1
|
Pavelescu LA, Mititelu-Zafiu NL, Mindru DE, Vladareanu R, Curici A. Molecular Insights into HPV-Driven Cervical Cancer: Oncoproteins, Immune Evasion, and Epigenetic Modifications. Microorganisms 2025; 13:1000. [PMID: 40431173 DOI: 10.3390/microorganisms13051000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2025] [Revised: 04/22/2025] [Accepted: 04/24/2025] [Indexed: 05/29/2025] Open
Abstract
Cervical cancer ranks third in mortality and fourth in incidence among women worldwide as one of the leading causes of death from cancer in females. The main reason behind cervical carcinogenesis is long-term infection with high-risk human papillomavirus (HPV) genotypes, particularly HPV16 and HPV18. This review investigates HPV distribution across the world, along with cervical cancer molecular development mechanisms and current treatment strategies. Epidemiological data show that disease patterns vary significantly between different geographic regions because underdeveloped nations bear a higher disease burden. The molecular mechanisms of oncogenes E6 and E7 disrupt tumor suppressor pathways, while epigenetic modifications through DNA methylation and miRNA dysregulation promote malignant cell transformation. The reduction in HPV infection through prophylactic vaccination has shown promise, yet barriers related to accessibility and coverage still exist. The therapeutic technologies of gene expression inhibitors together with immunotherapies and epigenetic targeting agents show promise but require optimization to achieve specific targeting while minimizing off-target effects. A combined approach that integrates HPV vaccination with early diagnosis and molecular-specific therapies represents the most effective method to manage cervical cancer impact. The future care of patients will require increased translational research along with better immunization programs to drive prevention and therapeutic outcomes.
Collapse
Affiliation(s)
- Luciana Alexandra Pavelescu
- Department of Cellular and Molecular Biology and Histology, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | | | - Dana Elena Mindru
- Department of Pediatrics, Faculty of Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Radu Vladareanu
- Department of Obstetrics-Gynecology and Neonatology, Elias Emergency Hospital Bucharest, 011461 Bucharest, Romania
- Obstetrics and Gynecology, University of Medicine and Pharmacy Carol Davila, 050474 Bucharest, Romania
| | - Antoanela Curici
- Department of Cellular and Molecular Biology and Histology, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Synevo Romania, 021408 Bucharest, Romania
| |
Collapse
|
2
|
Longoni M, Fankhauser CD, Negri F, Salonia A, Basile G, Johnstone PAS, Bandini M. Treatment strategies in human papillomavirus-related advanced penile cancer. Nat Rev Urol 2025:10.1038/s41585-025-00994-z. [PMID: 39966660 DOI: 10.1038/s41585-025-00994-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2025] [Indexed: 02/20/2025]
Abstract
Penile cancer is a rare neoplasm with heterogeneous prevalence influenced by risk factors such as smoking, poor hygiene and human papillomavirus (HPV) infection. Southern Africa, South America and Southeast Asia have the highest incidence of this disease. Penile squamous cell carcinomas (PSCCs) account for the majority of instances of penile cancer, with HPV-related carcinogenesis implicated in up to half of them. Increases in PSCC incidence in industrialized nations parallel the rising high-risk HPV infection rates, particularly HPV-16. Early-stage, localized PSCC is often manageable, but treatment options in advanced disease remain limited, with poor survival outcomes. Emerging evidence suggests that HPV-positive PSCC might exhibit unique therapeutic responses, including increased sensitivity to radiotherapy and chemotherapy, as has been observed in HPV-driven head and neck squamous cell carcinoma. Results of studies in HPV-positive PSCC demonstrate improved responses to chemoradiotherapy and immunotherapy, underscoring the potential for tailored treatments and de-escalation. Additionally, incorporating immunotherapy with radiotherapy in HPV-driven PSCC might provide greater oncological benefits than standard chemotherapy. These observations suggest that treatment strategies for HPV-positive PSCC might benefit from de-escalated chemoradiotherapy regimens or immunotherapy incorporation, potentially optimizing efficacy while minimizing toxic effects. Furthermore, biomarkers such as tumour mutational burden, programmed cell death ligand 1 expression, and genetic alterations could be crucial for predicting treatment response. Comprehensive biomarker assessment and accurate HPV status determination are essential for developing patient-tailored therapeutic strategies. These data provide evidence of the potential benefits of individualized approaches based on tumour biology and biomarker profiles.
Collapse
Affiliation(s)
- Mattia Longoni
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS Ospedale San Raffaele, Milan, Italy
- University "Vita-Salute" San Raffaele, Faculty of Medicine and Surgery, Milan, Italy
| | - Christian D Fankhauser
- Department of Urology, The Christie NHS Foundation Trust, Manchester, UK
- Department of Urology, Luzerner Kantonsspital, University of Lucerne, Lucerne, Switzerland
- University of Zurich, Faculty of Medicine and Surgery, Zurich, Switzerland
- Department of Urology, Luzerner Kantonsspital, Lucerne, Switzerland
| | - Fausto Negri
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS Ospedale San Raffaele, Milan, Italy
- University "Vita-Salute" San Raffaele, Faculty of Medicine and Surgery, Milan, Italy
| | - Andrea Salonia
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS Ospedale San Raffaele, Milan, Italy
- University "Vita-Salute" San Raffaele, Faculty of Medicine and Surgery, Milan, Italy
| | - Giuseppe Basile
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS Ospedale San Raffaele, Milan, Italy
- University "Vita-Salute" San Raffaele, Faculty of Medicine and Surgery, Milan, Italy
- Department of Urology, The Royal Free London Foundation Trust, London, UK
| | - Peter A S Johnstone
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Marco Bandini
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS Ospedale San Raffaele, Milan, Italy.
- University "Vita-Salute" San Raffaele, Faculty of Medicine and Surgery, Milan, Italy.
| |
Collapse
|
3
|
Keiffer TR, DiGiuseppe S, Guion L, Bienkowska-Haba M, Zwolinska K, Siddiqa A, Kushwaha A, Sapp MJ. HPV16 entry requires dynein for minus-end transport and utilizes kinesin Kif11 for plus-end transport along microtubules during mitosis. J Virol 2025; 99:e0093724. [PMID: 39629998 PMCID: PMC11784366 DOI: 10.1128/jvi.00937-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 10/28/2024] [Indexed: 02/01/2025] Open
Abstract
Human papillomaviruses (HPVs) travel from the trans-Golgi network (TGN) to the condensed (mitotic) chromosomes during mitosis. Partially uncoated HPV capsids utilize a unique vesicular structure for trafficking and nuclear import, which is directed by the minor capsid protein L2. However, it is still unknown which precise factors facilitate post-TGN HPV trafficking to the nucleus. Herein, we analyzed HPV16-infected mitotic cells using high-resolution microscopy, coupled with motor protein inhibition, to further elaborate on post-TGN trafficking by tracking the location and/or quantification of EdU-labeled HPV pseudogenomes on microtubules, certain kinesins, and mitotic chromosomes. We also adapted a knocksideways approach to determine if L2 and Kif11 interact in infected cells. We visualized dynein co-localization with HPV pseudogenomes along mitotic microtubules and measured HPV pseudogenome accumulation after short-term dynein inhibition. Additional inhibitor studies implicated a specific kinesin, Kif11, as participating in HPV pseudogenome delivery to the nucleus. Short-term inhibition of Kif11 decreased HPV pseudogenome accumulation at mitotic chromatin. In addition, Kif11, along with kinesins Kif18a and Kif25, were in proximity to L2 during infection. While we were unable to determine a direct interaction between L2 and Kif11, we were able to show via knocksideways approach that relocalization of exogenous Kif11 decreased HPV pseudogenome accumulation to the mitotic chromatin. Our data support a model whereby HPV16 utilizes dynein for minus-end trafficking along mitotic microtubules and utilizes Kif11 for plus-end movement in the late stage of viral entry. IMPORTANCE Human papillomaviruses (HPV) utilize a unique vesicular structure to shield their genomes from detection during trafficking from the trans-Golgi network (TGN) to the nucleus during mitosis. The exact cellular factors responsible for trafficking these HPV genome containing vesicles along mitotic microtubules via the L2 minor protein remain unknown. We show via high-resolution microscopy that pharmacological inhibition of dynein and the kinesin Kif11 significantly decreases HPV pseudogenome accumulation on mitotic chromatin. Several kinesins were detected in proximity to incoming HPV pseudogenomes. Finally, using a novel knocksideways approach, we show reduced HPV pseudogenome accumulation on mitotic chromatin upon Kif11 relocalization to the mitochondria. Herein, our data suggest HPV utilizes minus- and plus-end mediated trafficking along mitotic microtubules to complete its genome trafficking to the nucleus.
Collapse
Affiliation(s)
- Timothy R. Keiffer
- Department of Microbiology and Immunology, Center for Molecular and Tumor Virology, Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, Louisiana, USA
| | | | - Lucile Guion
- Department of Microbiology and Immunology, Center for Molecular and Tumor Virology, Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, Louisiana, USA
| | - Malgorzata Bienkowska-Haba
- Department of Microbiology and Immunology, Center for Molecular and Tumor Virology, Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, Louisiana, USA
| | - Katarzyna Zwolinska
- Department of Microbiology and Immunology, Center for Molecular and Tumor Virology, Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, Louisiana, USA
| | - Abida Siddiqa
- Department of Microbiology and Immunology, Center for Molecular and Tumor Virology, Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, Louisiana, USA
| | - Anand Kushwaha
- Department of Microbiology and Immunology, Center for Molecular and Tumor Virology, Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, Louisiana, USA
| | - Martin J. Sapp
- Department of Microbiology and Immunology, Center for Molecular and Tumor Virology, Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, Louisiana, USA
| |
Collapse
|
4
|
Palomino-Vizcaino G, Bañuelos-Villegas EG, Alvarez-Salas LM. The Natural History of Cervical Cancer and the Case for MicroRNAs: Is Human Papillomavirus Infection the Whole Story? Int J Mol Sci 2024; 25:12991. [PMID: 39684702 PMCID: PMC11641362 DOI: 10.3390/ijms252312991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 11/28/2024] [Accepted: 11/29/2024] [Indexed: 12/18/2024] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs (ncRNAs) that negatively regulate gene expression. MiRNAs regulate fundamental biological processes and have significant roles in several pathologies, including cancer. Cervical cancer is the best-known example of a widespread human malignancy with a demonstrated viral etiology. Infection with high-risk human papillomavirus (hrHPV) has been shown to be a causative factor for cervical carcinogenesis. Despite the occurrence of prophylactic vaccines, highly sensitive HPV diagnostics, and innovative new therapies, cervical cancer remains a main cause of death in developing countries. The relationship between hrHPV infection and cervical cancer depends on the integration of viral DNA to the host genome, disrupting the viral regulator E2 and the continuous production of the viral E6 and E7 proteins, which are necessary to acquire and maintain a transformed phenotype but insufficient for malignant cervical carcinogenesis. Lately, miRNAs, the tumor microenvironment, and immune evasion have been found to be major players in cervical carcinogenesis after hrHPV infection. Many miRNAs have been widely reported as deregulated in cervical cancer. Here, the relevance of miRNA in HPV-mediated transformation is critically reviewed in the context of the natural history of hrHPV infection and cervical cancer.
Collapse
Affiliation(s)
- Giovanni Palomino-Vizcaino
- Facultad de Ciencias de la Salud, Unidad Valle de las Palmas, Campus Tijuana, Universidad Autónoma de Baja California, Tijuana 21500, Mexico;
| | - Evelyn Gabriela Bañuelos-Villegas
- Laboratorio de Terapia Génica, Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del I.P.N., México City 07360, Mexico;
| | - Luis Marat Alvarez-Salas
- Laboratorio de Terapia Génica, Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del I.P.N., México City 07360, Mexico;
| |
Collapse
|
5
|
Jin J, Li S, Huang H, Li J, Lyu Y, Ran Y, Chang H, Zhao X. Development of human papillomavirus and its detection methods (Review). Exp Ther Med 2024; 28:382. [PMID: 39161614 PMCID: PMC11332130 DOI: 10.3892/etm.2024.12671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/04/2024] [Indexed: 08/21/2024] Open
Abstract
Human papillomavirus (HPV) infection plays an important role in cervical cancer. HPV is classified within the Papillomaviridae family and is a non-enveloped, small DNA virus. HPV infection can be classified into two distinct scenarios: i) With or without integration into the host chromosomes. Detection of its infection can be useful in the study of cervical lesions. In the present review, the structural and functional features of HPV, HPV typing, infection and transmission mode, the risk factors for cervical susceptibility to infection and HPV detection methods are described in detail. The development of HPV detection methods may have far-reaching significance in the prevention and treatment of cervical disease. This review summarizes the advantages and limitations of each HPV detection method.
