1
|
Zheng Y, Feng J, Ling M, Yu Y, Tao Y, Wang X. A comprehensive review on targeting cluster of differentiation: An attractive strategy for inhibiting viruses through host proteins. Int J Biol Macromol 2024; 269:132200. [PMID: 38723834 DOI: 10.1016/j.ijbiomac.2024.132200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/20/2024] [Accepted: 05/06/2024] [Indexed: 05/13/2024]
Abstract
Viral infections continue to pose a significant global public health threat. Targeting host proteins, such as cluster of differentiation (CD) macromolecules, may offer a promising alternative approach to developing antiviral treatments. CDs are cell-surface biological macromolecules mainly expressed on leukocytes that viruses can use to enter cells, thereby evading immune detection and promoting their replication. The manipulation of CDs by viruses may represent an effective and clever means of survival through the prolonged co-evolution of hosts and viruses. Targeting of CDs is anticipated to hinder the invasion of related viruses, modulate the body's immune system, and diminish the incidence of subsequent inflammation. They have become crucial for biomedical diagnosis, and some have been used as valuable tools for resisting viral infections. However, a summary of the structures and functions of CDs involved in viral infection is currently lacking. The development of drugs targeting these biological macromolecules is restricted both in terms of their availability and the number of compounds currently identified. This review provides a comprehensive analysis of the critical role of CD proteins in virus invasion and a list of relevant targeted antiviral agents, which will serve as a valuable reference for future research in this field.
Collapse
Affiliation(s)
- Youle Zheng
- National Reference Laboratory of Veterinary Drug Residues (HZAU), MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Jin Feng
- National Reference Laboratory of Veterinary Drug Residues (HZAU), MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Min Ling
- National Reference Laboratory of Veterinary Drug Residues (HZAU), MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yixin Yu
- National Reference Laboratory of Veterinary Drug Residues (HZAU), MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yanfei Tao
- National Reference Laboratory of Veterinary Drug Residues (HZAU), MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU), MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| |
Collapse
|
2
|
Susa KJ, Kruse AC, Blacklow SC. Tetraspanins: structure, dynamics, and principles of partner-protein recognition. Trends Cell Biol 2024; 34:509-522. [PMID: 37783654 PMCID: PMC10980598 DOI: 10.1016/j.tcb.2023.09.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/18/2023] [Accepted: 09/07/2023] [Indexed: 10/04/2023]
Abstract
Tetraspanins are a large, highly conserved family of four-pass transmembrane (TM) proteins that play critical roles in a variety of essential cellular functions, including cell migration, protein trafficking, maintenance of membrane integrity, and regulation of signal transduction. Tetraspanins carry out these biological functions primarily by interacting with partner proteins. Here, we summarize significant advances that have revealed fundamental principles underpinning structure-function relationships in tetraspanins. We first review the structural features of tetraspanin ectodomains and full-length apoproteins, and then discuss how recent structural studies of tetraspanin complexes have revealed plasticity in partner-protein recognition that enables tetraspanins to bind to remarkably different protein families, viral proteins, and antibody fragments. Finally, we discuss major questions and challenges that remain in studying tetraspanin complexes.
Collapse
Affiliation(s)
- Katherine J Susa
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158, USA.
| | - Andrew C Kruse
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.
| | - Stephen C Blacklow
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA 02215, USA.
| |
Collapse
|
3
|
Bailly C, Bedart C, Vergoten G. A molecular docking exploration of the large extracellular loop of tetraspanin CD81 with small molecules. In Silico Pharmacol 2024; 12:24. [PMID: 38584777 PMCID: PMC10997574 DOI: 10.1007/s40203-024-00203-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 03/13/2024] [Indexed: 04/09/2024] Open
Abstract
Tetraspanin CD81 is a transmembrane protein used as a co-receptor by different viruses and implicated in some cancer and inflammatory diseases. The design of therapeutic small molecules targeting CD81 lags behind monoclonal antibodies and peptides but different synthetic and natural products binding to CD81 have been identified. We have investigated the interaction between synthetic compounds and CD81, considering both the cholesterol-bound full-length receptor and a truncated protein corresponding to the large extracellular loop (LEL) of the tetraspanin. They represent the closed and open conformations of the protein, respectively. Stable complexes were characterized with bi-aryl compounds (notably the quinolinone-benzothiazole 6) and atypical molecules bearing a 1-amino-boraadamantane scaffold well adapted to interact with CD81 (5a-d). In each case, the mode of binding to CD81 was analyzed, the binding sites identified and the molecular contacts determined. The narrow intra-LEL binding site of CD81 can accommodate the elongated bi-aryl 6 but not a series of isosteric compounds with a bis(bicyclic) scaffold. The bora-adamantane derivatives appeared to bind well to CD81, but essentially to the external surface of the protein loop. The binding selectivity of the compounds was assessed comparing binding to the LEL of tetraspanins CD81, CD9 and Tspan15. A net preference for CD81 over CD9 was evidenced, but the LEL of Tspan15 also provided a suitable binding site for the compounds, notably for the bora-adamantane derivatives. This work provides an aid to the identification and design of tetraspanin-binding small molecules, underlining the distinct behavior of the open and closed conformation of the protein for drug binding. Supplementary Information The online version contains supplementary material available at 10.1007/s40203-024-00203-6.
Collapse
Affiliation(s)
- Christian Bailly
- OncoWitan, Scientific Consulting Office, 59290 Lille, Wasquehal, France
- University of Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277, CANTHER, Cancer Heterogeneity Plasticity and Resistance to Therapies, 59000 Lille, France
| | - Corentin Bedart
- University of Lille, Inserm, U1286, INFINITE, Lille Inflammation Research International Center, Institut de Chimie Pharmaceutique Albert Lespagnol (ICPAL)Faculté de Pharmacie, 3 rue du Professeur Laguesse, 59,000 Lille, France
| | - Gérard Vergoten
- University of Lille, Inserm, U1286, INFINITE, Lille Inflammation Research International Center, Institut de Chimie Pharmaceutique Albert Lespagnol (ICPAL)Faculté de Pharmacie, 3 rue du Professeur Laguesse, 59,000 Lille, France
| |
Collapse
|
4
|
Park S, Heo JS, Mizuno S, Kim M, An H, Hong E, Kang MG, Kim J, Yun R, Park H, Noh EH, Lee MJ, Yoon K, Kim P, Son M, Pang K, Lee J, Park J, Ooshima A, Kim TJ, Park JY, Yang KM, Myung SJ, Bae H, Lee KM, Letterio J, Park SH, Takahashi S, Kim SJ. Tm4sf19 deficiency inhibits osteoclast multinucleation and prevents bone loss. Metabolism 2024; 151:155746. [PMID: 38016540 DOI: 10.1016/j.metabol.2023.155746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 11/30/2023]
Abstract
BACKGROUND Multinucleation is a hallmark of osteoclast formation and has a unique ability to resorb bone matrix. During osteoclast differentiation, the cytoskeleton reorganization results in the generation of actin belts and eventual bone resorption. Tetraspanins are involved in adhesion, migration and fusion in various cells. However, its function in osteoclast is still unclear. In this study, we identified Tm4sf19, a member of the tetraspanin family, as a regulator of osteoclast function. MATERIALS AND METHODS We investigate the effect of Tm4sf19 deficiency on osteoclast differentiation using bone marrow-derived macrophages obtained from wild type (WT), Tm4sf19 knockout (KO) and Tm4sf19 LELΔ mice lacking the large extracellular loop (LEL). We analyzed bone mass of young and aged WT, KO and LELΔ mice by μCT analysis. The effects of Tm4sf19 LEL-Fc fusion protein were accessed in osteoclast differentiation and osteoporosis animal model. RESULTS We found that deficiency of Tm4sf19 inhibited osteoclast function and LEL of Tm4sf19 was responsible for its function in osteoclasts in vitro. KO and LELΔ mice exhibited higher trabecular bone mass compared to WT mice. We found that Tm4sf19 interacts with integrin αvβ3 through LEL, and that this binding is important for cytoskeletal rearrangements in osteoclast by regulating signaling downstream of integrin αvβ3. Treatment with LEL-Fc fusion protein inhibited osteoclast function in vitro and administration of LEL-Fc prevented bone loss in an osteoporosis mouse model in vivo. CONCLUSION We suggest that Tm4sf19 regulates osteoclast function and that LEL-Fc may be a promising drug to target bone destructive diseases caused by osteoclast hyper-differentiation.
