 gene, Ki67, SCCA1 and CD4+ T-cell counts among 319 women, to Epstein-Barr virus, human papillomavirus and herpes simplex virus 2 mono-infections and co-infections, using enzyme-linked immunosorbent assay and reverse transcriptase-polymerase chain reaction methods. This study suggests that malignancies associated with viral co-infection could be diagnosed early by monitoring cluster of differentiation 4+ T-cell counts and serum expression of miR-145 and miR-182.
Collapse
Affiliation(s)
- Jude O Okoye
- Department of Medical Laboratory Science, School of Public and Allied Health, Babcock University, Ilishan-Remo, Ogun State, Nigeria.,Department of Medical Laboratory Science, Faculty of Health Sciences and Technology, College of Medicine, Nnamdi Azikiwe University, Nnewi campus, Anambra, Nigeria
| | - Anthony A Ngokere
- Department of Medical Laboratory Science, Faculty of Health Sciences and Technology, College of Medicine, Nnamdi Azikiwe University, Nnewi campus, Anambra, Nigeria
| | - Charles C Onyenekwe
- Department of Medical Laboratory Science, Faculty of Health Sciences and Technology, College of Medicine, Nnamdi Azikiwe University, Nnewi campus, Anambra, Nigeria
| | - Olaposi Omotuyi
- Department of Biochemistry, Centre for Biotechnology, Adekunle Ajasin University, Akungba-Akoko, Ondo, Nigeria
| | - Deborah I Dada
- Department of Medical Laboratory Science, School of Public and Allied Health, Babcock University, Ilishan-Remo, Ogun State, Nigeria
| |
Collapse
|
20
|
Torres K, Landeros N, Wichmann IA, Polakovicova I, Aguayo F, Corvalan AH. EBV miR-BARTs and human lncRNAs: Shifting the balance in competing endogenous RNA networks in EBV-associated gastric cancer. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166049. [PMID: 33401001 DOI: 10.1016/j.bbadis.2020.166049] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 12/04/2020] [Accepted: 12/14/2020] [Indexed: 02/06/2023]
Abstract
Non-coding RNAs (ncRNAs) contribute to the regulation of gene expression. By acting as competing endogenous RNA (ceRNA), long non-coding RNAs (lncRNAs) hijack microRNAs (miRNAs) and inhibit their ability to bind their coding targets. Viral miRNAs can compete with and target the same transcripts as human miRNAs, shifting the balance in networks associated with multiple cellular processes and diseases. Epstein-Barr virus (EBV) is an example of how a subset of viral coding RNA and non-coding RNAs can cause deregulation of human transcripts and contribute to the development of EBV-associated malignancies. EBV non-coding transforming genes include lncRNAs (i.e circular RNAs), and small ncRNAs (i.e. miRNAs). Among the latter, most ongoing research has focused on miR-BARTs whereas target many genes associated with apoptosis and epithelial-mesenchymal transition, in EBV-associated gastric cancer (GC). In this review, we propose to include the interactions between EBV ncRNAs human transcripts in the hypothesis known as "competitive viral and host RNAs". These interactions may shift the balance in biological pathways such as apoptosis and epithelial-mesenchymal transition in EBV-associated gastric cancer.
Collapse
Affiliation(s)
- Keila Torres
- Advanced Center for Chronic Diseases, Pontificia Universidad Católica de Chile, Santiago, Chile; UC Center for Investigational Oncology, Pontificia Universidad Católica de Chile, Santiago, Chile; Department of Hematology-Oncology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Natalia Landeros
- Advanced Center for Chronic Diseases, Pontificia Universidad Católica de Chile, Santiago, Chile; UC Center for Investigational Oncology, Pontificia Universidad Católica de Chile, Santiago, Chile; Department of Hematology-Oncology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ignacio A Wichmann
- Advanced Center for Chronic Diseases, Pontificia Universidad Católica de Chile, Santiago, Chile; UC Center for Investigational Oncology, Pontificia Universidad Católica de Chile, Santiago, Chile; Department of Hematology-Oncology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Iva Polakovicova
- Advanced Center for Chronic Diseases, Pontificia Universidad Católica de Chile, Santiago, Chile; UC Center for Investigational Oncology, Pontificia Universidad Católica de Chile, Santiago, Chile; Department of Hematology-Oncology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Francisco Aguayo
- Advanced Center for Chronic Diseases, Universidad de Chile, Santiago, Chile; Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Alejandro H Corvalan
- Advanced Center for Chronic Diseases, Pontificia Universidad Católica de Chile, Santiago, Chile; UC Center for Investigational Oncology, Pontificia Universidad Católica de Chile, Santiago, Chile; Department of Hematology-Oncology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
21
|
Sasi S, Singh S, Walia T, Meena RC, Thakur S. Role of MicroRNA In Situ Hybridization in Colon Cancer Diagnosis. COLON CANCER DIAGNOSIS AND THERAPY 2021:67-89. [DOI: 10.1007/978-3-030-63369-1_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
22
|
Wang X, Chen QZ, Zan YX, Wang MR, Yan J, Guo WW, Li KJ, Liu YY, Luo F, Feng Y, Hou W, Xiong HR. Exosomal miR-145-5p derived from orthohantavirus-infected endothelial cells inhibits HTNV infection. FASEB J 2020; 34:13809-13825. [PMID: 32808389 DOI: 10.1096/fj.202001114r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/31/2020] [Accepted: 08/05/2020] [Indexed: 01/22/2023]
Abstract
Human infection of orthohantavirus can cause potentially fatal diseases, such as hemorrhagic fever with renal syndrome (HFRS) caused by Hantaan virus (HTNV) in Eurasia. Exosomes are new carriers for information exchange between cells. Cumulative findings suggest that exosomes released from parental infected cells can block or promote viral infection in recipient cells, but the role of exosomes in hantavirus infection is poorly understood. In our study, we identified the exosomes derived from HTNV-infected human vascular endothelial cells (HUVECs) (Exo-HV) and found the antiviral properties of Exo-HV in the uninfected recipient cells. High-throughput sequencing revealed the distinctly expressed miRNAs transcriptomes in Exo-HV. MiR-145-5p, one of the abundant miRNAs packaged into Exo-HV, was found to be able to transferred to recipient cells and functioned by directly targeting M RNA of HTNV 76-118 and inducing type I interferon (IFN-I) response, thus, blocking the viral replication. Concluding, this study indicated that exosomes released by HTNV-infected HUVECs were able to transfer active molecules, miR-145-5p as a proving sample, to mediate novel anti-HTNV activity in the neighboring uninfected cells, which will help us to explore new strategies for the treatment of infectious disease utilizing exosomes with miRNA.
