1
|
Gulija TK, Balija ML, Forčić D, Plećaš A, Alić I, Ivančić-Jelečki J, Jagušić M. Insertion of a short non-viral sequence in the 3' noncoding region of the hemagglutinin-neuraminidase increases mumps virus neurovirulence. Virology 2025; 604:110437. [PMID: 39919505 DOI: 10.1016/j.virol.2025.110437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/15/2025] [Accepted: 01/23/2025] [Indexed: 02/09/2025]
Abstract
The mumps virus is a promising candidate as a vaccine vector or oncolytic therapy agent. However, its neurotropic nature, driven by molecular mechanisms that remain unclear, poses a significant obstacle to its development for these applications. This study utilizes recombinant mumps virus carrying the enhanced green fluorescent protein gene (EGFP) and two additional viruses containing, alongside EGFP, unique non-viral, non-coding 84-nucleotide inserts in the 3' non-coding region (NCR) of the hemagglutinin-neuraminidase (HN) gene. We observed a significant increase in neurovirulence for both viruses containing inserts in the 3' NCR of HN. The insert in HN 3' NCR provided a replicative advantage in the brains of newborn rats and rat brain-derived cell cultures. While the viruses were able to infect rat neurons, infection of astrocytes was completely inhibited. Additionally, in infected rat brain and rat brain-derived cell cultures we detected induction of RANTES. We observed no correlation in the extent of neuronal apoptosis or the induction of pro-inflammatory cytokines between viruses with or without the HN 3' NCR insert.
Collapse
Affiliation(s)
- Tanja Košutić Gulija
- Centre for Research and Knowledge Transfer in Biotechnology, University of Zagreb, 10000, Zagreb, Croatia.
| | - Maja Lang Balija
- Centre for Research and Knowledge Transfer in Biotechnology, University of Zagreb, 10000, Zagreb, Croatia.
| | - Dubravko Forčić
- Centre for Research and Knowledge Transfer in Biotechnology, University of Zagreb, 10000, Zagreb, Croatia.
| | - Ante Plećaš
- Department of Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, University of Zagreb, 10000, Zagreb, Croatia.
| | - Ivan Alić
- Department of Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, University of Zagreb, 10000, Zagreb, Croatia.
| | - Jelena Ivančić-Jelečki
- Centre for Research and Knowledge Transfer in Biotechnology, University of Zagreb, 10000, Zagreb, Croatia.
| | - Maja Jagušić
- Centre for Research and Knowledge Transfer in Biotechnology, University of Zagreb, 10000, Zagreb, Croatia.
| |
Collapse
|
2
|
Pali D, Forčić D, Jagušić M, Košutić Gulija T, Jurković M, Babić M, Kalafatovic D, Ivančić-Jelečki J. Early evolution of mumps-HCV chimeric viruses in Vero cells induces loss of HCV gene expression and promotes accumulation of substitutions uncharacteristic of mumps strains. Virology 2025; 603:110379. [PMID: 39733517 DOI: 10.1016/j.virol.2024.110379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/02/2024] [Accepted: 12/24/2024] [Indexed: 12/31/2024]
Affiliation(s)
- Dorotea Pali
- University of Zagreb, Centre for Research and Knowledge Transfer in Biotechnology, Rockefellerova 10, 10000 Zagreb, Croatia.
| | - Dubravko Forčić
- University of Zagreb, Centre for Research and Knowledge Transfer in Biotechnology, Rockefellerova 10, 10000 Zagreb, Croatia.
| | - Maja Jagušić
- University of Zagreb, Centre for Research and Knowledge Transfer in Biotechnology, Rockefellerova 10, 10000 Zagreb, Croatia.
| | - Tanja Košutić Gulija
- University of Zagreb, Centre for Research and Knowledge Transfer in Biotechnology, Rockefellerova 10, 10000 Zagreb, Croatia.
| | - Mirna Jurković
- University of Zagreb, Centre for Research and Knowledge Transfer in Biotechnology, Rockefellerova 10, 10000 Zagreb, Croatia.
| | - Marko Babić
- University of Rijeka, Faculty of Biotechnology and Drug Development, Radmile Matejčić 2, 51000 Rijeka, Croatia.
| | - Daniela Kalafatovic
- University of Rijeka, Faculty of Biotechnology and Drug Development, Radmile Matejčić 2, 51000 Rijeka, Croatia.
| | - Jelena Ivančić-Jelečki
- University of Zagreb, Centre for Research and Knowledge Transfer in Biotechnology, Rockefellerova 10, 10000 Zagreb, Croatia.
| |
Collapse
|
3
|
Zhang Y, Chamblee M, Xu J, Qu P, Shamseldin MM, Yoo SJ, Misny J, Thongpan I, Kc M, Hall JM, Gupta YA, Evans JP, Lu M, Ye C, Hsu CC, Liang X, Martinez-Sobrido L, Yount JS, Boyaka PN, Liu SL, Dubey P, Peeples ME, Li J. Three SARS-CoV-2 spike protein variants delivered intranasally by measles and mumps vaccines are broadly protective. Nat Commun 2024; 15:5589. [PMID: 38961063 PMCID: PMC11222507 DOI: 10.1038/s41467-024-49443-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 05/29/2024] [Indexed: 07/05/2024] Open
Abstract
As the new SARS-CoV-2 Omicron variants and subvariants emerge, there is an urgency to develop intranasal, broadly protective vaccines. Here, we developed highly efficacious, intranasal trivalent SARS-CoV-2 vaccine candidates (TVC) based on three components of the MMR vaccine: measles virus (MeV), mumps virus (MuV) Jeryl Lynn (JL1) strain, and MuV JL2 strain. Specifically, MeV, MuV-JL1, and MuV-JL2 vaccine strains, each expressing prefusion spike (preS-6P) from a different variant of concern (VoC), were combined to generate TVCs. Intranasal immunization of IFNAR1-/- mice and female hamsters with TVCs generated high levels of S-specific serum IgG antibodies, broad neutralizing antibodies, and mucosal IgA antibodies as well as tissue-resident memory T cells in the lungs. The immunized female hamsters were protected from challenge with SARS-CoV-2 original WA1, B.1.617.2, and B.1.1.529 strains. The preexisting MeV and MuV immunity does not significantly interfere with the efficacy of TVC. Thus, the trivalent platform is a promising next-generation SARS-CoV-2 vaccine candidate.