Collapse
Affiliation(s)
- Sujin Park
- GILO Institute, GILO Foundation, Seoul, Republic of Korea
| | - Jin Sun Heo
- GILO Institute, GILO Foundation, Seoul, Republic of Korea
| | - Seiya Mizuno
- Laboratory Animal Resource Center in Transborder Medical Research Center, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Minwoo Kim
- Medpacto Inc., Seoul, Republic of Korea; Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Haein An
- GILO Institute, GILO Foundation, Seoul, Republic of Korea; Department of Biological Sciences, Sungkyunkwan University, Suwon, Republic of Korea
| | - Eunji Hong
- GILO Institute, GILO Foundation, Seoul, Republic of Korea; Department of Biological Sciences, Sungkyunkwan University, Suwon, Republic of Korea
| | - Min Gi Kang
- GILO Institute, GILO Foundation, Seoul, Republic of Korea; Department of Biological Sciences, Sungkyunkwan University, Suwon, Republic of Korea
| | - Junil Kim
- School of Systems Biomedical Science, Soongsil University, Seoul, Republic of Korea
| | - Rebecca Yun
- GILO Institute, GILO Foundation, Seoul, Republic of Korea; Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyeyeon Park
- GILO Institute, GILO Foundation, Seoul, Republic of Korea; Department of Biological Sciences, Sungkyunkwan University, Suwon, Republic of Korea
| | | | | | | | - Pyunggang Kim
- GILO Institute, GILO Foundation, Seoul, Republic of Korea
| | - Minjung Son
- GILO Institute, GILO Foundation, Seoul, Republic of Korea; Department of Biological Sciences, Sungkyunkwan University, Suwon, Republic of Korea
| | - Kyoungwha Pang
- GILO Institute, GILO Foundation, Seoul, Republic of Korea
| | - Jihee Lee
- GILO Institute, GILO Foundation, Seoul, Republic of Korea
| | - Jinah Park
- GILO Institute, GILO Foundation, Seoul, Republic of Korea; Amoris Bio Inc., Seoul, Republic of Korea
| | - Akira Ooshima
- GILO Institute, GILO Foundation, Seoul, Republic of Korea
| | - Tae-Jin Kim
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, Seoul, Republic of Korea
| | - Je Yeon Park
- GILO Institute, GILO Foundation, Seoul, Republic of Korea
| | | | - Seung-Jae Myung
- Department of Gastroenterology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Hyun Bae
- Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Kyung-Mi Lee
- Department of Biochemistry and Molecular Biology, College of Medicine, Korea University, Seoul, Republic of Korea
| | - John Letterio
- Case Comprehensive Cancer Center, Case Western Reserve University and Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH, USA; The Angie Fowler Adolescent & Young Adult Cancer Institute, University Hospitals Rainbow Babies & Children's Hospital, Cleveland, OH, USA
| | - Seok Hee Park
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Republic of Korea
| | - Satoru Takahashi
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Seong-Jin Kim
- GILO Institute, GILO Foundation, Seoul, Republic of Korea; Medpacto Inc., Seoul, Republic of Korea.
| |
Collapse
|
5
|
Yang J, Zhang Z, Lam JSW, Fan H, Fu NY. Molecular Regulation and Oncogenic Functions of TSPAN8. Cells 2024; 13:193. [PMID: 38275818 PMCID: PMC10814125 DOI: 10.3390/cells13020193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
Tetraspanins, a superfamily of small integral membrane proteins, are characterized by four transmembrane domains and conserved protein motifs that are configured into a unique molecular topology and structure in the plasma membrane. They act as key organizers of the plasma membrane, orchestrating the formation of specialized microdomains called "tetraspanin-enriched microdomains (TEMs)" or "tetraspanin nanodomains" that are essential for mediating diverse biological processes. TSPAN8 is one of the earliest identified tetraspanin members. It is known to interact with a wide range of molecular partners in different cellular contexts and regulate diverse molecular and cellular events at the plasma membrane, including cell adhesion, migration, invasion, signal transduction, and exosome biogenesis. The functions of cell-surface TSPAN8 are governed by ER targeting, modifications at the Golgi apparatus and dynamic trafficking. Intriguingly, limited evidence shows that TSPAN8 can translocate to the nucleus to act as a transcriptional regulator. The transcription of TSPAN8 is tightly regulated and restricted to defined cell lineages, where it can serve as a molecular marker of stem/progenitor cells in certain normal tissues as well as tumors. Importantly, the oncogenic roles of TSPAN8 in tumor development and cancer metastasis have gained prominence in recent decades. Here, we comprehensively review the current knowledge on the molecular characteristics and regulatory mechanisms defining TSPAN8 functions, and discuss the potential and significance of TSPAN8 as a biomarker and therapeutic target across various epithelial cancers.
Collapse
Affiliation(s)
- Jicheng Yang
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore 169857, Singapore
- ACRF Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medicine, University of Melbourne, Parkville, VIC 3010, Australia
| | - Ziyan Zhang
- ACRF Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medicine, University of Melbourne, Parkville, VIC 3010, Australia
| | - Joanne Shi Woon Lam
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore 138671, Singapore
| | - Hao Fan
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore 138671, Singapore
| | - Nai Yang Fu
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore 169857, Singapore
- ACRF Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medicine, University of Melbourne, Parkville, VIC 3010, Australia
- Department of Physiology, National University of Singapore, Singapore 117593, Singapore
| |
Collapse
|
6
|
Ivanusic D, Denner J. The large extracellular loop is important for recruiting CD63 to exosomes. MICROPUBLICATION BIOLOGY 2023; 2023:10.17912/micropub.biology.000842. [PMID: 37602284 PMCID: PMC10432940 DOI: 10.17912/micropub.biology.000842] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/27/2023] [Accepted: 07/24/2023] [Indexed: 08/22/2023]
Abstract
Exosomes are small extracellular vesicles that are secreted from cells. To characterize exosome fraction marker proteins of the tetraspanin family in particular, CD9, CD63, and CD81 are routinely used. CD63 expression constructs were employed to investigate the influence of the large extracellular loop (LEL) of CD63 on sorting into exosomes. When the LEL of CD63 fused with mCherry was deleted, the protein was no longer found in the purified exosome fraction. This finding demonstrates the importance of the LEL sequence for the recruitment of CD63 into exosomes.
Collapse
Affiliation(s)
- Daniel Ivanusic
- Sexually transmitted bacterial pathogens and HIV (FG18), Robert Koch Institute, 13353 Berlin, Germany
| | - Joachim Denner
- Institute of Virology, Department of Veterinary Medicine, Free University Berlin, 14163 Berlin, Germany
| |
Collapse
|
7
|
Bailly C, Thuru X. Targeting of Tetraspanin CD81 with Monoclonal Antibodies and Small Molecules to Combat Cancers and Viral Diseases. Cancers (Basel) 2023; 15:cancers15072186. [PMID: 37046846 PMCID: PMC10093296 DOI: 10.3390/cancers15072186] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/04/2023] [Accepted: 04/04/2023] [Indexed: 04/14/2023] Open
Abstract
Tetraspanin CD81 plays major roles in cell-cell interactions and the regulation of cellular trafficking. This cholesterol-embarking transmembrane protein is a co-receptor for several viruses, including HCV, HIV-1 and Chikungunya virus, which exploits the large extracellular loop EC2 for cell entry. CD81 is also an anticancer target implicated in cancer cell proliferation and mobility, and in tumor metastasis. CD81 signaling contributes to the development of solid tumors (notably colorectal, liver and gastric cancers) and has been implicated in the aggressivity of B-cell lymphomas. A variety of protein partners can interact with CD81, either to regulate attachment and uptake of viruses (HCV E2, claudin-1, IFIM1) or to contribute to tumor growth and dissemination (CD19, CD44, EWI-2). CD81-protein interactions can be modulated with molecules targeting the extracellular domain of CD81, investigated as antiviral and/or anticancer agents. Several monoclonal antibodies anti-CD81 have been developed, notably mAb 5A6 active against invasion and metastasis of triple-negative breast cancer cells. CD81-EC2 can also be targeted with natural products (trachelogenin and harzianoic acids A-B) and synthetic compounds (such as benzothiazole-quinoline derivatives). They are weak CD81 binders but offer templates for the design of new compounds targeting the open EC2 loop. There is no anti-CD81 compound in clinical development at present, but this structurally well-characterized tetraspanin warrants more substantial considerations as a drug target.
