1
|
Reich J, Serdar D, Weißmann AC, Kaufer BB. Identification of stimuli that enhance human herpesvirus 6A (HHV-6A) replication and reconstitution. J Virol 2024; 98:e0148524. [PMID: 39508597 PMCID: PMC11651002 DOI: 10.1128/jvi.01485-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 10/21/2024] [Indexed: 11/15/2024] Open
Abstract
Despite the availability of bacterial artificial chromosome (BAC) systems for human herpesvirus 6A (HHV-6A), reconstitution of infectious viruses is very challenging and time consuming. In this study, we developed approaches to improve the reconstitution process and enhance virus replication to overcome these technical challenges. Using dimethyl sulfoxide and exonuclease V, we significantly increased the efficiency of BAC transfections into JJHan T cells. We tested several stimulation strategies to enhance lytic replication and identified mitogens and glucocorticoids that, in combination, improve virus replication. In addition, we demonstrated that the interferon-mediated response impairs virus reconstitution and that the JAK1/JAK2 inhibitor ruxolitinib resulted in an immense improvement. Furthermore, hypoxia-inducible factor 1 alpha stabilization by IOX2 drastically accelerated virus reconstitution, indicating that the hypoxic response is a crucial regulator of HHV-6A replication. Our study sheds light on strategic approaches that improve replication and reconstitution of this ubiquitous human herpesvirus. IMPORTANCE HHV-6A is a betaherpesvirus that infects a wide range of human tissues and establishes lifelong latency in the host. Its reactivation has been implicated in several diseases, including multiple sclerosis, encephalitis, myocarditis, and chronic fatigue syndrome, although its pathogenetic role remains elusive. The efficacy of common antiviral drugs is limited, and no specific drugs target HHV-6A infection. The data of this study shed light on stimuli and potential pathways that influence HHV-6A replication and reconstitution. Our strategies not only simplify virus propagation and reconstitution to study HHV-6A biology but also provide the basis for the development of therapeutic strategies.
Collapse
Affiliation(s)
- Jana Reich
- Institute of Virology, Freie Universität Berlin, Berlin, Germany
- Veterinary Centre for Resistance Research (TZR), Freie Universität Berlin, Berlin, Germany
| | - Dilan Serdar
- Institute of Virology, Freie Universität Berlin, Berlin, Germany
- Veterinary Centre for Resistance Research (TZR), Freie Universität Berlin, Berlin, Germany
| | - Ann-Christin Weißmann
- Institute of Virology, Freie Universität Berlin, Berlin, Germany
- Veterinary Centre for Resistance Research (TZR), Freie Universität Berlin, Berlin, Germany
| | - Benedikt B. Kaufer
- Institute of Virology, Freie Universität Berlin, Berlin, Germany
- Veterinary Centre for Resistance Research (TZR), Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
2
|
Collin V, Biquand É, Tremblay V, Lavoie ÉG, Blondeau A, Gravel A, Galloy M, Lashgari A, Dessapt J, Côté J, Flamand L, Fradet-Turcotte A. The immediate-early protein 1 of human herpesvirus 6B interacts with NBS1 and inhibits ATM signaling. EMBO Rep 2024; 25:725-744. [PMID: 38177923 PMCID: PMC10897193 DOI: 10.1038/s44319-023-00035-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 12/03/2023] [Accepted: 12/06/2023] [Indexed: 01/06/2024] Open
Abstract
Viral infection often trigger an ATM serine/threonine kinase (ATM)-dependent DNA damage response in host cells that suppresses viral replication. Viruses evolved different strategies to counteract this antiviral surveillance system. Here, we report that human herpesvirus 6B (HHV-6B) infection causes genomic instability by suppressing ATM signaling in host cells. Expression of immediate-early protein 1 (IE1) phenocopies this phenotype and blocks homology-directed double-strand break repair. Mechanistically, IE1 interacts with NBS1, and inhibits ATM signaling through two distinct domains. HHV-6B seems to efficiently inhibit ATM signaling as further depletion of either NBS1 or ATM do not significantly boost viral replication in infected cells. Interestingly, viral integration of HHV-6B into the host's telomeres is not strictly dependent on NBS1, challenging current models where integration occurs through homology-directed repair. Given that spontaneous IE1 expression has been detected in cells of subjects with inherited chromosomally-integrated form of HHV-6B (iciHHV-6B), a condition associated with several health conditions, our results raise the possibility of a link between genomic instability and the development of iciHHV-6-associated diseases.
Collapse
Affiliation(s)
- Vanessa Collin
- Division of Infectious Disease and Immunity, Centre Hospitalier Universitaire (CHU) de Québec-Université Laval Research Center, Quebec City, QC, G1V 4G2, Canada
- Department of Microbiology, Infectious Disease and Immunology, Faculty of Medicine, Université Laval, Quebec City, QC, G1V 0A6, Canada
| | - Élise Biquand
- Oncology Division, Centre Hospitalier Universitaire (CHU) de Québec-Université Laval Research Center, Quebec City, QC, G1R 2J6, Canada
- Department of Molecular biology, Medical Biochemistry and Pathology, Faculty of Medicine, Université Laval, Québec City, QC, G1V 0A6, Canada
- Université Laval Cancer Research Center, Université Laval, Quebec City, QC, G1R 3S3, Canada
- INSERM, Centre d'Étude des Pathologies Respiratoires (CEPR), UMR 1100, Université de Tours, Tours, France
| | - Vincent Tremblay
- Oncology Division, Centre Hospitalier Universitaire (CHU) de Québec-Université Laval Research Center, Quebec City, QC, G1R 2J6, Canada
- Department of Molecular biology, Medical Biochemistry and Pathology, Faculty of Medicine, Université Laval, Québec City, QC, G1V 0A6, Canada
- Université Laval Cancer Research Center, Université Laval, Quebec City, QC, G1R 3S3, Canada
| | - Élise G Lavoie
- Oncology Division, Centre Hospitalier Universitaire (CHU) de Québec-Université Laval Research Center, Quebec City, QC, G1R 2J6, Canada
- Université Laval Cancer Research Center, Université Laval, Quebec City, QC, G1R 3S3, Canada
| | - Andréanne Blondeau
- Oncology Division, Centre Hospitalier Universitaire (CHU) de Québec-Université Laval Research Center, Quebec City, QC, G1R 2J6, Canada
- Université Laval Cancer Research Center, Université Laval, Quebec City, QC, G1R 3S3, Canada
| | - Annie Gravel
- Division of Infectious Disease and Immunity, Centre Hospitalier Universitaire (CHU) de Québec-Université Laval Research Center, Quebec City, QC, G1V 4G2, Canada
- Department of Microbiology, Infectious Disease and Immunology, Faculty of Medicine, Université Laval, Quebec City, QC, G1V 0A6, Canada
| | - Maxime Galloy
- Oncology Division, Centre Hospitalier Universitaire (CHU) de Québec-Université Laval Research Center, Quebec City, QC, G1R 2J6, Canada
- Department of Molecular biology, Medical Biochemistry and Pathology, Faculty of Medicine, Université Laval, Québec City, QC, G1V 0A6, Canada
- Université Laval Cancer Research Center, Université Laval, Quebec City, QC, G1R 3S3, Canada
| | - Anahita Lashgari
- Oncology Division, Centre Hospitalier Universitaire (CHU) de Québec-Université Laval Research Center, Quebec City, QC, G1R 2J6, Canada
- Department of Molecular biology, Medical Biochemistry and Pathology, Faculty of Medicine, Université Laval, Québec City, QC, G1V 0A6, Canada
- Université Laval Cancer Research Center, Université Laval, Quebec City, QC, G1R 3S3, Canada
| | - Julien Dessapt
- Oncology Division, Centre Hospitalier Universitaire (CHU) de Québec-Université Laval Research Center, Quebec City, QC, G1R 2J6, Canada
- Department of Molecular biology, Medical Biochemistry and Pathology, Faculty of Medicine, Université Laval, Québec City, QC, G1V 0A6, Canada
- Université Laval Cancer Research Center, Université Laval, Quebec City, QC, G1R 3S3, Canada
| | - Jacques Côté
- Oncology Division, Centre Hospitalier Universitaire (CHU) de Québec-Université Laval Research Center, Quebec City, QC, G1R 2J6, Canada
- Department of Molecular biology, Medical Biochemistry and Pathology, Faculty of Medicine, Université Laval, Québec City, QC, G1V 0A6, Canada
- Université Laval Cancer Research Center, Université Laval, Quebec City, QC, G1R 3S3, Canada
| | - Louis Flamand
- Division of Infectious Disease and Immunity, Centre Hospitalier Universitaire (CHU) de Québec-Université Laval Research Center, Quebec City, QC, G1V 4G2, Canada.