Collapse
Affiliation(s)
- Yuexiu Zhang
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA
| | - Michelle Chamblee
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA
| | - Jiayu Xu
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA
| | - Panke Qu
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA
| | - Mohamed M Shamseldin
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, USA
- Department of Microbiology, The Ohio State University, Columbus, OH, USA
- Department of Microbiology and Immunology, Faculty of Pharmacy, Helwan University, Ain Helwan, Helwan, Egypt
| | - Sung J Yoo
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA
| | - Jack Misny
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Ilada Thongpan
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Mahesh Kc
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Jesse M Hall
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Yash A Gupta
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - John P Evans
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA
| | - Mijia Lu
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA
| | - Chengjin Ye
- Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Cheng Chih Hsu
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA
| | - Xueya Liang
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA
| | | | - Jacob S Yount
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, USA
- Infectious Disease Institute, The Ohio State University, Columbus, OH, USA
| | - Prosper N Boyaka
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA
- Infectious Disease Institute, The Ohio State University, Columbus, OH, USA
| | - Shan-Lu Liu
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, USA
- Infectious Disease Institute, The Ohio State University, Columbus, OH, USA
- Center for Retrovirus Research, The Ohio State University, Columbus, OH, USA
| | - Purnima Dubey
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, USA
- Infectious Disease Institute, The Ohio State University, Columbus, OH, USA
| | - Mark E Peeples
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
- Infectious Disease Institute, The Ohio State University, Columbus, OH, USA
- Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Jianrong Li
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA.
- Infectious Disease Institute, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
4
|
Zhang Y, Lu M, Mahesh KC, Kim E, Shamseldin MM, Ye C, Dravid P, Chamblee M, Park JG, Hall JM, Trivedi S, Chaiwatpongsakorn S, Kenny AD, Murthy SS, Sharma H, Liang X, Yount JS, Kapoor A, Martinez-Sobrido L, Dubey P, Boyaka PN, Peeples ME, Li J. A highly efficacious live attenuated mumps virus-based SARS-CoV-2 vaccine candidate expressing a six-proline stabilized prefusion spike. Proc Natl Acad Sci U S A 2022; 119:e2201616119. [PMID: 35895717 PMCID: PMC9388148 DOI: 10.1073/pnas.2201616119] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 04/24/2022] [Indexed: 11/18/2022] Open
Abstract
With the rapid increase in SARS-CoV-2 cases in children, a safe and effective vaccine for this population is urgently needed. The MMR (measles/mumps/rubella) vaccine has been one of the safest and most effective human vaccines used in infants and children since the 1960s. Here, we developed live attenuated recombinant mumps virus (rMuV)-based SARS-CoV-2 vaccine candidates using the MuV Jeryl Lynn (JL2) vaccine strain backbone. The soluble prefusion SARS-CoV-2 spike protein (preS) gene, stablized by two prolines (preS-2P) or six prolines (preS-6P), was inserted into the MuV genome at the P-M or F-SH gene junctions in the MuV genome. preS-6P was more efficiently expressed than preS-2P, and preS-6P expression from the P-M gene junction was more efficient than from the F-SH gene junction. In mice, the rMuV-preS-6P vaccine was more immunogenic than the rMuV-preS-2P vaccine, eliciting stronger neutralizing antibodies and mucosal immunity. Sera raised in response to the rMuV-preS-6P vaccine neutralized SARS-CoV-2 variants of concern, including the Delta variant equivalently. Intranasal and/or subcutaneous immunization of IFNAR1-/- mice and golden Syrian hamsters with the rMuV-preS-6P vaccine induced high levels of neutralizing antibodies, mucosal immunoglobulin A antibody, and T cell immune responses, and were completely protected from challenge by both SARS-CoV-2 USA-WA1/2020 and Delta variants. Therefore, rMuV-preS-6P is a highly promising COVID-19 vaccine candidate, warranting further development as a tetravalent MMR vaccine, which may include protection against SARS-CoV-2.