Collapse
Affiliation(s)
- Xin Wang
- State Key Laboratory of Virology/Institute of Medical Virology/Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China.,Wuhan Research Center for Infectious Disease and Cancer, Chinese Academy of Medical Sciences, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Qing-Zhou Chen
- State Key Laboratory of Virology/Institute of Medical Virology/Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China.,The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yu-Xing Zan
- State Key Laboratory of Virology/Institute of Medical Virology/Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Mei-Rong Wang
- State Key Laboratory of Virology/Institute of Medical Virology/Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Jie Yan
- State Key Laboratory of Virology/Institute of Medical Virology/Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Wei-Wei Guo
- State Key Laboratory of Virology/Institute of Medical Virology/Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Kai-Ji Li
- State Key Laboratory of Virology/Institute of Medical Virology/Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Yuan-Yuan Liu
- State Key Laboratory of Virology/Institute of Medical Virology/Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Fan Luo
- State Key Laboratory of Virology/Institute of Medical Virology/Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Yong Feng
- State Key Laboratory of Virology/Institute of Medical Virology/Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Wei Hou
- State Key Laboratory of Virology/Institute of Medical Virology/Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Hai-Rong Xiong
- State Key Laboratory of Virology/Institute of Medical Virology/Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
23
|
The Role of Ataxia Telangiectasia Mutant and Rad3-Related DNA Damage Response in Pathogenesis of Human Papillomavirus. Pathogens 2020; 9:pathogens9060506. [PMID: 32585979 PMCID: PMC7350315 DOI: 10.3390/pathogens9060506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/19/2020] [Accepted: 06/20/2020] [Indexed: 12/16/2022] Open
Abstract
Human papillomavirus (HPV) infection leads to a variety of benign lesions and malignant tumors such as cervical cancer and head and neck squamous cell carcinoma. Several HPV vaccines have been developed that can help to prevent cervical carcinoma, but these vaccines are only effective in individuals with no prior HPV infection. Thus, it is still important to understand the HPV life cycle and in particular the association of HPV with human pathogenesis. HPV production requires activation of the DNA damage response (DDR), which is a complex signaling network composed of multiple sensors, mediators, transducers, and effectors that safeguard cellular DNAs to maintain the host genome integrity. In this review, we focus on the roles of the ataxia telangiectasia mutant and Rad3-related (ATR) DNA damage response in HPV DNA replication. HPV can induce ATR expression and activate the ATR pathway. Inhibition of the ATR pathway results in suppression of HPV genome maintenance and amplification. The mechanisms underlying this could be through various molecular pathways such as checkpoint signaling and transcriptional regulation. In light of these findings, other downstream mechanisms of the ATR pathway need to be further investigated for better understanding HPV pathogenesis and developing novel ATR DDR-related inhibitors against HPV infection.
Collapse
|
24
|
KDM6A-Mediated Expression of the Long Noncoding RNA DINO Causes TP53 Tumor Suppressor Stabilization in Human Papillomavirus 16 E7-Expressing Cells. J Virol 2020; 94:JVI.02178-19. [PMID: 32269126 DOI: 10.1128/jvi.02178-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 03/24/2020] [Indexed: 02/07/2023] Open
Abstract
Human papillomavirus 16 (HPV16) E7 has long been known to stabilize the tumor suppressor TP53. However, the molecular mechanism of TP53 stabilization by HPV16 E7 has remained obscure, and this stabilization can occur independently of the E2F-regulated MDM2 inhibitor p14ARF Here, we report that the damage-induced noncoding (DINO) lncRNA (DINOL) is the "missing link" between HPV16 E7 and increased TP53 levels. DINO levels are decreased in cells where TP53 is inactivated, either by HPV16 E6, by expression of a dominant negative TP53 minigene, or by TP53 depletion. DINO levels are increased in HPV16 E7-expressing cells. HPV16 E7 causes increased DINO expression independently of RB1 degradation and E2F1 activation. Similar to what is seen with the adjacent CDKN1A locus, DINO expression is regulated by the histone demethylase KDM6A. DINO stabilizes TP53 in HPV16 E7-expressing cells, and as it is a TP53 transcriptional target, DINO levels further increase. As with expression of other oncogenes, such as adenovirus E1A or MYC, HPV16 E7-expressing cells are sensitized to cell death under conditions of metabolic stress, which in the case of E7 has been linked to TP53 activation. Consistent with earlier studies, we show that HPV16 E7-expressing keratinocytes are highly sensitive to metabolic stress induced by starvation or the antidiabetic drug metformin. Sensitivity of HPV16 E7-expressing cells to metabolic stress is rescued by DINO depletion. Moreover, DINO depletion decreases sensitivity to the DNA damage-inducing chemotherapy agent doxorubicin. This work identifies DINO as a critical mediator of TP53 stabilization and activation in HPV16 E7-expressing cells.IMPORTANCE Viral oncoproteins, including HPV16 E6 and E7, have been instrumental in elucidating the activities of cellular signaling networks, including those governed by the TP53 tumor suppressor. Our study demonstrates that the long noncoding RNA DINO is the long-sought missing link between HPV16 E7 and elevated TP53 levels. Importantly, the TP53-stabilizing DINO plays a critical role in the cell death response of HPV16 E7-expressing cells to metabolic stress or DNA damage.
Collapse
|
25
|
Fernandes Q, Gupta I, Vranic S, Al Moustafa AE. Human Papillomaviruses and Epstein-Barr Virus Interactions in Colorectal Cancer: A Brief Review. Pathogens 2020; 9:pathogens9040300. [PMID: 32325943 PMCID: PMC7238043 DOI: 10.3390/pathogens9040300] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/05/2020] [Accepted: 04/07/2020] [Indexed: 02/06/2023] Open
Abstract
Human papillomaviruses (HPVs) and the Epstein-Barr virus (EBV) are the most common oncoviruses, contributing to approximately 10%-15% of all malignancies. Oncoproteins of high-risk HPVs (E5 and E6/E7), as well as EBV (LMP1, LMP2A and EBNA1), play a principal role in the onset and progression of several human carcinomas, including head and neck, cervical and colorectal. Oncoproteins of high-risk HPVs and EBV can cooperate to initiate and/or enhance epithelial-mesenchymal transition (EMT) events, which represents one of the hallmarks of cancer progression and metastasis. Although the role of these oncoviruses in several cancers is well established, their role in the pathogenesis of colorectal cancer is still nascent. This review presents an overview of the most recent advances related to the presence and role of high-risk HPVs and EBV in colorectal cancer, with an emphasis on their cooperation in colorectal carcinogenesis.
Collapse
Affiliation(s)
- Queenie Fernandes
- College of Medicine, QU Health, Qatar University, Doha 2713, Qatar; (Q.F.); (I.G.)
- Biomedical Research Centre, Qatar University, Doha 2713, Qatar
| | - Ishita Gupta
- College of Medicine, QU Health, Qatar University, Doha 2713, Qatar; (Q.F.); (I.G.)
- Biomedical Research Centre, Qatar University, Doha 2713, Qatar
| | - Semir Vranic
- College of Medicine, QU Health, Qatar University, Doha 2713, Qatar; (Q.F.); (I.G.)
- Correspondence: (S.V.); (A.-E.A.M.); Tel.:+974-4403-7873 (S.V.); +974-4403-7817 (A.-E.A.M.)
| | - Ala-Eddin Al Moustafa
- College of Medicine, QU Health, Qatar University, Doha 2713, Qatar; (Q.F.); (I.G.)
- Biomedical Research Centre, Qatar University, Doha 2713, Qatar
- Correspondence: (S.V.); (A.-E.A.M.); Tel.:+974-4403-7873 (S.V.); +974-4403-7817 (A.-E.A.M.)
| |
Collapse
|
26
|
Nahand JS, Karimzadeh MR, Nezamnia M, Fatemipour M, Khatami A, Jamshidi S, Moghoofei M, Taghizadieh M, Hajighadimi S, Shafiee A, Sadeghian M, Bokharaei-Salim F, Mirzaei H. The role of miR-146a in viral infection. IUBMB Life 2019; 72:343-360. [PMID: 31889417 DOI: 10.1002/iub.2222] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 12/16/2019] [Indexed: 12/12/2022]
Abstract
Cellular microRNAs (miRNAs) were identified as a key player in the posttranscriptional regulation of cellular-genes regulatory pathways. They also emerged as a significant regulator of the immune response. In particular, miR-146a acts as an importance modulator of function and differentiation cells of the innate and adaptive immunity. It has been associated with disorder including cancer and viral infections. Given its significance in the regulation of key cellular processes, it is not surprising which virus infection have found ways to dysregulation of miRNAs. miR-146a has been identified in exosomes (exosomal miR-146a). After the exosomes release from donor cells, they are taken up by the recipient cell and probably the exosomal miR-146a is able to modulate the antiviral response in the recipient cell and result in making them more susceptible to virus infection. In this review, we discuss recent reports regarding miR-146a expression levels, target genes, function, and contributing role in the pathogenesis of the viral infection and provide a clue to develop the new therapeutic and preventive strategies for viral disease in the future.