- Department of Microbiology, Infectious Disease and Immunology, Faculty of Medicine, Université Laval, Quebec City, QC, G1V 0A6, Canada.
| | - Amélie Fradet-Turcotte
- Oncology Division, Centre Hospitalier Universitaire (CHU) de Québec-Université Laval Research Center, Quebec City, QC, G1R 2J6, Canada.
- Department of Molecular biology, Medical Biochemistry and Pathology, Faculty of Medicine, Université Laval, Québec City, QC, G1V 0A6, Canada.
- Université Laval Cancer Research Center, Université Laval, Quebec City, QC, G1R 3S3, Canada.
| |
Collapse
|
3
|
Suleman M, Khan SH, Rashid F, Khan A, Hussain Z, Zaman N, Rehman SU, Zhai J, Xue M, Zheng C. Designing a multi-epitopes subunit vaccine against human herpes virus 6A based on molecular dynamics and immune stimulation. Int J Biol Macromol 2023:125068. [PMID: 37245745 DOI: 10.1016/j.ijbiomac.2023.125068] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/20/2023] [Accepted: 05/22/2023] [Indexed: 05/30/2023]
Abstract
Human Herpesvirus 6A (HHV-6A) is a prevalent virus associated with various clinical manifestations, including neurological disorders, autoimmune diseases, and promotes tumor cell growth. HHV-6A is an enveloped, double-stranded DNA virus with a genome of approximately 160-170 kb containing a hundred open-reading frames. An immunoinformatics approach was applied to predict high immunogenic and non-allergenic CTL, HTL, and B cell epitopes and design a multi-epitope subunit vaccine based on HHV-6A glycoprotein B (gB), glycoprotein H (gH), and glycoprotein Q (gQ). The stability and correct folding of the modeled vaccines were confirmed through molecular dynamics simulation. Molecular docking found that the designed vaccines have a strong binding network with human TLR3, with Kd values of 1.5E-11 mol/L, 2.6E-12 mol/L, 6.5E-13 mol/L, and 7.1E-11 mol/L for gB-TLR3, gH-TLR3, gQ-TLR3, and the combined vaccine-TLR3, respectively. The codon adaptation index values of the vaccines were above 0.8, and their GC content was around 67 % (normal range 30-70 %), indicating their potential for high expression. Immune simulation analysis demonstrated robust immune responses against the vaccine, with approximately 650,000/ml combined IgG and IgM antibody titer. This study lays a strong foundation for developing a safe and effective vaccine against HHV-6A, with significant implications for treating associated conditions.
Collapse
Affiliation(s)
- Muhammad Suleman
- Center for Biotechnology and Microbiology, University of Swat, Swat, Pakistan.
| | - Syed Hunain Khan
- Center for Biotechnology and Microbiology, University of Swat, Swat, Pakistan
| | - Farooq Rashid
- Department of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China.
| | - Abbas Khan
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Zahid Hussain
- Center for Biotechnology and Microbiology, University of Swat, Swat, Pakistan.
| | - Nasib Zaman
- Center for Biotechnology and Microbiology, University of Swat, Swat, Pakistan.
| | - Shoaib Ur Rehman
- Department of Biotechnology, University of Science and Technology, Bannu, Pakistan
| | - Jingbo Zhai
- Key Laboratory of Zoonose Prevention and Control at Universities of Inner Mongolia Autonomous Region, Medical College, Inner Mongolia Minzu University, Tongliao 028000, China.
| | - Mengzhou Xue
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, 2 Jingba Road, Zhengzhou, Henan 450001, China.
| | - Chunfu Zheng
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
4
|
Chrisman BS, He C, Jung JY, Stockham N, Paskov K, Wall DP. Transmission dynamics of human herpesvirus 6A, 6B and 7 from whole genome sequences of families. Virol J 2022; 19:225. [PMID: 36566197 PMCID: PMC9789512 DOI: 10.1186/s12985-022-01941-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 11/30/2022] [Indexed: 12/25/2022] Open
Abstract
While hundreds of thousands of human whole genome sequences (WGS) have been collected in the effort to better understand genetic determinants of disease, these whole genome sequences have less frequently been used to study another major determinant of human health: the human virome. Using the unmapped reads from WGS of over 1000 families, we present insights into the human blood DNA virome, focusing particularly on human herpesvirus (HHV) 6A, 6B, and 7. In addition to extensively cataloguing the viruses detected in WGS of human whole blood and lymphoblastoid cell lines, we use the family structure of our dataset to show that household drives transmission of several viruses, and identify the Mendelian inheritance patterns characteristic of inherited chromsomally integrated human herpesvirus 6 (iciHHV-6). Consistent with prior studies, we find that 0.6% of our dataset's population has iciHHV, and we locate candidate integration sequences for these cases. We document genetic diversity within exogenous and integrated HHV species and within integration sites of HHV-6. Finally, in the first observation of its kind, we present evidence that suggests widespread de novo HHV-6B integration and HHV-7 integration and reactivation in lymphoblastoid cell lines. These findings show that the unmapped read space of WGS is a promising source of data for virology research.
Collapse
Affiliation(s)
- Brianna S. Chrisman
- grid.168010.e0000000419368956Department of Bioengineering, Stanford University, Serra Mall, Stanford, USA ,grid.266818.30000 0004 1936 914XNevada Bioinformatics Center, University of Nevada, Reno, USA
| | - Chloe He
- grid.168010.e0000000419368956Department of Biomedical Data Science, Stanford University, Serra Mall, Stanford, USA
| | - Jae-Yoon Jung
- grid.168010.e0000000419368956Department of Pediatrics (Systems Medicine), Stanford University, Serra Mall, Stanford, USA
| | - Nate Stockham
- grid.168010.e0000000419368956Department of Neuroscience, Stanford University, Serra Mall, Stanford, USA
| | - Kelley Paskov
- grid.168010.e0000000419368956Department of Biomedical Data Science, Stanford University, Serra Mall, Stanford, USA
| | - Dennis P. Wall
- grid.168010.e0000000419368956Department of Pediatrics (Systems Medicine), Stanford University, Serra Mall, Stanford, USA
| |
Collapse
|
5
|
Hogestyn JM, Salois G, Xie L, Apa C, Youngyunpipatkul J, Pröschel C, Mayer-Pröschel M. Expression of the human herpesvirus 6A latency-associated transcript U94A impairs cytoskeletal functions in human neural cells. Mol Cell Neurosci 2022; 123:103770. [PMID: 36055520 PMCID: PMC10124163 DOI: 10.1016/j.mcn.2022.103770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/12/2022] [Accepted: 08/20/2022] [Indexed: 12/30/2022] Open
Abstract
Many neurodegenerative diseases have a multifactorial etiology and variable course of progression that cannot be explained by current models. Neurotropic viruses have long been suggested to play a role in these diseases, although their exact contributions remain unclear. Human herpesvirus 6A (HHV-6A) is one of the most common viruses detected in the adult brain, and has been clinically associated with multiple sclerosis (MS), and, more recently, Alzheimer's disease (AD). HHV-6A is a ubiquitous viral pathogen capable of infecting glia and neurons. Primary infection in childhood is followed by the induction of latency, characterized by expression of the U94A viral transcript in the absence of viral replication. Here we examine the effects of U94A on cells of the central nervous system. We found that U94A expression inhibits the migration and impairs cytoplasmic maturation of human oligodendrocyte precursor cells (OPCs) without affecting their viability, a phenotype that may contribute to the failure of remyelination seen in many patients with MS. A subsequent proteomics analysis of U94A expression OPCs revealed altered expression of genes involved in tubulin associated cytoskeletal regulation. As HHV-6A seems to significantly be associated with early AD pathology, we extended our initially analysis of the impact of U94A on human derived neurons. We found that U94A expression inhibits neurite outgrowth of primary human cortical neurons and impairs synapse maturation. Based on these data we suggest that U94A expression by latent HHV-6A in glial cells and neurons renders them susceptible to dysfunction and degeneration. Therefore, latent viral infections of the brain represent a unique pathological risk factor that may contribute to disease processes.