Collapse
Affiliation(s)
- Yuexiu Zhang
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210
| | - Mijia Lu
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210
| | - K C Mahesh
- Center for Vaccines and Immunity, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205
| | - Eunsoo Kim
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210
| | - Mohamed M. Shamseldin
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH 43210
| | - Chengjin Ye
- Department of Disease Intervention and Prevention, Texas Biomedical Research Institute, San Antonio, TX 78227
| | - Piyush Dravid
- Center for Vaccines and Immunity, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205
| | - Michelle Chamblee
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210
| | - Jun-Gyu Park
- Department of Disease Intervention and Prevention, Texas Biomedical Research Institute, San Antonio, TX 78227
| | - Jesse M. Hall
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH 43210
| | - Sheetal Trivedi
- Center for Vaccines and Immunity, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205
| | - Supranee Chaiwatpongsakorn
- Center for Vaccines and Immunity, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205
| | - Adam D. Kenny
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH 43210
| | - Satyapramod Srinivasa Murthy
- Center for Vaccines and Immunity, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205
| | - Himanshu Sharma
- Center for Vaccines and Immunity, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205
| | - Xueya Liang
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210
| | - Jacob S. Yount
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH 43210
- Infectious Disease Institute, The Ohio State University, Columbus, OH 43210
| | - Amit Kapoor
- Center for Vaccines and Immunity, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205
- Infectious Disease Institute, The Ohio State University, Columbus, OH 43210
- Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH 43210
| | - Luis Martinez-Sobrido
- Department of Disease Intervention and Prevention, Texas Biomedical Research Institute, San Antonio, TX 78227
| | - Purnima Dubey
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH 43210
- Infectious Disease Institute, The Ohio State University, Columbus, OH 43210
| | - Prosper N. Boyaka
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210
- Infectious Disease Institute, The Ohio State University, Columbus, OH 43210
| | - Mark E. Peeples
- Center for Vaccines and Immunity, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205
- Infectious Disease Institute, The Ohio State University, Columbus, OH 43210
- Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH 43210
| | - Jianrong Li
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210
- Infectious Disease Institute, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
5
|
Monath TP, Nichols R, Tussey L, Scappaticci K, Pullano TG, Whiteman MD, Vasilakis N, Rossi SL, Campos RK, Azar SR, Spratt HM, Seaton BL, Archambault WT, Costecalde YV, Moore EH, Hawks RJ, Fusco J. Recombinant vesicular stomatitis vaccine against Nipah virus has a favorable safety profile: Model for assessment of live vaccines with neurotropic potential. PLoS Pathog 2022; 18:e1010658. [PMID: 35759511 PMCID: PMC9269911 DOI: 10.1371/journal.ppat.1010658] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 07/08/2022] [Accepted: 06/08/2022] [Indexed: 12/03/2022] Open
Abstract
Nipah virus (NiV) disease is a bat-borne zoonosis responsible for outbreaks with high lethality and is a priority for vaccine development. With funding from the Coalition of Epidemic Preparedness Innovations (CEPI), we are developing a chimeric vaccine (PHV02) composed of recombinant vesicular stomatitis virus (VSV) expressing the envelope glycoproteins of both Ebola virus (EBOV) and NiV. The EBOV glycoprotein (GP) mediates fusion and viral entry and the NiV attachment glycoprotein (G) is a ligand for cell receptors, and stimulates neutralizing antibody, the putative mediator of protection against NiV. PHV02 is identical in construction to the registered Ebola vaccine (Ervebo) with the addition of the NiV G gene. NiV ephrin B2 and B3 receptors are expressed on neural cells and the wild-type NiV is neurotropic and causes encephalitis in affected patients. It was therefore important to assess whether the NiV G alters tropism of the rVSV vector and serves as a virulence factor. PHV02 was fully attenuated in adult hamsters inoculated by the intramuscular (IM) route, whereas parental wild-type VSV was 100% lethal. Two rodent models (mice, hamsters) were infected by the intracerebral (IC) route with graded doses of PHV02. Comparator active controls in various experiments included rVSV-EBOV (representative of Ebola vaccine) and yellow fever (YF) 17DD commercial vaccine. These studies showed PHV02 to be more neurovirulent than both rVSV-EBOV and YF 17DD in infant animals. PHV02 was lethal for adult hamsters inoculated IC but not for adult mice. In contrast YF 17DD retained virulence for adult mice inoculated IC but was not virulent for adult hamsters. Because of the inconsistency of neurovirulence patterns in the rodent models, a monkey neurovirulence test (MNVT) was performed, using YF 17DD as the active comparator because it has a well-established profile of quantifiable microscopic changes in brain centers and a known reporting rate of neurotropic adverse events in humans. In the MNVT PHV02 was significantly less neurovirulent than the YF 17DD vaccine reference control, indicating that the vaccine will have an acceptable safety profile for humans. The findings are important because they illustrate the complexities of phenotypic assessment of novel viral vectors with tissue tropisms determined by transgenic proteins, and because it is unprecedented to use a heterologous comparator virus (YF vaccine) in a regulatory-enabling study. This approach may have value in future studies of other novel viral vectors.
