1
|
Benyamini P. Beyond Antibiotics: What the Future Holds. Antibiotics (Basel) 2024; 13:919. [PMID: 39452186 PMCID: PMC11504868 DOI: 10.3390/antibiotics13100919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
The prevalence of multidrug resistance (MDR) and stagnant drug-development pipelines have led to the rapid rise of hard-to-treat antibiotic-resistant bacterial infections. These infectious diseases are no longer just nosocomial but are also becoming community-acquired. The spread of MDR has reached a crisis level that needs immediate attention. The landmark O'Neill report projects that by 2050, mortality rates associated with MDR bacterial infections will surpass mortality rates associated with individuals afflicted with cancer. Since conventional antimicrobials are no longer very reliable, it is of great importance to investigate different strategies to combat these life-threatening infectious diseases. Here, we provide an overview of recent advances in viable alternative treatment strategies mainly targeting a pathogen's virulence capability rather than viability. Topics include small molecule and immune inhibition of virulence factors, quorum sensing (QS) quenching, inhibition of biofilm development, bacteriophage-mediated therapy, and manipulation of an individual's macroflora to combat MDR bacterial infections.
Collapse
Affiliation(s)
- Payam Benyamini
- Department of Health Sciences at Extension, University of California Los Angeles, 1145 Gayley Ave., Los Angeles, CA 90024, USA
| |
Collapse
|
2
|
Smith WPJ, Wucher BR, Nadell CD, Foster KR. Bacterial defences: mechanisms, evolution and antimicrobial resistance. Nat Rev Microbiol 2023:10.1038/s41579-023-00877-3. [PMID: 37095190 DOI: 10.1038/s41579-023-00877-3] [Citation(s) in RCA: 118] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2023] [Indexed: 04/26/2023]
Abstract
Throughout their evolutionary history, bacteria have faced diverse threats from other microorganisms, including competing bacteria, bacteriophages and predators. In response to these threats, they have evolved sophisticated defence mechanisms that today also protect bacteria against antibiotics and other therapies. In this Review, we explore the protective strategies of bacteria, including the mechanisms, evolution and clinical implications of these ancient defences. We also review the countermeasures that attackers have evolved to overcome bacterial defences. We argue that understanding how bacteria defend themselves in nature is important for the development of new therapies and for minimizing resistance evolution.
Collapse
Affiliation(s)
- William P J Smith
- Division of Genomics, Infection and Evolution, University of Manchester, Manchester, UK.
- Department of Biology, University of Oxford, Oxford, UK.
- Department of Biochemistry, University of Oxford, Oxford, UK.
| | - Benjamin R Wucher
- Department of Biological sciences, Dartmouth College, Hanover, NH, USA
| | - Carey D Nadell
- Department of Biological sciences, Dartmouth College, Hanover, NH, USA
| | - Kevin R Foster
- Department of Biology, University of Oxford, Oxford, UK.
- Department of Biochemistry, University of Oxford, Oxford, UK.
| |
Collapse
|
3
|
Escobedo S, Pérez de Pipaon M, Rendueles C, Rodríguez A, Martínez B. Cell wall modifications that alter the exolytic activity of lactococcal phage endolysins have little impact on phage growth. Front Microbiol 2023; 14:1106049. [PMID: 36744092 PMCID: PMC9894900 DOI: 10.3389/fmicb.2023.1106049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/04/2023] [Indexed: 01/22/2023] Open
Abstract
Bacteriophages are a nuisance in the production of fermented dairy products driven by starter bacteria and strategies to reduce the risk of phage infection are permanently sought. Bearing in mind that the bacterial cell wall plays a pivotal role in host recognition and lysis, our goal was to elucidate to which extent modifications in the cell wall may alter endolysin activity and influence the outcome of phage infection in Lactococcus. Three lactococcal endolysins with distinct catalytic domains (CHAP, amidase and lysozyme) from phages 1,358, p2 and c2 respectively, were purified and their exolytic activity was tested against lactococcal mutants either overexpressing or lacking genes involved in the cell envelope stress (CES) response or in modifying peptidoglycan (PG) composition. After recombinant production in E. coli, Lys1358 (CHAP) and LysC2 (muramidase) were able to lyse lactococcal cells in turbidity reduction assays, but no activity of LysP2 was detected. The degree of PG acetylation, namely C6-O-acetylation and de-N-acetylation influenced the exolytic activity, being LysC2 more active against cells depleted of the PG deacetylase PgdA and the O-acetyl transferase OatA. On the contrary, both endolysins showed reduced activity on cells with an induced CES response. By measuring several growth parameters of phage c2 on these lactococcal mutants (lytic score, efficiency of plaquing, plaque size and one-step curves), a direct link between the exolytic activity of its endolysin and phage performance could not be stablished.
Collapse
|
4
|
Ledormand P, Desmasures N, Bernay B, Goux D, Rué O, Midoux C, Monnet C, Dalmasso M. Molecular approaches to uncover phage-lactic acid bacteria interactions in a model community simulating fermented beverages. Food Microbiol 2022; 107:104069. [DOI: 10.1016/j.fm.2022.104069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 04/12/2022] [Accepted: 06/06/2022] [Indexed: 11/24/2022]
|
5
|
Rendueles C, Escobedo S, Rodríguez A, Martínez B. Bacteriocin-phage interaction (BaPI): Phage predation of Lactococcus in the presence of bacteriocins. Microbiologyopen 2022; 11:e1308. [PMID: 36031956 PMCID: PMC9358928 DOI: 10.1002/mbo3.1308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/15/2022] [Accepted: 07/15/2022] [Indexed: 11/13/2022] Open
Abstract
Bacteriophages infecting dairy starter bacteria are a leading cause of milk fermentation failure and strategies to reduce the risk of phage infection in dairy settings are demanded. Along with dairy starters, bacteriocin producers (protective cultures) or the direct addition of bacteriocins as biopreservatives may be applied in food to extend shelf-life. In this work, we have studied the progress of infection of Lactococcus cremoris MG1363 by the phage sk1, in the presence of three bacteriocins with different modes of action: nisin, lactococcin A (LcnA), and lactococcin 972 (Lcn972). We aimed to reveal putative bacteriocin-phage interactions (BaPI) that could be detrimental and increase the risk of fermentation failure due to phages. Based on infections in broth and solid media, a synergistic effect was observed with Lcn972. This positive sk1-Lcn972 interaction could be correlated with an increased burst size. sk1-Lcn972 BaPI occurred independently of a functional SOS and cell envelope stress response but was lost in the absence of the major autolysin AcmA. Furthermore, BaPI was not exclusive to the sk1-Lcn972 pairing and could be observed with other phages and lactococcal strains. Therefore, bacteriocins may facilitate phage predation of dairy lactococci and their use should be carefully evaluated.
Collapse
Affiliation(s)
- Claudia Rendueles
- Department Technology and Biotechnology of Dairy ProductsInstituto de Productos Lácteos de Asturias (IPLA), CSICVillaviciosaAsturiasSpain
| | - Susana Escobedo
- Department Technology and Biotechnology of Dairy ProductsInstituto de Productos Lácteos de Asturias (IPLA), CSICVillaviciosaAsturiasSpain
| | - Ana Rodríguez
- Department Technology and Biotechnology of Dairy ProductsInstituto de Productos Lácteos de Asturias (IPLA), CSICVillaviciosaAsturiasSpain
| | - Beatriz Martínez
- Department Technology and Biotechnology of Dairy ProductsInstituto de Productos Lácteos de Asturias (IPLA), CSICVillaviciosaAsturiasSpain
| |
Collapse
|
6
|
Yuan L, Fan L, Zhao H, Mgomi FC, Ni H, He G. RNA-seq reveals the phage-resistant mechanisms displayed by Lactiplantibacillus plantarum ZJU-1 isolated from Chinese traditional sourdough. Int Dairy J 2022. [DOI: 10.1016/j.idairyj.2021.105286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
7
|
Abstract
Water is the cellular milieu, drives all biochemistry within Earth's biosphere and facilitates microbe-mediated decay processes. Instead of reviewing these topics, the current article focuses on the activities of water as a preservative-its capacity to maintain the long-term integrity and viability of microbial cells-and identifies the mechanisms by which this occurs. Water provides for, and maintains, cellular structures; buffers against thermodynamic extremes, at various scales; can mitigate events that are traumatic to the cell membrane, such as desiccation-rehydration, freeze-thawing and thermal shock; prevents microbial dehydration that can otherwise exacerbate oxidative damage; mitigates against biocidal factors (in some circumstances reducing ultraviolet radiation and diluting solute stressors or toxic substances); and is effective at electrostatic screening so prevents damage to the cell by the intense electrostatic fields of some ions. In addition, the water retained in desiccated cells (historically referred to as 'bound' water) plays key roles in biomacromolecular structures and their interactions even for fully hydrated cells. Assuming that the components of the cell membrane are chemically stable or at least repairable, and the environment is fairly constant, water molecules can apparently maintain membrane geometries over very long periods provided these configurations represent thermodynamically stable states. The spores and vegetative cells of many microbes survive longer in the presence of vapour-phase water (at moderate-to-high relative humidities) than under more-arid conditions. There are several mechanisms by which large bodies of water, when cooled during subzero weather conditions remain in a liquid state thus preventing potentially dangerous (freeze-thaw) transitions for their microbiome. Microbial life can be preserved in pure water, freshwater systems, seawater, brines, ice/permafrost, sugar-rich aqueous milieux and vapour-phase water according to laboratory-based studies carried out over periods of years to decades and some natural environments that have yielded cells that are apparently thousands, or even (for hypersaline fluid inclusions of mineralized NaCl) hundreds of millions, of years old. The term preservative has often been restricted to those substances used to extend the shelf life of foods (e.g. sodium benzoate, nitrites and sulphites) or those used to conserve dead organisms, such as ethanol or formaldehyde. For living microorganisms however, the ultimate preservative may actually be water. Implications of this role are discussed with reference to the ecology of halophiles, human pathogens and other microbes; food science; biotechnology; biosignatures for life and other aspects of astrobiology; and the large-scale release/reactivation of preserved microbes caused by global climate change.
