1
|
Vats A, Braga L, Kavcic N, Massimi P, Schneider E, Giacca M, Laimins LA, Banks L. Regulation of human papillomavirus E6 oncoprotein function via a novel ubiquitin ligase FBXO4. mBio 2025; 16:e0278324. [PMID: 39688415 PMCID: PMC11796345 DOI: 10.1128/mbio.02783-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 11/04/2024] [Indexed: 12/18/2024] Open
Abstract
Previous studies have shown that E6 interacts with the E6-associated protein (E6AP) ubiquitin-protein ligase and directs its ubiquitylation activity toward several specific cellular proteins, one of the most important of which is p53. Interestingly, E6AP not only aids in the E6-directed degradation of cellular substrates but also stabilizes the E6 protein by protecting it from proteasome-mediated degradation. However, there is no information available about the ubiquitin ligases that regulate the stability and activity of the human papillomavirus (HPV) E6 oncoprotein in the absence of E6AP. Therefore, to identify these novel ubiquitin ligases, we performed high-throughput human siRNA library screen against ubiquitin ligases in clustered regularly interspaced palindromic repeat (CRISPR)-edited E6AP-knockout human embryonic kidney (HEK) 293 cells, stably expressing green fluorescent protein (GFP)-tagged HPV-18E6. We found a number of ubiquitin ligases that increase the expression of GFP-tagged 18E6 upon their knockdown in the absence of E6AP. Upon validation of the interaction of 18E6 with these ubiquitin ligases in cervical cancer-derived cell lines, we found that the knockdown of ubiquitin ligase F-box protein 4 (FBXO4), together with E6AP knockdown, leads to a dramatic increase in the levels of endogenous HPV-18E6 oncoprotein. Furthermore, our data demonstrate that the combined knockdown of FBXO4 and E6AP not only rescues the protein levels of E6 but also induces high levels of cell death in a p53-dependent manner in the HPV-positive cervical cancer cell line, HeLa. These results indicate a close interplay between FBXO4, E6AP, and p53 in the regulation of cell survival in HPV-positive cervical tumor-derived cells. IMPORTANCE E6-associated protein (E6AP)-mediated stabilization of human papillomavirus (HPV) E6 plays a crucial role in the development and progression of cervical and other HPV-associated cancers. This study, for the first time, identifies a novel ubiquitin ligase, FBXO4 that targets the degradation of HPV E6 oncoprotein in the absence of E6AP in cervical cancer-derived cell lines. This may have significant implications for our understanding of HPV-associated cancers by providing deeper insights into the intricate interplay between viral proteins and host cellular machinery and the development of targeted therapies.
Collapse
Affiliation(s)
- Arushi Vats
- Tumour Virology, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Luca Braga
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Nezka Kavcic
- Tumour Virology, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Paola Massimi
- Tumour Virology, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Edoardo Schneider
- Functional Cell Biology Laboratory, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Mauro Giacca
- School of Cardiovascular & Metabolic Medicine and Sciences, King's College London British Heart Foundation Centre, London, United Kingdom
| | - Laimonis A. Laimins
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Lawrence Banks
- Tumour Virology, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| |
Collapse
|
2
|
Kathleen W. Too many cooks in the kitchen: HPV driven carcinogenesis - The result of collaboration or competition? Tumour Virus Res 2024; 19:200311. [PMID: 39733972 PMCID: PMC11753912 DOI: 10.1016/j.tvr.2024.200311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/21/2024] [Accepted: 12/22/2024] [Indexed: 12/31/2024] Open
Abstract
Infection by Human Papillomaviruses accounts for the most widespread sexually transmitted infection worldwide. Clinical presentation of these infections can range from subclinical and asymptomatic to anogenital cancers, with the latter associated with persistent infection over a significant period of time. Of the over 200 isotypes of the human virus identified, a subset of these has been characterized as high-risk due to their ability to induce oncogenesis. At the core of Papillomavirus pathogenesis sits three virally encoded oncoproteins: E5, E6, and E7. In this review we will discuss the respective roles of these proteins and how they contribute to carcinogenesis, evaluating key distinguishing features that separate them from their low-risk counterparts. Furthermore, we will consider the complex relationship between this trio and how their interwoven functional networks underpin the development of cancer.
Collapse
Affiliation(s)
- Weimer Kathleen
- IGBMC - CBI: Institut de génétique et de biologie moléculaire et cellulaire, Centre de biologie intégrative, 1 rue Laurent Fries, Illkirch-Graffenstaden, BP 10142, 67404, France.
| |
Collapse
|
3
|
Broniarczyk J, Trejo-Cerro O, Massimi P, Kavčič N, Myers MP, Banks L. HPV-18 E6 enhances the interaction between EMILIN2 and SNX27 to promote WNT signaling. J Virol 2024; 98:e0073524. [PMID: 38874360 PMCID: PMC11265340 DOI: 10.1128/jvi.00735-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 05/20/2024] [Indexed: 06/15/2024] Open
Abstract
Oncogenic HPV E6 proteins have a PDZ-binding motif (PBM) which plays important roles in both the viral life cycle and tumor development. The PBM confers interaction with a large number of different PDZ domain-containing substrates, one of which is Sorting Nexin 27. This protein is part of the retromer complex and plays an important role in endocytic sorting pathways. It has been shown that at least two SNX27 interacting partners, GLUT1 and TANC2, are aberrantly trafficked due to the E6 PBM-dependent interaction with SNX27. To investigate further which other components of the endocytic trafficking pathway might be affected by the SNX27-HPV E6 interaction, we analyzed the SNX27 proteome interaction profile in a previously described HeLa cell line expressing GFP-SNX27, both in the presence and absence of the HPV-18 E6 oncoprotein. In this study, we identify a novel interacting partner of SNX27, secreted glycoprotein EMILIN2, whose release is blocked by HPV18 E6 in a PBM-dependent manner. Mechanistically, E6 can block EMILIN2 interaction with the WNT1 ligand, thereby enhancing WNT1 signaling and promoting cell proliferation. IMPORTANCE This study demonstrates that HPV E6 blocks EMILIN2 inhibition of WNT1 signaling, thereby enhancing cell proliferation in HPV-positive tumor cells. This involves a novel mechanism whereby the E6 PBM actually contributes toward enhancing the interaction between SNX27 and EMILIN2, suggesting that the mode of recognition of SNX27 by E6 and EMILIN2 is different. This is the first example of the E6 PBM altering a PDZ domain-containing protein to enhance potential substrate recognition.