Collapse
Affiliation(s)
- Jessica M Hogestyn
- Department of Biomedical Genetics, 601 Elmwood Avenue, Box 633, University of Rochester, Rochester, NY 14642, USA; Department of Neuroscience, School of Medicine and Dentistry, 601 Elmwood Avenue, Box 633, University of Rochester, Rochester, NY 14642, USA
| | - Garrick Salois
- Department of Biomedical Genetics, 601 Elmwood Avenue, Box 633, University of Rochester, Rochester, NY 14642, USA; Department of Neuroscience, School of Medicine and Dentistry, 601 Elmwood Avenue, Box 633, University of Rochester, Rochester, NY 14642, USA
| | - Li Xie
- Department of Biomedical Genetics, 601 Elmwood Avenue, Box 633, University of Rochester, Rochester, NY 14642, USA
| | - Connor Apa
- Department of Biomedical Genetics, 601 Elmwood Avenue, Box 633, University of Rochester, Rochester, NY 14642, USA; Stem cell and Regenerative Medicine Institute, 601 Elmwood Avenue, Box 633, University of Rochester, Rochester, NY 14642, USA
| | - Justin Youngyunpipatkul
- Department of Biomedical Genetics, 601 Elmwood Avenue, Box 633, University of Rochester, Rochester, NY 14642, USA
| | - Christoph Pröschel
- Department of Biomedical Genetics, 601 Elmwood Avenue, Box 633, University of Rochester, Rochester, NY 14642, USA; Stem cell and Regenerative Medicine Institute, 601 Elmwood Avenue, Box 633, University of Rochester, Rochester, NY 14642, USA
| | - Margot Mayer-Pröschel
- Department of Biomedical Genetics, 601 Elmwood Avenue, Box 633, University of Rochester, Rochester, NY 14642, USA; Department of Neuroscience, School of Medicine and Dentistry, 601 Elmwood Avenue, Box 633, University of Rochester, Rochester, NY 14642, USA,.
| |
Collapse
|
6
|
Impact of Host Telomere Length on HHV-6 Integration. Viruses 2022; 14:v14091864. [PMID: 36146670 PMCID: PMC9505050 DOI: 10.3390/v14091864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/15/2022] [Accepted: 08/21/2022] [Indexed: 12/04/2022] Open
Abstract
Human herpesvirus 6A and 6B are two closely related viruses that infect almost all humans. In contrast to most herpesviruses, HHV-6A/B can integrate their genomes into the telomeres during the infection process. Both viruses can also integrate in germ cells and subsequently be inherited in children. How HHV-6A/B integrate into host telomeres and the consequences of this remain a subject of active research. Here, we developed a method to measure telomere length by quantitative fluorescence in situ hybridization, confocal microscopy, and computational processing. This method was validated using a panel of HeLa cells having short or long telomeres. These cell lines were infected with HHV-6A, revealing that the virus could efficiently integrate into telomeres independent of their length. Furthermore, we assessed the telomere lengths after HHV-6A integration and found that the virus-containing telomeres display a variety of lengths, suggesting that either telomere length is restored after integration or telomeres are not shortened by integration. Our results highlight new aspects of HHV-6A/B biology and the role of telomere length on virus integration.
Collapse
|
7
|
Abstract
The "omics" revolution of recent years has simplified the study of RNA transcripts produced during viral infection and under specific defined conditions. In the quest to find new and differentially expressed transcripts during the course of human Herpesvirus 6B (HHV-6B) infection, we made use of large-scale RNA sequencing to analyze the HHV-6B transcriptome during productive infection of human Molt-3 T-cells. Analyses were performed at different time points following infection and specific inhibitors were used to classify the kinetic class of each open reading frame (ORF) reported in the annotated genome of HHV-6B Z29 strain. The initial search focussed on HHV-6B-specific reads matching new HHV-6B transcripts. Differential expression of new HHV-6B transcripts were observed in all samples analyzed. The presence of many of these new HHV-6B transcripts were confirmed by RT-PCR and Sanger sequencing. Many of these transcripts represented new splice variants of previously reported ORFs, including some transcripts that have yet to be defined. Overall, our work demonstrates the diversity and the complexity of the HHV-6B transcriptome.IMPORTANCERNA sequencing (RNA-seq) is an important tool for studying RNA transcripts, particularly during active viral infection. We made use of RNA-seq to study human Herpesvirus 6B (HHV-6B) infection. Using six different time points, we were able to identify the presence of differentially spliced genes at 6, 9, 12, 24, 48 and 72 hours post-infection. Determination of the RNA profiles in the presence of cycloheximide (CHX) or phosphonoacetic acid (PAA) also permitted identification of the kinetic class of each ORF described in the annotated GenBank file. We also identified new spliced transcripts for certain genes and evaluated their relative expression over time. These data and next-generation sequencing (NGS) of the viral DNA have led us to propose a new version of the HHV-6B Z29 GenBank annotated file, without changing ORF names in order to facilitate trace back and correlate our work with previous studies on HHV-6B.
Collapse
|
8
|
Mariani M, Zimmerman C, Rodriguez P, Hasenohr E, Aimola G, Gerrard DL, Richman A, Dest A, Flamand L, Kaufer B, Frietze S. Higher-Order Chromatin Structures of Chromosomally Integrated HHV-6A Predict Integration Sites. Front Cell Infect Microbiol 2021; 11:612656. [PMID: 33718266 PMCID: PMC7953476 DOI: 10.3389/fcimb.2021.612656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 01/20/2021] [Indexed: 12/31/2022] Open
Abstract
Human herpesvirus -6A and 6B (HHV-6A/B) can integrate their genomes into the telomeres of human chromosomes. Viral integration can occur in several cell types, including germinal cells, resulting in individuals that harbor the viral genome in every cell of their body. The integrated genome is efficiently silenced but can sporadically reactivate resulting in various clinical symptoms. To date, the integration mechanism and the subsequent silencing of HHV-6A/B genes remains poorly understood. Here we investigate the genome-wide chromatin contacts of the integrated HHV-6A in latently-infected cells. We show that HHV-6A becomes transcriptionally silent upon infection of these cells over the course of seven days. In addition, we established an HHV-6-specific 4C-seq approach, revealing that the HHV-6A 3D interactome is associated with quiescent chromatin states in cells harboring integrated virus. Furthermore, we observed that the majority of virus chromatin interactions occur toward the distal ends of specific human chromosomes. Exploiting this finding, we established a 4C-seq method that accurately detects the chromosomal integration sites. We further implement long-read minION sequencing in the 4C-seq assay and developed a method to identify HHV-6A/B integration sites in clinical samples.
Collapse
Affiliation(s)
- Michael Mariani
- Department of Biomedical and Health Sciences, College of Nursing and Health Sciences, University of Vermont, Burlington, VT, United States
| | - Cosima Zimmerman
- Institute of Virology, Freie Universität Berlin, Berlin, Germany
| | - Princess Rodriguez
- Department of Biomedical and Health Sciences, College of Nursing and Health Sciences, University of Vermont, Burlington, VT, United States
| | - Ellie Hasenohr
- Department of Biomedical and Health Sciences, College of Nursing and Health Sciences, University of Vermont, Burlington, VT, United States
| | - Giulia Aimola
- Institute of Virology, Freie Universität Berlin, Berlin, Germany
| | - Diana Lea Gerrard
- Department of Biomedical and Health Sciences, College of Nursing and Health Sciences, University of Vermont, Burlington, VT, United States
| | - Alyssa Richman
- Department of Biomedical and Health Sciences, College of Nursing and Health Sciences, University of Vermont, Burlington, VT, United States
| | - Andrea Dest
- Department of Biomedical and Health Sciences, College of Nursing and Health Sciences, University of Vermont, Burlington, VT, United States
| | - Louis Flamand
- Division of Infectious Disease and Immunity, CHU de Québec Research Center-Université Laval, Quebec City, QC, Canada
| | - Benedikt Kaufer
- Institute of Virology, Freie Universität Berlin, Berlin, Germany
| | - Seth Frietze
- Department of Biomedical and Health Sciences, College of Nursing and Health Sciences, University of Vermont, Burlington, VT, United States.,University of Vermont Cancer Center, Burlington, VT, United States
| |
Collapse
|
9
|
Wood ML, Veal CD, Neumann R, Suárez NM, Nichols J, Parker AJ, Martin D, Romaine SPR, Codd V, Samani NJ, Voors AA, Tomaszewski M, Flamand L, Davison AJ, Royle NJ. Variation in human herpesvirus 6B telomeric integration, excision, and transmission between tissues and individuals. eLife 2021; 10:70452. [PMID: 34545807 PMCID: PMC8492063 DOI: 10.7554/elife.70452] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 09/20/2021] [Indexed: 12/12/2022] Open
Abstract
Human herpesviruses 6A and 6B (HHV-6A/6B) are ubiquitous pathogens that persist lifelong in latent form and can cause severe conditions upon reactivation. They are spread by community-acquired infection of free virus (acqHHV6A/6B) and by germline transmission of inherited chromosomally integrated HHV-6A/6B (iciHHV-6A/6B) in telomeres. We exploited a hypervariable region of the HHV-6B genome to investigate the relationship between acquired and inherited virus and revealed predominantly maternal transmission of acqHHV-6B in families. Remarkably, we demonstrate that some copies of acqHHV-6B in saliva from healthy adults gained a telomere, indicative of integration and latency, and that the frequency of viral genome excision from telomeres in iciHHV-6B carriers is surprisingly high and varies between tissues. In addition, newly formed short telomeres generated by partial viral genome release are frequently lengthened, particularly in telomerase-expressing pluripotent cells. Consequently, iciHHV-6B carriers are mosaic for different iciHHV-6B structures, including circular extra-chromosomal forms that have the potential to reactivate. Finally, we show transmission of an HHV-6B strain from an iciHHV-6B mother to her non-iciHHV-6B son. Altogether, we demonstrate that iciHHV-6B can readily transition between telomere-integrated and free virus forms.