Collapse
Affiliation(s)
- Christian Bailly
- OncoWitan, Scientific Consulting Office, F-59290 Lille, France
- Institut de Chimie Pharmaceutique Albert Lespagnol (ICPAL), Faculty of Pharmacy, University of Lille, F-59006 Lille, France
- CNRS, Inserm, CHU Lille, UMR9020-U1277-Canther-Cancer Heterogeneity Plasticity and Resistance to Therapies, OncoLille Institut, University of Lille, F-59000 Lille, France
| | - Xavier Thuru
- CNRS, Inserm, CHU Lille, UMR9020-U1277-Canther-Cancer Heterogeneity Plasticity and Resistance to Therapies, OncoLille Institut, University of Lille, F-59000 Lille, France
| |
Collapse
|
8
|
Vogt S, Stadlmayr G, Stadlbauer K, Stracke F, Bobbili MR, Grillari J, Rüker F, Wozniak-Knopp G. Construction of Yeast Display Libraries for Selection of Antigen-Binding Variants of Large Extracellular Loop of CD81, a Major Surface Marker Protein of Extracellular Vesicles. Methods Mol Biol 2022; 2491:561-592. [PMID: 35482205 DOI: 10.1007/978-1-0716-2285-8_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Over the last two decades, yeast display methodology has served as a popular tool for discovery, humanization, stability improvement, and affinity maturation of antibodies and antibody fragments, but also for development of diverse non-antibody protein scaffolds towards the ability of antigen recognition. Yeast display is particularly well suited for multiparametric analysis of properties of derivatized proteins, allowing the evolution of most diverse protein structures into antigen binding entities with favorable expression, stability, and folding properties. Here we present the methodological basics of a novel yeast display-based approach for the functionalization of the large extracellular loop of CD81 into a de novo antigen binding unit. CD81 is intrinsically overrepresented on the surface of extracellular vesicles (EVs), naturally occurring nanoparticle units that act as cell-to-cell messengers by delivering their intracellular cargo from the source cell into a recipient cell. This amazing feature makes them of highest biotechnological interest, yet methods for their targeted delivery are still in their infancy. As a novel approach for introducing EV surface modifications enabling specific target cell recognition and internalization, we have prepared yeast display libraries of CD81 large extracellular loop mutants, which are selected towards specific antigen binding and resulting mutants conveniently clicked into the full-length EV surface protein. Resulting EVs display wild-type-like characteristics regarding the expression level and distribution of recombinant proteins and are hence promising therapeutic tools.
Collapse
Affiliation(s)
- Stefan Vogt
- acib GmbH (Austrian Centre of Industrial Biotechnology), Graz, Austria
- Institute of Molecular Biotechnology, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna (BOKU), Vienna, Austria
| | - Gerhard Stadlmayr
- Christian Doppler Laboratory for Innovative Immunotherapeutics, Institute of Molecular Biotechnology, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna (BOKU), Vienna, Austria
| | - Katharina Stadlbauer
- Christian Doppler Laboratory for Innovative Immunotherapeutics, Institute of Molecular Biotechnology, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna (BOKU), Vienna, Austria
| | - Florian Stracke
- Christian Doppler Laboratory for Innovative Immunotherapeutics, Institute of Molecular Biotechnology, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna (BOKU), Vienna, Austria
| | - Madhusudhan Reddy Bobbili
- Institute of Molecular Biotechnology, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna (BOKU), Vienna, Austria
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in the AUVA Research Center, Vienna, Austria
| | - Johannes Grillari
- Institute of Molecular Biotechnology, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna (BOKU), Vienna, Austria
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in the AUVA Research Center, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Florian Rüker
- Institute of Molecular Biotechnology, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna (BOKU), Vienna, Austria
| | - Gordana Wozniak-Knopp
- Christian Doppler Laboratory for Innovative Immunotherapeutics, Institute of Molecular Biotechnology, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna (BOKU), Vienna, Austria.
| |
Collapse
|
9
|
Structural insights into hepatitis C virus receptor binding and entry. Nature 2021; 598:521-525. [PMID: 34526719 PMCID: PMC8542614 DOI: 10.1038/s41586-021-03913-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 08/13/2021] [Indexed: 02/08/2023]
Abstract
Hepatitis C virus (HCV) infection is a causal agent of chronic liver disease, cirrhosis and hepatocellular carcinoma in humans, and afflicts more than 70 million people worldwide. The HCV envelope glycoproteins E1 and E2 are responsible for the binding of the virus to the host cell, but the exact entry process remains undetermined1. The majority of broadly neutralizing antibodies block interaction between HCV E2 and the large extracellular loop (LEL) of the cellular receptor CD81 (CD81-LEL)2. Here we show that low pH enhances the binding of CD81-LEL to E2, and we determine the crystal structure of E2 in complex with an antigen-binding fragment (2A12) and CD81-LEL (E2-2A12-CD81-LEL); E2 in complex with 2A12 (E2-2A12); and CD81-LEL alone. After binding CD81, residues 418-422 in E2 are displaced, which allows for the extension of an internal loop consisting of residues 520-539. Docking of the E2-CD81-LEL complex onto a membrane-embedded, full-length CD81 places the residues Tyr529 and Trp531 of E2 proximal to the membrane. Liposome flotation assays show that low pH and CD81-LEL increase the interaction of E2 with membranes, whereas structure-based mutants of Tyr529, Trp531 and Ile422 in the amino terminus of E2 abolish membrane binding. These data support a model in which acidification and receptor binding result in a conformational change in E2 in preparation for membrane fusion.
Collapse
|
10
|
van Deventer S, Arp AB, van Spriel AB. Dynamic Plasma Membrane Organization: A Complex Symphony. Trends Cell Biol 2020; 31:119-129. [PMID: 33248874 DOI: 10.1016/j.tcb.2020.11.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 11/02/2020] [Accepted: 11/06/2020] [Indexed: 01/20/2023]
Abstract
Membrane protein organization is essential for proper cellular functioning and the result of a dynamic exchange between protein monomers, nanoscale protein clusters, and microscale higher-order structures. This exchange is affected by both lipid bilayer intrinsic factors, such as lipid rafts and tetraspanins, and extrinsic factors, such as cortical actin and galectins. Because membrane organizers act jointly like instruments in a symphony, it is challenging to define the 'key' organizers. Here, we posit, for the first time, definitions of key intrinsic and extrinsic membrane organizers. Tetraspanin nanodomains are key organizers that are often overlooked. We discuss how different key organizers can collaborate, which is important to get a full grasp of plasma membrane biology.
Collapse
Affiliation(s)
- Sjoerd van Deventer
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Abbey B Arp
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Annemiek B van Spriel
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
11
|
Tetraspanins: useful multifunction proteins for the possible design and development of small-molecule therapeutic tools. Drug Discov Today 2020; 26:56-68. [PMID: 33137483 DOI: 10.1016/j.drudis.2020.10.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/21/2020] [Accepted: 10/23/2020] [Indexed: 02/07/2023]
Abstract
Tetraspanins constitute a well-conserved superfamily of four-span small membrane proteins (TM4SF), with >30 members in humans, with important roles in numerous mechanisms of cell biology. Moreover, tetraspanins associate with either specific partner proteins or another tetraspanin, generating a network of interactions involved in cell and membrane compartmentalization and having a role in cellular development, proliferation, activation, motility, and membrane fusions. Therefore, tetraspanins are considered regulators of cellular signaling and are often depicted as 'molecular facilitators'. In view of these many physiological functions, it is likely that these molecules are important actors in pathological processes. In this review, we present the main characteristics of this superfamily, providing a more detailed description of some significant representatives and discuss their relevance as potential targets for the design and development of small-molecule therapeutics in different pathologies.