Collapse
Affiliation(s)
- Jian Jin
- Medical Research Center, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450002, P.R. China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan 450002, P.R. China
- Tianjian Laboratory of Advanced Biomedical Sciences, School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Shujuan Li
- Medical Research Center, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450002, P.R. China
| | - Hehuan Huang
- Medical Research Center, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450002, P.R. China
| | - Junqi Li
- Medical Research Center, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450002, P.R. China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan 450002, P.R. China
- Tianjian Laboratory of Advanced Biomedical Sciences, School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Yuan Lyu
- Medical Research Center, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450002, P.R. China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan 450002, P.R. China
- Tianjian Laboratory of Advanced Biomedical Sciences, School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Yunwei Ran
- Medical Research Center, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450002, P.R. China
| | - Hui Chang
- Medical Research Center, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450002, P.R. China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan 450002, P.R. China
- Tianjian Laboratory of Advanced Biomedical Sciences, School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
- School of Public Health, Xi'an Jiaotong University, Xi'an, Shanxi 710049, P.R. China
| | - Xin Zhao
- Medical Research Center, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450002, P.R. China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan 450002, P.R. China
- Tianjian Laboratory of Advanced Biomedical Sciences, School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
- Department of Radiology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450002, P.R. China
| |
Collapse
|
6
|
Mannam G, Miller JW, Johnson JS, Gullapalli K, Fazili A, Spiess PE, Chahoud J. HPV and Penile Cancer: Epidemiology, Risk Factors, and Clinical Insights. Pathogens 2024; 13:809. [PMID: 39339000 PMCID: PMC11434800 DOI: 10.3390/pathogens13090809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/13/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
Penile cancer (PC) is a rare malignancy predominantly of squamous cell origin. Approximately 40% of penile tumors are associated with human papillomavirus (HPV) infection. Diagnosing PC remains challenging due to its rarity and variety of clinical presentations. Furthermore, the impact of HPV on the tumor immune microenvironment complicates clinical management, although recent advancements in immune checkpoint inhibitors (ICIs) have shown some efficacy in treating HPV-associated PC. Ongoing research efforts aim to develop oncologic treatments that target HPV-induced cellular modifications. Additionally, novel therapeutic vaccines and adoptive T-cell therapies targeting HPV oncoproteins represent emerging treatment modalities. Our review highlights the complex interplay between HPV and penile carcinogenesis, emphasizing its epidemiology, etiology, clinicopathological characteristics, and potential therapeutic implications.
Collapse
Affiliation(s)
- Gowtam Mannam
- USF Health Morsani College of Medicine, Tampa, FL 33602, USA; (G.M.); (J.W.M.)
| | - Justin W. Miller
- USF Health Morsani College of Medicine, Tampa, FL 33602, USA; (G.M.); (J.W.M.)
| | - Jeffrey S. Johnson
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA; (J.S.J.); (K.G.); (A.F.); (P.E.S.)
| | - Keerthi Gullapalli
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA; (J.S.J.); (K.G.); (A.F.); (P.E.S.)
| | - Adnan Fazili
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA; (J.S.J.); (K.G.); (A.F.); (P.E.S.)
| | - Philippe E. Spiess
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA; (J.S.J.); (K.G.); (A.F.); (P.E.S.)
| | - Jad Chahoud
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA; (J.S.J.); (K.G.); (A.F.); (P.E.S.)
| |
Collapse
|
7
|
Sausen DG, Shechter O, Gallo ES, Dahari H, Borenstein R. Herpes Simplex Virus, Human Papillomavirus, and Cervical Cancer: Overview, Relationship, and Treatment Implications. Cancers (Basel) 2023; 15:3692. [PMID: 37509353 PMCID: PMC10378257 DOI: 10.3390/cancers15143692] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
There is a significant body of research examining the role of human papillomavirus (HPV) in the pathogenesis of cervical cancer, with a particular emphasis on the oncogenic proteins E5, E6, and E7. What is less well explored, however, is the relationship between cervical cancer and herpes simplex virus (HSV). To date, studies examining the role of HSV in cervical cancer pathogenesis have yielded mixed results. While several experiments have determined that HPV/HSV-2 coinfection results in a higher risk of developing cervical cancer, others have questioned the validity of this association. However, clarifying the potential role of HSV in the pathogenesis of cervical cancer may have significant implications for both the prevention and treatment of this disease. Should this relationship be clarified, treating and preventing HSV could open another avenue with which to prevent cervical cancer. The importance of this is highlighted by the fact that, despite the creation of an effective vaccine against HPV, cervical cancer still impacts 604,000 women and is responsible for 342,000 deaths annually. This review provides an overview of HSV and HPV infections and then delves into the possible links between HPV, HSV, and cervical cancer. It concludes with a summary of preventive measures against and recent treatment advances in cervical cancer.
Collapse
Affiliation(s)
- Daniel G. Sausen
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA 23501, USA; (D.G.S.); (O.S.)
| | - Oren Shechter
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA 23501, USA; (D.G.S.); (O.S.)
| | - Elisa S. Gallo
- Division of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv 64239, Israel
| | - Harel Dahari
- The Program for Experimental and Theoretical Modeling, Division of Hepatology, Department of Medicine, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA;
| | - Ronen Borenstein
- The Program for Experimental and Theoretical Modeling, Division of Hepatology, Department of Medicine, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA;
| |
Collapse
|
8
|
Ryabchenko B, Šroller V, Horníková L, Lovtsov A, Forstová J, Huérfano S. The interactions between PML nuclear bodies and small and medium size DNA viruses. Virol J 2023; 20:82. [PMID: 37127643 PMCID: PMC10152602 DOI: 10.1186/s12985-023-02049-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 04/23/2023] [Indexed: 05/03/2023] Open
Abstract
Promyelocytic leukemia nuclear bodies (PM NBs), often referred to as membraneless organelles, are dynamic macromolecular protein complexes composed of a PML protein core and other transient or permanent components. PML NBs have been shown to play a role in a wide variety of cellular processes. This review describes in detail the diverse and complex interactions between small and medium size DNA viruses and PML NBs that have been described to date. The PML NB components that interact with small and medium size DNA viruses include PML protein isoforms, ATRX/Daxx, Sp100, Sp110, HP1, and p53, among others. Interaction between viruses and components of these NBs can result in different outcomes, such as influencing viral genome expression and/or replication or impacting IFN-mediated or apoptotic cell responses to viral infection. We discuss how PML NB components abrogate the ability of adenoviruses or Hepatitis B virus to transcribe and/or replicate their genomes and how papillomaviruses use PML NBs and their components to promote their propagation. Interactions between polyomaviruses and PML NBs that are poorly understood but nevertheless suggest that the NBs can serve as scaffolds for viral replication or assembly are also presented. Furthermore, complex interactions between the HBx protein of hepadnaviruses and several PML NBs-associated proteins are also described. Finally, current but scarce information regarding the interactions of VP3/apoptin of the avian anellovirus with PML NBs is provided. Despite the considerable number of studies that have investigated the functions of the PML NBs in the context of viral infection, gaps in our understanding of the fine interactions between viruses and the very dynamic PML NBs remain. The complexity of the bodies is undoubtedly a great challenge that needs to be further addressed.
Collapse
Affiliation(s)
- Boris Ryabchenko
- Department of Genetics and Microbiology, Faculty of Science, BIOCEV, Charles University, Vestec, 25250, Czech Republic
| | - Vojtěch Šroller
- Department of Genetics and Microbiology, Faculty of Science, BIOCEV, Charles University, Vestec, 25250, Czech Republic
| | - Lenka Horníková
- Department of Genetics and Microbiology, Faculty of Science, BIOCEV, Charles University, Vestec, 25250, Czech Republic
| | - Alexey Lovtsov
- Department of Genetics and Microbiology, Faculty of Science, BIOCEV, Charles University, Vestec, 25250, Czech Republic
| | - Jitka Forstová
- Department of Genetics and Microbiology, Faculty of Science, BIOCEV, Charles University, Vestec, 25250, Czech Republic
| | - Sandra Huérfano
- Department of Genetics and Microbiology, Faculty of Science, BIOCEV, Charles University, Vestec, 25250, Czech Republic.
| |
Collapse
|
9
|
Saleh T, Khasawneh AI, Himsawi N, Abu-Raideh J, Ejeilat V, Elshazly AM, Gewirtz DA. Senolytic Therapy: A Potential Approach for the Elimination of Oncogene-Induced Senescent HPV-Positive Cells. Int J Mol Sci 2022; 23:15512. [PMID: 36555154 PMCID: PMC9778669 DOI: 10.3390/ijms232415512] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/29/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022] Open
Abstract
Senescence represents a unique cellular stress response characterized by a stable growth arrest, macromolecular alterations, and wide spectrum changes in gene expression. Classically, senescence is the end-product of progressive telomeric attrition resulting from the repetitive division of somatic cells. In addition, senescent cells accumulate in premalignant lesions, in part, as a product of oncogene hyperactivation, reflecting one element of the tumor suppressive function of senescence. Oncogenic processes that induce senescence include overexpression/hyperactivation of H-Ras, B-Raf, and cyclin E as well as inactivation of PTEN. Oncogenic viruses, such as Human Papilloma Virus (HPV), have also been shown to induce senescence. High-risk strains of HPV drive the immortalization, and hence transformation, of cervical epithelial cells via several mechanisms, but primarily via deregulation of the cell cycle, and possibly, by facilitating escape from senescence. Despite the wide and successful utilization of HPV vaccines in reducing the incidence of cervical cancer, this measure is not effective in preventing cancer development in individuals already positive for HPV. Accordingly, in this commentary, we focus on the potential contribution of oncogene and HPV-induced senescence (OIS) in cervical cancer. We further consider the potential utility of senolytic agents for the elimination of HPV-harboring senescent cells as a strategy for reducing HPV-driven transformation and the risk of cervical cancer development.
Collapse
Affiliation(s)
- Tareq Saleh
- Department of Pharmacology and Public Health, Faculty of Medicine, The Hashemite University, Zarqa 13133, Jordan
| | - Ashraf I. Khasawneh
- Department of Microbiology, Pathology, and Forensic Medicine, Faculty of Medicine, The Hashemite University, Zarqa 13133, Jordan
| | - Nisreen Himsawi
- Department of Microbiology, Pathology, and Forensic Medicine, Faculty of Medicine, The Hashemite University, Zarqa 13133, Jordan
| | - Jumana Abu-Raideh
- Department of Microbiology, Pathology, and Forensic Medicine, Faculty of Medicine, The Hashemite University, Zarqa 13133, Jordan
| | - Vera Ejeilat
- Department of Anatomy and Histology, Faculty of Medicine, The University of Jordan, Amman 11942, Jordan
| | - Ahmed M. Elshazly
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - David A. Gewirtz
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| |
Collapse
|
10
|
High-Risk Human Papillomavirus Infection in Lung Cancer: Mechanisms and Perspectives. BIOLOGY 2022; 11:biology11121691. [PMID: 36552201 PMCID: PMC9775033 DOI: 10.3390/biology11121691] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/08/2022] [Accepted: 11/16/2022] [Indexed: 11/24/2022]
Abstract
Lung cancer is a very prevalent and heterogeneous group of malignancies, and most of them are etiologically associated with tobacco smoking. However, viral infections have been detected in lung carcinomas, with high-risk human papillomaviruses (HR-HPVs) being among them. The role of HR-HPVs in lung cancer has been considered to be controversial. This issue is due to the highly variable presence of this virus in lung carcinomas worldwide, and the low viral load frequently that is detected. In this review, we address the epidemiological and mechanistic findings regarding the role of HR-HPVs in lung cancer. Some mechanisms of HR-HPV-mediated lung carcinogenesis have been proposed, including (i) HPV works as an independent carcinogen in non-smoker subjects; (ii) HPV cooperates with carcinogenic compounds present in tobacco smoke; (iii) HPV promotes initial alterations being after cleared by the immune system through a "hit and run" mechanism. Additional research is warranted to clarify the role of HPV in lung cancer.
Collapse
|
11
|
Cruz-Gregorio A, Aranda-Rivera AK, Pedraza-Chaverri J. Pathological Similarities in the Development of Papillomavirus-Associated Cancer in Humans, Dogs, and Cats. Animals (Basel) 2022; 12:ani12182390. [PMID: 36139250 PMCID: PMC9495210 DOI: 10.3390/ani12182390] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/10/2022] [Accepted: 09/11/2022] [Indexed: 12/05/2022] Open
Abstract
Simple Summary Papillomavirus (PV) infection affects many species, including humans and domestic animals, such as dogs and cats. Some of these infections involve the development of cancer due to the presence of PV. There are similarities in the pathology of these three PV-associated cancers, which may provide crucial insights into cancer development in these species, extrapolating both markers and possible treatment in the three species. For example, the oncoproteins E5, E6, and E7 are the main causes of the development of cancer associated with PV, and the possible therapies associated with the blockage or reduction of these oncoproteins can be of great benefit for the reduction and/or elimination of cancer associated with PV. Thus, our review focuses on the similarities in the context of pathology and biomarkers in canine, feline, and human cancers associated with PV. We review the main biomarkers, E5, E6, and E7 oncoproteins, and their overexpression in Canis familiaris, Felis catus, and human papillomavirus and their association with the development of cancer. Furthermore, we also discuss that a potential treatment for PV-related cancer is the reduction or blocking of these oncoproteins. Abstract Canis familiaris, Felis catus, and human papillomavirus are nonenveloped viruses that share similarities in the initiation and development of cancer. For instance, the three species overexpress the oncoproteins E6 and E7, and Canis familiaris and human papillomavirus overexpress the E5 oncoprotein. These similarities in the pathophysiology of cancer among the three species are beneficial for treating cancer in dogs, cats, and humans. To our knowledge, this topic has not been reviewed so far. This review focuses on the information on cancer research in cats and dogs comparable to that being conducted in humans in the context of comparative pathology and biomarkers in canine, feline, and human cancer. We also focus on the possible benefit of treatment associated with the E5, E6, and E7 oncoproteins for cancer in dogs, cats, and humans.