Collapse
Affiliation(s)
- Michael L Wood
- Department of Genetics and Genome Biology, University of LeicesterLeicesterUnited Kingdom
| | - Colin D Veal
- Department of Genetics and Genome Biology, University of LeicesterLeicesterUnited Kingdom
| | - Rita Neumann
- Department of Genetics and Genome Biology, University of LeicesterLeicesterUnited Kingdom
| | - Nicolás M Suárez
- MRC-University of Glasgow Centre for Virus ResearchGlasgowUnited Kingdom
| | - Jenna Nichols
- MRC-University of Glasgow Centre for Virus ResearchGlasgowUnited Kingdom
| | - Andrei J Parker
- Department of Genetics and Genome Biology, University of LeicesterLeicesterUnited Kingdom
| | - Diana Martin
- Department of Genetics and Genome Biology, University of LeicesterLeicesterUnited Kingdom
| | - Simon PR Romaine
- Department of Cardiovascular Sciences, University of LeicesterLeicesterUnited Kingdom,NIHR Leicester Biomedical Research Centre, Glenfield HospitalLeicesterUnited Kingdom
| | - Veryan Codd
- Department of Cardiovascular Sciences, University of LeicesterLeicesterUnited Kingdom
| | - Nilesh J Samani
- Department of Cardiovascular Sciences, University of LeicesterLeicesterUnited Kingdom
| | - Adriaan A Voors
- University of Groningen, Department of Cardiology, University Medical Center GroningenGroningenNetherlands
| | - Maciej Tomaszewski
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of ManchesterManchesterUnited Kingdom
| | - Louis Flamand
- Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec CityQuébecCanada
| | - Andrew J Davison
- MRC-University of Glasgow Centre for Virus ResearchGlasgowUnited Kingdom
| | - Nicola J Royle
- Department of Genetics and Genome Biology, University of LeicesterLeicesterUnited Kingdom
| |
Collapse
|
10
|
Collin V, Gravel A, Kaufer BB, Flamand L. The Promyelocytic Leukemia Protein facilitates human herpesvirus 6B chromosomal integration, immediate-early 1 protein multiSUMOylation and its localization at telomeres. PLoS Pathog 2020; 16:e1008683. [PMID: 32658923 PMCID: PMC7394443 DOI: 10.1371/journal.ppat.1008683] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/31/2020] [Accepted: 06/04/2020] [Indexed: 02/05/2023] Open
Abstract
Human herpesvirus 6B (HHV-6B) is a betaherpesvirus capable of integrating its genome into the telomeres of host chromosomes. Until now, the cellular and/or viral proteins facilitating HHV-6B integration have remained elusive. Here we show that a cellular protein, the promyelocytic leukemia protein (PML) that forms nuclear bodies (PML-NBs), associates with the HHV-6B immediate early 1 (IE1) protein at telomeres. We report enhanced levels of SUMOylated IE1 in the presence of PML and have identified a putative SUMO Interacting Motif (SIM) within IE1, essential for its nuclear distribution, overall SUMOylation and association with PML to nuclear bodies. Furthermore, using PML knockout cell lines we made the original observation that PML is required for efficient HHV-6B integration into host chromosomes. Taken together, we could demonstrate that PML-NBs are important for IE1 multiSUMOylation and that PML plays an important role in HHV-6B integration into chromosomes, a strategy developed by this virus to maintain its genome in its host over long periods of time. Human herpesvirus 6B (HHV-6B) is a ubiquitous virus that can be life threatening in immunocompromised patients. HHV-6B is among a few other herpesviruses that integrate their genome in host chromosomes as a mean to establish dormancy. Integration of HHV-6B occurs in host telomeres, a region that protects our genome from deterioration and controls the cellular lifespan. To date, the mechanisms leading to HHV-6B integration remain elusive. Our laboratory has identified that the IE1 protein of HHV-6B associates with PML, a cellular protein that is responsible for the regulation of important cellular mechanisms including DNA recombination and repair. With the objective of understanding how IE1 is brought to PML, we discovered that PML aids the SUMOylation of IE1. This finding led us to identify a putative SUMO interaction motif on IE1 that is essentials for both its SUMOylation and IE1 oligomerization with PML-NBs. We next studied the role of PML on HHV-6B integration and identified that cells that are deficient for PML were less susceptible to HHV-6B integration. These results correlate with the fact that PML influences IE1 localization at telomeres, the site of HHV-6B integration. Our study further contributes to our understanding of the mechanisms leading to HHV-6B chromosomal integration.
Collapse
Affiliation(s)
- Vanessa Collin
- Division of Infectious Disease and Immunity, CHU de Québec Research Center, Quebec City, Quebec, Canada
| | - Annie Gravel
- Division of Infectious Disease and Immunity, CHU de Québec Research Center, Quebec City, Quebec, Canada
| | | | - Louis Flamand
- Division of Infectious Disease and Immunity, CHU de Québec Research Center, Quebec City, Quebec, Canada
- Department of microbiology, infectious disease and immunology, Faculty of Medicine, Université Laval, Quebec City, Québec, Canada
- * E-mail:
| |
Collapse
|
11
|
Xing M, Zhang F, Liao H, Chen S, Che L, Wang X, Bao Z, Ji F, Chen G, Zhang H, Li W, Chen Z, Liu Y, Hickson ID, Shen H, Ying S. Replication Stress Induces ATR/CHK1-Dependent Nonrandom Segregation of Damaged Chromosomes. Mol Cell 2020; 78:714-724.e5. [PMID: 32353258 DOI: 10.1016/j.molcel.2020.04.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 02/22/2020] [Accepted: 04/06/2020] [Indexed: 12/15/2022]
Abstract
Nonrandom DNA segregation (NDS) is a mitotic event in which sister chromatids carrying the oldest DNA strands are inherited exclusively by one of the two daughter cells. Although this phenomenon has been observed across various organisms, the mechanism and physiological relevance of this event remain poorly defined. Here, we demonstrate that DNA replication stress can trigger NDS in human cells. This biased inheritance of old template DNA is associated with the asymmetric DNA damage response (DDR), which derives at least in part from telomeric DNA. Mechanistically, we reveal that the ATR/CHK1 signaling pathway plays an essential role in mediating NDS. We show that this biased segregation process leads to cell-cycle arrest and cell death in damaged daughter cells inheriting newly replicated DNA. These data therefore identify a key role for NDS in the maintenance of genomic integrity within cancer cell populations undergoing replication stress due to oncogene activation.