Collapse
|
12
|
Yang Y, Liu XR, Greenberg ZJ, Zhou F, He P, Fan L, Liu S, Shen G, Egawa T, Gross ML, Schuettpelz LG, Li W. Open conformation of tetraspanins shapes interaction partner networks on cell membranes. EMBO J 2020; 39:e105246. [PMID: 32974937 PMCID: PMC7507038 DOI: 10.15252/embj.2020105246] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 07/08/2020] [Accepted: 07/13/2020] [Indexed: 01/08/2023] Open
Abstract
Tetraspanins, including CD53 and CD81, regulate a multitude of cellular processes through organizing an interaction network on cell membranes. Here, we report the crystal structure of CD53 in an open conformation poised for partner interaction. The large extracellular domain (EC2) of CD53 protrudes away from the membrane surface and exposes a variable region, which is identified by hydrogen-deuterium exchange as the common interface for CD53 and CD81 to bind partners. The EC2 orientation in CD53 is supported by an extracellular loop (EC1). At the closed conformation of CD81, however, EC2 disengages from EC1 and rotates toward the membrane, thereby preventing partner interaction. Structural simulation shows that EC1-EC2 interaction also supports the open conformation of CD81. Disrupting this interaction in CD81 impairs the accurate glycosylation of its CD19 partner, the target for leukemia immunotherapies. Moreover, EC1 mutations in CD53 prevent the chemotaxis of pre-B cells toward a chemokine that supports B-cell trafficking and homing within the bone marrow, a major CD53 function identified here. Overall, an open conformation is required for tetraspanin-partner interactions to support myriad cellular processes.
Collapse
Affiliation(s)
- Yihu Yang
- Department of Biochemistry and Molecular BiophysicsWashington University School of MedicineSt. LouisMOUSA
| | | | - Zev J Greenberg
- Division of Hematology and OncologyDepartment of PediatricsWashington University School of MedicineSt. LouisMOUSA
| | - Fengbo Zhou
- Department of Biochemistry and Molecular BiophysicsWashington University School of MedicineSt. LouisMOUSA
| | - Peng He
- Department of Biochemistry and Molecular BiophysicsWashington University School of MedicineSt. LouisMOUSA
| | - Lingling Fan
- Department of Biochemistry and Molecular BiophysicsWashington University School of MedicineSt. LouisMOUSA
| | - Shixuan Liu
- Department of Biochemistry and Molecular BiophysicsWashington University School of MedicineSt. LouisMOUSA
| | - Guomin Shen
- Department of Biochemistry and Molecular BiophysicsWashington University School of MedicineSt. LouisMOUSA
| | - Takeshi Egawa
- Department of Pediatrics Pathology and ImmunologyWashington University School of MedicineSt. LouisMOUSA
| | | | - Laura G Schuettpelz
- Division of Hematology and OncologyDepartment of PediatricsWashington University School of MedicineSt. LouisMOUSA
| | - Weikai Li
- Department of Biochemistry and Molecular BiophysicsWashington University School of MedicineSt. LouisMOUSA
| |
Collapse
|
13
|
Susa KJ, Seegar TCM, Blacklow SC, Kruse AC. A dynamic interaction between CD19 and the tetraspanin CD81 controls B cell co-receptor trafficking. eLife 2020; 9:e52337. [PMID: 32338599 PMCID: PMC7228769 DOI: 10.7554/elife.52337] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 04/26/2020] [Indexed: 12/20/2022] Open
Abstract
CD81 and its binding partner CD19 are core subunits of the B cell co-receptor complex. While CD19 belongs to the extensively studied Ig superfamily, CD81 belongs to a poorly understood family of four-pass transmembrane proteins called tetraspanins. Tetraspanins play important physiological roles by controlling protein trafficking and other processes. Here, we show that CD81 relies on its ectodomain to traffic CD19 to the cell surface. Moreover, the anti-CD81 antibody 5A6, which binds selectively to activated B cells, recognizes a conformational epitope on CD81 that is masked when CD81 is bound to CD19. Mutations of CD81 in this interface suppress its CD19 export activity. These data indicate that the CD81 - CD19 interaction is dynamically regulated upon B cell activation and this dynamism can be exploited to regulate B cell function. These results are not only valuable for understanding B cell biology, but also have important implications for understanding tetraspanin function generally.
Collapse
Affiliation(s)
- Katherine J Susa
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical SchoolBostonUnited States
| | - Tom CM Seegar
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical SchoolBostonUnited States
| | - Stephen C Blacklow
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical SchoolBostonUnited States
- Dana Farber Cancer Institute, Department of Cancer BiologyBostonUnited States
| | - Andrew C Kruse
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical SchoolBostonUnited States
| |
Collapse
|
14
|
Dearborn AD, Marcotrigiano J. Hepatitis C Virus Structure: Defined by What It Is Not. Cold Spring Harb Perspect Med 2020; 10:cshperspect.a036822. [PMID: 31501263 DOI: 10.1101/cshperspect.a036822] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hepatitis C virus (HCV) represents an important and growing public health problem, chronically infecting an estimated 70 million people worldwide. This blood-borne pathogen is generating a new wave of infections in the United States, associated with increasing intravenous drug use over the last decade. In most cases, HCV establishes a chronic infection, sometimes causing cirrhosis, end-stage liver disease, and hepatocellular carcinoma. Although a curative therapy exists, it is extremely expensive and provides no barrier to reinfection; therefore, a vaccine is urgently needed. The virion is asymmetric and heterogeneous with the buoyancy and protein content similar to low-density lipoparticles. Core protein is unstructured, and of the two envelope glycoproteins, E1 and E2, the function of E1 remains enigmatic. E2 is responsible for specifically binding host receptors CD81 and scavenger receptor class B type I (SR-BI). This review will focus on structural progress on HCV virion, core protein, envelope glycoproteins, and specific host receptors.
Collapse
Affiliation(s)
- Altaira D Dearborn
- The Protein Expression Laboratory, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA.,Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Joseph Marcotrigiano
- The Protein Expression Laboratory, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
15
|
Purushothaman G, Thiruvenkatam V. High Yield Expression of Recombinant CD151 in E. coli and a Structural Insight into Cholesterol Binding Domain. Mol Biotechnol 2019; 61:905-915. [PMID: 31541430 DOI: 10.1007/s12033-019-00212-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
CD151 is an abundantly expressed eukaryotic transmembrane protein on the cell surface. It is involved in cell adhesion, angiogenesis and signal transduction as well in disease conditions such as cancer and viral infections. However, the molecular mechanism of CD151 activation is poorly understood due to the lack of structural information. By considering the difficulties in expressing the membrane protein in E. coli, herein we introduce the strategic design for the effective expression of recombinant CD151 protein in E. coli with high yield, that would aid for the structural studies. CD151 having four transmembrane domain (TMD's) along with small and a large extracellular loop (LEL) is constructed in parts to enhance the soluble expression of the protein attached with fusion tag. This has led to the high yield of the recombinant CD151 protein in the designed constructs. The recombinant CD151 protein is characterized and confirmed by western blot, CD and Mass peptide fingerprint. The molecular dynamics simulations (MDS) for the full-length CD151 shows conformational changes in the LEL of the protein in the presence and absence of cholesterol and indicate the certainty of closed and open conformation of CD151 based on cholesterol binding. The MDS results have led to the understanding of the possible underlying mechanism for the activation of the CD151 protein.
Collapse
Affiliation(s)
- Gayathri Purushothaman
- Discipline of Biological Engineering, Indian Institute of Technology Gandhinagar, Simkheda, Palaj, Gandhinagar, 382355, Gujarat, India
| | - Vijay Thiruvenkatam
- Discipline of Biological Engineering, Indian Institute of Technology Gandhinagar, Simkheda, Palaj, Gandhinagar, 382355, Gujarat, India.
| |
Collapse
|
16
|
Xu C, Tang HW, Hung RJ, Hu Y, Ni X, Housden BE, Perrimon N. The Septate Junction Protein Tsp2A Restricts Intestinal Stem Cell Activity via Endocytic Regulation of aPKC and Hippo Signaling. Cell Rep 2019; 26:670-688.e6. [PMID: 30650359 PMCID: PMC6394833 DOI: 10.1016/j.celrep.2018.12.079] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 07/24/2018] [Accepted: 12/17/2018] [Indexed: 01/23/2023] Open
Abstract
Hippo signaling and the activity of its transcriptional coactivator, Yorkie (Yki), are conserved and crucial regulators of tissue homeostasis. In the Drosophila midgut, after tissue damage, Yki activity increases to stimulate stem cell proliferation, but how Yki activity is turned off once the tissue is repaired is unknown. From an RNAi screen, we identified the septate junction (SJ) protein tetraspanin 2A (Tsp2A) as a tumor suppressor. Tsp2A undergoes internalization to facilitate the endocytic degradation of atypical protein kinase C (aPKC), a negative regulator of Hippo signaling. In the Drosophila midgut epithelium, adherens junctions (AJs) and SJs are prominent in intestinal stem cells or enteroblasts (ISCs or EBs) and enterocytes (ECs), respectively. We show that when ISCs differentiate toward ECs, Tsp2A is produced, participates in SJ assembly, and turns off aPKC and Yki-JAK-Stat activity. Altogether, our study uncovers a mechanism allowing the midgut to restore Hippo signaling and restrict proliferation once tissue repair is accomplished.