Collapse
Affiliation(s)
- Justyna Broniarczyk
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
- Department of Molecular Virology, Adam Mickiewicz University, Poznan, Poland
| | - Oscar Trejo-Cerro
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Paola Massimi
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Nežka Kavčič
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Michael P. Myers
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Lawrence Banks
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| |
Collapse
|
4
|
Skelin J, Tomaić V. Comparative Analysis of Alpha and Beta HPV E6 Oncoproteins: Insights into Functional Distinctions and Divergent Mechanisms of Pathogenesis. Viruses 2023; 15:2253. [PMID: 38005929 PMCID: PMC10674601 DOI: 10.3390/v15112253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Human papillomaviruses (HPVs) represent a diverse group of DNA viruses that infect epithelial cells of mucosal and cutaneous tissues, leading to a wide spectrum of clinical outcomes. Among various HPVs, alpha (α) and beta (β) types have garnered significant attention due to their associations with human health. α-HPVs are primarily linked to infections of the mucosa, with high-risk subtypes, such as HPV16 and HPV18, being the major etiological agents of cervical and oropharyngeal cancers. In contrast, β-HPVs are predominantly associated with cutaneous infections and are commonly found on healthy skin. However, certain β-types, notably HPV5 and HPV8, have been implicated in the development of non-melanoma skin cancers in immunocompromised individuals, highlighting their potential role in pathogenicity. In this review, we comprehensively analyze the similarities and differences between α- and β-HPV E6 oncoproteins, one of the major drivers of viral replication and cellular transformation, and how these impact viral fitness and the capacity to induce malignancy. In particular, we compare the mechanisms these oncoproteins use to modulate common cellular processes-apoptosis, DNA damage repair, cell differentiation, and the immune response-further shedding light on their shared and distinct features, which enable them to replicate at divergent locations of the human body and cause different types of cancer.
Collapse
Affiliation(s)
| | - Vjekoslav Tomaić
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia;
| |
Collapse
|
5
|
López-Cárdenas MT, Jiménez A, Espinosa-Montesinos A, Maldonado-Alvarado E, Osorio-Peralta MO, Martinez-Escobar A, Moreno-Vázquez A, Aguilera-Arreola MG, Ramón-Gallegos E. Elimination of Human Papillomavirus and Cervical Pathological Microbiota with Photodynamic Therapy in Women from Mexico City with Cervical Intraepithelial Neoplasia I. Photochem Photobiol 2023; 99:1468-1475. [PMID: 36773299 DOI: 10.1111/php.13791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 02/07/2023] [Indexed: 02/12/2023]
Abstract
Cervical carcinoma (CC) is the second cause of cancer death in Mexican women. It starts with premalignant lesions known as Intraepithelial Cervical Neoplasia (CIN) that can develop due to infection by Human Papillomavirus (HPV) and other microorganisms. Current CIN therapy involves invasive methods that affect cervix integrity and fertility; we propose the use of photodynamic therapy (PDT) as a strategy with few side effects. In this work, the effectiveness of PDT for CIN I, HPV and pathogenic vaginal microbiota elimination in 29 women of Mexico City with CIN I, CIN I + HPV and HPV diagnosis was determined. After 6 months of PDT application, HPV infection was eliminated in 100% of the patients (P < 0.01), CIN I + HPV in 64.3% (P < 0.01) and CIN I in 57.2% (P > 0.05). PDT also eliminated pathogenic microorganisms: Chlamydia trachomatis in 81% of the women (P < 0.001) and Candida albicans in 80% (P < 0.05), without affecting normal microbiota since Lactobacillus iners was eliminated only in 5.8% of patients and the opportunistic Gardnerella vaginalis in 20%. These results show that PDT was highly effective in eradicating HPV and pathogenic microorganisms, suggesting that PDT is a promising therapy for cervical infections.
Collapse
Affiliation(s)
- María Teresa López-Cárdenas
- Laboratorio de Citopatología Ambiental, Departamento de Morfología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Adriana Jiménez
- División de Investigación, Hospital Juárez de México, Ciudad de México, Mexico
| | | | - Elizabeth Maldonado-Alvarado
- Laboratorio de Citopatología Ambiental, Departamento de Morfología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | | | - Alejandro Martinez-Escobar
- Laboratorio de Citopatología Ambiental, Departamento de Morfología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Alejandra Moreno-Vázquez
- Departamento de Patología, Hospital de Cardiología, Centro Médico Nacional Siglo XXI, Mexico City, Mexico
| | - Ma Guadalupe Aguilera-Arreola
- Laboratorio de Bacteriología Médica, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas-Instituto Politécnico Nacional, Mexico City, Mexico
| | - Eva Ramón-Gallegos
- Laboratorio de Citopatología Ambiental, Departamento de Morfología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| |
Collapse
|
6
|
Boon SS, Lee YC, Yip KL, Luk HY, Xiao C, Yim MK, Chen Z, Chan PKS. Interaction between Human Papillomavirus-Encoded E6 Protein and AurB Induces Cell Immortalization and Proliferation-A Potential Target of Intervention. Cancers (Basel) 2023; 15:cancers15092465. [PMID: 37173932 PMCID: PMC10177266 DOI: 10.3390/cancers15092465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/18/2023] [Accepted: 04/18/2023] [Indexed: 05/15/2023] Open
Abstract
The human papillomavirus E6 and E7 oncoproteins interact with a different subset of host proteins, leading to dysregulation of the apoptotic, cell cycle, and signaling pathways. In this study, we identified, for the first time, that Aurora kinase B (AurB) is a bona fide interacting partner of E6. We systematically characterized the AurB-E6 complex formation and its consequences in carcinogenesis using a series of in vitro and cell-based assays. We also assessed the efficacy of Aurora kinase inhibitors in halting HPV-mediated carcinogenesis using in vitro and in vivo models. We showed that AurB activity was elevated in HPV-positive cells, and this correlated positively with the E6 protein level. E6 interacted directly with AurB in the nucleus or mitotic cells. A previously unidentified region of E6, located upstream of C-terminal E6-PBM, was important for AurB-E6 complex formation. AurB-E6 complex led to reduced AurB kinase activity. However, the AurB-E6 complex increased the hTERT protein level and its telomerase activity. On the other hand, AurB inhibition led to the inhibition of telomerase activity, cell proliferation, and tumor formation, even though this may occur in an HPV-independent manner. In summary, this study dissected the molecular mechanism of how E6 recruits AurB to induce cell immortalization and proliferation, leading to the eventual cancer development. Our findings revealed that the treatment of AZD1152 exerted a non-specific anti-tumor effect. Hence, a continuous effort to seek a specific and selective inhibitor that can halt HPV-mediated carcinogenesis should be warranted.