Collapse
Affiliation(s)
- Meichun Xing
- Department of Pharmacology and Department of Respiratory and Critical Care Medicine of the Second Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Respiratory Disease of Zhejiang Province, Hangzhou 310009, China
| | - Fengjiao Zhang
- Department of Pharmacology and Department of Respiratory and Critical Care Medicine of the Second Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Respiratory Disease of Zhejiang Province, Hangzhou 310009, China
| | - Hongwei Liao
- Department of Pharmacology and Department of Respiratory and Critical Care Medicine of the Second Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Respiratory Disease of Zhejiang Province, Hangzhou 310009, China
| | - Sisi Chen
- Department of Pharmacology and Department of Respiratory and Critical Care Medicine of the Second Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Respiratory Disease of Zhejiang Province, Hangzhou 310009, China
| | - Luanqing Che
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Xiaohui Wang
- Department of Pharmacology and Department of Respiratory and Critical Care Medicine of the Second Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Respiratory Disease of Zhejiang Province, Hangzhou 310009, China
| | - Zhengqiang Bao
- Department of Pharmacology and Department of Respiratory and Critical Care Medicine of the Second Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Respiratory Disease of Zhejiang Province, Hangzhou 310009, China
| | - Fang Ji
- Department of Pharmacology and Department of Respiratory and Critical Care Medicine of the Second Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Respiratory Disease of Zhejiang Province, Hangzhou 310009, China
| | - Gaoying Chen
- Department of Pharmacology and Department of Respiratory and Critical Care Medicine of the Second Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Respiratory Disease of Zhejiang Province, Hangzhou 310009, China
| | - Huihui Zhang
- Department of Pharmacology and Department of Respiratory and Critical Care Medicine of the Second Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Respiratory Disease of Zhejiang Province, Hangzhou 310009, China
| | - Wen Li
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Zhihua Chen
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Ying Liu
- Center for Chromosome Stability and Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Ian D Hickson
- Center for Chromosome Stability and Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark.
| | - Huahao Shen
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China; State Key Laboratory of Respiratory Diseases, Guangzhou, Guangdong 510120, China.
| | - Songmin Ying
- Department of Pharmacology and Department of Respiratory and Critical Care Medicine of the Second Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Respiratory Disease of Zhejiang Province, Hangzhou 310009, China.
| |
Collapse
|
12
|
Gilbert-Girard S, Gravel A, Collin V, Wight DJ, Kaufer BB, Lazzerini-Denchi E, Flamand L. Role for the shelterin protein TRF2 in human herpesvirus 6A/B chromosomal integration. PLoS Pathog 2020; 16:e1008496. [PMID: 32320442 PMCID: PMC7197865 DOI: 10.1371/journal.ppat.1008496] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 05/04/2020] [Accepted: 03/24/2020] [Indexed: 02/07/2023] Open
Abstract
Human herpesviruses 6A and 6B (HHV-6A/B) are unique among human herpesviruses in their ability to integrate their genome into host chromosomes. Viral integration occurs at the ends of chromosomes within the host telomeres. The ends of the HHV-6A/B genomes contain telomeric repeats that facilitate the integration process. Here, we report that productive infections are associated with a massive increase in telomeric sequences of viral origin. The majority of the viral telomeric signals can be detected within viral replication compartments (VRC) that contain the viral DNA processivity factor p41 and the viral immediate-early 2 (IE2) protein. Components of the shelterin protein complex present at telomeres, including TRF1 and TRF2 are also recruited to VRC during infection. Biochemical, immunofluorescence coupled with in situ hybridization and chromatin immunoprecipitation demonstrated the binding of TRF2 to the HHV-6A/B telomeric repeats. In addition, approximately 60% of the viral IE2 protein localize at cellular telomeres during infection. Transient knockdown of TRF2 resulted in greatly reduced (13%) localization of IE2 at cellular telomeres (p<0.0001). Lastly, TRF2 knockdown reduced HHV-6A/B integration frequency (p<0.05), while no effect was observed on the infection efficiency. Overall, our study identified that HHV-6A/B IE2 localizes to telomeres during infection and highlight the role of TRF2 in HHV-6A/B infection and chromosomal integration.
Collapse
Affiliation(s)
- Shella Gilbert-Girard
- Division of Infectious Disease and Immunity, CHU de Québec Research Center, Quebec City, Quebec, Canada
| | - Annie Gravel
- Division of Infectious Disease and Immunity, CHU de Québec Research Center, Quebec City, Quebec, Canada
| | - Vanessa Collin
- Division of Infectious Disease and Immunity, CHU de Québec Research Center, Quebec City, Quebec, Canada
| | - Darren J. Wight
- Institut für Virologie, Freie Universität Berlin, Berlin, Germany
| | | | - Eros Lazzerini-Denchi
- Laboratory of Genome Integrity, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Louis Flamand
- Division of Infectious Disease and Immunity, CHU de Québec Research Center, Quebec City, Quebec, Canada
- Department of microbiology, infectious diseases and immunology, Faculty of Medicine, Université Laval, Quebec City, Québec, Canada
- * E-mail:
| |
Collapse
|
13
|
Current understanding of human herpesvirus 6 (HHV-6) chromosomal integration. Antiviral Res 2020; 176:104720. [PMID: 32044155 DOI: 10.1016/j.antiviral.2020.104720] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/21/2020] [Accepted: 01/23/2020] [Indexed: 12/12/2022]
Abstract
Human herpesvirus 6A (HHV-6A) and 6B (HHV-6B) are members of the genus Roseolovirus in the Betaherpesvirinae subfamily. HHV-6B infects humans in the first years of life, has a seroprevalence of more than 90% and causes Roseola Infantum, but less is known about HHV-6A. While most other herpesviruses maintain their latent genome as a circular episome, HHV-6A and HHV-6B (HHV-6A/B) have been shown to integrate their genome into the telomeres of infected cells. HHV-6A/B can also integrate into the chromosomes of germ cells, resulting in individuals carrying a copy of the virus genome in every nucleated cell of their bodies. This review highlights our current understanding of HHV-6A/B integration and reactivation as well as aspects that should be addressed in the future of this relatively young research area. It forms part of an online symposium on the prevention and therapy of DNA virus infections, dedicated to the memory of Mark Prichard.
Collapse
|
14
|
Inherited Chromosomally Integrated Human Herpesvirus 6 Demonstrates Tissue-Specific RNA Expression In Vivo That Correlates with an Increased Antibody Immune Response. J Virol 2019; 94:JVI.01418-19. [PMID: 31597766 PMCID: PMC6912112 DOI: 10.1128/jvi.01418-19] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 09/30/2019] [Indexed: 12/11/2022] Open
Abstract
HHV-6A and -6B are human herpesviruses that have the unique property of being able to integrate into the telomeric regions of human chromosomes. Approximately 1% of the world’s population carries integrated HHV-6A/B genome in every cell of their body. Whether viral genes are transcriptionally active in these individuals is unclear. By taking advantage of a unique tissue-specific gene expression data set, we showed that the majority of tissues from iciHHV-6 individuals do not show HHV-6 gene expression. Brain and testes showed the highest tissue-specific expression of HHV-6 genes in two separate data sets. Two HHV-6 genes, U90 (immediate early 1 protein) and U100 (glycoproteins Q1 and Q2), were found to be selectively and consistently expressed across several human tissues. Expression of U90 translates into an increase in antigen-specific antibody response in iciHHV-6A/B+ subjects relative to controls. Future studies will be needed to determine the mechanism of gene expression, the effects of these genes on human gene transcription networks, and the pathophysiological impact of having increased viral protein expression in tissue in conjunction with increased antigen-specific antibody production. Human herpesviruses 6A and 6B (HHV-6A and HHV-6B) are human viruses capable of chromosomal integration. Approximately 1% of the human population carries one copy of HHV-6A/B integrated into every cell in their body, referred to as inherited chromosomally integrated human herpesvirus 6A/B (iciHHV-6A/B). Whether iciHHV-6A/B is transcriptionally active in vivo and how it shapes the immunological response are still unclear. In this study, we screened DNA sequencing (DNA-seq) and transcriptome sequencing (RNA-seq) data for 650 individuals available through the Genotype-Tissue Expression (GTEx) project and identified 2 iciHHV-6A- and 4 iciHHV-6B-positive candidates. When corresponding tissue-specific gene expression signatures were analyzed, low levels HHV-6A/B gene expression was found across multiple tissues, with the highest levels of gene expression in the brain (specifically for HHV-6A), testis, esophagus, and adrenal gland. U90 and U100 were the most highly expressed HHV-6 genes in both iciHHV-6A- and iciHHV-6B-positive individuals. To assess whether tissue-specific gene expression from iciHHV-6A/B influences the immune response, a cohort of 15,498 subjects was screened and 85 iciHHV-6A/B+ subjects were identified. Plasma samples from iciHHV-6A/B+ and age- and sex-matched controls were analyzed for antibodies to control antigens (cytomegalovirus [CMV], Epstein-Barr virus [EBV], and influenza virus [FLU]) or HHV-6A/B antigens. Our results indicate that iciHHV-6A/B+ subjects have significantly more antibodies against the U90 gene product (IE1) than do non-iciHHV-6-positive individuals. Antibody responses against EBV and FLU antigens or HHV-6A/B gene products either not expressed or expressed at low levels, such as U47, U57, and U72, were identical between controls and iciHHV-6A/B+ subjects. CMV-seropositive individuals with iciHHV-6A/B+ have more antibodies against CMV pp150 than do CMV-seropositive controls. These results argue that spontaneous gene expression from integrated HHV-6A/B leads to an increase in antigenic burden that translates into a more robust HHV-6A/B-specific antibody response. IMPORTANCE HHV-6A and -6B are human herpesviruses that have the unique property of being able to integrate into the telomeric regions of human chromosomes. Approximately 1% of the world’s population carries integrated HHV-6A/B genome in every cell of their body. Whether viral genes are transcriptionally active in these individuals is unclear. By taking advantage of a unique tissue-specific gene expression data set, we showed that the majority of tissues from iciHHV-6 individuals do not show HHV-6 gene expression. Brain and testes showed the highest tissue-specific expression of HHV-6 genes in two separate data sets. Two HHV-6 genes, U90 (immediate early 1 protein) and U100 (glycoproteins Q1 and Q2), were found to be selectively and consistently expressed across several human tissues. Expression of U90 translates into an increase in antigen-specific antibody response in iciHHV-6A/B+ subjects relative to controls. Future studies will be needed to determine the mechanism of gene expression, the effects of these genes on human gene transcription networks, and the pathophysiological impact of having increased viral protein expression in tissue in conjunction with increased antigen-specific antibody production.