Collapse
Affiliation(s)
- John E. Hallsworth
- Institute for Global Food SecuritySchool of Biological SciencesQueen’s University Belfast19 Chlorine GardensBelfastBT9 5DLUK
| |
Collapse
|
8
|
Malone LM, Hampton HG, Morgan XC, Fineran PC. Type I CRISPR-Cas provides robust immunity but incomplete attenuation of phage-induced cellular stress. Nucleic Acids Res 2021; 50:160-174. [PMID: 34928385 PMCID: PMC8754663 DOI: 10.1093/nar/gkab1210] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/09/2021] [Accepted: 11/23/2021] [Indexed: 11/14/2022] Open
Abstract
During infection, phages manipulate bacteria to redirect metabolism towards viral proliferation. To counteract phages, some bacteria employ CRISPR-Cas systems that provide adaptive immunity. While CRISPR-Cas mechanisms have been studied extensively, their effects on both the phage and the host during phage infection remains poorly understood. Here, we analysed the infection of Serratia by a siphovirus (JS26) and the transcriptomic response with, or without type I-E or I-F CRISPR-Cas immunity. In non-immune Serratia, phage infection altered bacterial metabolism by upregulating anaerobic respiration and amino acid biosynthesis genes, while flagella production was suppressed. Furthermore, phage proliferation required a late-expressed viral Cas4 homologue, which did not influence CRISPR adaptation. While type I-E and I-F immunity provided robust defence against phage infection, phage development still impacted the bacterial host. Moreover, DNA repair and SOS response pathways were upregulated during type I immunity. We also discovered that the type I-F system is controlled by a positive autoregulatory feedback loop that is activated upon phage targeting during type I-F immunity, leading to a controlled anti-phage response. Overall, our results provide new insight into phage-host dynamics and the impact of CRISPR immunity within the infected cell.
Collapse
Affiliation(s)
- Lucia M Malone
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Hannah G Hampton
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Xochitl C Morgan
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Peter C Fineran
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| |
Collapse
|
9
|
Proteomic and Transcriptomic Analysis of Microviridae φX174 Infection Reveals Broad Upregulation of Host Escherichia coli Membrane Damage and Heat Shock Responses. mSystems 2021; 6:6/3/e00046-21. [PMID: 33975962 PMCID: PMC8125068 DOI: 10.1128/msystems.00046-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
A major part of the healthy human gut microbiome is the Microviridae bacteriophage, exemplified by the model φX174 phage, and their E. coli hosts. Although much has been learned from studying φX174 over the last half-century, until this work, the E. coli host response to infection has never been investigated in detail. Measuring host-bacteriophage dynamics is an important approach to understanding bacterial survival functions and responses to infection. The model Microviridae bacteriophage φX174 is endemic to the human gut and has been studied for over 70 years, but the host response to infection has never been investigated in detail. To address this gap in our understanding of this important interaction within our microbiome, we have measured host Escherichia coli C proteomic and transcriptomic response to φX174 infection. We used mass spectrometry and RNA sequencing (RNA-seq) to identify and quantify all 11 φX174 proteins and over 1,700 E. coli proteins, enabling us to comprehensively map host pathways involved in φX174 infection. Most notably, we see significant host responses centered on membrane damage and remodeling, cellular chaperone and translocon activity, and lipoprotein processing, which we speculate is due to the peptidoglycan-disruptive effects of the φX174 lysis protein E on MraY activity. We also observe the massive upregulation of small heat shock proteins IbpA/B, along with other heat shock pathway chaperones, and speculate on how the specific characteristics of holdase protein activity may be beneficial for viral infections. Together, this study enables us to begin to understand the proteomic and transcriptomic host responses of E. coli to Microviridae infections and contributes insights to the activities of this important model host-phage interaction. IMPORTANCE A major part of the healthy human gut microbiome is the Microviridae bacteriophage, exemplified by the model φX174 phage, and their E. coli hosts. Although much has been learned from studying φX174 over the last half-century, until this work, the E. coli host response to infection has never been investigated in detail. We reveal the proteomic and transcriptomic pathways differentially regulated during the φX174 infection cycle and uncover the details of a coordinated cellular response to membrane damage that results in increased lipoprotein processing and membrane trafficking, likely due to the phage antibiotic-like lysis protein. We also reveal that small heat shock proteins IbpA/B are massively upregulated during infection and that these holdase chaperones are highly conserved across the domains of life, indicating that reliance on them is likely widespread across viruses.
Collapse
|
10
|
Isaev AB, Musharova OS, Severinov KV. Microbial Arsenal of Antiviral Defenses - Part I. BIOCHEMISTRY (MOSCOW) 2021; 86:319-337. [PMID: 33838632 DOI: 10.1134/s0006297921030081] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Bacteriophages or phages are viruses that infect bacterial cells (for the scope of this review we will also consider viruses that infect Archaea). Constant threat of phage infection is a major force that shapes evolution of the microbial genomes. To withstand infection, bacteria had evolved numerous strategies to avoid recognition by phages or to directly interfere with phage propagation inside the cell. Classical molecular biology and genetic engineering have been deeply intertwined with the study of phages and host defenses. Nowadays, owing to the rise of phage therapy, broad application of CRISPR-Cas technologies, and development of bioinformatics approaches that facilitate discovery of new systems, phage biology experiences a revival. This review describes variety of strategies employed by microbes to counter phage infection, with a focus on novel systems discovered in recent years. First chapter covers defense associated with cell surface, role of small molecules, and innate immunity systems relying on DNA modification.
Collapse
Affiliation(s)
- Artem B Isaev
- Skolkovo Institute of Science and Technology, Moscow, 143028, Russia.
| | - Olga S Musharova
- Skolkovo Institute of Science and Technology, Moscow, 143028, Russia. .,Institute of Molecular Genetics, Moscow, 119334, Russia
| | - Konstantin V Severinov
- Skolkovo Institute of Science and Technology, Moscow, 143028, Russia. .,Waksman Institute of Microbiology, Piscataway, NJ 08854, USA
| |
Collapse
|
11
|
Martínez B, Rodríguez A, Kulakauskas S, Chapot-Chartier MP. Cell wall homeostasis in lactic acid bacteria: threats and defences. FEMS Microbiol Rev 2021; 44:538-564. [PMID: 32495833 PMCID: PMC7476776 DOI: 10.1093/femsre/fuaa021] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 06/03/2020] [Indexed: 12/16/2022] Open
Abstract
Lactic acid bacteria (LAB) encompasses industrially relevant bacteria involved in food fermentations as well as health-promoting members of our autochthonous microbiota. In the last years, we have witnessed major progresses in the knowledge of the biology of their cell wall, the outermost macrostructure of a Gram-positive cell, which is crucial for survival. Sophisticated biochemical analyses combined with mutation strategies have been applied to unravel biosynthetic routes that sustain the inter- and intra-species cell wall diversity within LAB. Interplay with global cell metabolism has been deciphered that improved our fundamental understanding of the plasticity of the cell wall during growth. The cell wall is also decisive for the antimicrobial activity of many bacteriocins, for bacteriophage infection and for the interactions with the external environment. Therefore, genetic circuits involved in monitoring cell wall damage have been described in LAB, together with a plethora of defence mechanisms that help them to cope with external threats and adapt to harsh conditions. Since the cell wall plays a pivotal role in several technological and health-promoting traits of LAB, we anticipate that this knowledge will pave the way for the future development and extended applications of LAB.
Collapse
Affiliation(s)
- Beatriz Martínez
- DairySafe research group. Department of Technology and Biotechnology of Dairy Products. Instituto de Productos Lácteos de Asturias, IPLA-CSIC. Paseo Río Linares s/n. 33300 Villaviciosa, Spain
| | - Ana Rodríguez
- DairySafe research group. Department of Technology and Biotechnology of Dairy Products. Instituto de Productos Lácteos de Asturias, IPLA-CSIC. Paseo Río Linares s/n. 33300 Villaviciosa, Spain
| | - Saulius Kulakauskas
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | | |
Collapse
|
12
|
van Gijtenbeek LA, Eckhardt TH, Herrera-Domínguez L, Brockmann E, Jensen K, Geppel A, Nielsen KF, Vindeloev J, Neves AR, Oregaard G. Gene-Trait Matching and Prevalence of Nisin Tolerance Systems in Lactococus lactis. Front Bioeng Biotechnol 2021; 9:622835. [PMID: 33748081 PMCID: PMC7965974 DOI: 10.3389/fbioe.2021.622835] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 01/22/2021] [Indexed: 12/13/2022] Open
Abstract
Lactococcus lactis cheese starter cultures typically contain a mix of many strains and may include variants that produce and/or tolerate the antimicrobial bacteriocin nisin. Nisin is well-established as an effective agent against several undesirable Gram-positive bacteria in cheese and various other foods. In the current study, we have examined the effect of nisin on 710 individual L. lactis strains during milk fermentations. Changes in milk acidification profiles with and without nisin exposure, ranging from unaltered acidification to loss of acidification, could be largely explained by the type(s) and variants of nisin immunity and nisin degradation genes present, but surprisingly, also by genotypic lineage (L. lactis ssp. cremoris vs. ssp. lactis). Importantly, we identify that nisin degradation by NSR is frequent among L. lactis and therefore likely the main mechanism by which dairy-associated L. lactis strains tolerate nisin. Insights from this study on the strain-specific effect of nisin tolerance and degradation during milk acidification is expected to aid in the design of nisin-compatible cheese starter cultures.
Collapse
|
13
|
Activation of metabolic and stress responses during subtoxic expression of the type I toxin hok in Erwinia amylovora. BMC Genomics 2021; 22:74. [PMID: 33482720 PMCID: PMC7821729 DOI: 10.1186/s12864-021-07376-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 01/08/2021] [Indexed: 11/15/2022] Open
Abstract
Background Toxin-antitoxin (TA) systems, abundant in prokaryotes, are composed of a toxin gene and its cognate antitoxin. Several toxins are implied to affect the physiological state and stress tolerance of bacteria in a population. We previously identified a chromosomally encoded hok-sok type I TA system in Erwinia amylovora, the causative agent of fire blight disease on pome fruit trees. A high-level induction of the hok gene was lethal to E. amylovora cells through unknown mechanisms. The molecular targets or regulatory roles of Hok were unknown. Results Here, we examined the physiological and transcriptomic changes of Erwinia amylovora cells expressing hok at subtoxic levels that were confirmed to confer no cell death, and at toxic levels that resulted in killing of cells. In both conditions, hok caused membrane rupture and collapse of the proton motive force in a subpopulation of E. amylovora cells. We demonstrated that induction of hok resulted in upregulation of ATP biosynthesis genes, and caused leakage of ATP from cells only at toxic levels. We showed that overexpression of the phage shock protein gene pspA largely reversed the cell death phenotype caused by high levels of hok induction. We also showed that induction of hok at a subtoxic level rendered a greater proportion of stationary phase E. amylovora cells tolerant to the antibiotic streptomycin. Conclusions We characterized the molecular mechanism of toxicity by high-level of hok induction and demonstrated that low-level expression of hok primes the stress responses of E. amylovora against further membrane and antibiotic stressors. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07376-w.