Collapse
Affiliation(s)
- Javid Sadri Nahand
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Student Research Committee, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Karimzadeh
- Department of Medical Genetics, School of Medicine, Bam University of Medical Sciences, Bam, Iran
| | - Maria Nezamnia
- Department of Obstetrics and Gynecology, School of Medicine, Bam University of Medical Sciences, Bam, Iran
| | - Maryam Fatemipour
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Alireza Khatami
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sogol Jamshidi
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohsen Moghoofei
- Department of Microbiology, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Taghizadieh
- Department of Pathology, School of Medicine, Center for Women's Health Research Zahra, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sarah Hajighadimi
- Division of General Internal Medicine, Toronto General Hospital, Toronto, Canada
| | - Alimohammad Shafiee
- Division of General Internal Medicine, Toronto General Hospital, Toronto, Canada
| | - Mohammad Sadeghian
- Orthopedic Surgeon Fellowship of Spine Surgery, Sasan General Hospital, Tehran, Iran
| | - Farah Bokharaei-Salim
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
27
|
SAMHD1 Regulates Human Papillomavirus 16-Induced Cell Proliferation and Viral Replication during Differentiation of Keratinocytes. mSphere 2019; 4:4/4/e00448-19. [PMID: 31391281 PMCID: PMC6686230 DOI: 10.1128/msphere.00448-19] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Human papillomaviruses induce a host of anogenital cancers, as well as oropharyngeal cancer (HPV+OPC); human papillomavirus 16 (HPV16) is causative in around 90% of HPV+OPC cases. Using telomerase reverse transcriptase (TERT) immortalized foreskin keratinocytes (N/Tert-1), we have identified significant host gene reprogramming by HPV16 (N/Tert-1+HPV16) and demonstrated that N/Tert-1+HPV16 support late stages of the viral life cycle. Expression of the cellular dNTPase and homologous recombination factor sterile alpha motif and histidine-aspartic domain HD-containing protein 1 (SAMHD1) is transcriptionally regulated by HPV16 in N/Tert-1. CRISPR/Cas9 removal of SAMHD1 from N/Tert-1 and N/Tert-1+HPV16 demonstrates that SAMHD1 controls cell proliferation of N/Tert-1 only in the presence of HPV16; the deletion of SAMHD1 promotes hyperproliferation of N/Tert-1+HPV16 cells in organotypic raft cultures but has no effect on N/Tert-1. Viral replication is also elevated in the absence of SAMHD1. This new system has allowed us to identify a specific interaction between SAMHD1 and HPV16 that regulates host cell proliferation and viral replication; such studies are problematic in nonimmortalized primary keratinocytes due to their limited life span. To confirm the relevance of our results, we repeated the analysis with human tonsil keratinocytes (HTK) immortalized by HPV16 (HTK+HPV16) and observed the same hyperproliferative phenotype following CRISPR/Cas9 editing of SAMHD1. Identical results were obtained with three independent CRISPR/Cas9 guide RNAs. The isogenic pairing of N/Tert-1 with N/Tert-1+HPV16, combined with HTK+HPV16, presents a unique system to identify host genes whose products functionally interact with HPV16 to regulate host cellular growth in keratinocytes.IMPORTANCE HPVs are causative agents in human cancers and are responsible for around of 5% of all cancers. A better understanding of the viral life cycle in keratinocytes will facilitate the development of novel therapeutics to combat HPV-positive cancers. Here, we present a unique keratinocyte model to identify host proteins that specifically interact with HPV16. Using this system, we report that a cellular gene, SAMHD1, is regulated by HPV16 at the RNA and protein levels in keratinocytes. Elimination of SAMHD1 from these cells using CRISPR/Cas9 editing promotes enhanced cellular proliferation by HPV16 in keratinocytes and elevated viral replication but not in keratinocytes that do not have HPV16. Our study demonstrates a specific intricate interplay between HPV16 and SAMHD1 during the viral life cycle and establishes a unique model system to assist exploring host factors critical for HPV pathogenesis.
Collapse
|
28
|
Ding N, Maiuri AR, O'Hagan HM. The emerging role of epigenetic modifiers in repair of DNA damage associated with chronic inflammatory diseases. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2019; 780:69-81. [PMID: 31395351 PMCID: PMC6690501 DOI: 10.1016/j.mrrev.2017.09.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Revised: 09/25/2017] [Accepted: 09/27/2017] [Indexed: 12/15/2022]
Abstract
At sites of chronic inflammation epithelial cells are exposed to high levels of reactive oxygen species (ROS), which can contribute to the initiation and development of many different human cancers. Aberrant epigenetic alterations that cause transcriptional silencing of tumor suppressor genes are also implicated in many diseases associated with inflammation, including cancer. However, it is not clear how altered epigenetic gene silencing is initiated during chronic inflammation. The high level of ROS at sites of inflammation is known to induce oxidative DNA damage in surrounding epithelial cells. Furthermore, DNA damage is known to trigger several responses, including recruitment of DNA repair proteins, transcriptional repression, chromatin modifications and other cell signaling events. Recruitment of epigenetic modifiers to chromatin in response to DNA damage results in transient covalent modifications to chromatin such as histone ubiquitination, acetylation and methylation and DNA methylation. DNA damage also alters non-coding RNA expression. All of these alterations have the potential to alter gene expression at sites of damage. Typically, these modifications and gene transcription are restored back to normal once the repair of the DNA damage is completed. However, chronic inflammation may induce sustained DNA damage and DNA damage responses that result in these transient covalent chromatin modifications becoming mitotically stable epigenetic alterations. Understanding how epigenetic alterations are initiated during chronic inflammation will allow us to develop pharmaceutical strategies to prevent or treat chronic inflammation-induced cancer. This review will focus on types of DNA damage and epigenetic alterations associated with chronic inflammatory diseases, the types of DNA damage and transient covalent chromatin modifications induced by inflammation and oxidative DNA damage and how these modifications may result in epigenetic alterations.
Collapse
Affiliation(s)
- Ning Ding
- Medical Sciences Program, School of Medicine, Indiana University, Bloomington, IN 47405, USA
| | - Ashley R Maiuri
- Medical Sciences Program, School of Medicine, Indiana University, Bloomington, IN 47405, USA
| | - Heather M O'Hagan
- Medical Sciences Program, School of Medicine, Indiana University, Bloomington, IN 47405, USA; Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, IN 46202, USA.
| |
Collapse
|
29
|
Filipów S, Łaczmański Ł. Blood Circulating miRNAs as Cancer Biomarkers for Diagnosis and Surgical Treatment Response. Front Genet 2019; 10:169. [PMID: 30915102 PMCID: PMC6421259 DOI: 10.3389/fgene.2019.00169] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 02/15/2019] [Indexed: 01/11/2023] Open
Abstract
miRNAs can function as potential oncogenes or tumor suppressors. Altered expression of these molecules was correlated with the occurrence of many cancer diseases and therefore they are considered a molecular tool for non-invasive cancer diagnosis and prognosis. We searched for analyses concerning expression of blood circulating miRNA in cancer patients. The studies comprised of at least two miRNA expression measurements: before and after the surgical therapy were considered. We summarized latest reports on evaluation of the efficiency of anticancer therapy through observation of changes in expression of miRNA circulating in blood of patients treated with surgery alone. Twenty one research studies were identified. Thirty one different miRNAs were pointed out as potential both diagnostic and treatment response biomarkers since their deregulated expression before therapy returned to normal after receiving the treatment. Published data revealed a potential of circulating miRNA to become a tool giving a clinical follow up information on the efficiency of applied therapy. However, more observational studies on post-operative circulating miRNA expression changes are necessary.