Collapse
|
12
|
Balaji D, Kalarani IB, Mohammed V, Veerabathiran R. Potential role of human papillomavirus proteins associated with the development of cancer. Virusdisease 2022; 33:322-333. [PMID: 36277412 PMCID: PMC9481806 DOI: 10.1007/s13337-022-00786-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 08/08/2022] [Indexed: 10/15/2022] Open
Abstract
Papillomaviruses are viruses with double-stranded DNA that are epitheliotropic and non-enveloped that infects cutaneous epithelial and mucosal cells in a species-specific way in several higher vertebrate species and cause cellular growth."There are around 100 different human papillomaviruses (HPVs)", as "more than 150 HPV types have been isolated and fully sequenced". We classify the probability of cancer development following viral infection with each HPV genotype into two types: "low-risk" and "high-risk." As a result, HPV diagnosis is a critical component of HPV genotype identification and characterization. Based on its activities, we may classify the HPV genome into three regions: the long control region (LCR) or the non-coding upstream regulatory region (URR), the late (L) region, and the early (E) region. Functional proteins are mostly static things that are not inflexible; they have undergone both local and global movements at various times and time ranges. The structural differences between HPV16 and 18 discovered by molecular modeling of the E6 oncoprotein were associated with their carcinogenic characteristics. Similarly, the E6 protein has two sets of C-X-X-C motifs that play significant roles in transformation, transcriptional activation, interactions, and immortalization with other proteins of cells in the host environment. Here, we review the literature regarding the protein mechanisms associated with HPV and how they cause cancer. Unless otherwise noted, it described all protein activities in terms of HPV proteins. The term "papillomaviruses" refers to groups of papillomavirus proteins that have a characteristic in common. HPV proteins can study the genetic influences on pathogenicity and the therapeutic applications of genomics. The future study provides a potential advancement in HPV infections and malignant illnesses to improve preventive and treatment strategies. Patients have been able to conquer this condition using a range of therapies and vaccines that were projected to be effective and robust enough to put an end to the ailment completely. In cancer prevention strategies, HPV vaccination is one of the most effective. It is safe, efficient, and long-lasting.
Collapse
Affiliation(s)
- Dhanvee Balaji
- Human Cytogenetics and Genomics Laboratory, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamilnadu 603103 India
| | - Iyshwarya Bhaskar Kalarani
- Human Cytogenetics and Genomics Laboratory, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamilnadu 603103 India
| | - Vajagathali Mohammed
- Human Cytogenetics and Genomics Laboratory, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamilnadu 603103 India
| | - Ramakrishnan Veerabathiran
- Human Cytogenetics and Genomics Laboratory, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamilnadu 603103 India
| |
Collapse
|
13
|
Morante AV, Baboolal DD, Simon X, Pan ECY, Meneses PI. Human Papillomavirus Minor Capsid Protein L2 Mediates Intracellular Trafficking into and Passage beyond the Endoplasmic Reticulum. Microbiol Spectr 2022; 10:e0150522. [PMID: 35608352 PMCID: PMC9241893 DOI: 10.1128/spectrum.01505-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 05/03/2022] [Indexed: 11/20/2022] Open
Abstract
Human papillomaviruses (HPVs) consist of two capsid proteins: major capsid protein L1 and minor capsid protein L2. The L2 protein has been shown to be involved in intracellular trafficking events that lead to the deposition of the viral DNA into the nucleus. In this study, we investigate the role of HPV16 L2 residues 43-DQILQ-47 during intracellular trafficking in human keratinocytes. We demonstrate that the highly conserved amino acids aspartic acid, isoleucine, and leucine are involved with the intracellular trafficking of the virus. Amino acid substitution of the isoleucine and leucine residues with alanine residues results in a significant decrease in infectivity of the pseudovirions without any changes to the binding or internalization of the virus. The pseudovirions containing these substitutions exhibit an altered trafficking pattern and do not deposit the viral pseudogenome into the nucleus. Instead, these mutated pseudovirions display a lack of interaction with syntaxin 18, an ER SNARE protein, are unable to progress past the endoplasmic reticulum (ER) and are redirected to the lysosomes. The results of this study help to elucidate the role and potential involvement of the 43-DQILQ-47 sequence during intracellular trafficking, specifically during trafficking beyond the ER. IMPORTANCE High-risk types of human papillomaviruses (HPVs), such as HPV16, are highly associated with cervical, anogenital, and oropharyngeal cancers. The minor capsid protein L2 is essential for the intracellular trafficking of the viral DNA to the nucleus. This study investigates the role of amino acid residues 43-DQILQ-47 of the HPV16 L2 protein in the intracellular trafficking of the virus. Understanding how the virus traffics through the cell is a key factor in the development of additional preventative antiviral therapies. This study illustrates, through modification of the 43-DQILQ-47 sequence in pseudovirions, the importance of the 43-DQILQ-47 sequence in the trafficking of the virus beyond the endoplasmic reticulum.
Collapse
Affiliation(s)
- Anthony V. Morante
- Department of Biological Sciences, Fordham University, Bronx, New York, USA
| | | | - Xavier Simon
- Department of Biological Sciences, Fordham University, Bronx, New York, USA
| | | | | |
Collapse
|
14
|
Li M, Huang J, Zhu Y, Huang Z, Zhang G, Huang J. Anti-L1 antibody-bound HPV16 pseudovirus is degraded intracellularly via TRIM21/proteasomal pathway. Virol J 2022; 19:90. [PMID: 35619167 PMCID: PMC9137102 DOI: 10.1186/s12985-022-01826-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/11/2022] [Indexed: 11/30/2022] Open
Abstract
Background Persistent HPV16 infection is the leading risk factor for developing cervical cancer. Anti-L1 antibodies against HPV16 produced in HPV16 infections play diverse roles in the clearance of virus infection and prevention of persistence. It has been implicated that the cervicovaginal squamous epithelial cells actually express TRIM21 and that some HPV16 particles could escape leaky endosomal compartment into the cytosol and that Fc receptor TRIM21 directly neutralize infection by targeting antibody-opsonized viruses for proteasomal degradation. We explored whether anti-L1 antibody opsonized HPV16 pseudovirus (PsV) entered into the cytosol could be neutralized by TRIM21-mediated activation of a proteasomal pathway to reduce the chance of persistent HPV16 infection. Methods HPV16 PsV were generated and extracted in HEK 293FT cells co-transfected with pcDNA3.1-eGFP and p16sheLL plasmids according to the standard protocol. The HPV16 PsV with capsid protein L1 was characterized by fluorescence microscopy and western blot, and the HPV16 PsV titer and anti-L1-bound PsV entry efficiency were detected by flow cytometry. The expressions of transcription factors (TF) and cytokines elicited by the TRIM21-activated proteasomal pathway were confirmed by dual-luciferase reporter assay and RT-qPCR. The changes in HPV16 PsV load with or without inhibitors in the infected HEK 293FT cells were determinated by qPCR. Results Simultaneous transfection with pcDNA3.1-eGFP and p16sheLL plasmids into the HEK 293FT cells resulted in the self-assembly of HPV16 PsV with capsid protein L1. Both HPV16 PsV and anti-L1-bound HPV16 PsV could infect HEK 293FT cells. Anti-L1-bound PsV up-regulated TRIM21 mediated-activation of proteasome and increased expressions of TF and cytokines in the infected cells where HPV16 PsV load reduced by ~ 1000-fold in the presence of anti-L1 antibody, but inhibition of proteasomal activity increased HPV16 PsV load. Conclusion Our preliminary results indicate that anti-L1 antibody entered with HPV16 PsV into the cells could mediate degradation of HPV16 PsV by TRIM21-activated proteasomal pathway intracellularly, giving anti-capsid protein L1 antibody a role in host defense of persistent HPV16 infection.
Collapse
Affiliation(s)
- Meiying Li
- Department of Biochemistry and Molecular Biology, Sichuan Cancer Institute, Chengdu, 610041, People's Republic of China
| | - Jianmei Huang
- Department of Gynecologic Oncology, Sichuan Cancer Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610041, People's Republic of China
| | - Yi Zhu
- Department of Gynecologic Oncology, Sichuan Cancer Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610041, People's Republic of China.,Department of Ultrasound, Sichuan Cancer Hospital, Chengdu, 610041, People's Republic of China
| | - Ziyi Huang
- Department of Bioinformatics, Basic Medical College of Chongqing Medical University, Chongqing, People's Republic of China
| | - Guonan Zhang
- Department of Gynecologic Oncology, Sichuan Cancer Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610041, People's Republic of China
| | - Jianming Huang
- Department of Biochemistry and Molecular Biology, Sichuan Cancer Institute, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
15
|
Tati S, Alisaraie L. Recruitment of dynein and kinesin to viral particles. FASEB J 2022; 36:e22311. [DOI: 10.1096/fj.202101900rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/14/2022] [Accepted: 03/29/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Sayi’Mone Tati
- School of Pharmacy Memorial University of Newfoundland St. John’s Newfoundland Canada
| | - Laleh Alisaraie
- School of Pharmacy Memorial University of Newfoundland St. John’s Newfoundland Canada
| |
Collapse
|
16
|
Abstract
Upon infection, DNA viruses can be sensed by pattern recognition receptors (PRRs), leading to the activation of type I and III interferons to block infection. Therefore, viruses must inhibit these signaling pathways, avoid being detected, or both. Papillomavirus virions are trafficked from early endosomes to the Golgi apparatus and wait for the onset of mitosis to complete nuclear entry. This unique subcellular trafficking strategy avoids detection by cytoplasmic PRRs, a property that may contribute to the establishment of infection. However, as the capsid uncoats within acidic endosomal compartments, the viral DNA may be exposed to detection by Toll-like receptor 9 (TLR9). In this study, we characterized two new papillomaviruses from bats and used molecular archeology to demonstrate that their genomes altered their nucleotide compositions to avoid detection by TLR9, providing evidence that TLR9 acts as a PRR during papillomavirus infection. Furthermore, we showed that TLR9, like other components of the innate immune system, is under evolutionary selection in bats, providing the first direct evidence for coevolution between papillomaviruses and their hosts. Finally, we demonstrated that the cancer-associated human papillomaviruses show a reduction in CpG dinucleotides within a TLR9 recognition complex.
Collapse
|
17
|
Robins LI, Clark A, Gafken PR, Alam S, Milici J, Hassan R, Wang C, Williams J, Meyers C. Hypochlorous Acid as a Disinfectant for High‐risk HPV: Insight into the mechanism of action. J Med Virol 2022; 94:3386-3393. [DOI: 10.1002/jmv.27716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/11/2022] [Accepted: 02/12/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Lori I. Robins
- Department of Physical Sciences, University of Washington Bothell, 18115 Campus Way NE BothellWA98011USA
| | - Andrew Clark
- Department of Physical Sciences, University of Washington Bothell, 18115 Campus Way NE BothellWA98011USA
| | - Philip R. Gafken
- Fred Hutchinson Cancer Research Center, 1100 Fairview Ave NSeattleWA98109USA
| | - Samina Alam
- Department of Microbiology and Immunology, Pennsylvania State College of MedicineHersheyPA17033USA
| | - Janice Milici
- Department of Microbiology and Immunology, Pennsylvania State College of MedicineHersheyPA17033USA
| | - Reem Hassan
- Department of Microbiology and Immunology, Pennsylvania State College of MedicineHersheyPA17033USA
| | - Che‐Yen Wang
- Department of Microbiology and Immunology, Pennsylvania State College of MedicineHersheyPA17033USA
| | - Jeff Williams
- Briotech Inc., 14120 NE 200th StWoodinvilleWA98072USA
| | - Craig Meyers
- Department of Microbiology and Immunology, Pennsylvania State College of MedicineHersheyPA17033USA
| |
Collapse
|
18
|
Mikuličić S, Strunk J, Florin L. HPV16 Entry into Epithelial Cells: Running a Gauntlet. Viruses 2021; 13:v13122460. [PMID: 34960729 PMCID: PMC8706107 DOI: 10.3390/v13122460] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 12/16/2022] Open
Abstract
During initial infection, human papillomaviruses (HPV) take an unusual trafficking pathway through their host cell. It begins with a long period on the cell surface, during which the capsid is primed and a virus entry platform is formed. A specific type of clathrin-independent endocytosis and subsequent retrograde trafficking to the trans-Golgi network follow this. Cellular reorganization processes, which take place during mitosis, enable further virus transport and the establishment of infection while evading intrinsic cellular immune defenses. First, the fragmentation of the Golgi allows the release of membrane-encased virions, which are partially protected from cytoplasmic restriction factors. Second, the nuclear envelope breakdown opens the gate for these virus–vesicles to the cell nucleus. Third, the dis- and re-assembly of the PML nuclear bodies leads to the formation of modified virus-associated PML subnuclear structures, enabling viral transcription and replication. While remnants of the major capsid protein L1 and the viral DNA remain in a transport vesicle, the viral capsid protein L2 plays a crucial role during virus entry, as it adopts a membrane-spanning conformation for interaction with various cellular proteins to establish a successful infection. In this review, we follow the oncogenic HPV type 16 during its long journey into the nucleus, and contrast pro- and antiviral processes.