Collapse
|
14
|
Maturation of Pseudo-Nucleus Compartment in P. aeruginosa, Infected with Giant phiKZ Phage. Viruses 2020; 12:v12101197. [PMID: 33096802 PMCID: PMC7589130 DOI: 10.3390/v12101197] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/19/2020] [Accepted: 10/19/2020] [Indexed: 12/25/2022] Open
Abstract
The giant phiKZ phage infection induces the appearance of a pseudo-nucleus inside the bacterial cytoplasm. Here, we used RT-PCR, fluorescent in situ hybridization (FISH), electron tomography, and analytical electron microscopy to study the morphology of this unique nucleus-like shell and to demonstrate the distribution of phiKZ and bacterial DNA in infected Pseudomonas aeruginosa cells. The maturation of the pseudo-nucleus was traced in short intervals for 40 min after infection and revealed the continuous spatial separation of the phage and host DNA. Immediately after ejection, phage DNA was located inside the newly-identified round compartments; at a later infection stage, it was replicated inside the pseudo-nucleus; in the mature pseudo-nucleus, a saturated internal network of filaments was observed. This network consisted of DNA bundles in complex with DNA-binding proteins. On the other hand, the bacterial nucleoid underwent significant rearrangements during phage infection, yet the host DNA did not completely degrade until at least 40 min after phage application. Energy dispersive x-ray spectroscopy (EDX) analysis revealed that, during the infection, the sulfur content in the bacterial cytoplasm increased, which suggests an increase of methionine-rich DNA-binding protein synthesis, whose role is to protect the bacterial DNA from stress caused by infection.
Collapse
|
15
|
Lood C, Danis‐Wlodarczyk K, Blasdel BG, Jang HB, Vandenheuvel D, Briers Y, Noben J, van Noort V, Drulis‐Kawa Z, Lavigne R. Integrative omics analysis of Pseudomonas aeruginosa virus PA5oct highlights the molecular complexity of jumbo phages. Environ Microbiol 2020; 22:2165-2181. [PMID: 32154616 PMCID: PMC7318152 DOI: 10.1111/1462-2920.14979] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 03/06/2020] [Indexed: 11/28/2022]
Abstract
Pseudomonas virus vB_PaeM_PA5oct is proposed as a model jumbo bacteriophage to investigate phage-bacteria interactions and is a candidate for phage therapy applications. Combining hybrid sequencing, RNA-Seq and mass spectrometry allowed us to accurately annotate its 286,783 bp genome with 461 coding regions including four non-coding RNAs (ncRNAs) and 93 virion-associated proteins. PA5oct relies on the host RNA polymerase for the infection cycle and RNA-Seq revealed a gradual take-over of the total cell transcriptome from 21% in early infection to 93% in late infection. PA5oct is not organized into strictly contiguous regions of temporal transcription, but some genomic regions transcribed in early, middle and late phases of infection can be discriminated. Interestingly, we observe regions showing limited transcription activity throughout the infection cycle. We show that PA5oct upregulates specific bacterial operons during infection including operons pncA-pncB1-nadE involved in NAD biosynthesis, psl for exopolysaccharide biosynthesis and nap for periplasmic nitrate reductase production. We also observe a downregulation of T4P gene products suggesting mechanisms of superinfection exclusion. We used the proteome of PA5oct to position our isolate amongst other phages using a gene-sharing network. This integrative omics study illustrates the molecular diversity of jumbo viruses and raises new questions towards cellular regulation and phage-encoded hijacking mechanisms.
Collapse
Affiliation(s)
- Cédric Lood
- Department of Biosystems, Laboratory of Gene Technology, KU LeuvenLeuvenBelgium
- Department of Microbial and Molecular Systems, Laboratory of Computational Systems Biology, KU LeuvenLeuvenBelgium
| | - Katarzyna Danis‐Wlodarczyk
- Department of Biosystems, Laboratory of Gene Technology, KU LeuvenLeuvenBelgium
- Department of Pathogen Biology and ImmunologyInstitute of Genetics and Microbiology, University of WroclawWroclawPoland
| | - Bob G. Blasdel
- Department of Biosystems, Laboratory of Gene Technology, KU LeuvenLeuvenBelgium
| | - Ho Bin Jang
- Department of Biosystems, Laboratory of Gene Technology, KU LeuvenLeuvenBelgium
| | - Dieter Vandenheuvel
- Department of Biosystems, Laboratory of Gene Technology, KU LeuvenLeuvenBelgium
| | - Yves Briers
- Department of Biosystems, Laboratory of Gene Technology, KU LeuvenLeuvenBelgium
| | - Jean‐Paul Noben
- Biomedical Research Institute and Transnational University LimburgHasselt UniversityDiepenbeekBelgium
| | - Vera van Noort
- Department of Microbial and Molecular Systems, Laboratory of Computational Systems Biology, KU LeuvenLeuvenBelgium
- Institute of Biology, Leiden UniversityLeidenThe Netherlands
| | - Zuzanna Drulis‐Kawa
- Department of Pathogen Biology and ImmunologyInstitute of Genetics and Microbiology, University of WroclawWroclawPoland
| | - Rob Lavigne
- Department of Biosystems, Laboratory of Gene Technology, KU LeuvenLeuvenBelgium
| |
Collapse
|
16
|
Isolation and Characterization of the Novel Phage JD032 and Global Transcriptomic Response during JD032 Infection of Clostridioides difficile Ribotype 078. mSystems 2020; 5:5/3/e00017-20. [PMID: 32371470 PMCID: PMC7205517 DOI: 10.1128/msystems.00017-20] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
C. difficile is one of the most clinically significant intestinal pathogens. Although phages have been shown to effectively control C. difficile infection, the host responses to phage predation have not been fully studied. In this study, we reported the isolation and characterization of a new phage, JD032, and analyzed the global transcriptomic changes in the hypervirulent RT078 C. difficile strain, TW11, during phage JD032 infection. We found that bacterial host mRNA was progressively replaced with phage transcripts, three temporal categories of JD032 gene expression, the extensive interplay between phage-bacterium, antiphage-like responses of the host and phage evasion, and decreased expression of sporulation- and virulence-related genes of the host after phage infection. These findings confirmed the complexity of interactions between C. difficile and phages and suggest that phages undergoing a lytic cycle may also cause different phenotypes in hosts, similar to prophages, which may inspire phage therapy for the control of C. difficile. Insights into the interaction between phages and their bacterial hosts are crucial for the development of phage therapy. However, only one study has investigated global gene expression of Clostridioides (formerly Clostridium) difficile carrying prophage, and transcriptional reprogramming during lytic infection has not been studied. Here, we presented the isolation, propagation, and characterization of a newly discovered 35,109-bp phage, JD032, and investigated the global transcriptomes of both JD032 and C. difficile ribotype 078 (RT078) strain TW11 during JD032 infection. Transcriptome sequencing (RNA-seq) revealed the progressive replacement of bacterial host mRNA with phage transcripts. The expressed genes of JD032 were clustered into early, middle, and late temporal categories that were functionally similar. Specifically, a gene (JD032_orf016) involved in the lysis-lysogeny decision was identified as an early expression gene. Only 17.7% (668/3,781) of the host genes were differentially expressed, and more genes were downregulated than upregulated. The expression of genes involved in host macromolecular synthesis (DNA/RNA/proteins) was altered by JD032 at the level of transcription. In particular, the expression of the ropA operon was downregulated. Most noteworthy is that the gene expression of some antiphage systems, including CRISPR-Cas, restriction-modification, and toxin-antitoxin systems, was suppressed by JD032 during infection. In addition, bacterial sporulation, adhesion, and virulence factor genes were significantly downregulated. This study provides the first description of the interaction between anaerobic spore-forming bacteria and phages during lytic infection and highlights new aspects of C. difficile phage-host interactions. IMPORTANCEC. difficile is one of the most clinically significant intestinal pathogens. Although phages have been shown to effectively control C. difficile infection, the host responses to phage predation have not been fully studied. In this study, we reported the isolation and characterization of a new phage, JD032, and analyzed the global transcriptomic changes in the hypervirulent RT078 C. difficile strain, TW11, during phage JD032 infection. We found that bacterial host mRNA was progressively replaced with phage transcripts, three temporal categories of JD032 gene expression, the extensive interplay between phage-bacterium, antiphage-like responses of the host and phage evasion, and decreased expression of sporulation- and virulence-related genes of the host after phage infection. These findings confirmed the complexity of interactions between C. difficile and phages and suggest that phages undergoing a lytic cycle may also cause different phenotypes in hosts, similar to prophages, which may inspire phage therapy for the control of C. difficile.
Collapse
|
17
|
Zhang C, Gui Y, Chen X, Chen D, Guan C, Yin B, Pan Z, Gu R. Transcriptional homogenization of Lactobacillus rhamnosus hsryfm 1301 under heat stress and oxidative stress. Appl Microbiol Biotechnol 2020; 104:2611-2621. [DOI: 10.1007/s00253-020-10407-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 01/10/2020] [Accepted: 01/23/2020] [Indexed: 01/29/2023]
|
18
|
Caflisch KM, Suh GA, Patel R. Biological challenges of phage therapy and proposed solutions: a literature review. Expert Rev Anti Infect Ther 2019; 17:1011-1041. [PMID: 31735090 DOI: 10.1080/14787210.2019.1694905] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Introduction: In light of the emergence of antibiotic-resistant bacteria, phage (bacteriophage) therapy has been recognized as a potential alternative or addition to antibiotics in Western medicine for use in humans.Areas covered: This review assessed the scientific literature on phage therapy published between 1 January 2007 and 21 October 2019, with a focus on the successes and challenges of this prospective therapeutic.Expert opinion: Efficacy has been shown in animal models and experimental findings suggest promise for the safety of human phagotherapy. Significant challenges remain to be addressed prior to the standardization of phage therapy in the West, including the development of phage-resistant bacteria; the pharmacokinetic complexities of phage; and any potential human immune response incited by phagotherapy.