Collapse
Affiliation(s)
- Chiwei Xu
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Hong-Wen Tang
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Ruei-Jiun Hung
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Yanhui Hu
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Xiaochun Ni
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Benjamin E Housden
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Norbert Perrimon
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.
| |
Collapse
|
17
|
Differential interaction strategies of hepatitis c virus genotypes during entry - An in silico investigation of envelope glycoprotein E2 - CD81 interaction. INFECTION GENETICS AND EVOLUTION 2019; 69:48-60. [PMID: 30639544 DOI: 10.1016/j.meegid.2019.01.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 12/12/2018] [Accepted: 01/08/2019] [Indexed: 12/12/2022]
Abstract
Hepatitis C Virus is a blood borne pathogen responsible for chronic hepatitis in more than 71 million people. Wide variations across strains and genotypes are one of the major hurdles in therapeutic development. While genotype 1 remains the most extensively studied and abundant strain, genotype 3 is more virulent and second most prevalent. This study aimed to compare differences in the glycoprotein E2 across HCV genotypes at nucleotide, protein and structural levels. Nucleotide sequences of E2 from 29 strains across genotypes 1a, 1b, 3a and 3b revealed a stark preference for C-richness which was attributed to a distinct bias for C-rich codons in genotype 1. Genotype 3 exhibited a similar preference to a lesser extent. Amino acid level comparison revealed majority of the changes at the C-terminal half of the proteins leaving the N-terminal region conspicuously conserved apart from the two hyper variable regions. Amino acid changes across genotypes were mostly polar-nonpolar alterations. In silico models of E2 glycoproteins and docking analysis with the energy minimized PDB-CD81 model revealed unique interacting residues in both E2 and CD81. While several CD81 binding residues were common for all four genotypes, number and composition of interacting residues varied. The interacting residues of E2 were however unique for each genotype. E2 of genotype 3a and CD81 had the strongest interaction. In conclusion this is the first comprehensive study comparing E2 sequences across genotypes 1a, 1b, 3a and 3b revealing stark genotype-specific differences which requires more extensive investigation.
Collapse
|
18
|
Inhibition of Tetraspanin Functions Impairs Human Papillomavirus and Cytomegalovirus Infections. Int J Mol Sci 2018; 19:ijms19103007. [PMID: 30279342 PMCID: PMC6212908 DOI: 10.3390/ijms19103007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 09/23/2018] [Accepted: 09/27/2018] [Indexed: 12/14/2022] Open
Abstract
Tetraspanins are suggested to regulate the composition of cell membrane components and control intracellular transport, which leaves them vulnerable to utilization by pathogens such as human papillomaviruses (HPV) and cytomegaloviruses (HCMV) to facilitate host cell entry and subsequent infection. In this study, by means of cellular depletion, the cluster of differentiation (CD) tetraspanins CD9, CD63, and CD151 were found to reduce HPV16 infection in HeLa cells by 50 to 80%. Moreover, we tested recombinant proteins or peptides of specific tetraspanin domains on their effect on the most oncogenic HPV type, HPV16, and HCMV. We found that the C-terminal tails of CD63 and CD151 significantly inhibited infections of both HPV16 and HCMV. Although CD9 was newly identified as a key cellular factor for HPV16 infection, the recombinant CD9 C-terminal peptide had no effect on infection. Based on the determined half-maximal inhibitory concentration (IC50), we classified CD63 and CD151 C-terminal peptides as moderate to potent inhibitors of HPV16 infection in HeLa and HaCaT cells, and in EA.hy926, HFF (human foreskin fibroblast) cells, and HEC-LTT (human endothelial cell-large T antigen and telomerase) cells for HCMV, respectively. These results indicate that HPV16 and HCMV share similar cellular requirements for their entry into host cells and reveal the necessity of the cytoplasmic CD151 and CD63 C-termini in virus infections. Furthermore, this highlights the suitability of these peptides for functional investigation of tetraspanin domains and as inhibitors of pathogen infections.
Collapse
|
19
|
Vogt S, Stadlmayr G, Stadlbauer K, Sádio F, Andorfer P, Grillari J, Rüker F, Wozniak-Knopp G. Stabilization of the CD81 Large Extracellular Loop with De Novo Disulfide Bonds Improves Its Amenability for Peptide Grafting. Pharmaceutics 2018; 10:E138. [PMID: 30150531 PMCID: PMC6160918 DOI: 10.3390/pharmaceutics10030138] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 08/21/2018] [Accepted: 08/22/2018] [Indexed: 11/16/2022] Open
Abstract
Tetraspan proteins are significantly enriched in the membranes of exosomal vesicles (EVs) and their extracellular domains are attractive targets for engineering towards specific antigen recognition units. To enhance the tolerance of a tetraspanin fold to modification, we achieved significant thermal stabilization of the human CD81 large extracellular loop (hCD81 LEL) via de novo disulfide bonds. The best mutants were shown to exhibit a positive shift in the melting temperature (Tm) of up to 25 °C. The combination of two most potent disulfide bonds connecting different strands of the protein resulted in a mutant with a Tm of 109 °C, 43 °C over the Tm of the wild-type hCD81 LEL. A peptide sequence binding to the human transferrin receptor (hTfr) was engrafted into the D-segment of the hCD81 LEL, resulting in a mutant that still exhibited a compact fold. Grafting of the same peptide sequence between helices A and B resulted in a molecule with an aberrant profile in size exclusion chromatography (SEC), which could be improved by a de novo cysteine bond connecting both helices. Both peptide-grafted proteins showed an enhanced internalization into the cell line SK-BR3, which strongly overexpresses hTfr. In summary, the tetraspan LEL fold could be stabilized to enhance its amenability for engineering into a more versatile protein scaffold.
Collapse
Affiliation(s)
- Stefan Vogt
- acib GmbH (Austrian Centre of Industrial Biotechnology), Petersgasse 14, A-8010 Graz, Austria.
| | - Gerhard Stadlmayr
- Christian Doppler Laboratory for Innovative Immunotherapeutics, Department of Biotechnology, University of Natural Resources and Life Sciences (BOKU), Vienna, Muthgasse 18, 1190 Vienna, Austria.
| | - Katharina Stadlbauer
- Christian Doppler Laboratory for Innovative Immunotherapeutics, Department of Biotechnology, University of Natural Resources and Life Sciences (BOKU), Vienna, Muthgasse 18, 1190 Vienna, Austria.
| | - Flávio Sádio
- Christian Doppler Laboratory for Innovative Immunotherapeutics, Department of Biotechnology, University of Natural Resources and Life Sciences (BOKU), Vienna, Muthgasse 18, 1190 Vienna, Austria.
| | - Peter Andorfer
- Christian Doppler Laboratory for Innovative Immunotherapeutics, Department of Biotechnology, University of Natural Resources and Life Sciences (BOKU), Vienna, Muthgasse 18, 1190 Vienna, Austria.
| | - Johannes Grillari
- Christian Doppler Laboratory for Biotechnology of Skin Aging, Department of Biotechnology, University of Natural Resources and Life Sciences (BOKU), Vienna, Muthgasse 18, 1190 Vienna, Austria;.
- Evercyte GmbH, Muthgasse 18, 1190 Wien, Austria.
| | - Florian Rüker
- acib GmbH (Austrian Centre of Industrial Biotechnology), Petersgasse 14, A-8010 Graz, Austria.