Collapse
Affiliation(s)
- Samantha Filipów
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Łukasz Łaczmański
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| |
Collapse
|
30
|
Okoye JO, Ngokere AA, Onyenekwe CC, Erinle CA. Comparable expression of miR-let-7b, miR-21, miR-182, miR-145, and p53 in serum and cervical cells: Diagnostic implications for early detection of cervical lesions. Int J Health Sci (Qassim) 2019; 13:29-38. [PMID: 31341453 PMCID: PMC6619463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
OBJECTIVE The high mortality associated with cervical cancer is due to low uptake of Pap smear test, lack of early diagnostic biomarkers and less-invasive approach, and late presentation of the disease. This study evaluated the expression of hsa-miR-let-7b, hsa-miR-21, hsa-miR-125b, hsa-miR-143, hsa-miR-145, hsa-miR-146a, hsa-miR-155, hsa-miR-182, hsa-miR-200c, and p53 in serum and cervix in relation to classes of Pap smear, in a bid to identify a serum panel for early diagnosis of cervical lesions. METHODOLOGY This study included 329 women; 159 healthy women (HW), 46 cervicitis, 46 atypical squamous cells of undetermined significance (ASCUS), 40 low-grade squamous cell intraepithelial lesion (LSIL), 28 high-grade squamous cell intraepithelial lesion (HSIL), and 10 squamous cell carcinoma (SCC). Expression of microRNAs (miRNAs) and p53 was assessed using reverse transcriptase polymerase chain reaction. RESULTS Except for miR-143 and miR-146a, significant correlations were observed between serum and cervix expression of miRNAs and p53 in relation to levels and classes of Pap smear (P < 0.05). Relatively, higher expression of miR-21, miR-146a, miR-155, miR-182, and miR-200c and lower expression of let-7b and miR-145 were observed in sera associated with cervical abnormalities than in sera associated with normal cervix (P < 0.0001, P = 0.001, P < 0.0001, P = 0.003, P = 0.007, P = 0.036, and P = 0.046, respectively). Higher and lower expression of p53 was observed in women diagnosed of LSIL and SCC, respectively, than in HW (P < 0.0001). CONCLUSION This study suggests that serum expression of miR-21, miR-182, let-7b, miR-145, and p53 is comparable to cervical cell expression and could be useful in differentiating abnormal cervix from the healthy cervix.
Collapse
Affiliation(s)
- Jude Ogechukwu Okoye
- Department of Medical Laboratory Science, School of Public and Allied Health, Babcock University, Ilishan-Remo, Ogun State, Nigeria,Department of Medical Laboratory Science, Nnamdi Azikiwe University, Nnewi, Anambra, Nigeria,Address for correspondence: Jude Ogechukwu Okoye, Department of Medical Laboratory Science, School of Public and Allied Health, Babcock University, Ilishan-Remo, Ogun State, Nigeria. E-mail:
| | - Anthony A. Ngokere
- Department of Medical Laboratory Science, Nnamdi Azikiwe University, Nnewi, Anambra, Nigeria
| | - Charles C. Onyenekwe
- Department of Medical Laboratory Science, Nnamdi Azikiwe University, Nnewi, Anambra, Nigeria
| | - Charles A. Erinle
- Department of Family Medicine, State Hospital Ijaiye, Abeokuta, Ogun State, Nigeria
| |
Collapse
|
31
|
González-Torres A, Bañuelos-Villegas EG, Martínez-Acuña N, Sulpice E, Gidrol X, Alvarez-Salas LM. MYPT1 is targeted by miR-145 inhibiting viability, migration and invasion in 2D and 3D HeLa cultures. Biochem Biophys Res Commun 2018; 507:348-354. [DOI: 10.1016/j.bbrc.2018.11.039] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 11/06/2018] [Indexed: 11/27/2022]
|
32
|
Liu X, Zhang Y, Wang S, Liu G, Ruan L. Loss of miR-143 and miR-145 in condyloma acuminatum promotes cellular proliferation and inhibits apoptosis by targeting NRAS. ROYAL SOCIETY OPEN SCIENCE 2018; 5:172376. [PMID: 30225000 PMCID: PMC6124073 DOI: 10.1098/rsos.172376] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 08/03/2018] [Indexed: 05/08/2023]
Abstract
The expression profile of miRNAs and their function in condyloma acuminatum (CA) remains unknown. In this study, we aimed to detect the effects of miR-143 and miR-145, the most downregulated in CA samples using high-throughput sequencing, on cell proliferation and apoptosis, to determine a novel therapeutic target for CA recurrence. RT-qPCR was used to validate the lower expression of miR-143 and miR-145 in a larger size of CA samples, and the expression of NRAS in CA samples was significantly higher than self-controls as determined by western blotting assay. Luciferase assay was performed to confirm that miR-143 or miR-145 targeted NRAS directly. Transduction of LV-pre-miR-143 or LV-pre-miR-145 to human papilloma virus (HPV)-infected SiHa cells led to reduced proliferation, greater apoptosis and inhibition of expression of NRAS, PI3 K p110α and p-AKT. However, knockout of miR-143 or miR-145 in human epidermal keratinocytes by delivery of CRISPR/CAS9-gRNA for target miRNAs protected cells from apoptosis and upregulated expression of target genes as described above. MiR-143 and miR-145 sensitized cells to nutlin-3a, a p53 activator and MDM2 antagonist, while their loss protected cells from the stress of nutlin-3a. Furthermore, siRNA targeting NRAS showed similar effects on proliferation and apoptosis as miR-143 or miR-145. Taken together, our results suggest that loss of miR-143 or miR-145 in CA protects HPV-infected cells from apoptosis induced by environmental stress, in addition to promoting cellular proliferation and inhibiting apoptosis by targeting NRAS/PI3 K/ATK. Restoration of miR-143 or miR-145 might provide an applicable and novel approach to block the recurrence and progression of CA.
Collapse
Affiliation(s)
| | | | | | | | - Liming Ruan
- Department of Dermatology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, People's Republic of China
| |
Collapse
|
33
|
Identification of virus-encoded microRNAs in divergent Papillomaviruses. PLoS Pathog 2018; 14:e1007156. [PMID: 30048533 PMCID: PMC6062147 DOI: 10.1371/journal.ppat.1007156] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 06/15/2018] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNAs) are small RNAs that regulate diverse biological processes including multiple aspects of the host-pathogen interface. Consequently, miRNAs are commonly encoded by viruses that undergo long-term persistent infection. Papillomaviruses (PVs) are capable of undergoing persistent infection, but as yet, no widely-accepted PV-encoded miRNAs have been described. The incomplete understanding of PV-encoded miRNAs is due in part to lack of tractable laboratory models for most PV types. To overcome this, we have developed miRNA Discovery by forced Genome Expression (miDGE), a new wet bench approach to miRNA identification that screens numerous pathogen genomes in parallel. Using miDGE, we screened over 73 different PV genomes for the ability to code for miRNAs. Our results show that most PVs are unlikely to code for miRNAs and we conclusively demonstrate a lack of PV miRNA expression in cancers associated with infections of several high risk HPVs. However, we identified five different high-confidence or highly probable miRNAs encoded by four different PVs (Human PVs 17, 37, 41 and a Fringilla coelebs PV (FcPV1)). Extensive in vitro assays confirm the validity of these miRNAs in cell culture and two FcPV1 miRNAs are further confirmed to be expressed in vivo in a natural host. We show that miRNAs from two PVs (HPV41 & FcPV1) are able to regulate viral transcripts corresponding to the early region of the PV genome. Combined, these findings identify the first canonical PV miRNAs and support that miRNAs of either host or viral origin are important regulators of the PV life cycle.