Collapse
Affiliation(s)
- Katherine M Caflisch
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Gina A Suh
- Division of Infectious Diseases, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Robin Patel
- Division of Infectious Diseases, Department of Medicine, Mayo Clinic, Rochester, MN, USA.,Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
19
|
García-Torrico AI, Guijarro JA, Cascales D, Méndez J. Changes in physiology and virulence during the selection of resistant Yersinia ruckeri mutants under subinhibitory cefotaxime concentrations. JOURNAL OF FISH DISEASES 2019; 42:1687-1696. [PMID: 31617230 DOI: 10.1111/jfd.13086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/24/2019] [Accepted: 08/26/2019] [Indexed: 06/10/2023]
Abstract
Bacterial antibiotic resistance is one of the main healthcare problems currently. Apart from reducing antibiotic efficacy, it has awakened the interest of scientists due to its association with bacterial fitness and virulence. Interestingly, antibiotic resistance can be a source of both increased fitness and decreased fitness, even though the molecular basis of these relationships remains unknown. The aim of this work is to define the effects of sub-MIC concentrations of cefotaxime, an antibiotic extensively used in clinical practice, on the physiology and virulence of Yersinia ruckeri and to determine the importance of these sub-MIC concentrations for the selection of antibiotic-resistant mutants in the aquatic environment. Results indicated that exposure to sub-MIC concentrations of cefotaxime selected Y. ruckeri populations with irreversible alterations in the physiology, such as slow growth, aggregation in liquid cultures and modification of the colony morphology. These bacteria also displayed changes in the OMPs and LPS profiles and a full attenuation of virulence. An overexpression of the envelope stress regulator RpoE was also detected after exposure to the antibiotic. In conclusion, exposure to cefotaxime selected, at high frequency, Y. ruckeri strains that survive the antibiotic stress at the expense of a fitness cost and the loss of virulence.
Collapse
Affiliation(s)
- Ana Isabel García-Torrico
- Área de Microbiología, Departamento de Biología Funcional, Facultad de Medicina, IUBA, Universidad de Oviedo, Oviedo, Spain
| | - José A Guijarro
- Área de Microbiología, Departamento de Biología Funcional, Facultad de Medicina, IUBA, Universidad de Oviedo, Oviedo, Spain
| | - Desirée Cascales
- Área de Microbiología, Departamento de Biología Funcional, Facultad de Medicina, IUBA, Universidad de Oviedo, Oviedo, Spain
| | - Jessica Méndez
- Área de Microbiología, Departamento de Biología Funcional, Facultad de Medicina, IUBA, Universidad de Oviedo, Oviedo, Spain
| |
Collapse
|
20
|
Hermansen GMM, Sazinas P, Kofod D, Millard A, Andersen PS, Jelsbak L. Transcriptomic profiling of interacting nasal staphylococci species reveals global changes in gene and non-coding RNA expression. FEMS Microbiol Lett 2019; 365:4794939. [PMID: 29325106 DOI: 10.1093/femsle/fny004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 01/08/2018] [Indexed: 12/14/2022] Open
Abstract
Interspecies interactions between bacterial pathogens and the commensal microbiota can influence disease outcome. In the nasal cavities, Staphylococcus epidermidis has been shown to be a determining factor for Staphylococcus aureus colonization and biofilm formation. However, the interaction between S. epidermidis and S. aureus has mainly been described by phenotypic analysis, and little is known about how this interaction modulates gene expression. This study aimed to determine the interactome of nasal S. aureus and S. epidermidis isolates to understand the molecular effect of interaction. After whole-genome sequencing of two nasal staphylococcal isolates, an agar-based RNA sequencing setup was utilized to identify interaction-induced transcriptional alterations in surface-associated populations. Our results revealed differential expression of several virulence genes in both species. We also identified putative non-coding RNAs (ncRNAs) and, interestingly, detected a putative ncRNA transcribed antisense to esp, the serine protease of S. epidermidis, that has previously been shown to inhibit nasal colonization of S. aureus. In our study, the gene encoding Esp and the antisense ncRNA are both downregulated during interaction with S. aureus. Our findings contribute to a better understanding of pathogen physiology in the context of interactions with the commensal microbiota, and may provide targets for future therapeutics.
Collapse
Affiliation(s)
- Grith M M Hermansen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs Lyngby, Denmark
| | - Pavelas Sazinas
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs Lyngby, Denmark
| | - Ditte Kofod
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs Lyngby, Denmark
| | - Andrew Millard
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester LE1 7RH, UK
| | - Paal Skytt Andersen
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Lars Jelsbak
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs Lyngby, Denmark
| |
Collapse
|
21
|
Methylation Warfare: Interaction of Pneumococcal Bacteriophages with Their Host. J Bacteriol 2019; 201:JB.00370-19. [PMID: 31285240 PMCID: PMC6755750 DOI: 10.1128/jb.00370-19] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 07/01/2019] [Indexed: 12/15/2022] Open
Abstract
With antimicrobial drug resistance becoming an increasing burden on human health, much attention has been focused on the potential use of bacteriophages and their enzymes as therapeutics. However, the investigations into the physiology of the complex interactions of bacteriophages with their hosts have attracted far less attention, in comparison. This work describes the molecular characterization of the infectious cycle of a bacteriophage in the important human pathogen Streptococcus pneumoniae and explores the intricate relationship between phase-variable host defense mechanisms and the virus. This is the first report showing how a phase-variable type I restriction-modification system is involved in bacteriophage restriction while it also provides an additional level of infection control through abortive infection. Virus-host interactions are regulated by complex coevolutionary dynamics. In Streptococcus pneumoniae, phase-variable type I restriction-modification (R-M) systems are part of the core genome. We hypothesized that the ability of the R-M systems to switch between six target DNA specificities also has a key role in preventing the spread of bacteriophages. Using the streptococcal temperate bacteriophage SpSL1, we show that the variants of both the SpnIII and SpnIV R-M systems are able to restrict invading bacteriophage with an efficiency approximately proportional to the number of target sites in the bacteriophage genome. In addition to restriction of lytic replication, SpnIII also led to abortive infection in the majority of host cells. During lytic infection, transcriptional analysis found evidence of phage-host interaction through the strong upregulation of the nrdR nucleotide biosynthesis regulon. During lysogeny, the phage had less of an effect on host gene regulation. This research demonstrates a novel combined bacteriophage restriction and abortive infection mechanism, highlighting the importance that the phase-variable type I R-M systems have in the multifunctional defense against bacteriophage infection in the respiratory pathogen S. pneumoniae. IMPORTANCE With antimicrobial drug resistance becoming an increasing burden on human health, much attention has been focused on the potential use of bacteriophages and their enzymes as therapeutics. However, the investigations into the physiology of the complex interactions of bacteriophages with their hosts have attracted far less attention, in comparison. This work describes the molecular characterization of the infectious cycle of a bacteriophage in the important human pathogen Streptococcus pneumoniae and explores the intricate relationship between phase-variable host defense mechanisms and the virus. This is the first report showing how a phase-variable type I restriction-modification system is involved in bacteriophage restriction while it also provides an additional level of infection control through abortive infection.
Collapse
|
22
|
Lemay ML, Otto A, Maaß S, Plate K, Becher D, Moineau S. Investigating Lactococcus lactis MG1363 Response to Phage p2 Infection at the Proteome Level. Mol Cell Proteomics 2019; 18:704-714. [PMID: 30679258 PMCID: PMC6442364 DOI: 10.1074/mcp.ra118.001135] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 12/08/2018] [Indexed: 01/03/2023] Open
Abstract
Phages are viruses that specifically infect and eventually kill their bacterial hosts. Bacterial fermentation and biotechnology industries see them as enemies, however, they are also investigated as antibacterial agents for the treatment or prevention of bacterial infections in various sectors. They also play key ecological roles in all ecosystems. Despite decades of research some aspects of phage biology are still poorly understood. In this study, we used label-free quantitative proteomics to reveal the proteotypes of Lactococcus lactis MG1363 during infection by the virulent phage p2, a model for studying the biology of phages infecting Gram-positive bacteria. Our approach resulted in the high-confidence detection and quantification of 59% of the theoretical bacterial proteome, including 226 bacterial proteins detected only during phage infection and 6 proteins unique to uninfected bacteria. We also identified many bacterial proteins of differing abundance during the infection. Using this high-throughput proteomic datasets, we selected specific bacterial genes for inactivation using CRISPR-Cas9 to investigate their involvement in phage replication. One knockout mutant lacking gene llmg_0219 showed resistance to phage p2 because of a deficiency in phage adsorption. Furthermore, we detected and quantified 78% of the theoretical phage proteome and identified many proteins of phage p2 that had not been previously detected. Among others, we uncovered a conserved small phage protein (pORFN1) coded by an unannotated gene. We also applied a targeted approach to achieve greater sensitivity and identify undetected phage proteins that were expected to be present. This allowed us to follow the fate of pORF46, a small phage protein of low abundance. In summary, this work offers a unique view of the virulent phages' takeover of bacterial cells and provides novel information on phage-host interactions.