Collapse
Affiliation(s)
- Siaw Shi Boon
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Yin Ching Lee
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Ka Lai Yip
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Ho Yin Luk
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Chuanyun Xiao
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Man Kin Yim
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Zigui Chen
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Paul Kay Sheung Chan
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| |
Collapse
|
7
|
Sofiani VH, Veisi P, Rukerd MRZ, Ghazi R, Nakhaie M. The complexity of human papilloma virus in cancers: a narrative review. Infect Agent Cancer 2023; 18:13. [PMID: 36843070 PMCID: PMC9969657 DOI: 10.1186/s13027-023-00488-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 02/09/2023] [Indexed: 02/27/2023] Open
Abstract
Among human tumorigenic viruses, the role of Human papillomavirus (HPV) has been proven as one of the most important oncoviruses that are associated with a large number of cancers. Most cancers of the genital area such cervical and anal cancer as are caused by HPV, and in many other cancers, such as colorectal, gastric, liver, esophageal, urinary bladder, and head and neck cancers, it is considered as one of the important risk factors. Our search was conducted for published researches between 2000 and 2022 by using several international databases including Scopus, PubMed, and Web of Science as well as Google scholar. We also evaluated additional evidence from relevant published articles. It has been demonstrated that HPV can promote tumorigenesis via focusing on genes, proteins, and signaling pathways, by using E6 and E7 oncoproteins and inhibiting two crucial tumor suppressors, P53 and Rb. The following study was performed to investigate different malignant cancers under the influence of HPV infection and changes in molecular factors caused by HPV infection.
Collapse
Affiliation(s)
- Vahideh Hamidi Sofiani
- grid.411747.00000 0004 0418 0096Department of Microbiology, Golestan University of Medical Sciences, Gorgan, Iran
| | - Parsa Veisi
- grid.411747.00000 0004 0418 0096Department of Microbiology, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mohammad Rezaei Zadeh Rukerd
- grid.412105.30000 0001 2092 9755Gastroenterology and Hepatology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Reza Ghazi
- Department of Biotechnology, Golestan University of Medical Sciences, Gorgan, Iran.
| | - Mohsen Nakhaie
- Gastroenterology and Hepatology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
8
|
Vats A, Thatte JV, Banks L. Molecular dissection of the E6 PBM identifies essential residues regulating Chk1 phosphorylation and subsequent 14-3-3 recognition. Tumour Virus Res 2023; 15:200257. [PMID: 36775199 PMCID: PMC10009279 DOI: 10.1016/j.tvr.2023.200257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/12/2023] Open
Abstract
Previous studies have shown that the high-risk HPV E6 oncoprotein PDZ binding motifs (PBMs) can interact with PDZ proteins or members of the 14-3-3 family, depending upon the E6 phosphorylation status. However, different HPV E6 oncoproteins are subjected to phosphorylation by different cellular kinases. We have therefore been interested in determining whether we can dissect E6's PDZ and 14-3-3 interactions at the molecular level. Using HPV-18 E6, we have found that its Chk1 phosphorylation requires residues both upstream and downstream of the phospho-acceptor site, in addition to the Chk1 consensus recognition motif. Furthermore, we demonstrate that different high-risk HPV E6 types are differentially phosphorylated by Chk1 kinases, potentially due to the differences in their carboxy-terminal residues, as they are critical for kinase recognition. Moreover, differences in the E6 phosphorylation levels of different HR HPV types directly link to their ability to interact with different 14-3-3 isoforms, based on their phospho-status. Interestingly, 14-3-3 recognition appears to be less dependent upon the precise sequence constraints of the E6 carboxy terminal region, whilst minor amino acid variations have a major impact upon PDZ recognition. These results demonstrate that changes in E6 phospho-status during the life cycle or during malignant progression will modulate E6 interactions and, potentially, inversely regulate the levels of PDZ and 14-3-3 proteins.
Collapse
Affiliation(s)
- Arushi Vats
- International Centre for Genetic Engineering and Biotechnology, Padriciano, 99-34149, Trieste, Italy.
| | - Jayashree V Thatte
- International Centre for Genetic Engineering and Biotechnology, Padriciano, 99-34149, Trieste, Italy
| | - Lawrence Banks
- International Centre for Genetic Engineering and Biotechnology, Padriciano, 99-34149, Trieste, Italy
| |
Collapse
|
9
|
HPV-18E6 Inhibits Interactions between TANC2 and SNX27 in a PBM-Dependent Manner and Promotes Increased Cell Proliferation. J Virol 2022; 96:e0136522. [PMID: 36326272 PMCID: PMC9683006 DOI: 10.1128/jvi.01365-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
While a great deal is known about the role of the E6 PDZ binding motif (PBM) in modulating the cellular proteins involved in regulating cell polarity, much less is known about the consequences of E6's interactions with SNX27 and the endocytic sorting machinery. We reasoned that a potential consequence of such interactions could be to affect the fate of multiple SNX27 endosomal partners, such as transmembrane proteins or soluble accessory proteins.
Collapse
|
10
|
Human Papillomavirus 16 E6 and E7 Oncoproteins Alter the Abundance of Proteins Associated with DNA Damage Response, Immune Signaling and Epidermal Differentiation. Viruses 2022; 14:v14081764. [PMID: 36016386 PMCID: PMC9415472 DOI: 10.3390/v14081764] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022] Open
Abstract
The high-risk human papillomaviruses are oncogenic viruses associated with almost all cases of cervical carcinomas, and increasing numbers of anal, and oral cancers. Two oncogenic HPV proteins, E6 and E7, are capable of immortalizing keratinocytes and are required for HPV associated cell transformation. Currently, the influence of these oncoproteins on the global regulation of the host proteome is not well defined. Liquid chromatography coupled with quantitative tandem mass spectrometry using isobaric-tagged peptides was used to investigate the effects of the HPV16 oncoproteins E6 and E7 on protein levels in human neonatal keratinocytes (HEKn). Pathway and gene ontology enrichment analyses revealed that the cells expressing the HPV oncoproteins have elevated levels of proteins related to interferon response, inflammation and DNA damage response, while the proteins related to cell organization and epithelial development are downregulated. This study identifies dysregulated pathways and potential biomarkers associated with HPV oncoproteins in primary keratinocytes which may have therapeutic implications. Most notably, DNA damage response pathways, DNA replication, and interferon signaling pathways were affected in cells transduced with HPV16 E6 and E7 lentiviruses. Moreover, proteins associated with cell organization and differentiation were significantly downregulated in keratinocytes expressing HPV16 E6 + E7. High-risk HPV E6 and E7 oncoproteins are necessary for the HPV-associated transformation of keratinocytes. However their influence on the global dysregulation of keratinocyte proteome is not well documented. Here shotgun proteomics using TMT-labeling detected over 2500 significantly dysregulated proteins associated with E6 and E7 expression. Networks of proteins related to interferon response, inflammation and DNA damage repair pathways were altered.