Collapse
|
34
|
Peta E, Sinigaglia A, Masi G, Di Camillo B, Grassi A, Trevisan M, Messa L, Loregian A, Manfrin E, Brunelli M, Martignoni G, Palù G, Barzon L. HPV16 E6 and E7 upregulate the histone lysine demethylase KDM2B through the c-MYC/miR-146a-5p axys. Oncogene 2018; 37:1654-1668. [PMID: 29335520 DOI: 10.1038/s41388-017-0083-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 11/24/2017] [Accepted: 11/24/2017] [Indexed: 12/13/2022]
Abstract
Persistent infection by high-risk human papillomaviruses (HPVs) is associated with the development of cervical cancer and a subset of anogenital and head and neck squamous cell carcinomas. Abnormal expression of cellular microRNAs (miRNAs) plays an important role in the development of cancer, including HPV-related tumors. In this study, we demonstrated that miR-146a-5p was down-regulated by E6 and, less efficiently, by E7 of high-risk HPV16 in keratinocytes and the presence of low levels of this miRNA in cervical carcinoma cell lines and in high-risk HPV-positive cervical specimens. Down-regulation of miR-146a-5p was mediated at least in part by the transcription repressor c-MYC, through binding sites in the miR-146a promoter. Overexpression of miR-146a-5p significantly inhibited proliferation and migration of keratinocytes and cervical cancer cells. The histone demethylase KDM2B was validated as a new direct target of miR-146a-5p and two putative binding sites for miR-146a-5p were identified in its 3'UTR sequence. Western blot analysis and immunohistochemistry showed that KDM2B was overexpressed in HPV16 E6/E7-positive keratinocytes, in cervical cancer cell lines, and in a subset of invasive cervical carcinomas and HPV-positive laryngeal squamous cell carcinomas. In these tumors, KDM2B overexpression was associated with c-MYC copy number gain. In vitro, silencing of KDM2B inhibited proliferation of cervical cancer cells. In conclusion, this study identified a novel player, the hystone demethylase KDM2B, in HPV-mediated tumorigenesis. E6 and, less efficiently, E7 of high-risk HPV16 up-regulated KDM2B expression in human keratinocytes through a pathway involving overexpression of c-MYC, which in turn downregulated miR-146a-5p.
Collapse
Affiliation(s)
- Elektra Peta
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | | | - Giulia Masi
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Barbara Di Camillo
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Angela Grassi
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
| | - Marta Trevisan
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Lorenzo Messa
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Arianna Loregian
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Erminia Manfrin
- Department of Diagnostics and Public Health, Anatomic Pathology, AOUI Hospital Trust of Verona, Verona, Italy
| | - Matteo Brunelli
- Department of Diagnostics and Public Health, Anatomic Pathology, AOUI Hospital Trust of Verona, Verona, Italy
| | - Guido Martignoni
- Department of Diagnostics and Public Health, Anatomic Pathology, AOUI Hospital Trust of Verona, Verona, Italy
| | - Giorgio Palù
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Luisa Barzon
- Department of Molecular Medicine, University of Padova, Padova, Italy.
| |
Collapse
|
35
|
Tuna M, Amos CI. Next generation sequencing and its applications in HPV-associated cancers. Oncotarget 2018; 8:8877-8889. [PMID: 27784002 PMCID: PMC5352450 DOI: 10.18632/oncotarget.12830] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 10/14/2016] [Indexed: 12/18/2022] Open
Abstract
Approximately 18% of all human cancers have a viral etiology, and human papillomavirus (HPV) has been identified as one of the most prevalent viruses that plays causative role in nearly all cervical cancers and, in addition, in subset of head and neck, anal, penile and vulvar cancers. The recent introduction of next generation sequencing (NGS) and other omics approaches have resulted in comprehensive knowledge on the pathogenesis of HPV-driven tumors. Specifically, these approaches have provided detailed information on genomic HPV integration sites, disrupted genes and pathways, and common and distinct genetic and epigenetic alterations in different human HPV-associated cancers. This review focuses on HPV integration sites, its concomitantly disrupted genes and pathways and its functional consequences in both cervical and head and neck cancers. Integration of NGS data with other omics and clinical data is crucial to better understand the pathophysiology of each individual malignancy and, based on this, to select targets and to design effective personalized treatment options.
Collapse
Affiliation(s)
- Musaffe Tuna
- Department of Biomedical Data Science, Geisel School of Medicine, Dartmouth College, Lebanon
| | - Christopher I Amos
- Department of Biomedical Data Science, Geisel School of Medicine, Dartmouth College, Lebanon
| |
Collapse
|
36
|
Sharma S, Munger K. Expression of the cervical carcinoma expressed PCNA regulatory (CCEPR) long noncoding RNA is driven by the human papillomavirus E6 protein and modulates cell proliferation independent of PCNA. Virology 2018; 518:8-13. [PMID: 29427865 DOI: 10.1016/j.virol.2018.01.031] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 01/22/2018] [Accepted: 01/31/2018] [Indexed: 12/22/2022]
Abstract
Modulation of expression of noncoding RNAs is an important aspect of the oncogenic activities of high-risk human papillomavirus (HPV) E6 and E7 proteins. While HPV E6/E7-mediated alterations of microRNAs (miRNAs) has been studied in detail there are fewer reports on HPV-mediated dysregulation of long noncoding RNAs (lncRNAs). The cervical carcinoma expressed PCNA regulatory (CCEPR) lncRNA is highly expressed in cervical cancers and expression correlates with tumor size and patient outcome. We report that CCEPR is a nuclear lncRNA and that HPV16 E6 oncogene expression causes increased CCEPR expression through a mechanism that is not directly dependent on TP53 inactivation. CCEPR depletion in cervical carcinoma cell lines reduces viability, while overexpression enhances viability. In contrast to what was published and inspired its designation, there is no evidence for PCNA mRNA stabilization, and hence CCEPR likely functions through a different mechanism.
Collapse
Affiliation(s)
- Surendra Sharma
- Biochemistry Program, Sackler School of Graduate Biomedical Sciences and Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, United States
| | - Karl Munger
- Biochemistry Program, Sackler School of Graduate Biomedical Sciences and Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, United States.
| |
Collapse
|
37
|
Suppression of MicroRNA 424 Levels by Human Papillomaviruses Is Necessary for Differentiation-Dependent Genome Amplification. J Virol 2017; 91:JVI.01712-17. [PMID: 28978708 DOI: 10.1128/jvi.01712-17] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 09/27/2017] [Indexed: 02/07/2023] Open
Abstract
High-risk human papillomaviruses (HPVs) link their life cycle to epithelial differentiation and require activation of DNA damage pathways for efficient replication. HPVs modulate the expression of cellular transcription factors, as well as cellular microRNAs (miRNAs) to control these activities. One miRNA that has been reported to be repressed in HPV-positive cancers of the cervix and oropharynx is miR-424. Our studies show that miR-424 levels are suppressed in cell lines that stably maintain HPV 31 or 16 episomes, as well as cervical cancer lines that contain integrated genomes such as SiHa. Introduction of expression vectors for miR-424 reduced both the levels of HPV genomes in undifferentiated cells and amplification upon differentiation. Our studies show that the levels of two putative targets of miR-424 that function in DNA damage repair, CHK1 and Wee1, are suppressed in HPV-positive cells, providing an explanation for why this microRNA is targeted in HPV-positive cells.IMPORTANCE We describe here for the first time a critical role for miR-424 in the regulation of HPV replication. HPV E6 and E7 proteins suppress the levels of miR-424, and this is important for controlling the levels of CHK1, which plays a central role in viral replication.