Collapse
|
19
|
Recent Advances in Our Understanding of the Infectious Entry Pathway of Human Papillomavirus Type 16. Microorganisms 2021; 9:microorganisms9102076. [PMID: 34683397 PMCID: PMC8540256 DOI: 10.3390/microorganisms9102076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 09/27/2021] [Indexed: 12/31/2022] Open
Abstract
Papillomaviruses are a diverse viral species, but several types such as HPV16 are given special attention due to their contribution towards the pathogenesis of several major cancers. In this review, we will summarize how the knowledge of HPV16 entry has expanded since the last comprehensive HPV16 entry review our lab published in 2017.
Collapse
|
20
|
Patra U, Müller S. A Tale of Usurpation and Subversion: SUMO-Dependent Integrity of Promyelocytic Leukemia Nuclear Bodies at the Crossroad of Infection and Immunity. Front Cell Dev Biol 2021; 9:696234. [PMID: 34513832 PMCID: PMC8430037 DOI: 10.3389/fcell.2021.696234] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 07/30/2021] [Indexed: 12/13/2022] Open
Abstract
Promyelocytic leukemia nuclear bodies (PML NBs) are multi-protein assemblies representing distinct sub-nuclear structures. As phase-separated molecular condensates, PML NBs exhibit liquid droplet-like consistency. A key organizer of the assembly and dynamics of PML NBs is the ubiquitin-like SUMO modification system. SUMO is covalently attached to PML and other core components of PML NBs thereby exhibiting a glue-like function by providing multivalent interactions with proteins containing SUMO interacting motifs (SIMs). PML NBs serve as the catalytic center for nuclear SUMOylation and SUMO-SIM interactions are essential for protein assembly within these structures. Importantly, however, formation of SUMO chains on PML and other PML NB-associated proteins triggers ubiquitylation and proteasomal degradation which coincide with disruption of these nuclear condensates. To date, a plethora of nuclear activities such as transcriptional and post-transcriptional regulation of gene expression, apoptosis, senescence, cell cycle control, DNA damage response, and DNA replication have been associated with PML NBs. Not surprisingly, therefore, SUMO-dependent PML NB integrity has been implicated in regulating many physiological processes including tumor suppression, metabolism, drug-resistance, development, cellular stemness, and anti-pathogen immune response. The interplay between PML NBs and viral infection is multifaceted. As a part of the cellular antiviral defense strategy, PML NB components are crucial restriction factors for many viruses and a mutual positive correlation has been found to exist between PML NBs and the interferon response. Viruses, in turn, have developed counterstrategies for disarming PML NB associated immune defense measures. On the other end of the spectrum, certain viruses are known to usurp specific PML NB components for successful replication and disruption of these sub-nuclear foci has recently been linked to the stimulation rather than curtailment of antiviral gene repertoire. Importantly, the ability of invading virions to manipulate the host SUMO modification machinery is essential for this interplay between PML NB integrity and viruses. Moreover, compelling evidence is emerging in favor of bacterial pathogens to negotiate with the SUMO system thereby modulating PML NB-directed intrinsic and innate immunity. In the current context, we will present an updated account of the dynamic intricacies between cellular PML NBs as the nuclear SUMO modification hotspots and immune regulatory mechanisms in response to viral and bacterial pathogens.
Collapse
Affiliation(s)
- Upayan Patra
- Institute of Biochemistry II, Faculty of Medicine, Goethe University, Frankfurt, Germany
| | - Stefan Müller
- Institute of Biochemistry II, Faculty of Medicine, Goethe University, Frankfurt, Germany
| |
Collapse
|
21
|
Human papillomaviruses: diversity, infection and host interactions. Nat Rev Microbiol 2021; 20:95-108. [PMID: 34522050 DOI: 10.1038/s41579-021-00617-5] [Citation(s) in RCA: 170] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2021] [Indexed: 12/13/2022]
Abstract
Human papillomaviruses (HPVs) are an ancient and highly successful group of viruses that have co-evolved with their host to replicate in specific anatomical niches of the stratified epithelia. They replicate persistently in dividing cells, hijack key host cellular processes to manipulate the cellular environment and escape immune detection, and produce virions in terminally differentiated cells that are shed from the host. Some HPVs cause benign, proliferative lesions on the skin and mucosa, and others are associated with the development of cancer. However, most HPVs cause infections that are asymptomatic and inapparent unless the immune system becomes compromised. To date, the genomes of almost 450 distinct HPV types have been isolated and sequenced. In this Review, I explore the diversity, evolution, infectious cycle, host interactions and disease association of HPVs.
Collapse
|
22
|
How DNA and RNA Viruses Exploit Host Chaperones to Promote Infection. Viruses 2021; 13:v13060958. [PMID: 34064125 PMCID: PMC8224278 DOI: 10.3390/v13060958] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 12/18/2022] Open
Abstract
To initiate infection, a virus enters a host cell typically via receptor-dependent endocytosis. It then penetrates a subcellular membrane, reaching a destination that supports transcription, translation, and replication of the viral genome. These steps lead to assembly and morphogenesis of the new viral progeny. The mature virus finally exits the host cell to begin the next infection cycle. Strikingly, viruses hijack host molecular chaperones to accomplish these distinct entry steps. Here we highlight how DNA viruses, including polyomavirus and the human papillomavirus, exploit soluble and membrane-associated chaperones to enter a cell, penetrating and escaping an intracellular membrane en route for infection. We also describe the mechanism by which RNA viruses—including flavivirus and coronavirus—co-opt cytosolic and organelle-selective chaperones to promote viral endocytosis, protein biosynthesis, replication, and assembly. These examples underscore the importance of host chaperones during virus infection, potentially revealing novel antiviral strategies to combat virus-induced diseases.
Collapse
|
23
|
Lai KY, Rizzato M, Aydin I, Villalonga-Planells R, Drexler HCA, Schelhaas M. A Ran-binding protein facilitates nuclear import of human papillomavirus type 16. PLoS Pathog 2021; 17:e1009580. [PMID: 33974675 PMCID: PMC8139508 DOI: 10.1371/journal.ppat.1009580] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/21/2021] [Accepted: 04/23/2021] [Indexed: 01/01/2023] Open
Abstract
Human papillomaviruses (HPVs) utilize an atypical mode of nuclear import during cell entry. Residing in the Golgi apparatus until mitosis onset, a subviral complex composed of the minor capsid protein L2 and viral DNA (L2/vDNA) is imported into the nucleus after nuclear envelope breakdown by associating with mitotic chromatin. In this complex, L2 plays a crucial role in the interactions with cellular factors that enable delivery and ultimately tethering of the viral genome to mitotic chromatin. To date, the cellular proteins facilitating these steps remain unknown. Here, we addressed which cellular proteins may be required for this process. Using label-free mass spectrometry, biochemical assays, microscopy, and functional virological assays, we discovered that L2 engages a hitherto unknown protein complex of Ran-binding protein 10 (RanBP10), karyopherin alpha2 (KPNA2), and dynein light chain DYNLT3 to facilitate transport towards mitotic chromatin. Thus, our study not only identifies novel cellular interactors and mechanism that facilitate a poorly understood step in HPV entry, but also a novel cellular transport complex. Human papillomaviruses (HPVs) cause proliferative lesions such as benign warts or malignant invasive cancers. Like other DNA viruses, HPV has to deliver its genome to the nucleus for viral genome transcription and replication. After initial attachment, HPVs are endocytosed to be eventually directed to the trans-Golgi-network (TGN) by intracellular trafficking, where they reside until cell division. Mitosis onset enables access of the virus to cellular chromatin after nuclear envelope breakdown. Tethering of the virus to mitotic chromatin ensures nuclear delivery upon reformation of the nuclear envelope after mitosis. Our previous work showed that the minor capsid protein L2 facilitates nuclear delivery. However, the detailed mechanism, namely, how HPV trafficks from cytosol to the nuclear space, is barely understood. Here, we identified for the first time cellular proteins that interacted with L2 for nuclear import. Mechanistically, the proteins formed a hitherto unknown cellular transport complex that interacted with L2 to direct the virus to mitotic chromosomes by microtubular transport. Our findings provided not only evidence for a transport mechanism of a poorly understood step of HPV entry, but also discovered a novel cellular transport complex.
Collapse
Affiliation(s)
- Kun-Yi Lai
- Institute of Cellular Virology, Westphalian Wilhelms-University of Münster, Münster, Germany
- Interfaculty Centre ‘Cells in Motion’ (CiM), Westphalian Wilhelms-University of Münster, Münster, Germany
| | - Matteo Rizzato
- Institute of Cellular Virology, Westphalian Wilhelms-University of Münster, Münster, Germany
| | - Inci Aydin
- Institute of Cellular Virology, Westphalian Wilhelms-University of Münster, Münster, Germany
| | | | - Hannes C. A. Drexler
- Biomolecular Mass Spectrometry Unit, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Mario Schelhaas
- Institute of Cellular Virology, Westphalian Wilhelms-University of Münster, Münster, Germany
- Interfaculty Centre ‘Cells in Motion’ (CiM), Westphalian Wilhelms-University of Münster, Münster, Germany
- * E-mail:
| |
Collapse
|
24
|
Abstract
Human papillomavirus (HPV) infection is a multi-step process that implies complex interactions of the viral particles with cellular proteins. The HPV capsid includes the two structural proteins L1 and L2, that play crucial roles on infectious viral entry. L2 is particularly relevant for the intracellular trafficking of the viral DNA towards the nucleus. Here, using proteomic studies we identified CCT proteins as novel interaction partners of HPV-16 L2. The CCT multimeric complex is an essential chaperonin which interacts with a large number of protein targets. We analysed the binding of different components of the CCT complex to L2. We confirmed the interaction of this structural viral protein with the CCT subunit 3 (CCT3) and we found that this interaction requires the N-terminal region of L2. Defects in HPV-16 pseudoviral particle (PsVs) infection were revealed by siRNA-mediated knockdown of some CCT subunits. While a substantial drop in the viral infection was associated with the ablation of CCT component 2, even more pronounced effects on infectivity were observed upon depletion of CCT component 3. Using confocal immunofluorescence assays, CCT3 co-localised with HPV PsVs at early times after infection, with L2 being required for this to occur. Further analysis showed the colocalization of several other subunits of CCT with the PsVs. Moreover, we observed a defect in capsid uncoating and a change in PsVs intracellular normal processing when ablating CCT3. Taken together, these studies demonstrate the importance of CCT chaperonin during HPV infectious entry.ImportanceSeveral of the mechanisms that function during the infection of target cells by HPV particles have been previously described. However, many aspects of this process remain unknown. In particular, the role of cellular proteins functioning as molecular chaperones during HPV infections has been only partially investigated. To the best of our knowledge, we describe here for the first time, a requirement of the CCT chaperonin for HPV infection. The role of this cellular complex seems to be determined by the binding of its component 3 to the viral structural protein L2. However, CCT's effect on HPV infection most probably comprises the whole chaperonin complex. Altogether, these studies define an important role for the CCT chaperonin in the processing and intracellular trafficking of HPV particles and in subsequent viral infectious entry.
Collapse
|
25
|
Carse S, Bergant M, Schäfer G. Advances in Targeting HPV Infection as Potential Alternative Prophylactic Means. Int J Mol Sci 2021; 22:2201. [PMID: 33672181 PMCID: PMC7926419 DOI: 10.3390/ijms22042201] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/15/2021] [Accepted: 02/19/2021] [Indexed: 01/22/2023] Open
Abstract
Infection by oncogenic human papillomavirus (HPV) is the primary cause of cervical cancer and other anogenital cancers. The majority of cervical cancer cases occur in low- and middle- income countries (LMIC). Concurrent infection with Human Immunodeficiency Virus (HIV) further increases the risk of HPV infection and exacerbates disease onset and progression. Highly effective prophylactic vaccines do exist to combat HPV infection with the most common oncogenic types, but the accessibility to these in LMIC is severely limited due to cost, difficulties in accessing the target population, cultural issues, and maintenance of a cold chain. Alternative preventive measures against HPV infection that are more accessible and affordable are therefore also needed to control cervical cancer risk. There are several efforts in identifying such alternative prophylactics which target key molecules involved in early HPV infection events. This review summarizes the current knowledge of the initial steps in HPV infection, from host cell-surface engagement to cellular trafficking of the viral genome before arrival in the nucleus. The key molecules that can be potentially targeted are highlighted, and a discussion on their applicability as alternative preventive means against HPV infection, with a focus on LMIC, is presented.