Collapse
|
11
|
Abjaude W, Prati B, Munford V, Montenegro A, Lino V, Herbster S, Rabachini T, Termini L, Menck CFM, Boccardo E. ATM Pathway Is Essential for HPV-Positive Human Cervical Cancer-Derived Cell Lines Viability and Proliferation. Pathogens 2022; 11:637. [PMID: 35745491 PMCID: PMC9228918 DOI: 10.3390/pathogens11060637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/22/2022] [Accepted: 05/26/2022] [Indexed: 01/01/2023] Open
Abstract
Infection with some mucosal human papillomavirus (HPV) types is the etiological cause of cervical cancer and of a significant fraction of vaginal, vulvar, anal, penile, and head and neck carcinomas. DNA repair machinery is essential for both HPV replication and tumor cells survival suggesting that cellular DNA repair machinery may play a dual role in HPV biology and pathogenesis. Here, we silenced genes involved in DNA Repair pathways to identify genes that are essential for the survival of HPV-transformed cells. We identified that inhibition of the ATM/CHK2/BRCA1 axis selectively affects the proliferation of cervical cancer-derived cell lines, without altering normal primary human keratinocytes (PHK) growth. Silencing or chemical inhibition of ATM/CHK2 reduced the clonogenic and proliferative capacity of cervical cancer-derived cells. Using PHK transduced with HPV16 oncogenes we observed that the effect of ATM/CHK2 silencing depends on the expression of the oncogene E6 and on its ability to induce p53 degradation. Our results show that inhibition of components of the ATM/CHK2 signaling axis reduces p53-deficient cells proliferation potential, suggesting the existence of a synthetic lethal association between CHK2 and p53. Altogether, we present evidence that synthetic lethality using ATM/CHK2 inhibitors can be exploited to treat cervical cancer and other HPV-associated tumors.
Collapse
Affiliation(s)
- Walason Abjaude
- Laboratory of Oncovirology, Department of Microbiology, Instituto de Ciências Biomédicas, Universidade de São Paulo, Sao Paulo 05508-900, Brazil; (W.A.); (B.P.); (A.M.); (V.L.); (S.H.)
| | - Bruna Prati
- Laboratory of Oncovirology, Department of Microbiology, Instituto de Ciências Biomédicas, Universidade de São Paulo, Sao Paulo 05508-900, Brazil; (W.A.); (B.P.); (A.M.); (V.L.); (S.H.)
| | - Veridiana Munford
- Laboratory of DNA Repair, Department of Microbiology, Instituto de Ciências Biomédicas, Universidade de São Paulo, Sao Paulo 05508-000, Brazil; (V.M.); (C.F.M.M.)
| | - Aline Montenegro
- Laboratory of Oncovirology, Department of Microbiology, Instituto de Ciências Biomédicas, Universidade de São Paulo, Sao Paulo 05508-900, Brazil; (W.A.); (B.P.); (A.M.); (V.L.); (S.H.)
| | - Vanesca Lino
- Laboratory of Oncovirology, Department of Microbiology, Instituto de Ciências Biomédicas, Universidade de São Paulo, Sao Paulo 05508-900, Brazil; (W.A.); (B.P.); (A.M.); (V.L.); (S.H.)
| | - Suellen Herbster
- Laboratory of Oncovirology, Department of Microbiology, Instituto de Ciências Biomédicas, Universidade de São Paulo, Sao Paulo 05508-900, Brazil; (W.A.); (B.P.); (A.M.); (V.L.); (S.H.)
| | - Tatiana Rabachini
- Institute of Pharmacology, Inselspital, INO-F, University of Bern, CH-3010 Bern, Switzerland;
| | - Lara Termini
- Centro de Investigação Translacional em Oncologia, Instituto do Câncer do Estado de São Paulo, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Sao Paulo 01246-000, Brazil;
| | - Carlos Frederico Martins Menck
- Laboratory of DNA Repair, Department of Microbiology, Instituto de Ciências Biomédicas, Universidade de São Paulo, Sao Paulo 05508-000, Brazil; (V.M.); (C.F.M.M.)
| | - Enrique Boccardo
- Laboratory of Oncovirology, Department of Microbiology, Instituto de Ciências Biomédicas, Universidade de São Paulo, Sao Paulo 05508-900, Brazil; (W.A.); (B.P.); (A.M.); (V.L.); (S.H.)
| |
Collapse
|
12
|
Karukonda P, Odhiambo D, Mowery YM. Pharmacologic inhibition of ataxia telangiectasia and Rad3-related (ATR) in the treatment of head and neck squamous cell carcinoma. Mol Carcinog 2022; 61:225-238. [PMID: 34964992 PMCID: PMC8799519 DOI: 10.1002/mc.23384] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 12/10/2021] [Accepted: 12/14/2021] [Indexed: 02/03/2023]
Abstract
Head and neck squamous cell carcinoma (HNSCC) poses significant treatment challenges, with high recurrence rates for locally advanced disease despite aggressive therapy typically involving a combination of surgery, radiation therapy, and/or chemotherapy. HNSCCs commonly exhibit reduced or absent TP53 function due to genomic alterations or human papillomavirus (HPV) infection, leading to dependence on the S- and G2/M checkpoints for cell cycle regulation. Both of these checkpoints are activated by Ataxia Telangiectasia and Rad3-related (ATR), which tends to be overexpressed in HNSCC relative to adjacent normal tissues and represents a potentially promising therapeutic target, particularly in combination with other treatments. ATR is a DNA damage signaling kinase that is activated in response to replication stress and single-stranded DNA breaks, such as those induced by radiation therapy and certain chemotherapies. ATR kinase inhibitors are currently being investigated in several clinical trials as part of the management of locally advanced, recurrent, or metastatic HNSCC, along with other malignancies. In this review article, we summarize the rationale and preclinical data supporting incorporation of ATR inhibition into therapeutic regimens for HNSCC.
Collapse
Affiliation(s)
- Pooja Karukonda
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA
| | - Diana Odhiambo
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA
| | - Yvonne M. Mowery
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA,Department of Head and Neck Surgery & Communication Sciences, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
13
|
Loss of the E6AP ubiquitin ligase induces p53-dependent phosphorylation of HPV-18 E6 in cells derived from cervical cancer. J Virol 2022; 96:e0150321. [PMID: 35044207 DOI: 10.1128/jvi.01503-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cancer-causing HPV E6 oncoproteins contain a well-characterised phospho-acceptor site within the PDZ (PSD-95/Dlg/ZO-1) binding motif (PBM) at the C-terminus of the protein. Previous studies have shown that the threonine or serine residue in the E6 PBM is subject to phosphorylation by several stress-responsive cellular kinases, upon the induction of DNA damage in cervical cancer-derived cells. However, there is little information about the regulation of E6 phosphorylation in the absence of DNA damage and whether there may be other pathways by which E6 is phosphorylated. In this study, we demonstrate that loss of E6AP results in a dramatic increase in the levels of phosphorylated E6 (pE6), despite the expected overall reduction in total E6 protein levels. Furthermore, phosphorylation of E6 requires transcriptionally active p53 and occurs in a manner which is dependent upon DNA PK. These results identify a novel feedback loop, where loss of E6AP results in upregulation of p53, leading to increased levels of E6 phosphorylation, which in turn correlates with increased association with 14-3-3 and inhibition of p53 transcriptional activity. IMPORTANCE This study demonstrates that the knockdown of E6AP from cervical cancer-derived cells leads to an increase in phosphorylation of the E6 oncoprotein. We show that this phosphorylation of E6 requires p53 transcriptional activity and the enzyme DNA PK. This study therefore defines a feedback loop whereby activation of p53 can induce phosphorylation of E6 and which in turn can inhibit p53 transcriptional activity, independently of E6's ability to target p53 for degradation.