Collapse
|
38
|
Liu F, Zhang S, Zhao Z, Mao X, Huang J, Wu Z, Zheng L, Wang Q. MicroRNA-27b up-regulated by human papillomavirus 16 E7 promotes proliferation and suppresses apoptosis by targeting polo-like kinase2 in cervical cancer. Oncotarget 2017; 7:19666-79. [PMID: 26910911 PMCID: PMC4991410 DOI: 10.18632/oncotarget.7531] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 12/30/2015] [Indexed: 12/13/2022] Open
Abstract
The infection with high-risk human papillomavirus is linked to cervical cancer, nevertheless, the role of miRNAs regulated by HPV oncogenes in cancer progression remain largely unknown. Here, we knocked down endogenous E6/E7 in HPV16-positive CaSki cell lines, screened differences in miRNA expression profile with control using miRNA array. 38 miRNAs were down-regulated and 6 miRNAs were up-regulated in the E6/E7 silenced CaSki cells (>2-fold changes with P <0.05). The levels of miR-27b, miR-20a, miR-24, miR-93, and miR-106b were verified by qPCR in E6/E7 silenced CaSki and SiHa cells. MiR-27b, up-regulated by E7, promoted CaSki and SiHa cell proliferation and invasion, inhibit paclitaxel-induced apoptosis. Dual-luciferase experiment confirmed miR-27b down-regulated its target gene PLK2 through the “seed regions”. The tumor suppressor PLK2 inhibited SiHa cell proliferation, reduced cell viability, and promoted paclitaxel/cisplatin -induced apoptosis. Furthermore, DGCR8 was found to mediate the up-regulation of miR-27b by HPV16 E7. Our study demonstrated that HPV16 E7 could increase DGCR8 to promote the generation of miR-27b, which accelerated cell proliferation and inhibited paclitaxel-induced cell apoptosis through down-regulating PLK2. These findings provide an insight into the interaction network of viral oncogene, miR-27b and PLK2, and support the potential strategies using antisense nucleic acid of miR-27b for therapy of cervical cancer in the future.
Collapse
Affiliation(s)
- Fei Liu
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.,Department of Clinical Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Shimeng Zhang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.,Central Laboratory, Shenzhen Shekou People's Hospital, Shenzhen 518000, China
| | - Zhen Zhao
- Department of Laboratory Medicine, NIH Clinical Center, Bethesda, MD 20892, USA
| | - Xinru Mao
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jinlan Huang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Zixian Wu
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Lei Zheng
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Qian Wang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
39
|
Boscolo-Rizzo P, Furlan C, Lupato V, Polesel J, Fratta E. Novel insights into epigenetic drivers of oropharyngeal squamous cell carcinoma: role of HPV and lifestyle factors. Clin Epigenetics 2017; 9:124. [PMID: 29209433 PMCID: PMC5704592 DOI: 10.1186/s13148-017-0424-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 11/18/2017] [Indexed: 12/22/2022] Open
Abstract
In the last years, the explosion of high throughput sequencing technologies has enabled epigenome-wide analyses, allowing a more comprehensive overview of the oropharyngeal squamous cell carcinoma (OPSCC) epigenetic landscape. In this setting, the cellular pathways contributing to the neoplastic phenotype, including cell cycle regulation, cell signaling, DNA repair, and apoptosis have been demonstrated to be potential targets of epigenetic alterations in OPSCC. Of note, it has becoming increasingly clear that HPV infection and OPSCC lifestyle risk factors differently drive the epigenetic machinery in cancer cells. Epigenetic changes, including DNA methylation, histone modifications, and non-coding RNA expression, can be used as powerful and reliable tools for early diagnosis of OPSCC patients and improve prognostication. Since epigenetic changes are dynamic and reversible, epigenetic enzymes may also represent suitable targets for the development of more effective OPSCC therapeutic strategies. Thus, this review will focus on the main known epigenetic modifications that can occur in OPSCC and their exploitation as potential biomarkers and therapeutic targets. Furthermore, we will address epigenetic alterations to OPSCC risk factors, with a particular focus on HPV infection, tobacco exposure, and heavy alcohol consumption.
Collapse
Affiliation(s)
- Paolo Boscolo-Rizzo
- Department of Neurosciences, ENT Clinic and Regional Center for Head and Neck Cancer, Treviso Regional Hospital, University of Padova, Treviso, Italy
| | - Carlo Furlan
- Division of Radiotherapy, Centro di Riferimento Oncologico, IRCCS-National Cancer Institute, Aviano, PN Italy
| | - Valentina Lupato
- Unit of Otolaryngology, General Hospital “S. Maria degli Angeli”, Pordenone, Italy
| | - Jerry Polesel
- Unit of Cancer Epidemiology, Centro di Riferimento Oncologico, IRCCS-National Cancer Institute, Aviano, PN Italy
| | - Elisabetta Fratta
- Immunopathology and Cancer Biomarkers, Centro di Riferimento Oncologico, IRCCS-National Cancer Institute, Aviano, PN Italy
| |
Collapse
|
40
|
Abstract
Preclinical infection model systems are extremely valuable tools to aid in our understanding of Human Papillomavirus (HPV) biology, disease progression, prevention, and treatments. In this context, rodent papillomaviruses and their respective infection models are useful tools but remain underutilized resources in the field of papillomavirus biology. Two rodent papillomaviruses, MnPV1, which infects the Mastomys species of multimammate rats, and MmuPV1, which infects laboratory mice, are currently the most studied rodent PVs. Both of these viruses cause malignancy in the skin and can provide attractive infection models to study the lesser understood cutaneous papillomaviruses that have been frequently associated with HPV-related skin cancers. Of these, MmuPV1 is the first reported rodent papillomavirus that can naturally infect the laboratory strain of mice. MmuPV1 is an attractive model virus to study papillomavirus pathogenesis because of the ubiquitous availability of lab mice and the fact that this mouse species is genetically modifiable. In this review, we have summarized the knowledge we have gained about PV biology from the study of rodent papillomaviruses and point out the remaining gaps that can provide new research opportunities.
Collapse
|
41
|
Kincaid RP, Panicker NG, Lozano MM, Sullivan CS, Dudley JP, Mustafa F. MMTV does not encode viral microRNAs but alters the levels of cancer-associated host microRNAs. Virology 2017; 513:180-187. [PMID: 29096160 DOI: 10.1016/j.virol.2017.09.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 09/27/2017] [Accepted: 09/30/2017] [Indexed: 12/18/2022]
Abstract
Mouse mammary tumor virus (MMTV) induces breast cancer in mice in the absence of known virally-encoded oncogenes. Tumorigenesis by MMTV is thought to occur primarily through insertional mutagenesis, leading to the activation of cellular proto-oncogenes and outgrowth of selected cells. Here we investigated whether MMTV encodes microRNAs (miRNAs) and/or modulates host miRNAs that could contribute to tumorigenesis. High throughput small RNA sequencing analysis of MMTV-infected cells and MMTV-induced mammary tumors demonstrates that MMTV does not encode miRNAs. However, infected tissues have altered levels of several host miRNAs, including increased expression of members of the oncogenic miRNA cluster, miR-17-92. Notably, similar changes in miRNA levels have been previously reported in human breast cancers. Combined, our results demonstrate that virally encoded miRNAs do not contribute to MMTV-mediated tumorigenesis, but that changes in specific host miRNAs in infected cells may contribute to virus replication and tumor biology.