Collapse
|
15
|
Denner J, Bigley TM, Phan TL, Zimmermann C, Zhou X, Kaufer BB. Comparative Analysis of Roseoloviruses in Humans, Pigs, Mice, and Other Species. Viruses 2019; 11:E1108. [PMID: 31801268 PMCID: PMC6949924 DOI: 10.3390/v11121108] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/13/2019] [Accepted: 11/27/2019] [Indexed: 12/11/2022] Open
Abstract
Viruses of the genus Roseolovirus belong to the subfamily Betaherpesvirinae, family Herpesviridae. Roseoloviruses have been studied in humans, mice and pigs, but they are likely also present in other species. This is the first comparative analysis of roseoloviruses in humans and animals. The human roseoloviruses human herpesvirus 6A (HHV-6A), 6B (HHV-6B), and 7 (HHV-7) are relatively well characterized. In contrast, little is known about the murine roseolovirus (MRV), also known as murine thymic virus (MTV) or murine thymic lymphotrophic virus (MTLV), and the porcine roseolovirus (PRV), initially incorrectly named porcine cytomegalovirus (PCMV). Human roseoloviruses have gained attention because they can cause severe diseases including encephalitis in immunocompromised transplant and AIDS patients and febrile seizures in infants. They have been linked to a number of neurological diseases in the immunocompetent including multiple sclerosis (MS) and Alzheimer's. However, to prove the causality in the latter disease associations is challenging due to the high prevalence of these viruses in the human population. PCMV/PRV has attracted attention because it may be transmitted and pose a risk in xenotransplantation, e.g., the transplantation of pig organs into humans. Most importantly, all roseoloviruses are immunosuppressive, the humoral and cellular immune responses against these viruses are not well studied and vaccines as well as effective antivirals are not available.
Collapse
Affiliation(s)
- Joachim Denner
- Robert Koch Institute, Robert Koch Fellow, 13352 Berlin, Germany
| | - Tarin M. Bigley
- Division of Rheumatology, Department. of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA;
| | - Tuan L. Phan
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70118, USA;
- HHV-6 Foundation, Santa Barbara, CA 93108, USA
| | - Cosima Zimmermann
- Institute of Virology, Freie Universität Berlin, 14163 Berlin, Germany;
| | - Xiaofeng Zhou
- Division of Pulmonary and Critical Care Medicine, Department. of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
16
|
Forni D, Cagliani R, Clerici M, Pozzoli U, Sironi M. A complex evolutionary relationship between HHV-6A and HHV-6B. Virus Evol 2019; 5:vez043. [PMID: 31649826 PMCID: PMC6800887 DOI: 10.1093/ve/vez043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Human betaherpesviruses 6A and 6B (HHV-6A and HHV-6B) are highly prevalent in human populations. The genomes of these viruses can be stably integrated at the telomeres of human chromosomes and be vertically transmitted (inherited chromosomally integrated HHV-6, iciHHV6). We reconstructed the population structure of HHV-6 and we show that HHV-6A genomes diverged less than HHV-6B genomes from the ancestral common HHV-6A/B population. Analysis of ancestry proportions indicated that HHV-6A exogenous viruses and iciHHV-6A derived most of their genomes from distinct ancestral sources. Conversely, exogenous viral and iciHHV-6B populations were similar in terms of ancestry components, with no evident geographic structuring. Most HHV-6B genomes sampled to date derive from viral populations that experienced considerable drift. However, a population of HHV-6 exogenous viruses, currently classified as HHV-6B and sampled in New York state, formed a separate cluster (NY cluster) and harbored a considerable portion of HHV-6A-like ancestry. Recombination detection methods identified these viruses as interspecies recombinants, but phylogenetic reconstruction indicated that the recombination signals are due to shared ancestry. In analogy to iciHHV-6A, NY cluster viruses have high nucleotide diversity and constant population size. We propose that HHV-6A sequences and the NY cluster population diverged from an ancestral HHV-6A-like population. A relatively recent bottleneck of the NY (or a related) population with subsequent expansion originated most HHV-6B genomes currently sampled. Our findings indicate that the distinction between HHV-6A and -6B is not as clear-cut as previously thought. More generally, epidemiological and clinical surveys would benefit from taking HHV-6 genetic diversity into account.
Collapse
Affiliation(s)
- Diego Forni
- Bioinformatics, Scientific Institute IRCCS E. Medea, Bosisio Parini, Lecco, Italy
- Corresponding author: E-mail:
| | - Rachele Cagliani
- Bioinformatics, Scientific Institute IRCCS E. Medea, Bosisio Parini, Lecco, Italy
| | - Mario Clerici
- Department of Physiopathology and Transplantation, University of Milan, Milan, Italy
- IRCCS Fondazione Don Carlo Gnocchi, Milan, Italy
| | - Uberto Pozzoli
- Bioinformatics, Scientific Institute IRCCS E. Medea, Bosisio Parini, Lecco, Italy
| | - Manuela Sironi
- Bioinformatics, Scientific Institute IRCCS E. Medea, Bosisio Parini, Lecco, Italy
| |
Collapse
|
17
|
Saviola AJ, Zimmermann C, Mariani MP, Signorelli SA, Gerrard DL, Boyd JR, Wight DJ, Morissette G, Gravel A, Dubuc I, Flamand L, Kaufer BB, Frietze S. Chromatin Profiles of Chromosomally Integrated Human Herpesvirus-6A. Front Microbiol 2019; 10:1408. [PMID: 31293546 PMCID: PMC6606781 DOI: 10.3389/fmicb.2019.01408] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 06/04/2019] [Indexed: 01/02/2023] Open
Abstract
Human herpesvirus-6A (HHV-6A) and 6B (HHV-6B) are two closely related betaherpesviruses that are associated with various diseases including seizures and encephalitis. The HHV-6A/B genomes have been shown to be present in an integrated state in the telomeres of latently infected cells. In addition, integration of HHV-6A/B in germ cells has resulted in individuals harboring this inherited chromosomally integrated HHV-6A/B (iciHHV-6) in every cell of their body. Until now, the viral transcriptome and the epigenetic modifications that contribute to the silencing of the integrated virus genome remain elusive. In the current study, we used a patient-derived iciHHV-6A cell line to assess the global viral gene expression profile by RNA-seq, and the chromatin profiles by MNase-seq and ChIP-seq analyses. In addition, we investigated an in vitro generated cell line (293-HHV-6A) that expresses GFP upon the addition of agents commonly used to induce herpesvirus reactivation such as TPA. No viral gene expression including miRNAs was detected from the HHV-6A genomes, indicating that the integrated virus is transcriptionally silent. Intriguingly, upon stimulation of the 293-HHV-6A cell line with TPA, only foreign promoters in the virus genome were activated, while all HHV-6A promoters remained completely silenced. The transcriptional silencing of latent HHV-6A was further supported by MNase-seq results, which demonstrate that the latent viral genome resides in a highly condensed nucleosome-associated state. We further explored the enrichment profiles of histone modifications via ChIP-seq analysis. Our results indicated that the HHV-6 genome is modestly enriched with the repressive histone marks H3K9me3/H3K27me3 and does not possess the active histone modifications H3K27ac/H3K4me3. Overall, these results indicate that HHV-6 genomes reside in a condensed chromatin state, providing insight into the epigenetic mechanisms associated with the silencing of the integrated HHV-6A genome.