Collapse
|
14
|
Thomas M, Banks L. The biology of papillomavirus PDZ associations: what do they offer papillomaviruses? Curr Opin Virol 2021; 51:119-126. [PMID: 34655911 DOI: 10.1016/j.coviro.2021.09.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/10/2021] [Accepted: 09/21/2021] [Indexed: 01/05/2023]
Abstract
The high-risk α-type papillomaviruses have a C-terminal PDZ-binding motif (PBM) on one of the two major oncoproteins E6 or E7; the vast majority on E6. The PBM is essential for the high-risk HPV life cycle, for episomal maintenance of the virus genome, and for maintaining the mitotic stability of the infected cell. The question is why only these viruses have PBMs - are there specific constraints imposed by the mucosal epithelium in which these viruses replicate? However the low-risk α-HPVs, such as HPV-6 and HPV-11 replicate extremely efficiently without a PBM, while viruses of the alpha8 group, such as HPV-40, replicate well with a very primitive PBM. So what does PDZ-binding capacity contribute to the fitness of the virus?
Collapse
Affiliation(s)
- Miranda Thomas
- ICGEB, AREA Science Park, Padriciano 99, 34149, Trieste, Italy.
| | - Lawrence Banks
- ICGEB, AREA Science Park, Padriciano 99, 34149, Trieste, Italy
| |
Collapse
|
15
|
Basukala O, Banks L. The Not-So-Good, the Bad and the Ugly: HPV E5, E6 and E7 Oncoproteins in the Orchestration of Carcinogenesis. Viruses 2021; 13:1892. [PMID: 34696321 PMCID: PMC8541208 DOI: 10.3390/v13101892] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 12/15/2022] Open
Abstract
Infection with HPV starts with the access of the viral particles to basal cells in the epidermis, potentially via microtraumas to the skin. The basal cells are able to keep away these pathogens in normal circumstances through a robust immune response from the host, as HPV infections are, in general, cleared within 2 to 3 weeks. However, the rare instances of persistent infection and/or in cases where the host immune system is compromised are major risk factors for the development of lesions potentially leading to malignancy. Evolutionarily, obligatory pathogens such as HPVs would not be expected to risk exposing the host to lethal cancer, as this would entail challenging their own life cycle, but infection with these viruses is highly correlated with cancer and malignancy-as in cancer of the cervix, which is almost always associated with these viruses. Despite this key associative cause and the availability of very effective vaccines against these viruses, therapeutic interventions against HPV-induced cancers are still a challenge, indicating the need for focused translational research. In this review, we will consider the key roles that the viral proteins play in driving the host cells to carcinogenesis, mainly focusing on events orchestrated by early proteins E5, E6 and E7-the not-so-good, the bad and the ugly-and discuss and summarize the major events that lead to these viruses mechanistically corrupting cellular homeostasis, giving rise to cancer and malignancy.
Collapse
Affiliation(s)
| | - Lawrence Banks
- Tumour Virology Laboratory, International Centre for Genetic Engineering and Biotechnology, Padriciano 99, I-34149 Trieste, Italy;
| |
Collapse
|
16
|
Zhang S, Saito M, Okayama K, Okodo M, Kurose N, Sakamoto J, Sasagawa T. HPV Genotyping by Molecular Mapping of Tissue Samples in Vaginal Squamous Intraepithelial Neoplasia (VaIN) and Vaginal Squamous Cell Carcinoma (VaSCC). Cancers (Basel) 2021; 13:cancers13133260. [PMID: 34209851 PMCID: PMC8267732 DOI: 10.3390/cancers13133260] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/20/2021] [Accepted: 06/25/2021] [Indexed: 01/10/2023] Open
Abstract
Simple Summary HPV genotypes were determined in 63 vaginal intraepithelial neoplasia (VaIN) and 7 vaginal squamous cell carcinomas (VaSCC). Of these, 37 cases had VaIN alone, and 26 cases had both VaIN and cervical intraepithelial neoplasia (CIN) or condyloma. HPV typing was performed in scraped cells by Genosearch-31 and in the archived tissues by uniplex E6/E7 PCR. In a total of 49 VaIN1, 17 VaIN2/3, and 7 VaSCC tissues, the prevalence of HPV was 91.2% in VaIN and 85.7% in VaSCC. Comparing HPV results in scraped cell and tissue, 46.2% of high-risk (HR) types and 68.1% of any HPV types that had been identified in cell samples were not present in corresponding tissues. HPV types in VaIN and CIN lesions differed in 92.3% of cases with multiple lesions. These results suggest that there are many preclinical HPV infections in the vagina or the cervix, and VaIN and CIN are independently developed. The manual microdissection procedure of tissue revealed one HPV type in one lesion. The vagina appears to be the reservoir for any mucosal HPV type, and HR- or pHR-HPV types are causative agents for vaginal malignancies. Abstract HPV genotypes were determined in 63 vaginal intraepithelial neoplasia (VaIN) and 7 vaginal squamous cell carcinomas (VaSCC). Of these, 37 cases had VaIN alone, and 26 cases had both VaIN and cervical intraepithelial neoplasia (CIN) or condyloma. HPV typing was performed in scraped cells by Genosearch-31 (GS-31) and in the archived tissues by uniplex E6/E7 PCR. In a total of 49 VaIN1, 17 VaIN2/3, and 7 VaSCC tissues, the prevalence of HPV was 91.2% in VaIN (VaIN1: 87.8%, VaIN2/3: 100%) and 85.7% in VaSCC. Comparing HPV results in scraped cell and tissue, 46.2% of high-risk (HR) types and 68.1% of any HPV types that had been identified in cell samples were not present in corresponding tissues. HPV types in VaIN and CIN lesions differed in 92.3% (24/26) of cases with multiple lesions. These results suggest that there are many preclinical HPV infections in the vagina or the cervix, and VaIN and CIN are independently developed. The manual microdissection procedure of tissue revealed one HPV type in one lesion. Seventeen HPV types, including high-risk (HR), possible high-risk (pHR), and low-risk (LR), were identified in 43 VaIN1 lesions. In higher grade lesions, six HR (HPV16, 18, 51, 52, 56, 58), one pHR (HPV66), and one LR (HPV42) HPV types were identified in 17 VaIN2/3, and six HPV types, including HPV16, 45, 58, and 68 (HR), and HPV53 and 67 (pHR), were detected in each case of VaSCC. The vagina appears to be the reservoir for any mucosal HPV type, and HR- or pHR-HPV types are causative agents for vaginal malignancies.
Collapse
Affiliation(s)
- Shitai Zhang
- Department of Obstetrics and Gynecology, Kanazawa Medical University, Kahoku-gun 920-0293, Japan; (S.Z.); (M.S.); (J.S.)