Collapse
Affiliation(s)
- Rodney P Kincaid
- Department of Molecular Biosciences, The University of Texas at Austin, 100 East 24th Street, NHB 2.616, Austin, TX, United States of America.
| | - Neena G Panicker
- Department of Biochemistry, College of Medicine and Health Sciences, UAE University, Tawam Hospital Complex, P.O. Box 17666, Al Ain, United Arab Emirates.
| | - Mary M Lozano
- Department of Molecular Biosciences, The University of Texas at Austin, 100 East 24th Street, NHB 2.616, Austin, TX, United States of America.
| | - Christopher S Sullivan
- Department of Molecular Biosciences, The University of Texas at Austin, 100 East 24th Street, NHB 2.616, Austin, TX, United States of America.
| | - Jaquelin P Dudley
- Department of Molecular Biosciences, The University of Texas at Austin, 100 East 24th Street, NHB 2.616, Austin, TX, United States of America.
| | - Farah Mustafa
- Department of Biochemistry, College of Medicine and Health Sciences, UAE University, Tawam Hospital Complex, P.O. Box 17666, Al Ain, United Arab Emirates.
| |
Collapse
|
42
|
Gharib E, Montasser Kouhsari S, Izad M. Punica granatum L. Fruit Aqueous Extract Suppresses Reactive Oxygen Species-Mediated p53/p65/miR-145 Expressions followed by Elevated Levels of irs-1 in Alloxan-Diabetic Rats. CELL JOURNAL 2017; 19:520-527. [PMID: 29105385 PMCID: PMC5672089 DOI: 10.22074/cellj.2018.4550] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 12/06/2016] [Indexed: 01/25/2023]
Abstract
OBJECTIVES Reactive oxygen species (ROS) is an apoptosis inducer in pancreatic β-cells that stimulates p53/p65 mediated microRNA (miR)-145 expression. Punica granatum L. (pomegranate) is an antioxidant fruit that attenuates ROS generation. This study examines the effects of pomegranate fruit aqueous extract (PGE) on the levels of ROS, p53, p65, miR-145, and its target insulin receptor substrate 1 (irs-1) mRNA in Alloxan-diabetic male Wistar rats. MATERIALS AND METHODS In this experimental study, diabetic rats received different doses of PGE. The effects of the PGE polyphenols were examined through a long-term PGE treatment period model, followed by an evaluation of the plasma and tissue contents of free fatty acids (FFAs), triglycerides (TG), and glycogen compared with diabetic controls (DC) and normal controls (NC). We used real-time polymerase chain reaction (PCR) to investigate the modulation of p53, p65, miR-145, and irs-1 expression levels. RESULTS There was a noticeable reduction in fasting blood glucose (FBG) and ROS generation compared to DC. We observed marked decreases in p53, p65, miR-145 expression levels followed by an elevated level of irs-1, which contributed to improvement in insulin sensitivity. CONCLUSIONS PGE administration downregulated miR-145 levels in Alloxan-diabetic Wistar rats by suppression of ROS-mediated p53 and p65 overexpression.
Collapse
Affiliation(s)
- Ehsan Gharib
- Department of Cellular and Molecular Biology, School of Biology, University College of Science, University of Tehran, Tehran, Iran
| | - Shideh Montasser Kouhsari
- Department of Cellular and Molecular Biology, School of Biology, University College of Science, University of Tehran, Tehran, Iran.
| | - Maryam Izad
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
43
|
Shweta, Akhter Y, Khan JA. Genome wide identification of cotton (Gossypium hirsutum)-encoded microRNA targets against Cotton leaf curl Burewala virus. Gene 2017; 638:60-65. [PMID: 28964896 DOI: 10.1016/j.gene.2017.09.061] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 09/18/2017] [Accepted: 09/26/2017] [Indexed: 10/18/2022]
Abstract
Cotton leaf curl Burewala virus (CLCuBV, genus Begomovirus) causes devastating cotton leaf curl disease. Among various known virus controlling strategies, RNAi-mediated one has shown potential to protect host crop plants. Micro(mi) RNAs, are the endogenous small RNAs and play a key role in plant development and stress resistance. In the present study we have identified cotton (Gossypium hirsutum)-encoded miRNAs targeting the CLCuBV. Based on threshold free energy and maximum complementarity scores of host miRNA-viral mRNA target pairs, a number of potential miRNAs were annotated. Among them, ghr-miR168 was selected as the most potent candidate, capable of targeting several vital genes namely C1, C3, C4, V1 and V2 of CLCuBV genome. In addition, ghr-miR395a and ghr-miR395d were observed to target the overlapping transcripts of C1 and C4 genes. We have verified the efficacy of these miRNA targets against CLCuBV following suppression of RNAi-mediated virus control through translational inhibition or cleavage of viral mRNA.
Collapse
Affiliation(s)
- Shweta
- Plant Virus Laboratory, Department of Biosciences, Jamia Millia Islamia (Central University), New Delhi 110025, India
| | - Yusuf Akhter
- Centre for Computational Biology and Bioinformatics, School of Life Sciences, Central University of Himachal Pradesh, India
| | - Jawaid Ahmad Khan
- Plant Virus Laboratory, Department of Biosciences, Jamia Millia Islamia (Central University), New Delhi 110025, India.
| |
Collapse
|
44
|
Hong SY. DNA damage response is hijacked by human papillomaviruses to complete their life cycle. J Zhejiang Univ Sci B 2017; 18:215-232. [PMID: 28271657 DOI: 10.1631/jzus.b1600306] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The DNA damage response (DDR) is activated when DNA is altered by intrinsic or extrinsic agents. This pathway is a complex signaling network and plays important roles in genome stability, tumor transformation, and cell cycle regulation. Human papillomaviruses (HPVs) are the main etiological agents of cervical cancer. Cervical cancer ranks as the fourth most common cancer among women and the second most frequent cause of cancer-related death worldwide. Over 200 types of HPVs have been identified and about one third of these infect the genital tract. The HPV life cycle is associated with epithelial differentiation. Recent studies have shown that HPVs deregulate the DDR to achieve a productive life cycle. In this review, I summarize current findings about how HPVs mediate the ataxia-telangiectasia mutated kinase (ATM) and the ATM-and RAD3-related kinase (ATR) DDRs, and focus on the roles that ATM and ATR signalings play in HPV viral replication. In addition, I demonstrate that the signal transducer and activator of transcription-5 (STAT)-5, an important immune regulator, can promote ATM and ATR activations through different mechanisms. These findings may provide novel opportunities for development of new therapeutic targets for HPV-related cancers.
Collapse
Affiliation(s)
- Shi-Yuan Hong
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
45
|
Moody C. Mechanisms by which HPV Induces a Replication Competent Environment in Differentiating Keratinocytes. Viruses 2017; 9:v9090261. [PMID: 28925973 PMCID: PMC5618027 DOI: 10.3390/v9090261] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 09/14/2017] [Accepted: 09/15/2017] [Indexed: 12/15/2022] Open
Abstract
Human papillomaviruses (HPV) are the causative agents of cervical cancer and are also associated with other genital malignancies, as well as an increasing number of head and neck cancers. HPVs have evolved their life cycle to contend with the different cell states found in the stratified epithelium. Initial infection and viral genome maintenance occurs in the proliferating basal cells of the stratified epithelium, where cellular replication machinery is abundant. However, the productive phase of the viral life cycle, including productive replication, late gene expression and virion production, occurs upon epithelial differentiation, in cells that normally exit the cell cycle. This review outlines how HPV interfaces with specific cellular signaling pathways and factors to provide a replication-competent environment in differentiating cells.