Collapse
Affiliation(s)
- Marie-Laurence Lemay
- From the ‡Département de biochimie, de microbiologie, et de bio-informatique, Faculté des sciences et de génie, Université Laval, Québec City, QC, G1V 0A6, Canada;; §Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, Québec City, QC, G1V 0A6, Canada;; Félix d'Hérelle Reference Center for Bacterial Viruses, Faculté de médecine dentaire, Université Laval, Québec City, QC, G1V 0A6, Canada
| | - Andreas Otto
- ¶Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Sandra Maaß
- ¶Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Kristina Plate
- ¶Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Dörte Becher
- ¶Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Sylvain Moineau
- From the ‡Département de biochimie, de microbiologie, et de bio-informatique, Faculté des sciences et de génie, Université Laval, Québec City, QC, G1V 0A6, Canada;; §Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, Québec City, QC, G1V 0A6, Canada;; Félix d'Hérelle Reference Center for Bacterial Viruses, Faculté de médecine dentaire, Université Laval, Québec City, QC, G1V 0A6, Canada.
| |
Collapse
|
23
|
Howard-Varona C, Hargreaves KR, Solonenko NE, Markillie LM, White RA, Brewer HM, Ansong C, Orr G, Adkins JN, Sullivan MB. Multiple mechanisms drive phage infection efficiency in nearly identical hosts. THE ISME JOURNAL 2018; 12:1605-1618. [PMID: 29568113 PMCID: PMC5955906 DOI: 10.1038/s41396-018-0099-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 01/08/2018] [Accepted: 02/20/2018] [Indexed: 12/15/2022]
Abstract
Phage-host interactions are critical to ecology, evolution, and biotechnology. Central to those is infection efficiency, which remains poorly understood, particularly in nature. Here we apply genome-wide transcriptomics and proteomics to investigate infection efficiency in nature's own experiment: two nearly identical (genetically and physiologically) Bacteroidetes bacterial strains (host18 and host38) that are genetically intractable, but environmentally important, where phage infection efficiency varies. On host18, specialist phage phi18:3 infects efficiently, whereas generalist phi38:1 infects inefficiently. On host38, only phi38:1 infects, and efficiently. Overall, phi18:3 globally repressed host18's transcriptome and proteome, expressed genes that likely evaded host restriction/modification (R/M) defenses and controlled its metabolism, and synchronized phage transcription with translation. In contrast, phi38:1 failed to repress host18's transcriptome and proteome, did not evade host R/M defenses or express genes for metabolism control, did not synchronize transcripts with proteins and its protein abundances were likely targeted by host proteases. However, on host38, phi38:1 globally repressed host transcriptome and proteome, synchronized phage transcription with translation, and infected host38 efficiently. Together these findings reveal multiple infection inefficiencies. While this contrasts the single mechanisms often revealed in laboratory mutant studies, it likely better reflects the phage-host interaction dynamics that occur in nature.
Collapse
Affiliation(s)
| | | | | | - Lye Meng Markillie
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory (PNNL), Richland, WA, USA
| | | | - Heather M Brewer
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory (PNNL), Richland, WA, USA
| | | | - Galya Orr
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory (PNNL), Richland, WA, USA
| | | | - Matthew B Sullivan
- Department of Microbiology, The Ohio State University, Columbus, OH, USA.
- Department of Civil, Environmental and Geodetic Engineering, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
24
|
Regulatory protein SrpA controls phage infection and core cellular processes in Pseudomonas aeruginosa. Nat Commun 2018; 9:1846. [PMID: 29748556 PMCID: PMC5945682 DOI: 10.1038/s41467-018-04232-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 04/16/2018] [Indexed: 02/06/2023] Open
Abstract
Our understanding of the molecular mechanisms behind bacteria-phage interactions remains limited. Here we report that a small protein, SrpA, controls core cellular processes in response to phage infection and environmental signals in Pseudomonas aeruginosa. We show that SrpA is essential for efficient genome replication of phage K5, and controls transcription by binding to a palindromic sequence upstream of the phage RNA polymerase gene. We identify potential SrpA-binding sites in 66 promoter regions across the P. aeruginosa genome, and experimentally validate direct binding of SrpA to some of these sites. Using transcriptomics and further experiments, we show that SrpA, directly or indirectly, regulates many cellular processes including cell motility, chemotaxis, biofilm formation, pyocyanin synthesis and protein secretion, as well as virulence in a Caenorhabditis elegans model of infection. Further research on SrpA and similar proteins, which are widely present in many other bacteria, is warranted. You et al. show that SrpA, a small protein widely conserved among bacteria, controls core cellular processes in response to phage infection and environmental signals in Pseudomonas aeruginosa, including cell motility, chemotaxis, biofilm formation, and virulence.
Collapse
|
25
|
Fernández L, Rodríguez A, García P. Phage or foe: an insight into the impact of viral predation on microbial communities. THE ISME JOURNAL 2018; 12:1171-1179. [PMID: 29371652 PMCID: PMC5932045 DOI: 10.1038/s41396-018-0049-5] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 10/24/2017] [Accepted: 12/21/2017] [Indexed: 12/14/2022]
Abstract
Since their discovery, bacteriophages have been traditionally regarded as the natural enemies of bacteria. However, recent advances in molecular biology techniques, especially data from "omics" analyses, have revealed that the interplay between bacterial viruses and their hosts is far more intricate than initially thought. On the one hand, we have become more aware of the impact of viral predation on the composition and genetic makeup of microbial communities thanks to genomic and metagenomic approaches. Moreover, data obtained from transcriptomic, proteomic, and metabolomic studies have shown that responses to phage predation are complex and diverse, varying greatly depending on the bacterial host, phage, and multiplicity of infection. Interestingly, phage exposure may alter different phenotypes, including virulence and biofilm formation. The complexity of the interactions between microbes and their viral predators is also evidenced by the link between quorum-sensing signaling pathways and bacteriophage resistance. Overall, new data increasingly suggests that both temperate and virulent phages have a positive effect on the evolution and adaptation of microbial populations. From this perspective, further research is still necessary to fully understand the interactions between phage and host under conditions that allow co-existence of both populations, reflecting more accurately the dynamics in natural microbial communities.
Collapse
Affiliation(s)
- Lucía Fernández
- Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Paseo Río Linares s/n, 33300, Villaviciosa, Asturias, Spain.
| | - Ana Rodríguez
- Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Paseo Río Linares s/n, 33300, Villaviciosa, Asturias, Spain
| | - Pilar García
- Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Paseo Río Linares s/n, 33300, Villaviciosa, Asturias, Spain
| |
Collapse
|
26
|
da Silva Duarte V, Dias RS, Kropinski AM, da Silva Xavier A, Ferro CG, Vidigal PMP, da Silva CC, de Paula SO. A T4virus prevents biofilm formation by Trueperella pyogenes. Vet Microbiol 2018; 218:45-51. [PMID: 29685220 DOI: 10.1016/j.vetmic.2018.03.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 02/02/2018] [Accepted: 03/19/2018] [Indexed: 01/01/2023]
Abstract
Trueperella pyogenes is an opportunistic pathogen of many animal species. It causes economic losses worldwide, through mastitis, metritis and mainly endometritis in dairy cows. The ability of this bacterium to form biofilms is implicated in chronic infections through hampering immune system recognition and antibiotic penetration. Since it is difficult to eradicate T. pyogenes infections with antibiotics, phage therapy presents itself as a non-toxic, effective and economically viable alternative. The present study evaluated the use of the bacteriophage vB_EcoM-UFV13 (UFV13) in the prevention of T. pyogenes biofilm development. Based upon two different approaches (crystal violet and sessile cell counting) we observed that only a multiplicity of infection (MOI) of 10 showed a statistically significant reduction in biofilm formation. Although the exact mechanisms of biofilm disruption and cell-adhesion inhibition have not been determined, genome sequence analysis of the Escherichia phage UFV13 revealed a repertoire of virion-associated peptidoglycan hydrolases (VAPGHs). The present study presents new findings regarding the disruption of biofilm formation of a Gram-positive bacterium. Subsequent transcriptomic and proteomic research will help us to understand the exact interaction mechanisms between UFV13 and T. pyogenes.
Collapse
Affiliation(s)
- Vinícius da Silva Duarte
- Department of Microbiology, Federal University of Viçosa, Av. Peter Henry Rolfs, s/n, Campus Universitário, 36570-900, Viçosa, Minas Gerais, Brazil.
| | - Roberto Sousa Dias
- Department of Microbiology, Federal University of Viçosa, Av. Peter Henry Rolfs, s/n, Campus Universitário, 36570-900, Viçosa, Minas Gerais, Brazil.
| | - Andrew M Kropinski
- Departments of Food Science, and Pathobiology, University of Guelph, Guelph, Ontario N1G 2W1 Canada.
| | | | - Camila Geovana Ferro
- Department of Plant Pathology, Federal University of Viçosa, Av. Peter Henry Rolfs, s/n, Campus Universitário, 36570-900, Viçosa, Minas Gerais, Brazil.
| | - Pedro M P Vidigal
- Núcleo de Análise de Biomoléculas (NuBioMol), Center of Biological Sciences, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil.
| | - Cynthia Canedo da Silva
- Department of Microbiology, Federal University of Viçosa, Av. Peter Henry Rolfs, s/n, Campus Universitário, 36570-900, Viçosa, Minas Gerais, Brazil.
| | - Sérgio Oliveira de Paula
- Department of General Biology, Federal University of Viçosa, Av. Peter Henry Rolfs, s/n, Campus Universitário, 36570-900, Viçosa, Minas Gerais, Brazil.
| |
Collapse
|
27
|
Transcription Profiling of Bacillus subtilis Cells Infected with AR9, a Giant Phage Encoding Two Multisubunit RNA Polymerases. mBio 2017; 8:mBio.02041-16. [PMID: 28196958 PMCID: PMC5312081 DOI: 10.1128/mbio.02041-16] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Bacteriophage AR9 is a recently sequenced jumbo phage that encodes two multisubunit RNA polymerases. Here we investigated the AR9 transcription strategy and the effect of AR9 infection on the transcription of its host, Bacillus subtilis. Analysis of whole-genome transcription revealed early, late, and continuously expressed AR9 genes. Alignment of sequences upstream of the 5′ ends of AR9 transcripts revealed consensus sequences that define early and late phage promoters. Continuously expressed AR9 genes have both early and late promoters in front of them. Early AR9 transcription is independent of protein synthesis and must be determined by virion RNA polymerase injected together with viral DNA. During infection, the overall amount of host mRNAs is significantly decreased. Analysis of relative amounts of host transcripts revealed notable differences in the levels of some mRNAs. The physiological significance of up- or downregulation of host genes for AR9 phage infection remains to be established. AR9 infection is significantly affected by rifampin, an inhibitor of host RNA polymerase transcription. The effect is likely caused by the antibiotic-induced killing of host cells, while phage genome transcription is solely performed by viral RNA polymerases. Phages regulate the timing of the expression of their own genes to coordinate processes in the infected cell and maximize the release of viral progeny. Phages also alter the levels of host transcripts. Here we present the results of a temporal analysis of the host and viral transcriptomes of Bacillus subtilis infected with a giant phage, AR9. We identify viral promoters recognized by two virus-encoded RNA polymerases that are a unique feature of the phiKZ-related group of phages to which AR9 belongs. Our results set the stage for future analyses of highly unusual RNA polymerases encoded by AR9 and other phiKZ-related phages.