- Christian Doppler Laboratory for Innovative Immunotherapeutics, Department of Biotechnology, University of Natural Resources and Life Sciences (BOKU), Vienna, Muthgasse 18, 1190 Vienna, Austria.
| | - Gordana Wozniak-Knopp
- acib GmbH (Austrian Centre of Industrial Biotechnology), Petersgasse 14, A-8010 Graz, Austria.
- Christian Doppler Laboratory for Innovative Immunotherapeutics, Department of Biotechnology, University of Natural Resources and Life Sciences (BOKU), Vienna, Muthgasse 18, 1190 Vienna, Austria.
| |
Collapse
|
20
|
Hepatitis C virus enters liver cells using the CD81 receptor complex proteins calpain-5 and CBLB. PLoS Pathog 2018; 14:e1007111. [PMID: 30024968 PMCID: PMC6053247 DOI: 10.1371/journal.ppat.1007111] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 05/18/2018] [Indexed: 12/24/2022] Open
Abstract
Hepatitis C virus (HCV) and the malaria parasite Plasmodium use the membrane protein CD81 to invade human liver cells. Here we mapped 33 host protein interactions of CD81 in primary human liver and hepatoma cells using high-resolution quantitative proteomics. In the CD81 protein network, we identified five proteins which are HCV entry factors or facilitators including epidermal growth factor receptor (EGFR). Notably, we discovered calpain-5 (CAPN5) and the ubiquitin ligase Casitas B-lineage lymphoma proto-oncogene B (CBLB) to form a complex with CD81 and support HCV entry. CAPN5 and CBLB were required for a post-binding and pre-replication step in the HCV life cycle. Knockout of CAPN5 and CBLB reduced susceptibility to all tested HCV genotypes, but not to other enveloped viruses such as vesicular stomatitis virus and human coronavirus. Furthermore, Plasmodium sporozoites relied on a distinct set of CD81 interaction partners for liver cell entry. Our findings reveal a comprehensive CD81 network in human liver cells and show that HCV and Plasmodium highjack selective CD81 interactions, including CAPN5 and CBLB for HCV, to invade cells. CD81 is a cell membrane protein, which functions as entry factor for hepatitis C virus (HCV) and malaria sporozoites in the human liver. Currently, it remains enigmatic how CD81 guides the entry process of both pathogens and whether it functions in a similar way during liver cell invasion of HCV and malaria parasites. Here, we use high resolution quantitative proteomics to identify CD81 associated host proteins in liver cells. We found that at least 33 proteins form a complex with CD81, 23 of which were not reported as interaction partners before. We further determined that at least five CD81 interactors are HCV host factors, among them calpain-5 (CAPN5) and the ubiquitin ligase Casitas B-lineage lymphoma proto-oncogene B (CBLB). All tested HCV genotypes require CAPN5 and CBLB for full infection, but neither malaria parasites nor other tested enveloped virus rely on CAPN5 or CBLB. Our study maps the liver cell interactome of CD81 and provides new insight into the distinct cell invasion mechanisms of HCV and malaria parasites.
Collapse
|
21
|
CD81 Receptor Regions outside the Large Extracellular Loop Determine Hepatitis C Virus Entry into Hepatoma Cells. Viruses 2018; 10:v10040207. [PMID: 29677132 PMCID: PMC5923501 DOI: 10.3390/v10040207] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 04/14/2018] [Accepted: 04/19/2018] [Indexed: 02/07/2023] Open
Abstract
Hepatitis C virus (HCV) enters human hepatocytes using four essential entry factors, one of which is human CD81 (hCD81). The tetraspanin hCD81 contains a large extracellular loop (LEL), which interacts with the E2 glycoprotein of HCV. The role of the non-LEL regions of hCD81 (intracellular tails, four transmembrane domains, small extracellular loop and intracellular loop) is poorly understood. Here, we studied the contribution of these domains to HCV susceptibility of hepatoma cells by generating chimeras of related tetraspanins with the hCD81 LEL. Our results show that non-LEL regions in addition to the LEL determine susceptibility of cells to HCV. While closely related tetraspanins (X. tropicalis CD81 and D. rerio CD81) functionally complement hCD81 non-LEL regions, distantly related tetraspanins (C. elegans TSP9 amd D. melanogaster TSP96F) do not and tetraspanins with intermediate homology (hCD9) show an intermediate phenotype. Tetraspanin homology and susceptibility to HCV correlate positively. For some chimeras, infectivity correlates with surface expression. In contrast, the hCD9 chimera is fully surface expressed, binds HCV E2 glycoprotein but is impaired in HCV receptor function. We demonstrate that a cholesterol-coordinating glutamate residue in CD81, which hCD9 lacks, promotes HCV infection. This work highlights the hCD81 non-LEL regions as additional HCV susceptibility-determining factors.
Collapse
|
22
|
Zhang J, Wu T, Zhan S, Qiao N, Zhang X, Zhu Y, Yang N, Sun Y, Zhang XA, Bleich D, Han X. TIMP-1 and CD82, a promising combined evaluation marker for PDAC. Oncotarget 2018; 8:6496-6512. [PMID: 28030805 PMCID: PMC5351648 DOI: 10.18632/oncotarget.14133] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 11/11/2016] [Indexed: 11/25/2022] Open
Abstract
Tissue inhibitor of metalloproteinases-1 (TIMP-1) is a widely secreted protein that regulates cell motility, proliferation, and apoptosis. Although it is recognized that TIMP-1-tetraspanin CD63 regulates epithelial cell apoptosis and proliferation, how TIMP-1 controls cell motility is not well understood. In this study, we identify tetraspanin CD82 (also called KAI1) as a component of the promiscuous TIMP-1 interacting protein complex on cell surface of human pancreatic adenocarcinoma cells. CD82 directly binds to TIMP-1 N-terminal region through its large extracellular loop and co-localizes with TIMP-1 in both cancer cell lines and clinical samples. Moreover, CD82 facilitates membrane-bound TIMP-1 endocytosis, which significantly contributes to the anti-migration effect of TIMP-1. CD82 silencing partially eliminates these functions. TIMP-1 and CD82 expression status in patients with pancreatic ductal adenocarcinoma (PDAC) might demonstrate future usefulness as a differentiation marker and give us new insight into tumorigenic metastatic potential.
Collapse
Affiliation(s)
- Jiexin Zhang
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Tijun Wu
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, China
| | - Shanshan Zhan
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, China
| | - Nan Qiao
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, China
| | - Xu Zhang
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, China
| | - Yunxia Zhu
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, China
| | - Nan Yang
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, China
| | - Yujie Sun
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, China
| | - Xin A Zhang
- Stephenson Cancer Center and Department of Physiology, University of Oklahoma Health Science Center, Oklahoma, OK, USA
| | - David Bleich
- Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Xiao Han
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, China
| |
Collapse
|
23
|
Molecular interactions shaping the tetraspanin web. Biochem Soc Trans 2017; 45:741-750. [PMID: 28620035 DOI: 10.1042/bst20160284] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 03/14/2017] [Accepted: 03/15/2017] [Indexed: 12/31/2022]
Abstract
To facilitate the myriad of different (signaling) processes that take place at the plasma membrane, cells depend on a high degree of membrane protein organization. Important mediators of this organization are tetraspanin proteins. Tetraspanins interact laterally among themselves and with partner proteins to control the spatial organization of membrane proteins in large networks called the tetraspanin web. The molecular interactions underlying the formation of the tetraspanin web were hitherto mainly described based on their resistance to different detergents, a classification which does not necessarily correlate with functionality in the living cell. To look at these interactions from a more physiological point of view, this review discusses tetraspanin interactions based on their function in the tetraspanin web: (1) intramolecular interactions supporting tetraspanin structure, (2) tetraspanin-tetraspanin interactions supporting web formation, (3) tetraspanin-partner interactions adding functional partners to the web and (4) cytosolic tetraspanin interactions regulating intracellular signaling. The recent publication of the first full-length tetraspanin crystal structure sheds new light on both the intra- and intermolecular tetraspanin interactions that shape the tetraspanin web. Furthermore, recent molecular dynamic modeling studies indicate that the binding strength between tetraspanins and between tetraspanins and their partners is the complex sum of both promiscuous and specific interactions. A deeper insight into this complex mixture of interactions is essential to our fundamental understanding of the tetraspanin web and its dynamics which constitute a basic building block of the cell surface.