Collapse
Affiliation(s)
- Cary Moody
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
46
|
Epigenetic Alterations in Human Papillomavirus-Associated Cancers. Viruses 2017; 9:v9090248. [PMID: 28862667 PMCID: PMC5618014 DOI: 10.3390/v9090248] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 08/25/2017] [Accepted: 08/25/2017] [Indexed: 12/15/2022] Open
Abstract
Approximately 15–20% of human cancers are caused by viruses, including human papillomaviruses (HPVs). Viruses are obligatory intracellular parasites and encode proteins that reprogram the regulatory networks governing host cellular signaling pathways that control recognition by the immune system, proliferation, differentiation, genomic integrity, and cell death. Given that key proteins in these regulatory networks are also subject to mutation in non-virally associated diseases and cancers, the study of oncogenic viruses has also been instrumental to the discovery and analysis of many fundamental cellular processes, including messenger RNA (mRNA) splicing, transcriptional enhancers, oncogenes and tumor suppressors, signal transduction, immune regulation, and cell cycle control. More recently, tumor viruses, in particular HPV, have proven themselves invaluable in the study of the cancer epigenome. Epigenetic silencing or de-silencing of genes can have cellular consequences that are akin to genetic mutations, i.e., the loss and gain of expression of genes that are not usually expressed in a certain cell type and/or genes that have tumor suppressive or oncogenic activities, respectively. Unlike genetic mutations, the reversible nature of epigenetic modifications affords an opportunity of epigenetic therapy for cancer. This review summarizes the current knowledge on epigenetic regulation in HPV-infected cells with a focus on those elements with relevance to carcinogenesis.
Collapse
|
47
|
The human papillomavirus replication cycle, and its links to cancer progression: a comprehensive review. Clin Sci (Lond) 2017; 131:2201-2221. [DOI: 10.1042/cs20160786] [Citation(s) in RCA: 156] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 06/26/2017] [Accepted: 07/03/2017] [Indexed: 12/21/2022]
Abstract
HPVs (human papillomaviruses) infect epithelial cells and their replication cycle is intimately linked to epithelial differentiation. There are over 200 different HPV genotypes identified to date and each displays a strict tissue specificity for infection. HPV infection can result in a range of benign lesions, for example verrucas on the feet, common warts on the hands, or genital warts. HPV infects dividing basal epithelial cells where its dsDNA episomal genome enters the nuclei. Upon basal cell division, an infected daughter cell begins the process of keratinocyte differentiation that triggers a tightly orchestrated pattern of viral gene expression to accomplish a productive infection. A subset of mucosal-infective HPVs, the so-called ‘high risk’ (HR) HPVs, cause cervical disease, categorized as low or high grade. Most individuals will experience transient HR-HPV infection during their lifetime but these infections will not progress to clinically significant cervical disease or cancer because the immune system eventually recognizes and clears the virus. Cancer progression is due to persistent infection with an HR-HPV. HR-HPV infection is the cause of >99.7% cervical cancers in women, and a subset of oropharyngeal cancers, predominantly in men. HPV16 (HR-HPV genotype 16) is the most prevalent worldwide and the major cause of HPV-associated cancers. At the molecular level, cancer progression is due to increased expression of the viral oncoproteins E6 and E7, which activate the cell cycle, inhibit apoptosis, and allow accumulation of DNA damage. This review aims to describe the productive life cycle of HPV and discuss the roles of the viral proteins in HPV replication. Routes to viral persistence and cancer progression are also discussed.
Collapse
|
48
|
Abstract
microRNAs (miRNAs) are a small RNA species without protein-coding potential. However, they are key modulators of protein translation. Many studies have linked miRNAs with cancer initiation, progression, diagnosis, and prognosis, and recent studies have also linked them with cancer etiology and susceptibility, especially through single-nucleotide polymorphisms (SNPs). This review discusses some of the recent advances in miRNA-SNP literature-including SNPs in miRNA genes, miRNA target sites, and the processing machinery. In addition, we highlight some emerging areas of interest, including isomiRs and non-3'UTR focused miRNA-binding mechanisms that could provide further novel insight into the relationship between miR-SNPs and cancer. Finally, we note that additional epidemiological and experimental research is needed to close the gap in our understanding of the genotype-phenotype relationship between miRNA-SNPs and cancer.
Collapse
Affiliation(s)
- Bríd M Ryan
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States.
| |
Collapse
|
49
|
A three miRNAs signature predicts survival in cervical cancer using bioinformatics analysis. Sci Rep 2017; 7:5624. [PMID: 28717180 PMCID: PMC5514022 DOI: 10.1038/s41598-017-06032-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 06/06/2017] [Indexed: 12/12/2022] Open
Abstract
Growing evidences showed that a large number of miRNAs were abnormally expressed in cervical cancer tissues and played irreplaceable roles in tumorigenesis, progression and metastasis. The aim of the present study was to identify the differential miRNAs expression between cervical cancer and normal cervical tissues by analyzing the high-throughput miRNA data downloaded from TCGA database. Additionally, we evaluated the prognostic values of the differentially expressed miRNAs and constructed a three-miRNA signature that could effectively predict patient survival. According to the cut-off criteria (P < 0.05 and |log2FC| > 2.0), a total of 78 differentially expressed miRNAs were identified between cervical cancer tissues and matched normal tissues, including 37 up-regulated miRNAs and 41 down-regulated miRNAs. The Kaplan-Meier survival method revealed the prognostic function of the three miRNAs (miRNA-145, miRNA-200c, and miRNA-218-1). Univariate and multivariate Cox regression analysis showed that the three-miRNA signature was an independent prognostic factor in cervical cancer. The functional enrichment analysis suggested that the target genes of three miRNAs may be involved in various pathways related to cancer, including MAPK, AMPK, focal adhesion, cGMP-PKG, wnt, and mTOR signaling pathway. Taken together, the present study suggested that three-miRNA signature could be used as a prognostic marker in cervical cancer.
Collapse
|
50
|
Porter SS, Stepp WH, Stamos JD, McBride AA. Host cell restriction factors that limit transcription and replication of human papillomavirus. Virus Res 2017; 231:10-20. [PMID: 27863967 PMCID: PMC5325803 DOI: 10.1016/j.virusres.2016.11.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 11/09/2016] [Accepted: 11/10/2016] [Indexed: 02/08/2023]
Abstract
The life cycle of human papillomaviruses (HPV) is tightly regulated by the differentiation state of mucosal and cutaneous keratinocytes. To counteract viral infection, constitutively expressed cellular factors, which are defined herein as restriction factors, directly mitigate viral gene expression and replication. In turn, some HPV gene products target these restriction factors and abrogate their anti-viral effects to establish efficient gene expression and replication programs. Ironically, in certain circumstances, this delicate counterbalance between viral gene products and restriction factors facilitates persistent infection by HPVs. This review serves to recapitulate the current knowledge of nuclear restriction factors that directly affect the HPV infectious cycle.
Collapse
Affiliation(s)
- Samuel S Porter
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, 33 North Drive, MSC3209, Bethesda, MD 20892, USA; Biological Sciences Graduate Program, University of Maryland, University of Maryland, 4066 Campus Drive, College Park, MD 20742, USA
| | - Wesley H Stepp
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, 33 North Drive, MSC3209, Bethesda, MD 20892, USA
| | - James D Stamos
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, 33 North Drive, MSC3209, Bethesda, MD 20892, USA
| | - Alison A McBride
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, 33 North Drive, MSC3209, Bethesda, MD 20892, USA.
| |
Collapse
|