Collapse
|
28
|
Low-level predation by lytic phage phiIPLA-RODI promotes biofilm formation and triggers the stringent response in Staphylococcus aureus. Sci Rep 2017; 7:40965. [PMID: 28102347 PMCID: PMC5244418 DOI: 10.1038/srep40965] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 12/13/2016] [Indexed: 12/25/2022] Open
Abstract
An important lesson from the war on pathogenic bacteria has been the need to understand the physiological responses and evolution of natural microbial communities. Bacterial populations in the environment are generally forming biofilms subject to some level of phage predation. These multicellular communities are notoriously resistant to antimicrobials and, consequently, very difficult to eradicate. This has sparked the search for new therapeutic alternatives, including phage therapy. This study demonstrates that S. aureus biofilms formed in the presence of a non-lethal dose of phage phiIPLA-RODI exhibit a unique physiological state that could potentially benefit both the host and the predator. Thus, biofilms formed under phage pressure are thicker and have a greater DNA content. Also, the virus-infected biofilm displayed major transcriptional differences compared to an untreated control. Significantly, RNA-seq data revealed activation of the stringent response, which could slow down the advance of the bacteriophage within the biofilm. The end result would be an equilibrium that would help bacterial cells to withstand environmental challenges, while maintaining a reservoir of sensitive bacterial cells available to the phage upon reactivation of the dormant carrier population.
Collapse
|
29
|
Howard-Varona C, Roux S, Dore H, Solonenko NE, Holmfeldt K, Markillie LM, Orr G, Sullivan MB. Regulation of infection efficiency in a globally abundant marine Bacteriodetes virus. THE ISME JOURNAL 2017; 11:284-295. [PMID: 27187794 PMCID: PMC5335546 DOI: 10.1038/ismej.2016.81] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 03/29/2016] [Accepted: 04/03/2016] [Indexed: 12/19/2022]
Abstract
Bacteria impact humans, industry and nature, but do so under viral constraints. Problematically, knowledge of viral infection efficiencies and outcomes derives from few model systems that over-represent efficient lytic infections and under-represent virus-host natural diversity. Here we sought to understand infection efficiency regulation in an emerging environmental Bacteroidetes-virus model system with markedly different outcomes on two genetically and physiologically nearly identical host strains. For this, we quantified bacterial virus (phage) and host DNA, transcripts and phage particles throughout both infections. While phage transcriptomes were similar, transcriptional differences between hosts suggested host-derived regulation of infection efficiency. Specifically, the alternative host overexpressed DNA degradation genes and underexpressed translation genes, which seemingly targeted phage DNA particle production, as experiments revealed they were both significantly delayed (by >30 min) and reduced (by >50%) in the inefficient infection. This suggests phage failure to repress early alternative host expression and stress response allowed the host to respond against infection by delaying phage DNA replication and protein translation. Given that this phage type is ubiquitous and abundant in the global oceans and that variable viral infection efficiencies are central to dynamic ecosystems, these data provide a critically needed foundation for understanding and modeling viral infections in nature.
Collapse
Affiliation(s)
| | - Simon Roux
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
| | - Hugo Dore
- Département de biologie, ENS Lyon, Lyon, France
| | - Natalie E Solonenko
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
| | - Karin Holmfeldt
- School of Natural Sciences, Linnaeus University, Kalmar, Sweden
| | - Lye M Markillie
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory (PNNL), Richland, WA, USA
| | - Galya Orr
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory (PNNL), Richland, WA, USA
| | - Matthew B Sullivan
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, USA
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
30
|
Tang-Siegel G, Bumgarner R, Ruiz T, Kittichotirat W, Chen W, Chen C. Human Serum-Specific Activation of Alternative Sigma Factors, the Stress Responders in Aggregatibacter actinomycetemcomitans. PLoS One 2016; 11:e0160018. [PMID: 27490177 PMCID: PMC4973924 DOI: 10.1371/journal.pone.0160018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 07/12/2016] [Indexed: 01/08/2023] Open
Abstract
Aggregatibacter actinomycetemcomitans, a known pathogen causing periodontal disease and infective endocarditis, is a survivor in the periodontal pocket and blood stream; both environments contain serum as a nutrient source. To screen for unknown virulence factors associated with this microorganism, A. actinomycetemcomitans was grown in serum-based media to simulate its in vivo environment. Different strains of A. actinomycetemcomitans showed distinct growth phenotypes only in the presence of human serum, and they were grouped into high- and low-responder groups. High-responders comprised mainly serotype c strains, and showed an unusual growth phenomenon, featuring a second, rapid increase in turbidity after 9-h incubation that reached a final optical density 2- to 7-fold higher than low-responders. Upon further investigation, the second increase in turbidity was not caused by cell multiplication, but by cell death. Whole transcriptomic analysis via RNA-seq identified 35 genes that were up-regulated by human serum, but not horse serum, in high-responders but not in low-responders, including prominently an alternative sigma factor rpoE (σE). A lacZ reporter construct driven by the 132-bp rpoE promoter sequence of A. actinomycetemcomitans responded dramatically to human serum within 90 min of incubation only when the construct was carried by a high responder strain. The rpoE promoter is 100% identical among high- and low-responder strains. Proteomic investigation showed potential interactions between human serum protein, e.g. apolipoprotein A1 (ApoA1) and A. actinomycetemcomitans. The data clearly indicated a different activation process for rpoE in high- versus low-responder strains. This differential human serum-specific activation of rpoE, a putative extra-cytoplasmic stress responder and global regulator, suggests distinct in vivo adaptations among different strains of A. actinomycetemcomitans.
Collapse
Affiliation(s)
- Gaoyan Tang-Siegel
- Department of Molecular Physiology and Biophysics, College of Medicine, University of Vermont, Burlington, VT, United States of America
| | - Roger Bumgarner
- Department of Microbiology, University of Washington, Seattle, WA, United States of America
| | - Teresa Ruiz
- Department of Molecular Physiology and Biophysics, College of Medicine, University of Vermont, Burlington, VT, United States of America
| | - Weerayuth Kittichotirat
- Systems Biology and Bioinformatics Research Group, Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
| | - Weizhen Chen
- Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, United States of America
| | - Casey Chen
- Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, United States of America
- * E-mail:
| |
Collapse
|
31
|
Abstract
Lactic acid bacteria (LAB) are important starter, commensal, or pathogenic microorganisms. The stress physiology of LAB has been studied in depth for over 2 decades, fueled mostly by the technological implications of LAB robustness in the food industry. Survival of probiotic LAB in the host and the potential relatedness of LAB virulence to their stress resilience have intensified interest in the field. Thus, a wealth of information concerning stress responses exists today for strains as diverse as starter (e.g., Lactococcus lactis), probiotic (e.g., several Lactobacillus spp.), and pathogenic (e.g., Enterococcus and Streptococcus spp.) LAB. Here we present the state of the art for LAB stress behavior. We describe the multitude of stresses that LAB are confronted with, and we present the experimental context used to study the stress responses of LAB, focusing on adaptation, habituation, and cross-protection as well as on self-induced multistress resistance in stationary phase, biofilms, and dormancy. We also consider stress responses at the population and single-cell levels. Subsequently, we concentrate on the stress defense mechanisms that have been reported to date, grouping them according to their direct participation in preserving cell energy, defending macromolecules, and protecting the cell envelope. Stress-induced responses of probiotic LAB and commensal/pathogenic LAB are highlighted separately due to the complexity of the peculiar multistress conditions to which these bacteria are subjected in their hosts. Induction of prophages under environmental stresses is then discussed. Finally, we present systems-based strategies to characterize the "stressome" of LAB and to engineer new food-related and probiotic LAB with improved stress tolerance.
Collapse
|
32
|
Molina-Quiroz RC, Silva CA, Molina CF, Leiva LE, Reyes-Cerpa S, Contreras I, Santiviago CA. Exposure to sub-inhibitory concentrations of cefotaxime enhances the systemic colonization of Salmonella Typhimurium in BALB/c mice. Open Biol 2016; 5:rsob.150070. [PMID: 26468132 PMCID: PMC4632510 DOI: 10.1098/rsob.150070] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
It has been proposed that sub-inhibitory concentrations of antibiotics play a role in virulence modulation. In this study, we evaluated the ability of Salmonella enterica serovar Typhimurium (hereafter S. Typhimurium) to colonize systemically BALB/c mice after exposure to a sub-inhibitory concentration of cefotaxime (CTX). In vivo competition assays showed a fivefold increase in systemic colonization of CTX-exposed bacteria when compared to untreated bacteria. To identify the molecular mechanisms involved in this phenomenon, we carried out a high-throughput genetic screen. A transposon library of S. Typhimurium mutants was subjected to negative selection in the presence of a sub-inhibitory concentration of CTX and genes related to anaerobic metabolism, biosynthesis of purines, pyrimidines, amino acids and other metabolites were identified as needed to survive in this condition. In addition, an impaired ability for oxygen consumption was observed when bacteria were cultured in the presence of a sub-inhibitory concentration of CTX. Altogether, our data indicate that exposure to sub-lethal concentrations of CTX increases the systemic colonization of S. Typhimurium in BALB/c mice in part by the establishment of a fitness alteration conducive to anaerobic metabolism.