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Mayumi Saito
- Department of Obstetrics and Gynecology, Kanazawa Medical University, Kahoku-gun 920-0293, Japan; (S.Z.); (M.S.); (J.S.)
| | - Kaori Okayama
- School of Medical Technology, Faculty of Health Science, Gumma Paz University, Takasaki 320-0006, Japan;
| | - Mitsuaki Okodo
- Department of Medical Technology, Faculty of Health Sciences, Kyorin University, Mitaka 181-8611, Japan;
| | - Nozomu Kurose
- Department of Pathology and Laboratory Medicine, Kanazawa Medical University Hospital, Kahoku-gun 920-0293, Japan;
| | - Jinichi Sakamoto
- Department of Obstetrics and Gynecology, Kanazawa Medical University, Kahoku-gun 920-0293, Japan; (S.Z.); (M.S.); (J.S.)
| | - Toshiyuki Sasagawa
- Department of Obstetrics and Gynecology, Kanazawa Medical University, Kahoku-gun 920-0293, Japan; (S.Z.); (M.S.); (J.S.)
- Correspondence: ; Tel.: +81-76-218-8143; Fax: +81-76-286-2629
| |
Collapse
|
17
|
Vats A, Trejo-Cerro O, Thomas M, Banks L. Human papillomavirus E6 and E7: What remains? Tumour Virus Res 2021; 11:200213. [PMID: 33716206 PMCID: PMC7972986 DOI: 10.1016/j.tvr.2021.200213] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 12/12/2022] Open
Abstract
Decades of research on the human papillomavirus oncogenes, E6 and E7, have given us huge amounts of data on their expression, functions and structures. We know much about the very many cellular proteins and pathways that they influence in one way or another. However, much of this information is quite discrete, referring to one activity examined under one condition. It is now time to join the dots to try to understand a larger picture: how, where and when do all these interactions occur... and why? Examining these questions will also show how many of the yet obscure cellular processes work together for cellular and tissue homeostasis in health and disease.
Collapse
Affiliation(s)
- Arushi Vats
- Tumour Virology Group, ICGEB, AREA Science Park, Trieste, 34149, Italy
| | - Oscar Trejo-Cerro
- Tumour Virology Group, ICGEB, AREA Science Park, Trieste, 34149, Italy
| | - Miranda Thomas
- Tumour Virology Group, ICGEB, AREA Science Park, Trieste, 34149, Italy.
| | - Lawrence Banks
- Tumour Virology Group, ICGEB, AREA Science Park, Trieste, 34149, Italy
| |
Collapse
|
18
|
Basukala O, Sarabia-Vega V, Banks L. Human papillomavirus oncoproteins and post-translational modifications: generating multifunctional hubs for overriding cellular homeostasis. Biol Chem 2021; 401:585-599. [PMID: 31913845 DOI: 10.1515/hsz-2019-0408] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 12/19/2019] [Indexed: 11/15/2022]
Abstract
Human papillomaviruses (HPVs) are major human carcinogens, causing around 5% of all human cancers, with cervical cancer being the most important. These tumors are all driven by the two HPV oncoproteins E6 and E7. Whilst their mechanisms of action are becoming increasingly clear through their abilities to target essential cellular tumor suppressor and growth control pathways, the roles that post-translational modifications (PTMs) of E6 and E7 play in the regulation of these activities remain unclear. Here, we discuss the direct consequences of some of the most common PTMs of E6 and E7, and how this impacts upon the multi-functionality of these viral proteins, and thereby contribute to the viral life cycle and to the induction of malignancy. Furthermore, it is becoming increasingly clear that these modifications, may, in some cases, offer novel routes for therapeutic intervention in HPV-induced disease.
Collapse
Affiliation(s)
- Om Basukala
- International Centre for Genetic Engineering and Biotechnology, AREA Science Park, Padriciano 99, I-34149Trieste, Italy
| | - Vanessa Sarabia-Vega
- International Centre for Genetic Engineering and Biotechnology, AREA Science Park, Padriciano 99, I-34149Trieste, Italy
| | - Lawrence Banks
- International Centre for Genetic Engineering and Biotechnology, AREA Science Park, Padriciano 99, I-34149Trieste, Italy
| |
Collapse
|
19
|
Hong J, Won M, Ro H. The Molecular and Pathophysiological Functions of Members of the LNX/PDZRN E3 Ubiquitin Ligase Family. Molecules 2020; 25:E5938. [PMID: 33333989 PMCID: PMC7765395 DOI: 10.3390/molecules25245938] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/10/2020] [Accepted: 12/10/2020] [Indexed: 12/27/2022] Open
Abstract
The ligand of Numb protein-X (LNX) family, also known as the PDZRN family, is composed of four discrete RING-type E3 ubiquitin ligases (LNX1, LNX2, LNX3, and LNX4), and LNX5 which may not act as an E3 ubiquitin ligase owing to the lack of the RING domain. As the name implies, LNX1 and LNX2 were initially studied for exerting E3 ubiquitin ligase activity on their substrate Numb protein, whose stability was negatively regulated by LNX1 and LNX2 via the ubiquitin-proteasome pathway. LNX proteins may have versatile molecular, cellular, and developmental functions, considering the fact that besides these proteins, none of the E3 ubiquitin ligases have multiple PDZ (PSD95, DLGA, ZO-1) domains, which are regarded as important protein-interacting modules. Thus far, various proteins have been isolated as LNX-interacting proteins. Evidence from studies performed over the last two decades have suggested that members of the LNX family play various pathophysiological roles primarily by modulating the function of substrate proteins involved in several different intracellular or intercellular signaling cascades. As the binding partners of RING-type E3s, a large number of substrates of LNX proteins undergo degradation through ubiquitin-proteasome system (UPS) dependent or lysosomal pathways, potentially altering key signaling pathways. In this review, we highlight recent and relevant findings on the molecular and cellular functions of the members of the LNX family and discuss the role of the erroneous regulation of these proteins in disease progression.
Collapse
Affiliation(s)
- Jeongkwan Hong
- Department of Biological Sciences, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 305-764, Korea;
| | - Minho Won
- Biotechnology Process Engineering Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), 30 Yeongudanji-ro, Cheongwon-gu, Cheongju 28116, Korea
| | - Hyunju Ro
- Department of Biological Sciences, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 305-764, Korea;
| |
Collapse
|
20
|
Tetenborg S, Wang HY, Nemitz L, Depping A, Espejo AB, Aseervatham J, Bedford MT, Janssen-Bienhold U, O'Brien J, Dedek K. Phosphorylation of Connexin36 near the C-terminus switches binding affinities for PDZ-domain and 14-3-3 proteins in vitro. Sci Rep 2020; 10:18378. [PMID: 33110101 PMCID: PMC7592057 DOI: 10.1038/s41598-020-75375-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 10/12/2020] [Indexed: 12/20/2022] Open
Abstract
Connexin36 (Cx36) is the most abundant connexin in central nervous system neurons. It forms gap junction channels that act as electrical synapses. Similar to chemical synapses, Cx36-containing gap junctions undergo activity-dependent plasticity and complex regulation. Cx36 gap junctions represent multimolecular complexes and contain cytoskeletal, regulatory and scaffolding proteins, which regulate channel conductance, assembly and turnover. The amino acid sequence of mammalian Cx36 harbors a phosphorylation site for the Ca2+/calmodulin-dependent kinase II at serine 315. This regulatory site is homologous to the serine 298 in perch Cx35 and in close vicinity to a PDZ binding domain at the very C-terminal end of the protein. We hypothesized that this phosphorylation site may serve as a molecular switch, influencing the affinity of the PDZ binding domain for its binding partners. Protein microarray and pulldown experiments revealed that this is indeed the case: phosphorylation of serine 298 decreased the binding affinity for MUPP1, a known scaffolding partner of connexin36, and increased the binding affinity for two different 14-3-3 proteins. Although we did not find the same effect in cell culture experiments, our data suggest that phosphorylation of serine 315/298 may serve to recruit different proteins to connexin36/35-containing gap junctions in an activity-dependent manner.