Collapse
Affiliation(s)
- Sinead Carse
- International Centre for Genetic Engineering and Biotechnology (ICGEB) Cape Town, Observatory 7925, South Africa;
- Institute of Infectious Disease and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Observatory 7925, South Africa
- Division of Medical Biochemistry and Structural Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Observatory 7925, South Africa
| | - Martina Bergant
- Laboratory for Environmental and Life Sciences, University of Nova Gorica, Vipavska 13, 5000 Nova Gorica, Slovenia;
| | - Georgia Schäfer
- International Centre for Genetic Engineering and Biotechnology (ICGEB) Cape Town, Observatory 7925, South Africa;
- Institute of Infectious Disease and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Observatory 7925, South Africa
- Division of Medical Biochemistry and Structural Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Observatory 7925, South Africa
| |
Collapse
|
26
|
Human Papillomavirus 16 L2 Recruits both Retromer and Retriever Complexes during Retrograde Trafficking of the Viral Genome to the Cell Nucleus. J Virol 2021; 95:JVI.02068-20. [PMID: 33177206 DOI: 10.1128/jvi.02068-20] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 10/29/2020] [Indexed: 01/06/2023] Open
Abstract
Previous studies have identified an interaction between the human papillomavirus (HPV) L2 minor capsid protein and sorting nexins 17 and 27 (SNX17 and SNX27) during virus infection. Further studies show the involvement of both retromer and retriever complexes in this process since knockdown of proteins from either complex impairs infection. In this study, we show that HPV L2 and 5-ethynyl-2'-deoxyuridine (EdU)-labeled pseudovirions colocalize with both retromer and retriever, with components of each complex being bound by L2 during infection. We also show that both sorting nexins may interact with either of the recycling complexes but that the interaction between SNX17 and HPV16 L2 is not responsible for retriever recruitment during infection, instead being required for retromer recruitment. Furthermore, we show that retriever recruitment most likely involves a direct interaction between L2 and the C16orf62 subunit of the retriever, in a manner similar to that of its interaction with the VPS35 subunit of retromer.IMPORTANCE Previous studies identified sorting nexins 17 and 27, as well as the retromer complex, as playing a role in HPV infection. This study shows that the newly identified retriever complex also plays an important role and begins to shed light on how both sorting nexins contribute to retromer and retriever recruitment during the infection process.
Collapse
|
27
|
Farmer E, Cheng MA, Hung CF, Wu TC. Vaccination Strategies for the Control and Treatment of HPV Infection and HPV-Associated Cancer. Recent Results Cancer Res 2021; 217:157-195. [PMID: 33200366 DOI: 10.1007/978-3-030-57362-1_8] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Human papillomavirus (HPV) is the most common sexually transmitted infection, currently affecting close to 80 million Americans. Importantly, HPV infection is recognized as the etiologic factor for numerous cancers, including cervical, vulval, vaginal, penile, anal, and a subset of oropharyngeal cancers. The prevalence of HPV infection and its associated diseases are a significant problem, affecting millions of individuals worldwide. Likewise, the incidence of HPV infection poses a significant burden on individuals and the broader healthcare system. Between 2011 and 2015, there were an estimated 42,700 new cases of HPV-associated cancers each year in the United States alone. Similarly, the global burden of HPV is high, with around 630,000 new cases of HPV-associated cancer occurring each year. In the last decade, a total of three preventive major capsid protein (L1) virus-like particle-based HPV vaccines have been licensed and brought to market as a means to prevent the spread of HPV infection. These prophylactic vaccines have been demonstrated to be safe and efficacious in preventing HPV infection. The most recent iteration of the preventive HPV vaccine, a nanovalent, L1-VLP vaccine, protects against a total of nine HPV types (seven high-risk and two low-risk HPV types), including the high-risk types HPV16 and HPV18, which are responsible for causing the majority of HPV-associated cancers. Although current prophylactic HPV vaccines have demonstrated huge success in preventing infection, existing barriers to vaccine acquisition have limited their widespread use, especially in low- and middle-income countries, where the burden of HPV-associated diseases is highest. Prophylactic vaccines are unable to provide protection to individuals with existing HPV infections or HPV-associated diseases. Instead, therapeutic HPV vaccines capable of generating T cell-mediated immunity against HPV infection and associated diseases are needed to ameliorate the burden of disease in individuals with existing HPV infection. To generate a cell-mediated immune response against HPV, most therapeutic vaccines target HPV oncoproteins E6 and E7. Several types of therapeutic HPV vaccine candidates have been developed including live-vector, protein, peptide, dendritic cell, and DNA-based vaccines. This chapter will review the commercially available prophylactic HPV vaccines and discuss the recent progress in the development of therapeutic HPV vaccines.
Collapse
Affiliation(s)
- Emily Farmer
- Department of Pathology, The Johns Hopkins School of Medicine, Cancer Research Building II, 1550 Orleans Street, Baltimore, MD, 21287, USA
| | - Max A Cheng
- Department of Pathology, The Johns Hopkins School of Medicine, Cancer Research Building II, 1550 Orleans Street, Baltimore, MD, 21287, USA
| | - Chien-Fu Hung
- Department of Pathology, The Johns Hopkins School of Medicine, Cancer Research Building II, 1550 Orleans Street, Baltimore, MD, 21287, USA.,Department of Oncology, The Johns Hopkins School of Medicine, Cancer Research Building II, 1550 Orleans Street, Baltimore, MD, 21287, USA
| | - T-C Wu
- Department of Pathology, The Johns Hopkins School of Medicine, Cancer Research Building II, 1550 Orleans Street, Baltimore, MD, 21287, USA. .,Department of Oncology, The Johns Hopkins School of Medicine, Cancer Research Building II, 1550 Orleans Street, Baltimore, MD, 21287, USA. .,Department of Obstetrics and Gynecology, The Johns Hopkins School of Medicine, Cancer Research Building II, 1550 Orleans Street, Baltimore, MD, 21287, USA. .,Department of Pathology, Oncology, Obstetrics and Gynecology, and Molecular Microbiology and Immunology, The Johns Hopkins Medical Institutions, Cancer Research Building II, Room 309, 1550 Orleans Street, Baltimore, MD, 21287, USA.
| |
Collapse
|
28
|
Uhlorn BL, Jackson R, Li S, Bratton SM, Van Doorslaer K, Campos SK. Vesicular trafficking permits evasion of cGAS/STING surveillance during initial human papillomavirus infection. PLoS Pathog 2020; 16:e1009028. [PMID: 33253291 PMCID: PMC7728285 DOI: 10.1371/journal.ppat.1009028] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 12/10/2020] [Accepted: 10/02/2020] [Indexed: 12/26/2022] Open
Abstract
Oncogenic human papillomaviruses (HPVs) replicate in differentiating epithelium, causing 5% of cancers worldwide. Like most other DNA viruses, HPV infection initiates after trafficking viral genome (vDNA) to host cell nuclei. Cells possess innate surveillance pathways to detect microbial components or physiological stresses often associated with microbial infections. One of these pathways, cGAS/STING, induces IRF3-dependent antiviral interferon (IFN) responses upon detection of cytosolic DNA. Virion-associated vDNA can activate cGAS/STING during initial viral entry and uncoating/trafficking, and thus cGAS/STING is an obstacle to many DNA viruses. HPV has a unique vesicular trafficking pathway compared to many other DNA viruses. As the capsid uncoats within acidic endosomal compartments, minor capsid protein L2 protrudes across vesicular membranes to facilitate transport of vDNA to the Golgi. L2/vDNA resides within the Golgi lumen until G2/M, whereupon vesicular L2/vDNA traffics along spindle microtubules, tethering to chromosomes to access daughter cell nuclei. L2/vDNA-containing vesicles likely remain intact until G1, following nuclear envelope reformation. We hypothesize that this unique vesicular trafficking protects HPV from cGAS/STING surveillance. Here, we investigate cGAS/STING responses to HPV infection. DNA transfection resulted in acute cGAS/STING activation and downstream IFN responses. In contrast, HPV infection elicited minimal cGAS/STING and IFN responses. To determine the role of vesicular trafficking in cGAS/STING evasion, we forced premature viral penetration of vesicular membranes with membrane-perturbing cationic lipids. Such treatment renders a non-infectious trafficking-defective mutant HPV infectious, yet susceptible to cGAS/STING detection. Overall, HPV evades cGAS/STING by its unique subcellular trafficking, a property that may contribute to establishment of infection.
Collapse
Affiliation(s)
- Brittany L. Uhlorn
- Cancer Biology Graduate Interdisciplinary Program, The University of Arizona, Tucson, Arizona, United States of America
| | - Robert Jackson
- School of Animal & Comparative Biomedical Sciences, The University of Arizona, Tucson, Arizona, United States of America
| | - Shuaizhi Li
- Department of Immunobiology, The University of Arizona, Tucson, Arizona, United States of America
| | - Shauna M. Bratton
- Department of Physiology, The University of Arizona, Tucson, Arizona, United States of America
| | - Koenraad Van Doorslaer
- Cancer Biology Graduate Interdisciplinary Program, The University of Arizona, Tucson, Arizona, United States of America
- School of Animal & Comparative Biomedical Sciences, The University of Arizona, Tucson, Arizona, United States of America
- Department of Immunobiology, The University of Arizona, Tucson, Arizona, United States of America
- BIO5 Institute, The University of Arizona, Tucson, Arizona, United States of America
- Genetics Graduate Interdisciplinary Program, The University of Arizona, Tucson, Arizona, United States of America
| | - Samuel K. Campos
- Cancer Biology Graduate Interdisciplinary Program, The University of Arizona, Tucson, Arizona, United States of America
- Department of Immunobiology, The University of Arizona, Tucson, Arizona, United States of America
- BIO5 Institute, The University of Arizona, Tucson, Arizona, United States of America
- Department of Molecular & Cellular Biology, The University of Arizona, Tucson, Arizona, United States of America
| |
Collapse
|
29
|
Harwood MC, Dupzyk AJ, Inoue T, DiMaio D, Tsai B. p120 catenin recruits HPV to γ-secretase to promote virus infection. PLoS Pathog 2020; 16:e1008946. [PMID: 33085724 PMCID: PMC7577436 DOI: 10.1371/journal.ppat.1008946] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 08/28/2020] [Indexed: 12/29/2022] Open
Abstract
During internalization and trafficking, human papillomavirus (HPV) moves from the cell surface to the endosome where the transmembrane protease γ-secretase promotes insertion of the viral L2 capsid protein into the endosome membrane. Protrusion of L2 through the endosome membrane into the cytosol allows the recruitment of cytosolic host factors that target the virus to the Golgi en route for productive infection. How endosome-localized HPV is delivered to γ-secretase, a decisive infection step, is unclear. Here we demonstrate that cytosolic p120 catenin, likely via an unidentified transmembrane protein, interacts with HPV at early time-points during viral internalization and trafficking. In the endosome, p120 is not required for low pH-dependent disassembly of the HPV L1 capsid protein from the incoming virion. Rather, p120 is required for HPV to interact with γ-secretase-an interaction that ensures the virus is transported along a productive route. Our findings clarify an enigmatic HPV infection step and provide critical insights into HPV infection that may lead to new therapeutic strategies against HPV-induced diseases.