Collapse
Affiliation(s)
- Roberto C Molina-Quiroz
- Laboratorio de Microbiología, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile Center for Adaptation Genetics and Drugs Resistance, Molecular Biology and Microbiology Faculty, Tufts University, Boston, MA, USA
| | - Cecilia A Silva
- Laboratorio de Microbiología, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | | | - Lorenzo E Leiva
- Centro de InmunoBioTecnología, Programa Disciplinario de Inmunología, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile
| | - Sebastián Reyes-Cerpa
- Laboratorio de Virología, Centro de Biotecnología Acuícola (CBA), Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Inés Contreras
- Laboratorio de Microbiología, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Carlos A Santiviago
- Laboratorio de Microbiología, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| |
Collapse
|
33
|
Role of the Gram-Negative Envelope Stress Response in the Presence of Antimicrobial Agents. Trends Microbiol 2016; 24:377-390. [PMID: 27068053 DOI: 10.1016/j.tim.2016.03.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Revised: 03/01/2016] [Accepted: 03/01/2016] [Indexed: 01/10/2023]
Abstract
Bacterial survival necessitates endurance of many types of antimicrobial compound. Many Gram-negative envelope stress responses, which must contend with an outer membrane and a dense periplasm containing the cell wall, have been associated with the status of protein folding, membrane homeostasis, and physiological functions such as efflux and the proton motive force (PMF). In this review, we discuss evidence that indicates an emerging role for Gram-negative envelope stress responses in enduring exposure to diverse antimicrobial substances, focusing on recent studies of the γ-proteobacterial Cpx envelope stress response.
Collapse
|
34
|
Fan X, Duan X, Tong Y, Huang Q, Zhou M, Wang H, Zeng L, Young RF, Xie J. The Global Reciprocal Reprogramming between Mycobacteriophage SWU1 and Mycobacterium Reveals the Molecular Strategy of Subversion and Promotion of Phage Infection. Front Microbiol 2016; 7:41. [PMID: 26858712 PMCID: PMC4729954 DOI: 10.3389/fmicb.2016.00041] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 01/11/2016] [Indexed: 12/20/2022] Open
Abstract
Bacteriophages are the viruses of bacteria, which have contributed extensively to our understanding of life and modern biology. The phage-mediated bacterial growth inhibition represents immense untapped source for novel antimicrobials. Insights into the interaction between mycobacteriophage and Mycobacterium host will inform better utilizing of mycobacteriophage. In this study, RNA sequencing technology (RNA-seq) was used to explore the global response of Mycobacterium smegmatis mc2155 at an early phase of infection with mycobacteriophage SWU1, key host metabolic processes of M. smegmatis mc2155 shut off by SWU1, and the responsible phage proteins. The results of RNA-seq were confirmed by Real-time PCR and functional assay. 1174 genes of M. smegmatis mc2155 (16.9% of the entire encoding capacity) were differentially regulated by phage infection. These genes belong to six functional categories: (i) signal transduction, (ii) cell energetics, (iii) cell wall biosynthesis, (iv) DNA, RNA, and protein biosynthesis, (v) iron uptake, (vi) central metabolism. The transcription patterns of phage SWU1 were also characterized. This study provided the first global glimpse of the reciprocal reprogramming between the mycobacteriophage and Mycobacterium host.
Collapse
Affiliation(s)
- Xiangyu Fan
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest UniversityChongqing, China; Department of Biotechnology, School of Biological Science and Technology, University of JinanJinan, China
| | - Xiangke Duan
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University Chongqing, China
| | - Yan Tong
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University Chongqing, China
| | - Qinqin Huang
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University Chongqing, China
| | - Mingliang Zhou
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University Chongqing, China
| | - Huan Wang
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University Chongqing, China
| | - Lanying Zeng
- Department of Biochemistry and Biophysics, Center for Phage Technology, Texas A&M University College Station, TX, USA
| | - Ry F Young
- Department of Biochemistry and Biophysics, Center for Phage Technology, Texas A&M University College Station, TX, USA
| | - Jianping Xie
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University Chongqing, China
| |
Collapse
|
35
|
I can see CRISPR now, even when phage are gone: a view on alternative CRISPR-Cas functions from the prokaryotic envelope. Curr Opin Infect Dis 2016; 28:267-74. [PMID: 25887612 DOI: 10.1097/qco.0000000000000154] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
PURPOSE OF REVIEW CRISPR-Cas systems are prokaryotic immune systems against invading nucleic acids that adapt as new environmental threats arise. There are emerging examples of CRISPR-Cas functions in bacterial physiology beyond their role in adaptive immunity. This highlights the poorly understood, but potentially common, moonlighting functions of these abundant systems. We propose that these noncanonical CRISPR-Cas activities have evolved to respond to stresses at the cell envelope. RECENT FINDINGS Here, we discuss recent literature describing the impact of the extracellular environment on the regulation of CRISPR-Cas systems, and the influence of CRISPR-Cas activity on bacterial physiology. These described noncanonical CRISPR-Cas functions allow the bacterial cell to respond to the extracellular environment, primarily through changes in envelope physiology. SUMMARY This review discusses the expanding noncanonical functions of CRISPR-Cas systems, including their roles in virulence, focusing mainly on their relationship to the cell envelope. We first examine the effects of the extracellular environment on regulation of CRISPR-Cas components, and then discuss the impact of CRISPR-Cas systems on bacterial physiology, concentrating on their roles in influencing interactions with the environment including host organisms.
Collapse
|
36
|
Global Transcriptomic Analysis of Interactions between Pseudomonas aeruginosa and Bacteriophage PaP3. Sci Rep 2016; 6:19237. [PMID: 26750429 PMCID: PMC4707531 DOI: 10.1038/srep19237] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 12/07/2015] [Indexed: 02/06/2023] Open
Abstract
The interactions between Bacteriophage (phage) and host bacteria are widespread in nature and influences of phage replication on the host cells are complex and extensive. Here, we investigate genome-wide interactions of Pseudomonas aeruginosa (P. aeruginosa) and its temperate phage PaP3 at five time points during phage infection. Compared to the uninfected host, 38% (2160/5633) genes of phage-infected host were identified as differentially expressed genes (DEGs). Functional analysis of the repressed DEGs revealed infection-stage-dependent pathway communications. Based on gene co-expression analysis, most PaP3 middle genes were predicted to have negative impact on host transcriptional regulators. Sub-network enrichment analysis revealed that adjacent genes of PaP3 interacted with the same host genes and might possess similar functions. Finally, our results suggested that during the whole infection stage, the early genes of PaP3 had stronger regulatory role in host gene expression than middle and late genes, while the host genes involved amino acid metabolism were the most “vulnerable” targets of these phage genes. This work provides the basis for understanding survival mechanisms of parasites and host, and seeking phage gene products that could potentially be used in anti-bacterial infection.
Collapse
|
37
|
Global transcriptional response of Clostridium difficile carrying the CD38 prophage. Appl Environ Microbiol 2016; 81:1364-74. [PMID: 25501487 DOI: 10.1128/aem.03656-14] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Clostridium difficile is one of the most dangerous pathogens in hospital settings. Most strains of C. difficile carry one or more prophages, and some of them, like CD38-2 and CD119, can influence the expression of toxin genes. However, little is known about the global host response in the presence of a given prophage. In order to fill this knowledge gap, we used high-throughput RNA sequencing (RNA-seq) to conduct a genome-wide transcriptomic analysis of the epidemic C. difficile strain R20291 carrying the CD38-2 prophage. A total of 39 bacterial genes were differentially expressed in the R20291 lysogen, 26 of them being downregulated. Several of the regulated genes encode transcriptional regulators and phosphotransferase system (PTS) subunits involved in glucose, fructose, and glucitol/sorbitol uptake and metabolism. CD38-2 also upregulated the expression of a group of regulatory genes located in phi-027, a resident prophage common to most ribotype 027 isolates. The most differentially expressed gene was that encoding the conserved phase-variable cell wall protein CwpV, which was upregulated 20-fold in the lysogen. Quantitative PCR and immunofluorescence showed that the increased cwpV expression results from a greater proportion of cells actively transcribing the gene. Indeed, 95% of f lysogenic cells express cwpV, as opposed to only 5% of wild-type cells. Furthermore, the higher proportion of cells expressing cwpV results from a higher frequency of recombination of the genetic switch controlling phase variation, which we confirmed to be dependent on the host-encoded recombinase RecV. In summary, CD38-2 interferes with phase variation of the surface protein CwpV and the expression of metabolic genes.
Collapse
|
38
|
Cruz A, Rodrigues R, Pinheiro M, Mendo S. Transcriptomes analysis of Aeromonas molluscorum Av27 cells exposed to tributyltin (TBT): Unravelling the effects from the molecular level to the organism. MARINE ENVIRONMENTAL RESEARCH 2015; 109:132-9. [PMID: 26171931 PMCID: PMC4541717 DOI: 10.1016/j.marenvres.2015.06.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 06/24/2015] [Accepted: 06/26/2015] [Indexed: 06/04/2023]
Abstract
Aeromonas molluscorum Av27 cells were exposed to 0, 5 and 50 μM of TBT and the respective transcriptomes were obtained by pyrosequencing. Gene Ontology revealed that exposure to 5 μM TBT results in a higher number of repressed genes in contrast with 50 μM of TBT, where the number of over-expressed genes is greater. At both TBT concentrations, higher variations in gene expression were found in the functional categories associated with enzymatic activities, transport/binding and oxidation-reduction. A number of proteins are affected by TBT, such as the acriflavin resistance protein, several transcription-related proteins, several Hsps, ABC transporters, CorA and ZntB and other outer membrane efflux proteins, all of these involved in cellular metabolic processes, important to maintain overall cell viability. Using the STRING tool, several proteins with unknown function were related with others involved in degradation processes, such as the pyoverdine chromophore biosynthetic protein, that has been described as playing a role in the Sn-C cleavage of organotins. This approach has allowed a better understanding of the molecular effects of exposure of bacterial cells to TBT. Furthermore it contributes to the knowledge of the functional genomic aspects of bacteria exposed to this pollutant. Furthermore, the transcriptomic data gathered, and now publically available, constitute a valuable resource for comparative genome analysis.