Collapse
Affiliation(s)
- Thomas P. Monath
- Public Health Vaccines LLC, Cambridge, Massachusetts, United States of America
- Crozet BioPharma Inc., Lexington, Massachusetts, United States of America
| | - Richard Nichols
- Public Health Vaccines LLC, Cambridge, Massachusetts, United States of America
- Crozet BioPharma Inc., Lexington, Massachusetts, United States of America
| | - Lynda Tussey
- Public Health Vaccines LLC, Cambridge, Massachusetts, United States of America
- Crozet BioPharma Inc., Lexington, Massachusetts, United States of America
| | - Kelly Scappaticci
- Public Health Vaccines LLC, Cambridge, Massachusetts, United States of America
- Crozet BioPharma Inc., Lexington, Massachusetts, United States of America
| | - Thaddeus G. Pullano
- Public Health Vaccines LLC, Cambridge, Massachusetts, United States of America
| | - Mary D. Whiteman
- BioReliance Corporation, Rockville, Maryland, United States of America
| | - Nikos Vasilakis
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Sealy Center for Vector-Borne and Zoonotic Diseases, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Shannan L. Rossi
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Rafael Kroon Campos
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Sasha R. Azar
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Heidi M. Spratt
- Department of Preventive Medicine and Population Health, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Brent L. Seaton
- Q2 Solutions, San Juan Capistrano, California, United States of America
| | | | - Yanina V. Costecalde
- AmplifyBio, West Jefferson, Ohio, United States of America
- Battelle Memorial Institute, West Jefferson, Ohio, United States of America
| | - Evan H. Moore
- Battelle Memorial Institute, West Jefferson, Ohio, United States of America
| | - Roger J. Hawks
- Battelle Memorial Institute, West Jefferson, Ohio, United States of America
| | - Joan Fusco
- Public Health Vaccines LLC, Cambridge, Massachusetts, United States of America
- Crozet BioPharma Inc., Lexington, Massachusetts, United States of America
| |
Collapse
|
6
|
Larsen SE, Williams BD, Rais M, Coler RN, Baldwin SL. It Takes a Village: The Multifaceted Immune Response to Mycobacterium tuberculosis Infection and Vaccine-Induced Immunity. Front Immunol 2022; 13:840225. [PMID: 35359957 PMCID: PMC8960931 DOI: 10.3389/fimmu.2022.840225] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/08/2022] [Indexed: 11/18/2022] Open
Abstract
Despite co-evolving with humans for centuries and being intensely studied for decades, the immune correlates of protection against Mycobacterium tuberculosis (Mtb) have yet to be fully defined. This lapse in understanding is a major lag in the pipeline for evaluating and advancing efficacious vaccine candidates. While CD4+ T helper 1 (TH1) pro-inflammatory responses have a significant role in controlling Mtb infection, the historically narrow focus on this cell population may have eclipsed the characterization of other requisite arms of the immune system. Over the last decade, the tuberculosis (TB) research community has intentionally and intensely increased the breadth of investigation of other immune players. Here, we review mechanistic preclinical studies as well as clinical anecdotes that suggest the degree to which different cell types, such as NK cells, CD8+ T cells, γ δ T cells, and B cells, influence infection or disease prevention. Additionally, we categorically outline the observed role each major cell type plays in vaccine-induced immunity, including Mycobacterium bovis bacillus Calmette-Guérin (BCG). Novel vaccine candidates advancing through either the preclinical or clinical pipeline leverage different platforms (e.g., protein + adjuvant, vector-based, nucleic acid-based) to purposefully elicit complex immune responses, and we review those design rationales and results to date. The better we as a community understand the essential composition, magnitude, timing, and trafficking of immune responses against Mtb, the closer we are to reducing the severe disease burden and toll on human health inflicted by TB globally.
Collapse
Affiliation(s)
- Sasha E. Larsen
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle Children's Hospital, Seattle, WA, United States
| | - Brittany D. Williams
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle Children's Hospital, Seattle, WA, United States,Department of Global Health, University of Washington, Seattle, WA, United States
| | - Maham Rais
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle Children's Hospital, Seattle, WA, United States
| | - Rhea N. Coler
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle Children's Hospital, Seattle, WA, United States,Department of Global Health, University of Washington, Seattle, WA, United States,Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, United States
| | - Susan L. Baldwin
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle Children's Hospital, Seattle, WA, United States,*Correspondence: Susan L. Baldwin,
| |
Collapse
|
7
|
Slović A, Košutić-Gulija T, Forčić D, Šantak M, Jagušić M, Jurković M, Pali D, Ivančić-Jelečki J. Population Variability Generated during Rescue Process and Passaging of Recombinant Mumps Viruses. Viruses 2021; 13:2550. [PMID: 34960819 PMCID: PMC8707793 DOI: 10.3390/v13122550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 12/10/2021] [Accepted: 12/15/2021] [Indexed: 11/16/2022] Open
Abstract
Recombinant mumps viruses (MuVs) based on established vaccine strains represent attractive vector candidates as they have known track records for high efficacy and the viral genome does not integrate in the host cells. We developed a rescue system based on the consensus sequence of the L-Zagreb vaccine and generated seven different recombinant MuVs by (a) insertion of one or two additional transcription units (ATUs), (b) lengthening of a noncoding region to the extent that the longest noncoding region in MuV genome is created, or (c) replacement of original L-Zagreb sequences with sequences rich in CG and AT dinucleotides. All viruses were successfully rescued and faithfully matched sequences of input plasmids. In primary rescued stocks, low percentages of heterogeneous positions were found (maximum 0.12%) and substitutions were predominantly obtained in minor variants, with maximally four substitutions seen in consensus. ATUs did not accumulate more mutations than the natural MuV genes. Six substitutions characteristic for recombinant viruses generated in our system were defined, as they repetitively occurred during rescue processes. In subsequent passaging of primary rescue stocks in Vero cells, different inconsistencies within quasispecies structures were observed. In order to assure that unwanted mutations did not emerge and accumulate, sub-consensus variability should be closely monitored. As we show for Pro408Leu mutation in L gene and a stop codon in one of ATUs, positively selected variants can rise to frequencies over 85% in only few passages.