Collapse
Affiliation(s)
- Mara Calypso Harwood
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States of America
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI, United States of America
| | - Allison Jade Dupzyk
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Takamasa Inoue
- Pathogen Research Section, Central Research Laboratory, Research and Development Division, Japan Blood Products Organization, Kobe, Japan
| | - Daniel DiMaio
- Department of Genetics, Yale School of Medicine, New Haven, CT, United States of America
| | - Billy Tsai
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States of America
- * E-mail:
| |
Collapse
|
30
|
Aranda-Rivera AK, Cruz-Gregorio A, Briones-Herrera A, Pedraza-Chaverri J. Regulation of autophagy by high- and low-risk human papillomaviruses. Rev Med Virol 2020; 31:e2169. [PMID: 33590566 DOI: 10.1002/rmv.2169] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/01/2020] [Accepted: 09/03/2020] [Indexed: 12/14/2022]
Abstract
While high-risk human papillomavirus (HR-HPV) infection is related to the development of cervical, vulvar, anal, penile and oropharyngeal cancer, low-risk human papillomavirus (LR-HPV) infection is implicated in about 90% of genital warts, which rarely progress to cancer. The carcinogenic role of HR-HPV is due to the overexpression of HPV E5, E6 and E7 oncoproteins which target and modify cellular proteins implicated in cell proliferation, apoptosis and immortalization. LR-HPV proteins also target and modify some of these processes; however, their oncogenic potential is lower than that of HR-HPV. HR-HPVs have substantial differences with LR-HPVs such as viral integration into the cell genome, induction of p53 and retinoblastoma protein degradation, alternative splicing in HR-HPV E6-E7 open reading frames, among others. In addition, LR-HPV can activate the autophagy process in infected cells while HR-HPV infection deactivates it. However, in cancer HR-HPV might reactivate autophagy in advance stages. Autophagy is a catabolic process that maintains cell homoeostasis by lysosomal degradation and recycling of damaged macromolecules and organelles; nevertheless, depending upon cellular context autophagy may also induce cell death. Therefore, autophagy can contribute either as a promotor or as a suppressor of tumours. In this review, we focus on the role of HR-HPV and LR-HPV in autophagy during viral infection and cancer development. Additionally, we review key regulatory molecules such as microRNAs in HPV present during autophagy, and we emphasize the potential use of cancer treatments associated with autophagy in HPV-related cancers.
Collapse
Affiliation(s)
- Ana Karina Aranda-Rivera
- Laboratorio 315, Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, México.,Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, México
| | - Alfredo Cruz-Gregorio
- Laboratorio 225, Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, México
| | - Alfredo Briones-Herrera
- Laboratorio 315, Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, México.,Programa de Maestría y Doctorado en Ciencias Bioquímicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, México
| | - José Pedraza-Chaverri
- Laboratorio 315, Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, México
| |
Collapse
|
31
|
Cell-penetrating peptide inhibits retromer-mediated human papillomavirus trafficking during virus entry. Proc Natl Acad Sci U S A 2020; 117:6121-6128. [PMID: 32123072 DOI: 10.1073/pnas.1917748117] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Virus replication requires critical interactions between viral proteins and cellular proteins that mediate many aspects of infection, including the transport of viral genomes to the site of replication. In human papillomavirus (HPV) infection, the cellular protein complex known as retromer binds to the L2 capsid protein and sorts incoming virions into the retrograde transport pathway for trafficking to the nucleus. Here, we show that short synthetic peptides containing the HPV16 L2 retromer-binding site and a cell-penetrating sequence enter cells, sequester retromer from the incoming HPV pseudovirus, and inhibit HPV exit from the endosome, resulting in loss of viral components from cells and in a profound, dose-dependent block to infection. The peptide also inhibits cervicovaginal HPV16 pseudovirus infection in a mouse model. These results confirm the retromer-mediated model of retrograde HPV entry and validate intracellular virus trafficking as an antiviral target. More generally, inhibiting virus replication with agents that can enter cells and disrupt essential protein-protein interactions may be applicable in broad outline to many viruses.
Collapse
|
32
|
Guion LG, Sapp M. The Role of Promyelocytic Leukemia Nuclear Bodies During HPV Infection. Front Cell Infect Microbiol 2020; 10:35. [PMID: 32154186 PMCID: PMC7045071 DOI: 10.3389/fcimb.2020.00035] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 01/17/2020] [Indexed: 12/15/2022] Open
Abstract
Promyelocytic leukemia (PML) nuclear bodies (NBs) are highly dynamic subnuclear structures. Their name giving major component, PML protein, is essential for their formation. PML is present in many different isoforms due to differential splicing, which seem to contribute differently to PML NBs function. Sp100 and DAXX are also permanently residing in these structures. PML NBs disassemble in mitosis to form large cytoplasmic aggregates and reassemble after completion of cell division. Posttranslational modifications such as SUMOylation play important roles for protein association with PML NBs. In addition to the factors permanently associated with PML NBs, a large number of proteins may transiently reside in PML NBs dependent on cell stage, type, and condition. PML NBs have been indirectly implicated in a large number of cellular processes including apoptosis, transcriptional regulation, DNA repair and replication. They are considered hot spots for posttranslational modifications and may serve as readily accessible protein depots. However, a precise function has been difficult to assign. Many DNA viruses target PML NBs after entry often resulting in reorganization of these subnuclear structures. Antiviral activity has been assigned to PML NBs partially based on the observation that PML protein is an interferon stimulated gene. In contrast, human papillomavirus (HPV) infection requires the presence of PML protein suggesting that PML NBs may be essential to establish infection. This review will summarize and discuss recent advances in our understanding of the role of PML NBs and individual protein components in the establishment of HPV infection.
Collapse
Affiliation(s)
- Lucile G Guion
- Department of Microbiology and Immunology, Center for Molecular and Tumor Virology, Louisiana State University Health Sciences Center, Shreveport, LA, United States.,Feist Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, LA, United States
| | - Martin Sapp
- Department of Microbiology and Immunology, Center for Molecular and Tumor Virology, Louisiana State University Health Sciences Center, Shreveport, LA, United States.,Feist Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, LA, United States
| |
Collapse
|
33
|
Sarkar B, Ullah MA, Araf Y. A systematic and reverse vaccinology approach to design novel subunit vaccines against Dengue virus type-1 (DENV-1) and human Papillomavirus-16 (HPV-16). INFORMATICS IN MEDICINE UNLOCKED 2020. [DOI: 10.1016/j.imu.2020.100343] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
34
|
Dehghani B, Hasanshahi Z, Hashempour T, Motamedifar M. The possible regions to design Human Papilloma Viruses vaccine in Iranian L1 protein. Biologia (Bratisl) 2019; 75:749-759. [PMID: 32435064 PMCID: PMC7223900 DOI: 10.2478/s11756-019-00386-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 11/05/2019] [Indexed: 12/20/2022]
Abstract
Human Papilloma Virus (HPV) genome encodes several proteins, as L1is major capsid protein and L2 is minor capsid protein. Among all HPV types HPV-16 and HPV-18 are the most common high-risk HPV (HR-HPV) types globally and the majority of cases are infected with these types. HPV entry and the initial interaction with the host cell are mainly related to the L1 protein which is the main component of HPV vaccines. The aim of this research was comparison analysis among all Iranian L1 protein sequences submitted in NCBI GenBank to find the major substitutions as well as structural and immune properties of this protein. All sequences HPV L1 protein from Iranian isolates from 2014 to 2016 were selected and obtained from NCBI data bank. "CLC Genomics Workbench" was used to translate alignment. To predict B cell epitopes, we employed several programs. Modification sites such as phosphorylation, glycosylation, and disulfide bonds were determined. Secondary and tertiary structures of all sequences were analyzed. Several mutations were found and major mutations were in amino acid residues 102, 202, 207, 292, 379, and 502. The mentioned mutations showed the minor effect on B cell and physicochemical properties of the L1 protein. Six disulfide bonds were determined in L1 protein and also in several N-link glycosylation and phosphorylation sites. Five L1 loops were determined, which had great potential to be B cell epitopes with high antigenic properties. All in all, this research as the first report from Iran described the tremendous potential of two L1 loops (BC and FG) to induce immune system which can be used as the descent candidate to design a new vaccine against HPV in the Iranian population. In addition, some differences between the reference sequence and Iranian patients' sequences were determined. It is essential to consider these differences to monitor the effectiveness and efficacy of the vaccine for the Iranian population. Our results provide a vast understanding of L1 protein that can be useful for further studies on HPV infections and new vaccine generations.
Collapse
Affiliation(s)
- Behzad Dehghani
- Shiraz HIV/AIDS Research Center, Shiraz University of Medical Sciences, Shiraz, Fars Iran
| | - Zahra Hasanshahi
- Shiraz HIV/AIDS Research Center, Shiraz University of Medical Sciences, Shiraz, Fars Iran
| | - Tayebeh Hashempour
- Shiraz HIV/AIDS Research Center, Shiraz University of Medical Sciences, Shiraz, Fars Iran
| | - Mohamad Motamedifar
- Shiraz HIV/AIDS Research Center, Shiraz University of Medical Sciences, Shiraz, Fars Iran
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
35
|
Gulati NM, Miyagi M, Wiens ME, Smith JG, Stewart PL. α-Defensin HD5 Stabilizes Human Papillomavirus 16 Capsid/Core Interactions. Pathog Immun 2019; 4:196-234. [PMID: 31583330 PMCID: PMC6755940 DOI: 10.20411/pai.v4i2.314] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 08/17/2019] [Indexed: 12/17/2022] Open
Abstract
Background: Human papillomavirus (HPV) is linked to nearly all cases of cervical cancer. Despite available vaccines, a deeper understanding of the immune response to HPV is needed. Human α-defensin 5 (HD5), an innate immune effector peptide, blocks infection of multiple sero-types of HPV, including high-risk HPV16. While a common mechanism of α-defensin anti-viral activity against nonenveloped viruses such as HPV has emerged, there is limited understanding of how α-defensins bind to viral capsids to block infection. Methods: We have used cryo-electron microscopy (cryoEM), mass spectrometry (MS) crosslinking and differential lysine modification studies, and molecular dynamics (MD) simulations to probe the interaction of HPV16 pseudovirions (PsVs) with HD5. Results: CryoEM single particle reconstruction did not reveal HD5 density on the capsid surface. Rather, increased density was observed under the capsid shell in the presence of HD5. MS studies indicate that HD5 binds near the L1 and L2 capsid proteins and specifically near the C-terminal region of L1. MD simulations indicate that favorable electrostatic interactions can be formed between HD5 and the L1 C-terminal tail. Conclusions: A model is presented for how HD5 affects HPV16 structure and cell entry. In this model, HD5 binds to disordered regions of L1 and L2 protruding from the icosahedrally ordered capsid. HD5 acts to cement interactions between L1 and L2 and leads to a closer association of the L2/genome core with the L1 capsid. This model provides a structural rationale for our prior observation that HD5 interferes with the separation of L1 from the L2/genome complex during cell entry. Graphical Abstract
Collapse
Affiliation(s)
- Neetu M Gulati
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio.,Cleveland Center for Membrane and Structural Biology, Case Western Reserve University, Cleveland, Ohio
| | - Masaru Miyagi
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio
| | - Mayim E Wiens
- Department of Microbiology, University of Washington, Seattle, Washington
| | - Jason G Smith
- Department of Microbiology, University of Washington, Seattle, Washington
| | - Phoebe L Stewart
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio.,Cleveland Center for Membrane and Structural Biology, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
36
|
Young JM, Zine El Abidine A, Gómez-Martinez RA, Ozbun MA. The Known and Potential Intersections of Rab-GTPases in Human Papillomavirus Infections. Front Cell Dev Biol 2019; 7:139. [PMID: 31475144 PMCID: PMC6702953 DOI: 10.3389/fcell.2019.00139] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 07/09/2019] [Indexed: 12/16/2022] Open
Abstract
Papillomaviruses (PVs) were the first viruses recognized to cause tumors and cancers in mammalian hosts by Shope, nearly a century ago (Shope and Hurst, 1933). Over 40 years ago, zur Hausen (1976) first proposed that human papillomaviruses (HPVs) played a role in cervical cancer; in 2008, he shared the Nobel Prize in Medicine for his abundant contributions demonstrating the etiology of HPVs in genital cancers. Despite effective vaccines and screening, HPV infection and morbidity remain a significant worldwide burden, with HPV infections and HPV-related cancers expected increase through 2040. Although HPVs have long-recognized roles in tumorigenesis and cancers, our understanding of the molecular mechanisms by which these viruses interact with cells and usurp cellular processes to initiate infections and produce progeny virions is limited. This is due to longstanding challenges in both obtaining well-characterized infectious virus stocks and modeling tissue-based infection and the replicative cycles in vitro. In the last 20 years, the development of methods to produce virus-like particles (VLPs) and pseudovirions (PsV) along with more physiologically relevant cell- and tissue-based models has facilitated progress in this area. However, many questions regarding HPV infection remain difficult to address experimentally and are, thus, unanswered. Although an obligatory cellular uptake receptor has yet to be identified for any PV species, Rab-GTPases contribute to HPV uptake and transport of viral genomes toward the nucleus. Here, we provide a general overview of the current HPV infection paradigm, the epithelial differentiation-dependent HPV replicative cycle, and review the specifics of how HPVs usurp Rab-related functions during infectious entry. We also suggest other potential interactions based on how HPVs alter cellular activities to complete their replicative-cycle in differentiating epithelium. Understanding how HPVs interface with Rab functions during their complex replicative cycle may provide insight for the development of therapeutic interventions, as current viral counter-measures are solely prophylactic and therapies for HPV-positive individuals remain archaic and limited.