Collapse
|
24
|
Oligomerization of the Tetraspanin CD81 via the Flexibility of Its δ-Loop. Biophys J 2017; 110:2463-2474. [PMID: 27276264 DOI: 10.1016/j.bpj.2016.05.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 05/03/2016] [Accepted: 05/04/2016] [Indexed: 01/28/2023] Open
Abstract
Tetraspanins are master organizers in the plasma membrane, forming tetraspanin-enriched microdomains with one another and other surface molecules. Their rod-shaped structure includes a large extracellular loop (LEL) that plays a pivotal role in tetraspanin network formation. We performed comparative atomistic and coarse-grain molecular-dynamics simulations of the LEL in isolation and full-length CD81, and reproduced LEL flexibility patterns known from wet-lab experiments in which the LEL δ-loop region showed a pronounced flexibility. In a 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine lipid bilayer and a plasma membrane environment, the conformational flexibility of the δ-loop initiates CD81-CD81 contacts for oligomerization. Furthermore, in the plasma membrane, CD81-ganglioside bridges arising from preformed glycolipid patches cross-link the complexes. The data suggest that exposing a flexible domain enables binding to interaction partners by circumventing the restriction of orientation and conformational freedom of membrane proteins.
Collapse
|
25
|
Reducing isoform complexity of human tetraspanins by optimized expression in Dictyostelium discoideum enables high-throughput functional read-out. Protein Expr Purif 2017; 135:8-15. [DOI: 10.1016/j.pep.2017.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 04/18/2017] [Accepted: 04/20/2017] [Indexed: 11/21/2022]
|
26
|
Tetraspanins in infections by human cytomegalo- and papillomaviruses. Biochem Soc Trans 2017; 45:489-497. [PMID: 28408489 DOI: 10.1042/bst20160295] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 02/15/2017] [Accepted: 02/16/2017] [Indexed: 12/30/2022]
Abstract
Members of the tetraspanin family have been identified as essential cellular membrane proteins in infectious diseases by nearly all types of pathogens. The present review highlights recently published data on the role of tetraspanin CD151, CD81, and CD63 and their interaction partners in host cell entry by human cytomegalo- and human papillomaviruses. Moreover, we discuss a model for tetraspanin assembly into trafficking platforms at the plasma membrane. These platforms might persist during intracellular viral trafficking.
Collapse
|
27
|
Tspan2: a tetraspanin protein involved in oligodendrogenesis and cancer metastasis. Biochem Soc Trans 2017; 45:465-475. [PMID: 28408487 PMCID: PMC5390497 DOI: 10.1042/bst20160022] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 02/06/2017] [Accepted: 02/09/2017] [Indexed: 12/14/2022]
Abstract
Tetraspanin 2 (Tspan2) is one of the less well-characterised members of the tetraspanin superfamily, and its precise function in different human tissue types remains to be explored. Initial studies have highlighted its possible association in neuroinflammation and carcinogenesis. In the central nervous system, Tspan2 may contribute to the early stages of the oligodendrocyte differentiation into myelin-forming glia. Furthermore, in human lung cancer, Tspan2 could be involved in the progression of the tumour metastasis by modulating cancer cell motility and invasion functions. In this review, we discuss the available evidence for the potential role of Tspan2 and introduce possible strategies for disease targeting.
Collapse
|
28
|
Homsi Y, Lang T. The specificity of homomeric clustering of CD81 is mediated by its δ-loop. FEBS Open Bio 2017; 7:274-283. [PMID: 28174692 PMCID: PMC5292664 DOI: 10.1002/2211-5463.12187] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 12/07/2016] [Accepted: 12/14/2016] [Indexed: 01/26/2023] Open
Abstract
Tetraspanins are cell membrane‐scaffolding proteins interacting with one another and a repertoire of interaction partners. Through these interactions, they form extended molecular networks as tetraspanin webs or tetraspanin‐enriched microdomains. Microscopic data suggest that these networks contain tetraspanin clusters, with poor overlap between clusters formed by different tetraspanins. Here, we investigate the possibility of targeting tetraspanins CD9 or CD151 to clusters formed by the tetraspanin CD81. We find that the δ‐loop from the large extracellular domain of CD81 is sufficient for targeting of CD9/CD151 to CD81 clusters. Moreover, in a pull‐down assay, CD9 coprecipitates more CD81 when it carries the CD81 δ‐loop. In conclusion, the information for forming homomeric CD81 clusters is encoded in the δ‐loop.
Collapse
Affiliation(s)
- Yahya Homsi
- Membrane Biochemistry Life & Medical Sciences (LIMES) Institute University of Bonn Germany
| | - Thorsten Lang
- Membrane Biochemistry Life & Medical Sciences (LIMES) Institute University of Bonn Germany
| |
Collapse
|
29
|
Cunha ES, Sfriso P, Rojas AL, Roversi P, Hospital A, Orozco M, Abrescia NG. Mechanism of Structural Tuning of the Hepatitis C Virus Human Cellular Receptor CD81 Large Extracellular Loop. Structure 2017; 25:53-65. [DOI: 10.1016/j.str.2016.11.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 09/21/2016] [Accepted: 10/27/2016] [Indexed: 12/12/2022]
|
30
|
The CD9, CD81, and CD151 EC2 domains bind to the classical RGD-binding site of integrin αvβ3. Biochem J 2016; 474:589-596. [PMID: 27993971 DOI: 10.1042/bcj20160998] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 12/02/2016] [Accepted: 12/19/2016] [Indexed: 11/17/2022]
Abstract
Tetraspanins play important roles in normal (e.g. cell adhesion, motility, activation, and proliferation) and pathological conditions (e.g. metastasis and viral infection). Tetraspanins interact with integrins and regulate integrin functions, but the specifics of tetraspanin-integrin interactions are unclear. Using co-immunoprecipitation with integrins as a sole method to detect interaction between integrins and full-length tetraspanins, it has been proposed that the variable region (helices D and E) of the extracellular-2 (EC2) domain of tetraspanins laterally associates with a non-ligand-binding site of integrins. We describe that, using adhesion assays, the EC2 domain of CD81, CD9, and CD151 bound to integrin αvβ3, and this binding was suppressed by cRGDfV, a specific inhibitor of αvβ3, and antibody 7E3, which is mapped to the ligand-binding site of β3. We also present evidence that the specificity loop of β3 directly bound to the EC2 domains. This suggests that the EC2 domains specifically bind to the classical ligand-binding site of αvβ3. αvβ3 was a more effective receptor for the EC2 domains than the previously known tetraspanin receptors α3β1, α4β1, and α6β1. Docking simulation predicted that the helices A and B of CD81 EC2 bind to the RGD-binding site of αvβ3. Substituting Lys residues at positions 116 and 144/148 of CD81 EC2 in the predicted integrin-binding interface reduced the binding of CD81 EC2 to αvβ3, consistent with the docking model. These findings suggest that, in contrast with previous models, the ligand-binding site of integrin αvβ3, a new tetraspanin receptor, binds to the constant region (helices A and B) of the EC2 domain.
Collapse
|
31
|
The CD63-Syntenin-1 Complex Controls Post-Endocytic Trafficking of Oncogenic Human Papillomaviruses. Sci Rep 2016; 6:32337. [PMID: 27578500 PMCID: PMC5006017 DOI: 10.1038/srep32337] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 08/02/2016] [Indexed: 12/31/2022] Open
Abstract
Human papillomaviruses enter host cells via a clathrin-independent endocytic pathway involving tetraspanin proteins. However, post-endocytic trafficking required for virus capsid disassembly remains unclear. Here we demonstrate that the early trafficking pathway of internalised HPV particles involves tetraspanin CD63, syntenin-1 and ESCRT-associated adaptor protein ALIX. Following internalisation, viral particles are found in CD63-positive endosomes recruiting syntenin-1, a CD63-interacting adaptor protein. Electron microscopy and immunofluorescence experiments indicate that the CD63-syntenin-1 complex controls delivery of internalised viral particles to multivesicular endosomes. Accordingly, infectivity of high-risk HPV types 16, 18 and 31 as well as disassembly and post-uncoating processing of viral particles was markedly suppressed in CD63 or syntenin-1 depleted cells. Our analyses also present the syntenin-1 interacting protein ALIX as critical for HPV infection and CD63-syntenin-1-ALIX complex formation as a prerequisite for intracellular transport enabling viral capsid disassembly. Thus, our results identify the CD63-syntenin-1-ALIX complex as a key regulatory component in post-endocytic HPV trafficking.