Collapse
Affiliation(s)
- Anamarija Slović
- Centre for Research and Knowledge Transfer in Biotechnology, University of Zagreb, 10000 Zagreb, Croatia; (A.S.); (T.K.-G.); (D.F.); (M.J.); (M.J.); (D.P.)
| | - Tanja Košutić-Gulija
- Centre for Research and Knowledge Transfer in Biotechnology, University of Zagreb, 10000 Zagreb, Croatia; (A.S.); (T.K.-G.); (D.F.); (M.J.); (M.J.); (D.P.)
| | - Dubravko Forčić
- Centre for Research and Knowledge Transfer in Biotechnology, University of Zagreb, 10000 Zagreb, Croatia; (A.S.); (T.K.-G.); (D.F.); (M.J.); (M.J.); (D.P.)
| | - Maja Šantak
- Ruđer Bošković Institute, 10000 Zagreb, Croatia;
| | - Maja Jagušić
- Centre for Research and Knowledge Transfer in Biotechnology, University of Zagreb, 10000 Zagreb, Croatia; (A.S.); (T.K.-G.); (D.F.); (M.J.); (M.J.); (D.P.)
| | - Mirna Jurković
- Centre for Research and Knowledge Transfer in Biotechnology, University of Zagreb, 10000 Zagreb, Croatia; (A.S.); (T.K.-G.); (D.F.); (M.J.); (M.J.); (D.P.)
| | - Dorotea Pali
- Centre for Research and Knowledge Transfer in Biotechnology, University of Zagreb, 10000 Zagreb, Croatia; (A.S.); (T.K.-G.); (D.F.); (M.J.); (M.J.); (D.P.)
| | - Jelena Ivančić-Jelečki
- Centre for Research and Knowledge Transfer in Biotechnology, University of Zagreb, 10000 Zagreb, Croatia; (A.S.); (T.K.-G.); (D.F.); (M.J.); (M.J.); (D.P.)
| |
Collapse
|
8
|
Virnik K, Nesti E, Dail C, Scanlan A, Medvedev A, Vassell R, McGuire AT, Stamatatos L, Berkower I. Live rubella vectors can express native HIV envelope glycoproteins targeted by broadly neutralizing antibodies and prime the immune response to an envelope protein boost. Vaccine 2018; 36:5166-5172. [PMID: 30037665 DOI: 10.1016/j.vaccine.2018.07.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 07/03/2018] [Accepted: 07/05/2018] [Indexed: 12/18/2022]
Abstract
Following HIV infection, most people make antibodies to gp120 and gp41, yet only a few make broadly neutralizing antibodies that target key antigenic sites on the envelope glycoproteins. The induction of broadly neutralizing antibodies by immunization remains a major challenge of HIV vaccine research. Difficulties include: variable protein sequence, epitopes that depend on the native conformation, glycosylation that conceals key antigenic determinants, and the assembly of Env trimers that mimic viral spikes. In addition, more potent immunogens may be needed to initiate the response of germline antibody precursors and drive B cell maturation toward antibodies with broad neutralizing activity. We have expressed HIV Env glycoproteins by incorporation into live attenuated rubella viral vectors. The rubella vaccine strain RA27/3 has demonstrated its safety and potency in millions of children. As a vector, it has elicited potent and durable immune responses in macaques to SIV Gag vaccine inserts. We now find that rubella/env vectors can stably express Env core derived glycoproteins ranging in size up to 363 amino acids from HIV clade C strain 426c. The expressed Env glycoproteins bind broadly neutralizing antibodies that target the native CD4 binding site. The vectors grew well in rhesus macaques, and they elicited a vaccine "take" in all animals, as measured by anti-rubella antibodies. By themselves, the vectors elicited modest antibody titers to the Env insert. But the combination of rubella/env prime followed by a homologous protein boost gave a strong response. Neutralizing antibodies appeared gradually after multiple vaccine doses. The vectors will be useful for testing new vaccine inserts and immunization strategies under optimized conditions of vector growth and protein expression.
Collapse
Affiliation(s)
- Konstantin Virnik
- Lab of Immunoregulation, DVP, Office of Vaccines, Center for Biologics, FDA, Bldg 72, Room 1212, White Oak Campus, 10903 New Hampshire Ave., Silver Spring, MD 20993, USA
| | - Edmund Nesti
- Lab of Immunoregulation, DVP, Office of Vaccines, Center for Biologics, FDA, Bldg 72, Room 1212, White Oak Campus, 10903 New Hampshire Ave., Silver Spring, MD 20993, USA
| | - Cody Dail
- Lab of Immunoregulation, DVP, Office of Vaccines, Center for Biologics, FDA, Bldg 72, Room 1212, White Oak Campus, 10903 New Hampshire Ave., Silver Spring, MD 20993, USA
| | - Aaron Scanlan
- Lab of Immunoregulation, DVP, Office of Vaccines, Center for Biologics, FDA, Bldg 72, Room 1212, White Oak Campus, 10903 New Hampshire Ave., Silver Spring, MD 20993, USA
| | - Alexei Medvedev
- Lab of Immunoregulation, DVP, Office of Vaccines, Center for Biologics, FDA, Bldg 72, Room 1212, White Oak Campus, 10903 New Hampshire Ave., Silver Spring, MD 20993, USA
| | - Russell Vassell
- Lab of Immunoregulation, DVP, Office of Vaccines, Center for Biologics, FDA, Bldg 72, Room 1212, White Oak Campus, 10903 New Hampshire Ave., Silver Spring, MD 20993, USA
| | - Andrew T McGuire
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Department of Global Health, University of Washington, Seattle, WA, USA
| | - Leonidas Stamatatos
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Department of Global Health, University of Washington, Seattle, WA, USA
| | - Ira Berkower
- Lab of Immunoregulation, DVP, Office of Vaccines, Center for Biologics, FDA, Bldg 72, Room 1212, White Oak Campus, 10903 New Hampshire Ave., Silver Spring, MD 20993, USA.