Collapse
Affiliation(s)
- Stephan Tetenborg
- Animal Navigation/Neurosensorics, Institute for Biology and Environmental Sciences, University of Oldenburg, Oldenburg, Germany
- Ruiz Department of Ophthalmology & Visual Science, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Helen Y Wang
- Ruiz Department of Ophthalmology & Visual Science, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Lena Nemitz
- Visual Neuroscience, Dept. of Neuroscience, University of Oldenburg, Oldenburg, Germany
| | - Anne Depping
- Animal Navigation/Neurosensorics, Institute for Biology and Environmental Sciences, University of Oldenburg, Oldenburg, Germany
| | - Alexsandra B Espejo
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Smithville, TX, 78957, USA
| | - Jaya Aseervatham
- Ruiz Department of Ophthalmology & Visual Science, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Mark T Bedford
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Smithville, TX, 78957, USA
| | - Ulrike Janssen-Bienhold
- Visual Neuroscience, Dept. of Neuroscience, University of Oldenburg, Oldenburg, Germany
- Research Center Neurosensory Science, University of Oldenburg, Oldenburg, Germany
| | - John O'Brien
- Ruiz Department of Ophthalmology & Visual Science, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Karin Dedek
- Animal Navigation/Neurosensorics, Institute for Biology and Environmental Sciences, University of Oldenburg, Oldenburg, Germany.
- Research Center Neurosensory Science, University of Oldenburg, Oldenburg, Germany.
| |
Collapse
|
21
|
The Role of Ataxia Telangiectasia Mutant and Rad3-Related DNA Damage Response in Pathogenesis of Human Papillomavirus. Pathogens 2020; 9:pathogens9060506. [PMID: 32585979 PMCID: PMC7350315 DOI: 10.3390/pathogens9060506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/19/2020] [Accepted: 06/20/2020] [Indexed: 12/16/2022] Open
Abstract
Human papillomavirus (HPV) infection leads to a variety of benign lesions and malignant tumors such as cervical cancer and head and neck squamous cell carcinoma. Several HPV vaccines have been developed that can help to prevent cervical carcinoma, but these vaccines are only effective in individuals with no prior HPV infection. Thus, it is still important to understand the HPV life cycle and in particular the association of HPV with human pathogenesis. HPV production requires activation of the DNA damage response (DDR), which is a complex signaling network composed of multiple sensors, mediators, transducers, and effectors that safeguard cellular DNAs to maintain the host genome integrity. In this review, we focus on the roles of the ataxia telangiectasia mutant and Rad3-related (ATR) DNA damage response in HPV DNA replication. HPV can induce ATR expression and activate the ATR pathway. Inhibition of the ATR pathway results in suppression of HPV genome maintenance and amplification. The mechanisms underlying this could be through various molecular pathways such as checkpoint signaling and transcriptional regulation. In light of these findings, other downstream mechanisms of the ATR pathway need to be further investigated for better understanding HPV pathogenesis and developing novel ATR DDR-related inhibitors against HPV infection.
Collapse
|
22
|
He X, He X, Xu P, Yang L, Ma X, Li W, Zhang H. Treatment with Radix Euphorbiae Ebracteolatae Significantly Decreases the Expression of E6 and L1, and Increases the Expression of p53 and Rb in HPV18-infected Human Foreskin Keratinocytes. Curr Mol Med 2020; 19:20-31. [PMID: 30813877 DOI: 10.2174/1566524019666190226102713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 01/24/2019] [Accepted: 02/11/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Radix Euphorbiae Ebracteolatae (REE) was recently reported to be significantly superior to vitamin A acid ointment in treating multiple plantar warts. However, the effects of REE on HPV18 remain unclear. Therefore, the current study aimed to investigate the effects of REE on the proliferation of HPV18, and explore possible molecular mechanisms underlying the effects. METHODS HFK and HFK-HPV18 were treated with water-extracted single or compound REE, ethanol-extracted single or compound REE, TNF-α and IFN for 3 days, respectively. In addition, the organotypic rafts containing HFK-HPV18 and HFK were treated with REE, IFN and TNF-α for 7 days, respectively. Cell proliferation rates were measured with Brdu. mRNA expression of E6, L1, p53 and Rb was detected by qPCR. Protein expression of p53, Rb and L1 was detected by Western blot. RESULTS Compared to HFK group, HFK-HPV18 group had significantly higher expression of E6 and L1. Compared to the control group, HFK-HPV18 treated with REE, TNF-α and IFN displayed significantly lower proliferation rates. The mRNA expression of E6 was markedly lower, and mRNA expression of p53 and Rb was significantly higher after treatment of REE in HFK-HPV18 or in organotypic rafts containing HFK-HPV18. Treatment with REE markedly increased the protein expression of p53 and Rb, and decreased the protein expression of L1 in HFK-HPV18 or in organotypic rafts containing HFK-HPV18. Among all formula of REE, the inhibition of proliferation rates and expression of E6 and L1, and the increase in expression of p53 and Rb in HFK-HPV18 was highest in ethanol-extracted compound REE group. CONCLUSIONS The proliferation rates are significantly lower in HFK-HPV18 treated with REE. The expression of E6 and L1 is markedly lower, and expression of p53 and Rb is significantly higher after REE treatment in HFK-HPV18 or organotypic rafts containing HFK-HPV18. Among all formula of REE, ethanol-extracted compound REE displays the highest protection against HPV18.