Collapse
Affiliation(s)
- Andreia Cruz
- Biology Department & CESAM, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal.
| | - Raquel Rodrigues
- Biology Department & CESAM, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - Miguel Pinheiro
- Advanced Services Unit, Biocant - Biotechnology Innovation Center, 3060-325, Cantanhede, Portugal; School of Medicine, University of St. Andrews, North Haugh, KY16 9TF, St. Andrews, UK
| | - Sónia Mendo
- Biology Department & CESAM, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| |
Collapse
|
39
|
|
40
|
Mahony J, Bottacini F, van Sinderen D, Fitzgerald GF. Progress in lactic acid bacterial phage research. Microb Cell Fact 2014; 13 Suppl 1:S1. [PMID: 25185514 PMCID: PMC4155818 DOI: 10.1186/1475-2859-13-s1-s1] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Research on lactic acid bacteria (LAB) has advanced significantly over the past number of decades and these developments have been driven by the parallel advances in technologies such as genomics, bioinformatics, protein expression systems and structural biology, combined with the ever increasing commercial relevance of this group of microorganisms. Some of the more significant and impressive outputs have been in the domain of bacteriophage-host interactions which provides a prime example of the cutting-edge model systems represented by LAB research. Here, we present a retrospective overview of the key advances in LAB phage research including phage-host interactions and co-evolution. We describe how in many instances this knowledge can be pivotal in creating real improvements in the application of LAB cultures in commercial practice.
Collapse
|
41
|
Abstract
The cell wall of Gram-positive bacteria is a complex assemblage of glycopolymers and proteins. It consists of a thick peptidoglycan sacculus that surrounds the cytoplasmic membrane and that is decorated with teichoic acids, polysaccharides, and proteins. It plays a major role in bacterial physiology since it maintains cell shape and integrity during growth and division; in addition, it acts as the interface between the bacterium and its environment. Lactic acid bacteria (LAB) are traditionally and widely used to ferment food, and they are also the subject of more and more research because of their potential health-related benefits. It is now recognized that understanding the composition, structure, and properties of LAB cell walls is a crucial part of developing technological and health applications using these bacteria. In this review, we examine the different components of the Gram-positive cell wall: peptidoglycan, teichoic acids, polysaccharides, and proteins. We present recent findings regarding the structure and function of these complex compounds, results that have emerged thanks to the tandem development of structural analysis and whole genome sequencing. Although general structures and biosynthesis pathways are conserved among Gram-positive bacteria, studies have revealed that LAB cell walls demonstrate unique properties; these studies have yielded some notable, fundamental, and novel findings. Given the potential of this research to contribute to future applied strategies, in our discussion of the role played by cell wall components in LAB physiology, we pay special attention to the mechanisms controlling bacterial autolysis, bacterial sensitivity to bacteriophages and the mechanisms underlying interactions between probiotic bacteria and their hosts.
Collapse
|
42
|
Denes T, Wiedmann M. Environmental responses and phage susceptibility in foodborne pathogens: implications for improving applications in food safety. Curr Opin Biotechnol 2013; 26:45-9. [PMID: 24679257 DOI: 10.1016/j.copbio.2013.09.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 08/26/2013] [Accepted: 09/02/2013] [Indexed: 01/02/2023]
Abstract
Bacterial foodborne pathogens can rapidly respond to changes in their environment, granting them the ability to survive under a broad range of conditions. In doing so, they undergo physiological alterations that can influence the efficacy of detection and interventions used in the food industry. As bacteriophage-based applications in food safety are gaining traction, it is crucial that we consider the effect the environment can have on phage-host interactions. This review aims to bridge knowledge of the responses of bacterial foodborne pathogens to changing environmental conditions with our understanding of phage-host interactions. An improved understanding of these intersections will aid in the development of bacteriophage-based products for the detection, biocontrol and biosanitation of foodborne pathogens.
Collapse
Affiliation(s)
- Thomas Denes
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA
| | - Martin Wiedmann
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
43
|
Roces C, Wegmann U, Campelo AB, García P, Rodríguez A, Martínez B. Lack of the host membrane protease FtsH hinders release of the Lactococcus lactis bacteriophage TP712. J Gen Virol 2013; 94:2814-2818. [PMID: 24018314 DOI: 10.1099/vir.0.057182-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The temperate bacteriophage TP712 was unable to plaque on Lactococcus lactis ΔftsH lacking the membrane protease FtsH and complementation in trans restored the WT phenotype. Absence of ftsH did not hinder phage adsorption, phage DNA delivery or activation of the lytic cycle. Thin sections revealed that TP712 virions appeared to be correctly assembled inside the ΔftsH host, but were not released. These virions were infective, demonstrating that a functional host FtsH is required by TP712 to proceed effectively with lysis of the host.
Collapse
Affiliation(s)
- Clara Roces
- DairySafe Group, Department of Technology and Biotechnology of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Villaviciosa, Asturias, Spain
| | - Udo Wegmann
- Institute of Food Research, Norwich Research Park, Colney, Norwich NR4 7UA, United Kingdom
| | - Ana B Campelo
- DairySafe Group, Department of Technology and Biotechnology of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Villaviciosa, Asturias, Spain
| | - Pilar García
- DairySafe Group, Department of Technology and Biotechnology of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Villaviciosa, Asturias, Spain
| | - Ana Rodríguez
- DairySafe Group, Department of Technology and Biotechnology of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Villaviciosa, Asturias, Spain
| | - Beatriz Martínez
- DairySafe Group, Department of Technology and Biotechnology of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Villaviciosa, Asturias, Spain
| |
Collapse
|
44
|
Lytic infection of Lactococcus lactis by bacteriophages Tuc2009 and c2 triggers alternative transcriptional host responses. Appl Environ Microbiol 2013; 79:4786-98. [PMID: 23728817 DOI: 10.1128/aem.01197-13] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Here we present an entire temporal transcriptional profile of Lactococcus lactis subsp. cremoris UC509.9 undergoing lytic infection with two distinct bacteriophages, Tuc2009 and c2. Furthermore, corresponding high-resolution whole-phage genome tiling arrays of both bacteriophages were performed throughout lytic infection. Whole-genome microarrays performed at various time points postinfection demonstrated a rather modest impact on host transcription. The majority of changes in the host transcriptome occur during late infection stages; few changes in host gene transcription occur during the immediate and early infection stages. Alterations in the L. lactis UC509.9 transcriptome during lytic infection appear to be phage specific, with relatively few differentially transcribed genes shared between cells infected with Tuc2009 and those infected with c2. Despite the apparent lack of a coordinated general phage response, three themes common to both infections were noted: alternative transcription of genes involved in catabolic flux and energy production, differential transcription of genes involved in cell wall modification, and differential transcription of genes involved in the conversion of ribonucleotides to deoxyribonucleotides. The transcriptional profiles of both bacteriophages during lytic infection generally correlated with the findings of previous studies and allowed the confirmation of previously predicted promoter sequences. In addition, the host transcriptional response to lysogenization with Tuc2009 was monitored along with tiling array analysis of Tuc2009 in the lysogenic state. Analysis identified 44 host genes with altered transcription during lysogeny, 36 of which displayed levels of transcription significantly reduced from those for uninfected cells.
Collapse
|
45
|
Mahony J, Ainsworth S, Stockdale S, van Sinderen D. Phages of lactic acid bacteria: the role of genetics in understanding phage-host interactions and their co-evolutionary processes. Virology 2012; 434:143-50. [PMID: 23089252 DOI: 10.1016/j.virol.2012.10.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 09/12/2012] [Accepted: 10/01/2012] [Indexed: 12/26/2022]
Abstract
Dairy fermentations are among the oldest food processing applications, aimed at preservation and shelf-life extension through the use of lactic acid bacteria (LAB) starter cultures, in particular strains of Lactococcus lactis, Streptococcus thermophilus, Lactobacillus spp. and Leuconostoc spp. Traditionally this was performed by continuous passaging of undefined cultures from a finished fermentation to initiate the next fermentation. More recently, consumer demands on consistent and desired flavours and textures of dairy products have led to a more defined approach to such processes. Dairy (starter) companies have responded to the need to define the nature and complexity of the starter culture mixes, and dairy fermentations are now frequently based on defined starter cultures of low complexity, where each starter component imparts specific technological properties that are desirable to the product. Both mixed and defined starter culture approaches create the perfect environment for the proliferation of (bacterio)phages capable of infecting these LAB. The repeated use of the same starter cultures in a single plant, coupled to the drive towards higher and consistent production levels, increases the risk and negative impact of phage infection. In this review we will discuss recent advances in tracking the adaptation of phages to the dairy industry, the advances in understanding LAB phage-host interactions, including evolutionary and genomic aspects.
Collapse
Affiliation(s)
- Jennifer Mahony
- Department of Microbiology, University College Cork, Western Road, Cork, Ireland.
| | | | | | | |
Collapse
|
46
|
Rodríguez-Rubio L, Martínez B, Donovan DM, Rodríguez A, García P. Bacteriophage virion-associated peptidoglycan hydrolases: potential new enzybiotics. Crit Rev Microbiol 2012; 39:427-34. [DOI: 10.3109/1040841x.2012.723675] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
47
|
Isolation of Lactococcus lactis mutants simultaneously resistant to the cell wall-active bacteriocin Lcn972, lysozyme, nisin, and bacteriophage c2. Appl Environ Microbiol 2012; 78:4157-63. [PMID: 22504807 DOI: 10.1128/aem.00795-12] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Lactococcin 972 (Lcn972) is a nonlantibiotic bacteriocin that inhibits cell wall biosynthesis by binding to lipid II. In this work, two mutants resistant to Lcn972, Lactococcus lactis D1 and D1-20, with high (>320 arbitrary units [AU]/ml) and low (80 AU/ml) susceptibilities, respectively, have been isolated. Resistance to Lcn972 did not impose a burden to growth under laboratory conditions, nor did it substantially alter the physicochemical properties of the cell surface. However, the peptidoglycan of the mutants featured a higher content of muropeptides with tripeptide side chains than the wild-type strain, linking for the first time peptidoglycan remodelling to bacteriocin resistance. Moreover, L. lactis lacking a functional D,D-carboxypeptidase DacA (i.e., with a high content of pentapeptide side chain muropeptides) was shown to be more susceptible to Lcn972. Cross-resistance to lysozyme and nisin and enhanced susceptibility to penicillin G and bacitracin was also observed. Intriguingly, the Lcn972-resistant mutants were not infected by the lytic phage c2 and less efficiently infected by phage sk1. Lack of c2 infectivity was linked to a 22.6-kbp chromosomal deletion encompassing the phage receptor protein gene pip. The deletion also included maltose metabolic genes and the two-component system (TCS) F. However, a clear correlation between these genes and resistance to Lcn972 could not be clearly established, pointing to the presence of as-yet-unidentified mutations that account for Lcn972 resistance.
Collapse
|