Collapse
Affiliation(s)
- Jesse M. Young
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, UNM Comprehensive Cancer Center, Albuquerque, NM, United States
| | - Amira Zine El Abidine
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, UNM Comprehensive Cancer Center, Albuquerque, NM, United States
| | - Ricardo A. Gómez-Martinez
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, UNM Comprehensive Cancer Center, Albuquerque, NM, United States
- Department of Obstetrics & Gynecology, University of New Mexico School of Medicine, UNM Comprehensive Cancer Center, Albuquerque, NM, United States
| | - Michelle A. Ozbun
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, UNM Comprehensive Cancer Center, Albuquerque, NM, United States
- Department of Obstetrics & Gynecology, University of New Mexico School of Medicine, UNM Comprehensive Cancer Center, Albuquerque, NM, United States
| |
Collapse
|
37
|
Yan H, Foo SS, Chen W, Yoo JS, Shin WJ, Wu C, Jung JU. Efficient Inhibition of Human Papillomavirus Infection by L2 Minor Capsid-Derived Lipopeptide. mBio 2019; 10:e01834-19. [PMID: 31387913 PMCID: PMC6686047 DOI: 10.1128/mbio.01834-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 07/16/2019] [Indexed: 01/05/2023] Open
Abstract
The amino (N)-terminal region of human papillomavirus (HPV) minor capsid protein (L2) is a highly conserved region which is essential for establishing viral infection. Despite its importance in viral infectivity, the role of the HPV N-terminal domain has yet to be fully characterized. Using fine mapping analysis, we identified a 36-amino-acid (aa) peptide sequence of the L2 N terminus, termed L2N, that is critical for HPV infection. Ectopic expression of L2N with the transmembrane sequence on the target cell surface conferred resistance to HPV infection. Additionally, L2N peptide with chemical or enzymatic lipidation at the carboxyl (C) terminus efficiently abrogated HPV infection in target cells. Among the synthetic L2N lipopeptides, a stearoylated lipopeptide spanning aa 13 to 46 (13-46st) exhibited the most potent anti-HPV activity, with a half-maximal inhibitory concentration (IC50) of ∼200 pM. Furthermore, we demonstrated that the 13-46st lipopeptide inhibited HPV entry by blocking trans-Golgi network retrograde trafficking of virion particles, leading to rapid degradation. Fundamentally, the inhibitory effect of L2N lipopeptides appeared to be evolutionarily conserved, as they showed cross-type inhibition among various papillomaviruses. In conclusion, our findings provide new insights into the critical role of the L2N sequence in the HPV entry mechanism and identify the therapeutic potential of L2N lipopeptide as an effective anti-HPV agent.IMPORTANCE HPV is a human oncogenic virus that causes a major public health problem worldwide, which is responsible for approximately 5% of total human cancers and almost all cases of cervical cancers. HPV capsid consists of two structure proteins, the major capsid L1 protein and the minor capsid L2 protein. While L2 plays critical roles during the viral life cycle, the molecular mechanism in viral entry remains elusive. Here, we performed fine mapping of the L2 N-terminal region and defined a short 36-amino-acid peptide, called L2N, which is critical for HPV infection. Specifically, L2N peptide with carboxyl-terminal lipidation acted as a potent and cross-type HPV inhibitor. Taken together, data from our study highlight the essential role of the L2N sequence at the early step of HPV entry and suggests the L2N lipopeptide as a new strategy to broadly prevent HPV infection.
Collapse
Affiliation(s)
- Huan Yan
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Suan-Sin Foo
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Weiqiang Chen
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Ji-Seung Yoo
- Department of Immunology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Woo-Jin Shin
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Christine Wu
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Jae U Jung
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
38
|
Human Papillomavirus 16 Capsids Mediate Nuclear Entry during Infection. J Virol 2019; 93:JVI.00454-19. [PMID: 31092566 DOI: 10.1128/jvi.00454-19] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 05/04/2019] [Indexed: 12/27/2022] Open
Abstract
Infectious human papillomavirus 16 (HPV16) L1/L2 pseudovirions were found to remain largely intact during vesicular transport to the nucleus. By electron microscopy, capsids with a diameter of 50 nm were clearly visible within small vesicles attached to mitotic chromosomes and to a lesser extent within interphase nuclei, implying nuclear disassembly. By confocal analysis, it was determined that nuclear entry of assembled L1 is dependent upon the presence of the minor capsid protein, L2, but independent of encapsidated DNA. We also demonstrate that L1 nuclear localization and mitotic chromosome association can occur in vivo in the murine cervicovaginal challenge model of HPV16 infection. These findings challenge the prevailing concepts of PV uncoating and disassembly. More generally, they document that a largely intact viral capsid can enter the nucleus within a transport vesicle, establishing a novel mechanism by which a virus accesses the nuclear cellular machinery.IMPORTANCE Papillomaviruses (PVs) comprise a large family of nonenveloped DNA viruses that include HPV16, among other oncogenic types, the causative agents of cervical cancer. Delivery of the viral DNA into the host cell nucleus is necessary for establishment of infection. This was thought to occur via a subviral complex following uncoating of the larger viral capsid. In this study, we demonstrate that little disassembly of the PV capsid occurs prior to nuclear delivery. These surprising data reveal a previously unrecognized viral strategy to access the nuclear replication machinery. Understanding viral entry mechanisms not only increases our appreciation of basic cell biological pathways but also may lead to more effective antiviral interventions.
Collapse
|
39
|
Abstract
Viruses must navigate the complex endomembranous network of the host cell to cause infection. In the case of a non-enveloped virus that lacks a surrounding lipid bilayer, endocytic uptake from the plasma membrane is not sufficient to cause infection. Instead, the virus must travel within organelle membranes to reach a specific cellular destination that supports exposure or arrival of the virus to the cytosol. This is achieved by viral penetration across a host endomembrane, ultimately enabling entry of the virus into the nucleus to initiate infection. In this review, we discuss the entry mechanisms of three distinct non-enveloped DNA viruses-adenovirus (AdV), human papillomavirus (HPV), and polyomavirus (PyV)-highlighting how each exploit different intracellular transport machineries and membrane penetration apparatus associated with the endosome, Golgi, and endoplasmic reticulum (ER) membrane systems to infect a host cell. These processes not only illuminate a highly-coordinated interplay between non-enveloped viruses and their host, but may provide new strategies to combat non-enveloped virus-induced diseases.
Collapse
Affiliation(s)
- Chelsey C Spriggs
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Mara C Harwood
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States; Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Billy Tsai
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States; Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI, United States.
| |
Collapse
|
40
|
Siddiqa A, Massimi P, Pim D, Banks L. Diverse Papillomavirus Types Induce Endosomal Tubulation. Front Cell Infect Microbiol 2019; 9:175. [PMID: 31192164 PMCID: PMC6546808 DOI: 10.3389/fcimb.2019.00175] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 05/08/2019] [Indexed: 01/03/2023] Open
Abstract
Previous studies have shown that the endoplasmic reticulum (ER)-anchored protein VAP is strictly required by human papillomavirus type 16 (HPV-16) for successful infectious entry. Entry appeared to be mediated in part through the induction of endosomal tubulation and subsequent transport of the virion to the trans-Golgi network (TGN). In this study, we were interested in investigating whether this mechanism of infectious entry is conserved across multiple Papillomavirus types. To do this, we analyzed the role of VAP and endosomal tubulation following infection with Pseudovirions (PsVs) derived from the alpha, beta, delta, kappa, and pi papillomavirus genera, reflecting viruses that are important human and animal pathogens. We demonstrate that VAP is essential for infection with all PV types analyzed. Furthermore, we find that VAP and EGFR-dependent endosomal tubulation is also induced by all these different Papillomaviruses. These results indicate an evolutionarily conserved requirement for VAP-induced endocytic tubulation during Papillomavirus infectious entry.
Collapse
Affiliation(s)
- Abida Siddiqa
- Tumour Virology Laboratory, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy.,Department of Microbiology and Immunology, Center for Molecular Tumor Virology, Feist-Weiller Cancer Center, Louisiana State University (LSU) Health Shreveport, Shreveport, LA, United States
| | - Paola Massimi
- Tumour Virology Laboratory, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - David Pim
- Tumour Virology Laboratory, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Lawrence Banks
- Tumour Virology Laboratory, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| |
Collapse
|
41
|
Bugnon Valdano M, Pim D, Banks L. Choosing the right path: membrane trafficking and infectious entry of small DNA tumor viruses. Curr Opin Cell Biol 2019; 59:112-120. [PMID: 31128386 DOI: 10.1016/j.ceb.2019.03.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/03/2019] [Accepted: 03/19/2019] [Indexed: 01/27/2023]
Abstract
To infect mammalian cells, all infectious viruses must cross a common set of biophysical membrane barriers to gain access to the cell. The virus capsid proteins attach to a host cell, become endocytosed, and traffic the viral genome to sites of replication. To do this they must interact with the membrane-confined organelles that control endocytosis, endosomal sorting, processing, and degradation of biological molecules. In this review, we highlight some recent advances in our understanding of the mechanisms that small non-enveloped DNA tumor viruses, such as Human Papillomavirus (HPV) and Polyomaviruses (PyV) employ to attain infectious entry. These viruses exploit different pathways to mediate entry, uncoating and subsequent transport to the nucleus via the Trans Golgi Network (TGN) or the Endoplasmic Reticulum (ER). Understanding how the viral capsid proteins interact with cellular membranous organelles sheds light on the novel ways by which viruses can hi-jack endocytic transport pathways and provides unique insights into how the highly complex machinery controlling cargo fate determination is regulated within the cell.
Collapse
Affiliation(s)
- Marina Bugnon Valdano
- Tumour Virology Laboratory, International Centre for Genetic Engineering and Biotechnology, Padriciano-99, I-34149, Trieste, Italy
| | - David Pim
- Tumour Virology Laboratory, International Centre for Genetic Engineering and Biotechnology, Padriciano-99, I-34149, Trieste, Italy
| | - Lawrence Banks
- Tumour Virology Laboratory, International Centre for Genetic Engineering and Biotechnology, Padriciano-99, I-34149, Trieste, Italy.
| |
Collapse
|
42
|
Gheit T. Mucosal and Cutaneous Human Papillomavirus Infections and Cancer Biology. Front Oncol 2019; 9:355. [PMID: 31134154 PMCID: PMC6517478 DOI: 10.3389/fonc.2019.00355] [Citation(s) in RCA: 199] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 04/17/2019] [Indexed: 12/13/2022] Open
Abstract
Papillomaviridae is a family of small non-enveloped icosahedral viruses with double-stranded circular DNA. More than 200 different human papillomaviruses (HPVs) have been listed so far. Based on epidemiological data, a subgroup of alphapapillomaviruses (alpha HPVs) was referred to as high-risk (HR) HPV types. HR HPVs are the etiological agents of anogenital cancer and a subset of head and neck cancers. The cutaneous HPV types, mainly from beta and gamma genera, are widely present on the surface of the skin in the general population. However, there is growing evidence of an etiological role of betapapillomaviruses (beta HPVs) in non-melanoma skin cancer (NMSC), together with ultraviolet (UV) radiation. Studies performed on mucosal HR HPV types, such as 16 and 18, showed that both oncoproteins E6 and E7 play a key role in cervical cancer by altering pathways involved in the host immune response to establish a persistent infection and by promoting cellular transformation. Continuous expression of E6 and E7 of mucosal HR HPV types is essential to initiate and to maintain the cellular transformation process, whereas expression of E6 and E7 of cutaneous HPV types is not required for the maintenance of the skin cancer phenotype. Beta HPV types appear to play a role in the initiation of skin carcinogenesis, by exacerbating the accumulation of UV radiation-induced DNA breaks and somatic mutations (the hit-and-run mechanism), and they would therefore act as facilitators rather than direct actors in NMSC. In this review, the natural history of HPV infection and the transforming properties of various HPV genera will be described, with a particular focus on describing the state of knowledge about the role of cutaneous HPV types in NMSC.
Collapse
Affiliation(s)
- Tarik Gheit
- Infections and Cancer Biology Group, International Agency for Research on Cancer (IARC), Lyon, France
| |
Collapse
|
43
|
Guion L, Bienkowska-Haba M, DiGiuseppe S, Florin L, Sapp M. PML nuclear body-residing proteins sequentially associate with HPV genome after infectious nuclear delivery. PLoS Pathog 2019; 15:e1007590. [PMID: 30802273 PMCID: PMC6405170 DOI: 10.1371/journal.ppat.1007590] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 03/07/2019] [Accepted: 01/18/2019] [Indexed: 12/20/2022] Open
Abstract
Subnuclear promyelocytic leukemia (PML) nuclear bodies (NBs) are targeted by many DNA viruses after nuclear delivery. PML protein is essential for formation of PML NBs. Sp100 and Small Ubiquitin-Like Modifier (SUMO) are also permanently residing within PML NBs. Often, large DNA viruses disassemble and reorganize PML NBs to counteract their intrinsic antiviral activity and support establishment of infection. However, human papillomavirus (HPV) requires PML protein to retain incoming viral DNA in the nucleus for subsequent efficient transcription. In contrast, Sp100 was identified as a restriction factor for HPV. These findings suggested that PML NBs are important regulators of early stages of the HPV life cycle. Nuclear delivery of incoming HPV DNA requires mitosis. Viral particles are retained within membrane-bound transport vesicles throughout mitosis. The viral genome is released from transport vesicles by an unknown mechanism several hours after nuclear envelope reformation. The minor capsid protein L2 mediates intracellular transport by becoming transmembranous in the endocytic compartment. Herein, we tested our hypothesis that PML protein is recruited to incoming viral genome prior to egress from transport vesicles. High-resolution microscopy revealed that PML protein, SUMO-1, and Sp100 are recruited to incoming viral genomes, rather than viral genomes being targeted to preformed PML NBs. Differential immunofluorescent staining suggested that PML protein and SUMO-1 associated with transport vesicles containing viral particles prior to egress, implying that recruitment is likely mediated by L2 protein. In contrast, Sp100 recruitment to HPV-harboring PML NBs occurred after release of viral genomes from transport vesicles. The delayed recruitment of Sp100 is specific for HPV-associated PML NBs. These data suggest that the virus continuously resides within a protective environment until the transport vesicle breaks down in late G1 phase and imply that HPV might modulate PML NB assembly to achieve establishment of infection and the shift to viral maintenance.