Collapse
Affiliation(s)
- Xiang He
- Department of Dermatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhang Heng Road, Pudong New Area District, Shanghai 201203, China
| | - Xufeng He
- Department of Dermatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhang Heng Road, Pudong New Area District, Shanghai 201203, China
| | - Ping Xu
- Department of Dermatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhang Heng Road, Pudong New Area District, Shanghai 201203, China
| | - Lili Yang
- Department of Dermatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhang Heng Road, Pudong New Area District, Shanghai 201203, China
| | - Xin Ma
- Department of Dermatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhang Heng Road, Pudong New Area District, Shanghai 201203, China
| | - Wen Li
- Department of Dermatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhang Heng Road, Pudong New Area District, Shanghai 201203, China
| | - Huimin Zhang
- Department of Dermatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhang Heng Road, Pudong New Area District, Shanghai 201203, China
| |
Collapse
|
23
|
Sarabia-Vega V, Banks L. Acquisition of a phospho-acceptor site enhances HPV E6 PDZ-binding motif functional promiscuity. J Gen Virol 2019; 101:954-962. [PMID: 30810519 DOI: 10.1099/jgv.0.001236] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
All cancer-causing human papillomavirus (HPV) E6 oncoproteins have a C-terminal PDZ-binding motif (PBM), which correlates with oncogenic potential. Nonetheless, several HPVs with little or no oncogenic potential also have an E6 PBM, with minor sequence differences affecting PDZ protein selectivity. Furthermore, certain HPV types have a phospho-acceptor site embedded within the PBM. We therefore compared HPV-18, HPV-66 and HPV-40 E6 proteins to examine the possible link between the ability to target multiple PDZ proteins and the acquisition of a phospho-acceptor site. The mutation of essential residues in HPV-18E6 reduces its phosphorylation, and fewer PDZ substrates are bound. In contrast, the generation of consensus phospho-acceptor sites in HPV-66 and HPV-40 E6 PBMs increases the PDZ proteins recognized. Thus, although phosphorylation of the E6 PBM and PDZ protein recognition are mutually exclusive, they are closely linked, with the acquisition of a phospho-acceptor site also contributing to an expansion in the number of PDZ proteins bound.
Collapse
Affiliation(s)
- Vanessa Sarabia-Vega
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, I-34149 Trieste, Italy
| | - Lawrence Banks
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, I-34149 Trieste, Italy
| |
Collapse
|
24
|
Madeo M, Colbert PL, Vermeer DW, Lucido CT, Cain JT, Vichaya EG, Grossberg AJ, Muirhead D, Rickel AP, Hong Z, Zhao J, Weimer JM, Spanos WC, Lee JH, Dantzer R, Vermeer PD. Cancer exosomes induce tumor innervation. Nat Commun 2018; 9:4284. [PMID: 30327461 PMCID: PMC6191452 DOI: 10.1038/s41467-018-06640-0] [Citation(s) in RCA: 188] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 09/18/2018] [Indexed: 12/16/2022] Open
Abstract
Patients with densely innervated tumors suffer with increased metastasis and decreased survival as compared to those with less innervated tumors. We hypothesize that in some tumors, nerves are acquired by a tumor-induced process, called axonogenesis. Here, we use PC12 cells as an in vitro neuronal model, human tumor samples and murine in vivo models to test this hypothesis. When appropriately stimulated, PC12 cells extend processes, called neurites. We show that patient tumors release vesicles, called exosomes, which induce PC12 neurite outgrowth. Using a cancer mouse model, we show that tumors compromised in exosome release are less innervated than controls. Moreover, in vivo pharmacological blockade of exosome release similarly attenuates tumor innervation. We characterize these nerves as sensory in nature and demonstrate that axonogenesis is potentiated by the exosome-packaged axonal guidance molecule, EphrinB1. These findings indicate that tumor released exosomes induce tumor innervation and exosomes containing EphrinB1 potentiate this activity.
Collapse
Affiliation(s)
- Marianna Madeo
- Cancer Biology and Immunotherapies Group, Sanford Research, 2301 East 60th St north, Sioux Falls, SD, 57104, USA
| | - Paul L Colbert
- Cancer Biology and Immunotherapies Group, Sanford Research, 2301 East 60th St north, Sioux Falls, SD, 57104, USA
| | - Daniel W Vermeer
- Cancer Biology and Immunotherapies Group, Sanford Research, 2301 East 60th St north, Sioux Falls, SD, 57104, USA
| | - Christopher T Lucido
- Cancer Biology and Immunotherapies Group, Sanford Research, 2301 East 60th St north, Sioux Falls, SD, 57104, USA
| | - Jacob T Cain
- Pediatrics and Rare Diseases Group, Sanford Research, 2301 East 60th St north, Sioux Falls, SD, 57104, USA
| | - Elisabeth G Vichaya
- Department of Symptom Research, MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 384, Houston, TX, 77030, USA
| | - Aaron J Grossberg
- Department of Symptom Research, MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 384, Houston, TX, 77030, USA
- Department of Radiation Medicine, Cancer Early Detection Advanced Research Center, Oregon Health and Science University, 2720 SW Moody Ave KR-CEDR, Portland, OR, 97201, USA
| | - DesiRae Muirhead
- Sanford Health Pathology Clinic, Sanford Health, 1305 West 18th St, Sioux Falls, SD, 57105, USA
| | - Alex P Rickel
- Biomedical Engineering Program, University of South Dakota, 4800 North Career Ave, Sioux Falls, SD, 57107, USA
| | - Zhongkui Hong
- Biomedical Engineering Program, University of South Dakota, 4800 North Career Ave, Sioux Falls, SD, 57107, USA
| | - Jing Zhao
- Population Health Group, Sanford Research, 2301 East 60th St north, Sioux Falls, SD, 57104, USA
| | - Jill M Weimer
- Pediatrics and Rare Diseases Group, Sanford Research, 2301 East 60th St north, Sioux Falls, SD, 57104, USA
| | - William C Spanos
- Cancer Biology and Immunotherapies Group, Sanford Research, 2301 East 60th St north, Sioux Falls, SD, 57104, USA
- Sanford Ears, Nose and Throat, 1310 West 22nd St, Sioux Falls, SD, 57105, USA
| | - John H Lee
- NantKwest, 9920 Jefferson Blvd, Culver City, CA, 90232, USA
| | - Robert Dantzer
- Department of Symptom Research, MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 384, Houston, TX, 77030, USA
| | - Paola D Vermeer
- Cancer Biology and Immunotherapies Group, Sanford Research, 2301 East 60th St north, Sioux Falls, SD, 57104, USA.
| |
Collapse
|
25
|
Thomas M, Banks L. Upsetting the Balance: When Viruses Manipulate Cell Polarity Control. J Mol Biol 2018; 430:3481-3503. [PMID: 29680664 PMCID: PMC7094317 DOI: 10.1016/j.jmb.2018.04.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 04/12/2018] [Accepted: 04/14/2018] [Indexed: 12/20/2022]
Abstract
The central importance of cell polarity control is emphasized by the frequency with which it is targeted by many diverse viruses. It is clear that in targeting key polarity control proteins, viruses affect not only host cell polarity, but also influence many cellular processes, including transcription, replication, and innate and acquired immunity. Examination of the interactions of different virus proteins with the cell and its polarity controls during the virus life cycles, and in virally-induced cell transformation shows ever more clearly how intimately all cellular processes are linked to the control of cell polarity.
Collapse
|