| |
Collapse
|
9
|
Khattar SK, Palaniyandi S, Samal S, LaBranche CC, Montefiori DC, Zhu X, Samal SK. Evaluation of humoral, mucosal, and cellular immune responses following co-immunization of HIV-1 Gag and Env proteins expressed by Newcastle disease virus. Hum Vaccin Immunother 2015; 11:504-15. [PMID: 25695657 DOI: 10.4161/21645515.2014.987006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The combination of multiple HIV antigens in a vaccine can broaden antiviral immune responses. In this study, we used NDV vaccine strain LaSota to generate rNDV (rLaSota/optGag) expressing human codon optimized p55 Gag protein of HIV-1. We examined the effect of co-immunization of rLaSota/optGag with rNDVs expressing different forms of Env protein gp160, gp120, gp140L [a version of gp140 that lacked cytoplasmic tail and contained complete membrane-proximal external region (MPER)] and gp140S (a version of gp140 that lacked cytoplasmic tail and distal half of MPER) on magnitude and breadth of humoral, mucosal and cellular immune responses in guinea pigs and mice. Our results showed that inclusion of rLaSota/optGag with rNDVs expressing different forms of Env HIV Gag did not affect the Env-specific humoral and mucosal immune responses in guinea pigs and that the potent immune responses generated against Env persisted for at least 13 weeks post immunization. The highest Env-specific humoral and mucosal immune responses were observed with gp140S+optGag group. The neutralizing antibody responses against HIV strains BaL.26 and MN.3 induced by gp140S+optGag and gp160+optGag were higher than those elicited by other groups. Inclusion of Gag with gp160, gp140S and gp140L enhanced the level of Env-specific IFN-γ-producing CD8(+) T cells in mice. Inclusion of Gag with gp160 and gp140L also resulted in increased Env-specific CD4(+) T cells. The level of Gag-specific CD8(+) and CD4(+) T cells was also enhanced in mice immunized with Gag along with gp140S and gp120. These results indicate lack of antigen interference in a vaccine containing rNDVs expressing Env and Gag proteins.
Collapse
Affiliation(s)
- Sunil K Khattar
- a Virginia-Maryland Regional College of Veterinary Medicine ; University of Maryland ; College Park , MD USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Rosati M, Alicea C, Kulkarni V, Virnik K, Hockenbury M, Sardesai NY, Pavlakis GN, Valentin A, Berkower I, Felber BK. Recombinant rubella vectors elicit SIV Gag-specific T cell responses with cytotoxic potential in rhesus macaques. Vaccine 2015; 33:2167-74. [PMID: 25802183 DOI: 10.1016/j.vaccine.2015.02.067] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 02/19/2015] [Accepted: 02/25/2015] [Indexed: 11/25/2022]
Abstract
Live-attenuated rubella vaccine strain RA27/3 has been demonstrated to be safe and immunogenic in millions of children. The vaccine strain was used to insert SIV gag sequences and the resulting rubella vectors were tested in rhesus macaques alone and together with SIV gag DNA in different vaccine prime-boost combinations. We previously reported that such rubella vectors induce robust and durable SIV-specific humoral immune responses in macaques. Here, we report that recombinant rubella vectors elicit robust de novo SIV-specific cellular immune responses detectable for >10 months even after a single vaccination. The antigen-specific responses induced by the rubella vector include central and effector memory CD4(+) and CD8(+) T cells with cytotoxic potential. Rubella vectors can be administered repeatedly even after vaccination with the rubella vaccine strain RA27/3. Vaccine regimens including rubella vector and SIV gag DNA in different prime-boost combinations resulted in robust long-lasting cellular responses with significant increase of cellular responses upon boost. Rubella vectors provide a potent platform for inducing HIV-specific immunity that can be combined with DNA in a prime-boost regimen to elicit durable cellular immunity.
Collapse
Affiliation(s)
- Margherita Rosati
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, USA
| | - Candido Alicea
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, USA
| | - Viraj Kulkarni
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, USA
| | - Konstantin Virnik
- Laboratory of Immunoregulation, Division of Viral Products, Office of Vaccines, Center for Biologics, FDA, Silver Spring, MD, USA
| | - Max Hockenbury
- Laboratory of Immunoregulation, Division of Viral Products, Office of Vaccines, Center for Biologics, FDA, Silver Spring, MD, USA
| | | | - George N Pavlakis
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, USA
| | - Antonio Valentin
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, USA
| | - Ira Berkower
- Laboratory of Immunoregulation, Division of Viral Products, Office of Vaccines, Center for Biologics, FDA, Silver Spring, MD, USA.
| | - Barbara K Felber
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, USA.
| |
Collapse
|
11
|
Abstract
The advent of reverse genetic approaches to manipulate the genomes of both positive (+) and negative (-) sense RNA viruses allowed researchers to harness these genomes for basic research. Manipulation of positive sense RNA virus genomes occurred first largely because infectious RNA could be transcribed directly from cDNA versions of the RNA genomes. Manipulation of negative strand RNA virus genomes rapidly followed as more sophisticated approaches to provide RNA-dependent RNA polymerase complexes coupled with negative-strand RNA templates were developed. These advances have driven an explosion of RNA virus vaccine vector development. That is, development of approaches to exploit the basic replication and expression strategies of RNA viruses to produce vaccine antigens that have been engineered into their genomes. This study has led to significant preclinical testing of many RNA virus vectors against a wide range of pathogens as well as cancer targets. Multiple RNA virus vectors have advanced through preclinical testing to human clinical evaluation. This review will focus on RNA virus vectors designed to express heterologous genes that are packaged into viral particles and have progressed to clinical testing.