Collapse
Affiliation(s)
- Lucile Guion
- Department of Microbiology and Immunology, Center for Molecular and Tumor Virology, Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, Louisiana, United States of America
| | - Malgorzata Bienkowska-Haba
- Department of Microbiology and Immunology, Center for Molecular and Tumor Virology, Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, Louisiana, United States of America
| | - Stephen DiGiuseppe
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Luise Florin
- Department of Virology and Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Martin Sapp
- Department of Microbiology and Immunology, Center for Molecular and Tumor Virology, Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, Louisiana, United States of America
| |
Collapse
|
44
|
Inoue T, Zhang P, Zhang W, Goodner-Bingham K, Dupzyk A, DiMaio D, Tsai B. γ-Secretase promotes membrane insertion of the human papillomavirus L2 capsid protein during virus infection. J Cell Biol 2018; 217:3545-3559. [PMID: 30006461 PMCID: PMC6168257 DOI: 10.1083/jcb.201804171] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 06/05/2018] [Accepted: 06/25/2018] [Indexed: 01/02/2023] Open
Abstract
Despite their importance as human pathogens, entry of human papillomaviruses (HPVs) into cells is poorly understood. The transmembrane protease γ-secretase executes a crucial function during the early stages of HPV infection, but the role of γ-secretase in infection and the identity of its critical substrate are unknown. Here we demonstrate that γ-secretase harbors a previously uncharacterized chaperone function, promoting low pH-dependent insertion of the HPV L2 capsid protein into endosomal membranes. Upon membrane insertion, L2 recruits the cytosolic retromer, which enables the L2 viral genome complex to enter the retrograde transport pathway and traffic to the Golgi en route for infection. Although a small fraction of membrane-inserted L2 is also cleaved by γ-secretase, this proteolytic event appears dispensable for HPV infection. Our findings demonstrate that γ-secretase is endowed with an activity that can promote membrane insertion of L2, thereby targeting the virus to the productive infectious pathway.
Collapse
Affiliation(s)
- Takamasa Inoue
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI
| | - Pengwei Zhang
- Department of Genetics, Yale School of Medicine, New Haven, CT
| | - Wei Zhang
- Department of Genetics, Yale School of Medicine, New Haven, CT
| | | | - Allison Dupzyk
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI
| | - Daniel DiMaio
- Department of Genetics, Yale School of Medicine, New Haven, CT
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT
- Department of Molecular Biophysics and Biochemistry, Yale School of Medicine, New Haven, CT
- Yale Cancer Center, New Haven, CT
| | - Billy Tsai
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI
| |
Collapse
|
45
|
Papillomaviruses and Endocytic Trafficking. Int J Mol Sci 2018; 19:ijms19092619. [PMID: 30181457 PMCID: PMC6163501 DOI: 10.3390/ijms19092619] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 08/24/2018] [Accepted: 08/29/2018] [Indexed: 12/14/2022] Open
Abstract
Endocytic trafficking plays a major role in transport of incoming human papillomavirus (HPVs) from plasma membrane to the trans Golgi network (TGN) and ultimately into the nucleus. During this infectious entry, several cellular sorting factors are recruited by the viral capsid protein L2, which plays a critical role in ensuring successful transport of the L2/viral DNA complex to the nucleus. Later in the infection cycle, two viral oncoproteins, E5 and E6, have also been shown to modulate different aspects of endocytic transport pathways. In this review, we highlight how HPV makes use of and perturbs normal endocytic transport pathways, firstly to achieve infectious virus entry, secondly to produce productive infection and the completion of the viral life cycle and, finally, on rare occasions, to bring about the development of malignancy.
Collapse
|
46
|
Human Papillomavirus 16 Infection Induces VAP-Dependent Endosomal Tubulation. J Virol 2018; 92:JVI.01514-17. [PMID: 29321327 DOI: 10.1128/jvi.01514-17] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 12/20/2017] [Indexed: 02/02/2023] Open
Abstract
Human papillomavirus (HPV) infection involves complex interactions with the endocytic transport machinery, which ultimately facilitates the entry of the incoming viral genomes into the trans-Golgi network (TGN) and their subsequent nuclear entry during mitosis. The endosomal pathway is a highly dynamic intracellular transport system, which consists of vesicular compartments and tubular extensions, although it is currently unclear whether incoming viruses specifically alter the endocytic machinery. In this study, using MICAL-L1 as a marker for tubulating endosomes, we show that incoming HPV-16 virions induce a profound alteration in global levels of endocytic tubulation. In addition, we also show a critical requirement for the endoplasmic reticulum (ER)-anchored protein VAP in this process. VAP plays an essential role in actin nucleation and endosome-to-Golgi transport. Indeed, the loss of VAP results in a dramatic decrease in the level of endosomal tubulation induced by incoming HPV-16 virions. This is also accompanied by a marked reduction in virus infectivity. In VAP knockdown cells, we see that the defect in virus trafficking occurs after capsid disassembly but prior to localization at the trans-Golgi network, with the incoming virion-transduced DNA accumulating in Vps29/TGN46-positive hybrid vesicles. Taken together, these studies demonstrate that infection with HPV-16 virions induces marked alterations of endocytic transport pathways, some of which are VAP dependent and required for the endosome-to-Golgi transport of the incoming viral L2/DNA complex.IMPORTANCE Human papillomavirus infectious entry involves multiple interactions with the endocytic transport machinery. In this study, we show that incoming HPV-16 virions induce a dramatic increase in endocytic tubulation. This tubulation requires ER-associated VAP, which plays a critical role in ensuring the delivery of cargoes from the endocytic compartments to the trans-Golgi network. Indeed, the loss of VAP blocks HPV infectious entry at a step after capsid uncoating but prior to localization at the trans-Golgi network. These results define a critical role for ER-associated VAP in endocytic tubulation and in HPV-16 infectious entry.
Collapse
|
47
|
HPV-16 virions can remain infectious for 2 weeks on senescent cells but require cell cycle re-activation to allow virus entry. Sci Rep 2018; 8:811. [PMID: 29339794 PMCID: PMC5770383 DOI: 10.1038/s41598-017-18809-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 12/16/2017] [Indexed: 11/30/2022] Open
Abstract
Successful infection with Human Papillomaviruses requires mitosis, when incoming viral genomes gain access to nuclear components. However, very little is known about how long HPV particles can remain infectious in non-dividing cells or in which cellular compartments these viruses may reside. To investigate these questions we have used BJ cells as a reversible model of senescence and show that HPV-16 can only infect early-passage proliferating cells. Late-passage senescent cells are resistant to HPV infection, but this can be reversed by inducing cell cycle re-entry with a p53 siRNA. In senescent cells we find that efficient virus entry can be attained upon cell cycle re-entry 16 days after infection, demonstrating that HPV can persist for 2 weeks prior to induction of mitosis. However, exposing cells to anti-HPV-16 L1 neutralising antibody blocks infection at these late time points, suggesting that the virions reside near the cell surface. Indeed, immunofluorescence analysis shows that virions accumulate on the cell surface of senescent cells and only enter endocytic vesicles upon stimulation with p53 siRNA. These results demonstrate that HPV-16 virions can remain viable on a non-dividing cell for extended periods of time, but are nonetheless vulnerable to antibody-induced neutralisation throughout.
Collapse
|
48
|
Campos SK. Subcellular Trafficking of the Papillomavirus Genome during Initial Infection: The Remarkable Abilities of Minor Capsid Protein L2. Viruses 2017; 9:v9120370. [PMID: 29207511 PMCID: PMC5744145 DOI: 10.3390/v9120370] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/01/2017] [Accepted: 12/02/2017] [Indexed: 12/24/2022] Open
Abstract
Since 2012, our understanding of human papillomavirus (HPV) subcellular trafficking has undergone a drastic paradigm shift. Work from multiple laboratories has revealed that HPV has evolved a unique means to deliver its viral genome (vDNA) to the cell nucleus, relying on myriad host cell proteins and processes. The major breakthrough finding from these recent endeavors has been the realization of L2-dependent utilization of cellular sorting factors for the retrograde transport of vDNA away from degradative endo/lysosomal compartments to the Golgi, prior to mitosis-dependent nuclear accumulation of L2/vDNA. An overview of current models of HPV entry, subcellular trafficking, and the role of L2 during initial infection is provided below, highlighting unresolved questions and gaps in knowledge.
Collapse
Affiliation(s)
- Samuel K Campos
- The Department of Immunobiology, The University of Arizona, Tucson, AZ 85721-0240, USA.
- The Department of Molecular & Cellular Biology, The University of Arizona, Tucson, AZ 85721-0240, USA.
- The Cancer Biology Graduate Interdisciplinary Program, The University of Arizona, Tucson, AZ 85721-0240, USA.
- The BIO5 Institute, Tucson, AZ 85721-0240, USA.
| |
Collapse
|
49
|
Lipovsky A, Erden A, Kanaya E, Zhang W, Crite M, Bradfield C, MacMicking J, DiMaio D, Schoggins JW, Iwasaki A. The cellular endosomal protein stannin inhibits intracellular trafficking of human papillomavirus during virus entry. J Gen Virol 2017; 98:2821-2836. [PMID: 29058661 PMCID: PMC5845663 DOI: 10.1099/jgv.0.000954] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 10/06/2017] [Indexed: 12/24/2022] Open
Abstract
Human papillomaviruses (HPVs) are the most common sexually transmitted viruses and one of the most important infectious causes of cancers worldwide. While prophylactic vaccines are effective against certain strains of HPV, established infections still cause deadly cancers in both men and women. HPV traffics to the nucleus via the retrograde transport pathway, but the mechanism of intracellular transport of non-enveloped viruses such as HPV is incompletely understood. Using an overexpression screen, we identify several genes that control HPV16 entry. We focused on the mechanism by which one of the screen hits, stannin, blocks HPV16 infection. Stannin has not been previously implicated in virus entry. Overexpression of stannin specifically inhibits infection by several HPV types, but not other viruses tested. Stannin is constitutively expressed in human keratinocytes, and its basal levels limit entry by HPV16. Stannin is localized to the endolysosomal compartment and does not affect HPV16 binding to cells, virus uptake, or virus uncoating, but inhibits the entry of HPV into the trans-Golgi network (TGN) and stimulates HPV degradation. We further show that stannin interacts with L1 major capsid protein and impairs the interaction of the L2 minor capsid protein with retromer, which is required for virus trafficking to the TGN. Our findings shed light on a novel cellular protein that interferes with HPV entry and highlight the role of retrograde transport in HPV entry.
Collapse
Affiliation(s)
- Alex Lipovsky
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520-8011, P.O. Box 208011, USA
| | - Asu Erden
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520-8011, P.O. Box 208011, USA
| | - Eriko Kanaya
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520-8011, P.O. Box 208011, USA
| | - Wei Zhang
- Department of Genetics, Yale School of Medicine, New Haven, CT 06520-8005, P.O. Box 208005, USA
| | - Mac Crite
- Microbiology Graduate Program, Yale School of Medicine, New Haven, CT 06519, 295 Congress Avenue, USA
| | - Clinton Bradfield
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT 06536-0812, P.O. Box 9812, USA
| | - John MacMicking
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT 06536-0812, P.O. Box 9812, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20814, USA
| | - Daniel DiMaio
- Department of Genetics, Yale School of Medicine, New Haven, CT 06520-8005, P.O. Box 208005, USA
- Yale Cancer Center, New Haven, CT 06520-8028, PO Box 208028, USA
| | - John W. Schoggins
- Department of Microbiology, University of Texas Southwestern Medical Center, 5323 Harry hines Blvd., Dallas, TX 75390, USA
| | - Akiko Iwasaki
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520-8011, P.O. Box 208011, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20814, USA
- Yale Cancer Center, New Haven, CT 06520-8028, PO Box 208028, USA
| |
Collapse
|