Collapse
Affiliation(s)
- Anthony J. Saviola
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT, United States
| | - Cosima Zimmermann
- Institute of Virology, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Michael P. Mariani
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT, United States
| | - Sylvia A. Signorelli
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT, United States
| | - Diana L. Gerrard
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT, United States
| | - Joseph R. Boyd
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont College of Medicine, Burlington, VT, United States
| | - Darren J. Wight
- Institute of Virology, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Guillaume Morissette
- Department of Microbiology, Infectious Disease and Immunology, Université Laval and CHU de Quebec Research Center-Université Laval, Quebec, QC, Canada
| | - Annie Gravel
- Department of Microbiology, Infectious Disease and Immunology, Université Laval and CHU de Quebec Research Center-Université Laval, Quebec, QC, Canada
| | - Isabelle Dubuc
- Department of Microbiology, Infectious Disease and Immunology, Université Laval and CHU de Quebec Research Center-Université Laval, Quebec, QC, Canada
| | - Louis Flamand
- Department of Microbiology, Infectious Disease and Immunology, Université Laval and CHU de Quebec Research Center-Université Laval, Quebec, QC, Canada
| | - Benedikt B. Kaufer
- Institute of Virology, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Seth Frietze
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT, United States
| |
Collapse
|
18
|
Viral Proteins U41 and U70 of Human Herpesvirus 6A Are Dispensable for Telomere Integration. Viruses 2018; 10:v10110656. [PMID: 30469324 PMCID: PMC6267051 DOI: 10.3390/v10110656] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 11/16/2018] [Accepted: 11/17/2018] [Indexed: 12/24/2022] Open
Abstract
Human herpesvirus-6A and -6B (HHV-6A and -6B) are two closely related betaherpesviruses that infect humans. Upon primary infection they establish a life-long infection termed latency, where the virus genome is integrated into the telomeres of latently infected cells. Intriguingly, HHV-6A/B can integrate into germ cells, leading to individuals with inherited chromosomally-integrated HHV-6 (iciHHV-6), who have the HHV-6 genome in every cell. It is known that telomeric repeats flanking the virus genome are essential for integration; however, the protein factors mediating integration remain enigmatic. We have previously shown that the putative viral integrase U94 is not essential for telomere integration; thus, we set out to assess the contribution of potential viral recombination proteins U41 and U70 towards integration. We could show that U70 enhances dsDNA break repair via a homology-directed mechanism using a reporter cell line. We then engineered cells to produce shRNAs targeting both U41 and U70 to inhibit their expression during infection. Using these cells in our HHV-6A in vitro integration assay, we could show that U41/U70 were dispensable for telomere integration. Furthermore, additional inhibition of the cellular recombinase Rad51 suggested that it was also not essential, indicating that other cellular and/or viral factors must mediate telomere integration.
Collapse
|
19
|
Flamand L. Chromosomal Integration by Human Herpesviruses 6A and 6B. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1045:209-226. [PMID: 29896669 DOI: 10.1007/978-981-10-7230-7_10] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Upon infection and depending on the infected cell type, human herpesvirus 6A (HHV-6A) and 6B (HHV-6B) can replicate or enter a state of latency. HHV-6A and HHV-6B can integrate their genomes into host chromosomes as one way to establish latency. Viral integration takes place near the subtelomeric/telomeric junction of chromosomes. When HHV-6 infection and integration occur in gametes, the virus can be genetically transmitted. Inherited chromosomally integrated HHV-6 (iciHHV-6)-positive individuals carry one integrated HHV-6 copy per somatic cell. The prevalence of iciHHV-6+ individuals varies between 0.6% and 2%, depending on the geographical region sampled. In this chapter, the mechanisms leading to viral integration and reactivation from latency, as well as some of the biological and medical consequences associated with iciHHV-6, were discussed.
Collapse
Affiliation(s)
- Louis Flamand
- Division of Infectious and Immune Diseases, CHU de Québec Research Center, QC, Quebec, Canada. .,Department of Microbiology, Infectious Disease and Immunology, Faculty of Medicine, Université Laval, QC, Quebec, Canada.
| |
Collapse
|
20
|
HHV-6 encoded small non-coding RNAs define an intermediate and early stage in viral reactivation. NPJ Genom Med 2018; 3:25. [PMID: 30210807 PMCID: PMC6125432 DOI: 10.1038/s41525-018-0064-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 08/06/2018] [Accepted: 08/09/2018] [Indexed: 12/19/2022] Open
Abstract
Human herpesvirus 6A and 6B frequently acquires latency. HHV-6 activation has been associated with various human diseases. Germ line inheritance of chromosomally integrated HHV-6 makes viral DNA-based analysis difficult for determination of early stages of viral activation. We characterized early stages of HHV-6 activation using high throughput transcriptomics studies and applied the results to understand virus activation under clinical conditions. Using a latent HHV-6A cell culture model in U2OS cells, we identified an early stage of viral reactivation, which we define as transactivation that is marked by transcription of several viral small non-coding RNAs (sncRNAs) in the absence of detectable increase in viral replication and proteome. Using deep sequencing approaches, we detected previously known as well as a new viral sncRNAs that characterized viral transactivation and differentiated it from latency. Here we show changes in human transcriptome upon viral transactivation that reflect multiple alterations in mitochondria-associated pathways, which was supported by observation of increased mitochondrial fragmentation in virus reactivated cells. Furthermore, we present here a unique clinical case of DIHS/DRESS associated death where HHV-6 sncRNA-U14 was abundantly detected throughout the body of the patient in the presence of low viral DNA. In this study, we have identified a unique and early stage of viral activation that is characterized by abundant transcription of viral sncRNAs, which can serve as an ideal biomarker under clinical conditions.
Collapse
|
21
|
Shioda S, Kasai F, Watanabe K, Kawakami K, Ohtani A, Iemura M, Ozawa M, Arakawa A, Hirayama N, Kawaguchi E, Tano T, Miyata S, Satoh M, Shimizu N, Kohara A. Screening for 15 pathogenic viruses in human cell lines registered at the JCRB Cell Bank: characterization of in vitro human cells by viral infection. ROYAL SOCIETY OPEN SCIENCE 2018; 5:172472. [PMID: 29892436 PMCID: PMC5990783 DOI: 10.1098/rsos.172472] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 03/23/2018] [Indexed: 05/04/2023]
Abstract
Human cell lines have been used in a variety of research fields as an in vitro model. These cells are all derived from human tissue samples, thus there is a possibility of virus infection. Virus tests are routinely performed in clinical practice, but are limited in cell lines. In this study, we investigated 15 kinds of viruses in 844 human cell lines registered at the Japanese Collection of Research Bioresources (JCRB) Cell Bank. Our real-time PCR analysis revealed that six viruses, EBV, HTLV-1, HBV, B19V, HHV-6 and HHV-7, were detected in 43 cell lines. Of them, 20 cell lines were transformed by intentional infection in vitro with EBV or HTLV-1. Viruses in the other 23 cell lines and one EBV transformed cell line are derived from an in vivo infection, including five de novo identifications of EBV, B19V or HHV-7 carriers. Among them, 17 cell lines were established from patients diagnosed with virus-associated diseases. However, the other seven cell lines originated from in vivo cells unrelated to disease or cellular tropism. Our approach to screen for a set of 15 viruses in each cell line has worked efficiently to identify these rare cases. Virus tests in cell lines contribute not only to safety assessments but also to investigation of in vivo viral infection which can be a characteristic feature of cell lines.