Collapse
Affiliation(s)
- Mark A Mogler
- Harrisvaccines, Inc., 1102 Southern Hills Drive, Suite 101, Ames, IA 50010, USA
| | | |
Collapse
|
12
|
Neurovirulence and immunogenicity of attenuated recombinant vesicular stomatitis viruses in nonhuman primates. J Virol 2014; 88:6690-701. [PMID: 24696472 DOI: 10.1128/jvi.03441-13] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED In previous work, a prototypic recombinant vesicular stomatitis virus Indiana serotype (rVSIV) vector expressing simian immunodeficiency virus (SIV) gag and human immunodeficiency virus type 1 (HIV-1) env antigens protected nonhuman primates (NHPs) from disease following challenge with an HIV-1/SIV recombinant (SHIV). However, when tested in a stringent NHP neurovirulence (NV) model, this vector was not adequately attenuated for clinical evaluation. For the work described here, the prototypic rVSIV vector was attenuated by combining specific G protein truncations with either N gene translocations or mutations (M33A and M51A) that ablate expression of subgenic M polypeptides, by incorporation of temperature-sensitive mutations in the N and L genes, and by deletion of the VSIV G gene to generate a replicon that is dependent on trans expression of G protein for in vitro propagation. When evaluated in a series of NHP NV studies, these attenuated rVSIV variants caused no clinical disease and demonstrated a very significant reduction in neuropathology compared to wild-type VSIV and the prototypic rVSIV vaccine vector. In spite of greatly increased in vivo attenuation, some of the rVSIV vectors elicited cell-mediated immune responses that were similar in magnitude to those induced by the much more virulent prototypic vector. These data demonstrate novel approaches to the rational attenuation of VSIV NV while retaining vector immunogenicity and have led to identification of an rVSIV N4CT1gag1 vaccine vector that has now successfully completed phase I clinical evaluation. IMPORTANCE The work described in this article demonstrates a rational approach to the attenuation of vesicular stomatitis virus neurovirulence. The major attenuation strategy described here will be most likely applicable to other members of the Rhabdoviridae and possibly other families of nonsegmented negative-strand RNA viruses. These studies have also enabled the identification of an attenuated, replication-competent rVSIV vector that has successfully undergone its first clinical evaluation in humans. Therefore, these studies represent a major milestone in the development of attenuated rVSIV, and likely other vesiculoviruses, as a new vaccine platform(s) for use in humans.
Collapse
|
13
|
Abstract
PURPOSE OF REVIEW To briefly describe some of the replication-competent vectors being investigated for development of candidate HIV vaccines focusing primarily on technologies that have advanced to testing in macaques or have entered clinical trials. RECENT FINDINGS Replication-competent viral vectors have advanced to the stage at which decisions can be made regarding the future development of HIV vaccines. The viruses being used as replication-competent vector platforms vary considerably, and their unique attributes make it possible to test multiple vaccine design concepts and also mimic various aspects of an HIV infection. Replication-competent viral vectors encoding simian immunodeficiency virus or HIV proteins can be used to safely immunize macaques, and in some cases, there is evidence of significant vaccine efficacy in challenge protection studies. Several live HIV vaccine vectors are in clinical trials to evaluate immunogenicity, safety, the effect of mucosal delivery, and potential effects of preexisting immunity. SUMMARY A variety of DNA and RNA viruses are being used to develop replication-competent viral vectors for HIV vaccine delivery. Multiple viral vector platforms have proven to be well tolerated and immunogenic with evidence of efficacy in macaques. Some of the more advanced HIV vaccine prototypes based on vesicular stomatitis virus, vaccinia virus, measles virus, and Sendai virus are in clinical trials.
Collapse
|
14
|
Excler JL, Parks CL, Ackland J, Rees H, Gust ID, Koff WC. Replicating viral vectors as HIV vaccines: summary report from the IAVI-sponsored satellite symposium at the AIDS vaccine 2009 conference. Biologicals 2011; 38:511-21. [PMID: 20537552 DOI: 10.1016/j.biologicals.2010.03.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Accepted: 03/29/2010] [Indexed: 01/30/2023] Open
Abstract
In October 2009, The International AIDS Vaccine Initiative (IAVI) convened a satellite symposium entitled 'Replicating Viral Vectors for use in AIDS Vaccines' at the AIDS Vaccine 2009 Conference in Paris. The purpose of the symposium was to gather together researchers, representatives from regulatory agencies, and vaccine developers to discuss issues related to advancement of replication-competent viral vector- based HIV vaccines into clinical trials. The meeting introduced the rationale for accelerating the development of replicating viral vectors for use as AIDS vaccines. It noted that the EMEA recently published draft guidelines that are an important first step in providing guidance for advancing live viral vectors into clinical development. Presentations included case studies and development challenges for viral vector-based vaccine candidates. These product development challenges included cell substrates used for vaccine manufacturing, the testing needed to assess vaccine safety, conducting clinical trials with live vectors, and assessment of vaccination risk versus benefit. More in depth discussion of risk and benefit highlighted the fact that AIDS vaccine efficacy trials must be conducted in the developing world where HIV incidence is greatest and how inequities in global health dramatically influence the political and social environment in developing countries.
Collapse
Affiliation(s)
- J L Excler
- International AIDS Vaccine Initiative, 110 William Street, 27th Floor, New York, NY 10038-3901, USA
| | | | | | | | | | | |
Collapse
|
15
|
Brown SA, Surman SL, Sealy R, Jones BG, Slobod KS, Branum K, Lockey TD, Howlett N, Freiden P, Flynn P, Hurwitz JL. Heterologous Prime-Boost HIV-1 Vaccination Regimens in Pre-Clinical and Clinical Trials. Viruses 2010; 2:435-467. [PMID: 20407589 PMCID: PMC2855973 DOI: 10.3390/v2020435] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Revised: 01/12/2010] [Accepted: 01/22/2010] [Indexed: 12/21/2022] Open
Abstract
Currently, there are more than 30 million people infected with HIV-1 and thousands more are infected each day. Vaccination is the single most effective mechanism for prevention of viral disease, and after more than 25 years of research, one vaccine has shown somewhat encouraging results in an advanced clinical efficacy trial. A modified intent-to-treat analysis of trial results showed that infection was approximately 30% lower in the vaccine group compared to the placebo group. The vaccine was administered using a heterologous prime-boost regimen in which both target antigens and delivery vehicles were changed during the course of inoculations. Here we examine the complexity of heterologous prime-boost immunizations. We show that the use of different delivery vehicles in prime and boost inoculations can help to avert the inhibitory effects caused by vector-specific immune responses. We also show that the introduction of new antigens into boost inoculations can be advantageous, demonstrating that the effect of `original antigenic sin' is not absolute. Pre-clinical and clinical studies are reviewed, including our own work with a three-vector vaccination regimen using recombinant DNA, virus (Sendai virus or vaccinia virus) and protein. Promising preliminary results suggest that the heterologous prime-boost strategy may possibly provide a foundation for the future prevention of HIV-1 infections in humans.
Collapse
Affiliation(s)
- Scott A. Brown
- Department of Immunology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN, USA; E-Mail: (S.A.B.)
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN, USA; E-Mails: (S.L.S.); (R.S.); (B.G.J.); (K.B.); (N.H.); (P.F.); (P.F.)
| | - Sherri L. Surman
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN, USA; E-Mails: (S.L.S.); (R.S.); (B.G.J.); (K.B.); (N.H.); (P.F.); (P.F.)
| | - Robert Sealy
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN, USA; E-Mails: (S.L.S.); (R.S.); (B.G.J.); (K.B.); (N.H.); (P.F.); (P.F.)
| | - Bart G. Jones
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN, USA; E-Mails: (S.L.S.); (R.S.); (B.G.J.); (K.B.); (N.H.); (P.F.); (P.F.)
| | - Karen S. Slobod
- Early Development, Novartis Vaccines and Diagnostics, 350 Mass Ave. Cambridge, MA 02139, USA; E-Mail: (K.S.S.)
| | - Kristen Branum
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN, USA; E-Mails: (S.L.S.); (R.S.); (B.G.J.); (K.B.); (N.H.); (P.F.); (P.F.)
| | - Timothy D. Lockey
- Department of Therapeutics, Production and Quality, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN, USA; E-Mail: (T.D.L.)
| | - Nanna Howlett
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN, USA; E-Mails: (S.L.S.); (R.S.); (B.G.J.); (K.B.); (N.H.); (P.F.); (P.F.)
| | - Pamela Freiden
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN, USA; E-Mails: (S.L.S.); (R.S.); (B.G.J.); (K.B.); (N.H.); (P.F.); (P.F.)
| | - Patricia Flynn
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN, USA; E-Mails: (S.L.S.); (R.S.); (B.G.J.); (K.B.); (N.H.); (P.F.); (P.F.)
- Department of Pediatrics, University of Tennessee, Memphis, TN 38163, USA
| | - Julia L. Hurwitz
- Department of Immunology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN, USA; E-Mail: (S.A.B.)
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN, USA; E-Mails: (S.L.S.); (R.S.); (B.G.J.); (K.B.); (N.H.); (P.F.); (P.F.)
- Department of Pathology, University of Tennessee, Memphis, TN 38163, USA
| |
Collapse
|
16
|
Abstract
For acute self-limiting infections a vaccine is successful if it elicits memory at least as good as the natural experience; however, for persistent and chronic infections such as HIV, hepatitis C virus (HCV), human papillomavirus (HPV), and human herpes viruses, this paradigm is not applicable. At best, during persistent virus infection the person must be able to maintain the integrity of the immune system in equilibrium with controlling replicating virus. New vaccine strategies are required that elicit both potent high-avidity CD8(+) T-cell effector/memory and central memory responses that can clear the nidus of initial virus-infected cells at mucosal surfaces to prevent mucosal transmission or significantly curtail development of disease. The objective of an HIV-1 T-cell vaccine is to generate functional CD8(+) effector memory cells at mucosal portals of virus entry to prevent viral transmission. In addition, long-lived CD8(+) and CD4(+) central memory cells circulating through secondary lymphoid organs and resident in bone marrow, respectively, are needed to provide a concerted second wave of defense that can contain virus at mucosal surfaces and prevent systemic dissemination. Further understanding of factors which can influence long-lived effector and central memory cell differentiation will significantly contribute to development of effective T-cell vaccines. In this review we will focus on discussing mechanisms involved in T-cell memory and provide promising new approaches toward expanding current vaccine strategies to enhance antiviral memory.
Collapse
|