Collapse
Affiliation(s)
- Setsuko Shioda
- Japanese Collection of Research Bioresources (JCRB) Cell Bank, Laboratory of Cell Cultures, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Fumio Kasai
- Japanese Collection of Research Bioresources (JCRB) Cell Bank, Laboratory of Cell Cultures, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
- Author for correspondence: Fumio Kasai e-mail:
| | - Ken Watanabe
- Department of Virology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kohei Kawakami
- Japanese Collection of Research Bioresources (JCRB) Cell Bank, Laboratory of Cell Cultures, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Azusa Ohtani
- Japanese Collection of Research Bioresources (JCRB) Cell Bank, Laboratory of Cell Cultures, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Masashi Iemura
- Japanese Collection of Research Bioresources (JCRB) Cell Bank, Laboratory of Cell Cultures, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Midori Ozawa
- Japanese Collection of Research Bioresources (JCRB) Cell Bank, Laboratory of Cell Cultures, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Akemi Arakawa
- Japanese Collection of Research Bioresources (JCRB) Cell Bank, Laboratory of Cell Cultures, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Noriko Hirayama
- Japanese Collection of Research Bioresources (JCRB) Cell Bank, Laboratory of Cell Cultures, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Eiko Kawaguchi
- Japanese Collection of Research Bioresources (JCRB) Cell Bank, Laboratory of Cell Cultures, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Tomoko Tano
- Japanese Collection of Research Bioresources (JCRB) Cell Bank, Laboratory of Cell Cultures, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Sayaka Miyata
- Japanese Collection of Research Bioresources (JCRB) Cell Bank, Laboratory of Cell Cultures, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Motonobu Satoh
- Japanese Collection of Research Bioresources (JCRB) Cell Bank, Laboratory of Cell Cultures, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Norio Shimizu
- Department of Virology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Arihiro Kohara
- Japanese Collection of Research Bioresources (JCRB) Cell Bank, Laboratory of Cell Cultures, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| |
Collapse
|
22
|
Pantry SN, Medveczky PG. Latency, Integration, and Reactivation of Human Herpesvirus-6. Viruses 2017; 9:v9070194. [PMID: 28737715 PMCID: PMC5537686 DOI: 10.3390/v9070194] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 07/18/2017] [Accepted: 07/20/2017] [Indexed: 12/14/2022] Open
Abstract
Human herpesvirus-6A (HHV-6A) and human herpesvirus-6B (HHV-6B) are two closely related viruses that infect T-cells. Both HHV-6A and HHV-6B possess telomere-like repeats at the terminal regions of their genomes that facilitate latency by integration into the host telomeres, rather than by episome formation. In about 1% of the human population, human herpes virus-6 (HHV-6) integration into germline cells allows the viral genome to be passed down from one generation to the other; this condition is called inherited chromosomally integrated HHV-6 (iciHHV-6). This review will cover the history of HHV-6 and recent works that define the biological differences between HHV-6A and HHV-6B. Additionally, HHV-6 integration and inheritance, the capacity for reactivation and superinfection of iciHHV-6 individuals with a second strain of HHV-6, and the role of hypomethylation of human chromosomes during integration are discussed. Overall, the data suggest that integration of HHV-6 in telomeres represent a unique mechanism of viral latency and offers a novel tool to study not only HHV-6 pathogenesis, but also telomere biology. Paradoxically, the integrated viral genome is often defective especially as seen in iciHHV-6 harboring individuals. Finally, gaps in the field of HHV-6 research are presented and future studies are proposed.
Collapse
Affiliation(s)
- Shara N Pantry
- College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd, MDC Box 7, Tampa, FL 33612, USA.
- Miller School of Medicine, University of Miami, Life Sciences and Technology Park, 1951 NW 7th Avenue Ste. 270, Miami, FL 33136, USA.
| | - Peter G Medveczky
- College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd, MDC Box 7, Tampa, FL 33612, USA.
| |
Collapse
|
23
|
Stabilization of Telomere G-Quadruplexes Interferes with Human Herpesvirus 6A Chromosomal Integration. J Virol 2017; 91:JVI.00402-17. [PMID: 28468887 DOI: 10.1128/jvi.00402-17] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 04/29/2017] [Indexed: 11/20/2022] Open
Abstract
Human herpesviruses 6A and 6B (HHV-6A/B) can integrate their genomes into the telomeres of human chromosomes using a mechanism that remains poorly understood. To achieve a better understanding of the HHV-6A/B integration mechanism, we made use of BRACO-19, a compound that stabilizes G-quadruplex secondary structures and prevents telomere elongation by the telomerase complex. First, we analyzed the folding of telomeric sequences into G-quadruplex structures and their binding to BRACO-19 using G-quadruplex-specific antibodies and surface plasmon resonance. Circular dichroism studies indicate that BRACO-19 modifies the conformation and greatly stabilizes the G-quadruplexes formed in G-rich telomeric DNA. Subsequently we assessed the effects of BRACO-19 on the HHV-6A initial phase of infection. Our results indicate that BRACO-19 does not affect entry of HHV-6A DNA into cells. We next investigated if stabilization of G-quadruplexes by BRACO-19 affected HHV-6A's ability to integrate its genome into host chromosomes. Incubation of telomerase-expressing cells with BRACO-19, such as HeLa and MCF-7, caused a significant reduction in the HHV-6A integration frequency (P < 0.002); in contrast, BRACO-19 had no effect on HHV-6 integration frequency in U2OS cells that lack telomerase activity and elongate their telomeres through alternative lengthening mechanisms. Our data suggest that the fluidity of telomeres is important for efficient chromosomal integration of HHV-6A and that interference with telomerase activity negatively affects the generation of cellular clones containing integrated HHV-6A.IMPORTANCE HHV-6A/B can integrate their genomes into the telomeres of infected cells. Telomeres consist of repeated hexanucleotides (TTAGGG) of various lengths (up to several kilobases) and end with a single-stranded 3' extension. To avoid recognition and induce a DNA damage response, the single-stranded overhang folds back on itself and forms a telomeric loop (T-loop) or adopts a tertiary structure, referred to as a G-quadruplex. In the current study, we have examined the effects of a G-quadruplex binding and stabilizing agent, BRACO-19, on HHV-6A chromosomal integration. By stabilizing G-quadruplex structures, BRACO-19 affects the ability of the telomerase complex to elongate telomeres. Our results indicate that BRACO-19 reduces the number of clones harboring integrated HHV-6A. This study is the first of its kind and suggests that telomerase activity is essential to restore a functional telomere of adequate length following HHV-6A integration.
Collapse
|
24
|
Collin V, Flamand L. HHV-6A/B Integration and the Pathogenesis Associated with the Reactivation of Chromosomally Integrated HHV-6A/B. Viruses 2017; 9:E160. [PMID: 28672870 PMCID: PMC5537652 DOI: 10.3390/v9070160] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 06/21/2017] [Accepted: 06/22/2017] [Indexed: 01/03/2023] Open
Abstract
Unlike other human herpesviruses, human herpesvirus 6A and 6B (HHV-6A/B) infection can lead to integration of the viral genome in human chromosomes. When integration occurs in germinal cells, the integrated HHV-6A/B genome can be transmitted to 50% of descendants. Such individuals, carrying one copy of the HHV-6A/B genome in every cell, are referred to as having inherited chromosomally-integrated HHV-6A/B (iciHHV-6) and represent approximately 1% of the world's population. Interestingly, HHV-6A/B integrate their genomes in a specific region of the chromosomes known as telomeres. Telomeres are located at chromosomes' ends and play essential roles in chromosomal stability and the long-term proliferative potential of cells. Considering that the integrated HHV-6A/B genome is mostly intact without any gross rearrangements or deletions, integration is likely used for viral maintenance into host cells. Knowing the roles played by telomeres in cellular homeostasis, viral integration in such structure is not likely to be without consequences. At present, the mechanisms and factors involved in HHV-6A/B integration remain poorly defined. In this review, we detail the potential biological and medical impacts of HHV-6A/B integration as well as the possible chromosomal integration and viral excision processes.
Collapse
Affiliation(s)
- Vanessa Collin
- Division of Infectious and Immune Diseases, CHU de Quebec Research Center-Laval University, Québec, QC G1V 4G2, Canada.
| | - Louis Flamand
- Division of Infectious and Immune Diseases, CHU de Quebec Research Center-Laval University, Québec, QC G1V 4G2, Canada.
- Department of Microbiology, Infectious Disease and Immunology, Faculty of Medicine, Laval University, Québec, QC G1V 0A6, Canada.
| |
Collapse
|