Collapse
|
32
|
van Dongen HM, Masoumi N, Witwer KW, Pegtel DM. Extracellular Vesicles Exploit Viral Entry Routes for Cargo Delivery. Microbiol Mol Biol Rev 2016; 80:369-86. [PMID: 26935137 PMCID: PMC4867369 DOI: 10.1128/mmbr.00063-15] [Citation(s) in RCA: 199] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Extracellular vesicles (EVs) have emerged as crucial mediators of intercellular communication, being involved in a wide array of key biological processes. Eukaryotic cells, and also bacteria, actively release heterogeneous subtypes of EVs into the extracellular space, where their contents reflect their (sub)cellular origin and the physiologic state of the parent cell. Within the past 20 years, presumed subtypes of EVs have been given a rather confusing diversity of names, including exosomes, microvesicles, ectosomes, microparticles, virosomes, virus-like particles, and oncosomes, and these names are variously defined by biogenesis, physical characteristics, or function. The latter category, functions, in particular the transmission of biological signals between cells in vivo and how EVs control biological processes, has garnered much interest. EVs have pathophysiological properties in cancer, neurodegenerative disorders, infectious disease, and cardiovascular disease, highlighting possibilities not only for minimally invasive diagnostic applications but also for therapeutic interventions, like macromolecular drug delivery. Yet, in order to pursue therapies involving EVs and delivering their cargo, a better grasp of EV targeting is needed. Here, we review recent progress in understanding the molecular mechanisms underpinning EV uptake by receptor-ligand interactions with recipient cells, highlighting once again the overlap of EVs and viruses. Despite their highly heterogeneous nature, EVs require common viral entry pathways, and an unanticipated specificity for cargo delivery is being revealed. We discuss the challenges ahead in delineating specific roles for EV-associated ligands and cellular receptors.
Collapse
Affiliation(s)
- Helena M van Dongen
- Department of Pathology, Exosomes Research Group, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Niala Masoumi
- Department of Pathology, Exosomes Research Group, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Kenneth W Witwer
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - D Michiel Pegtel
- Department of Pathology, Exosomes Research Group, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
33
|
Homsi Y, Schloetel JG, Scheffer KD, Schmidt TH, Destainville N, Florin L, Lang T. The extracellular δ-domain is essential for the formation of CD81 tetraspanin webs. Biophys J 2015; 107:100-13. [PMID: 24988345 DOI: 10.1016/j.bpj.2014.05.028] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 05/14/2014] [Accepted: 05/20/2014] [Indexed: 12/15/2022] Open
Abstract
CD81 is a ubiquitously expressed member of the tetraspanin family. It forms large molecular platforms, so-called tetraspanin webs that play physiological roles in a variety of cellular functions and are involved in viral and parasite infections. We have investigated which part of the CD81 molecule is required for the formation of domains in the cell membranes of T-cells and hepatocytes. Surprisingly, we find that large CD81 platforms assemble via the short extracellular δ-domain, independent from a strong primary partner binding and from weak interactions mediated by palmitoylation. The δ-domain is also essential for the platforms to function during viral entry. We propose that, instead of stable binary interactions, CD81 interactions via the small δ-domain, possibly involving a dimerization step, play the key role in organizing CD81 into large tetraspanin webs and controlling its function.
Collapse
Affiliation(s)
- Yahya Homsi
- Department of Membrane Biochemistry, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Jan-Gero Schloetel
- Department of Membrane Biochemistry, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Konstanze D Scheffer
- Department of Medical Microbiology and Hygiene, University Medical Centre of the Johannes Gutenberg University, Mainz, Germany
| | - Thomas H Schmidt
- Department of Membrane Biochemistry, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Nicolas Destainville
- Université Toulouse 3-Paul Sabatier, UPS, Laboratoire de Physique Théorique (IRSAMC), Toulouse, France
| | - Luise Florin
- Department of Medical Microbiology and Hygiene, University Medical Centre of the Johannes Gutenberg University, Mainz, Germany
| | - Thorsten Lang
- Department of Membrane Biochemistry, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany.
| |
Collapse
|
34
|
Gerold G, Meissner F, Bruening J, Welsch K, Perin PM, Baumert TF, Vondran FW, Kaderali L, Marcotrigiano J, Khan AG, Mann M, Rice CM, Pietschmann T. Quantitative Proteomics Identifies Serum Response Factor Binding Protein 1 as a Host Factor for Hepatitis C Virus Entry. Cell Rep 2015. [PMID: 26212323 PMCID: PMC4836839 DOI: 10.1016/j.celrep.2015.06.063] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV) enters human hepatocytes through a multistep mechanism involving, among other host proteins, the virus receptor CD81. How CD81 governs HCV entry is poorly characterized, and CD81 protein interactions after virus binding remain elusive. We have developed a quantitative proteomics protocol to identify HCV-triggered CD81 interactions and found 26 dynamic binding partners. At least six of these proteins promote HCV infection, as indicated by RNAi. We further characterized serum response factor binding protein 1 (SRFBP1), which is recruited to CD81 during HCV uptake and supports HCV infection in hepatoma cells and primary human hepatocytes. SRFBP1 facilitates host cell penetration by all seven HCV genotypes, but not of vesicular stomatitis virus and human coronavirus. Thus, SRFBP1 is an HCV-specific, pan-genotypic host entry factor. These results demonstrate the use of quantitative proteomics to elucidate pathogen entry and underscore the importance of host protein-protein interactions during HCV invasion. Hepatitis C virus binding alters host protein interactions with the receptor CD81 Six out of 26 virus-dependent CD81-interacting proteins promote virus entry SRFBP1 binds CD81 and aids infection of all HCV, but not VSV, genotypes SRFBP1 is membrane-associated and required for HCV entry
Collapse
Affiliation(s)
- Gisa Gerold
- Insitute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Medical School Hannover and the Helmholtz Centre for Infection Research, 30165 Hannover, Germany; Center for the Study of Hepatitis C, Laboratory of Virology and Infectious Disease, the Rockefeller University, New York, NY 10065, USA.
| | - Felix Meissner
- Department of Proteomics and Signal Transduction, Max Planck Institute for Biochemistry, 82152 Martinsried, Germany
| | - Janina Bruening
- Insitute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Medical School Hannover and the Helmholtz Centre for Infection Research, 30165 Hannover, Germany
| | - Kathrin Welsch
- Insitute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Medical School Hannover and the Helmholtz Centre for Infection Research, 30165 Hannover, Germany
| | - Paula M Perin
- Insitute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Medical School Hannover and the Helmholtz Centre for Infection Research, 30165 Hannover, Germany
| | - Thomas F Baumert
- Inserm Unit 1110, Université de Strasbourg, Strasbourg 67000, France
| | - Florian W Vondran
- Department of General, Visceral and Transplant Surgery, Hannover Medical School, 30165 Hannover, Germany
| | - Lars Kaderali
- Institute for Medical Informatics and Biometry (IMB), Medical School, University of Technology Dresden, 01307 Dresden, Germany
| | - Joseph Marcotrigiano
- Center for Advanced Biotechnology and Medicine, Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Abdul G Khan
- Center for Advanced Biotechnology and Medicine, Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute for Biochemistry, 82152 Martinsried, Germany
| | - Charles M Rice
- Center for the Study of Hepatitis C, Laboratory of Virology and Infectious Disease, the Rockefeller University, New York, NY 10065, USA
| | - Thomas Pietschmann
- Insitute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Medical School Hannover and the Helmholtz Centre for Infection Research, 30165 Hannover, Germany.
| |
Collapse
|
35
|
Yang W, Zhang M, Chi X, Liu X, Qin B, Cui S. An intramolecular bond at cluster of differentiation 81 ectodomain is important for hepatitis C virus entry. FASEB J 2015; 29:4214-26. [DOI: 10.1096/fj.15-272880] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 06/15/2015] [Indexed: 11/11/2022]
Affiliation(s)
- Wei Yang
- Ministry of Health Key Laboratory of Systems Biology of PathogensInstitute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Meng Zhang
- Ministry of Health Key Laboratory of Systems Biology of PathogensInstitute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Xiaojing Chi
- Ministry of Health Key Laboratory of Systems Biology of PathogensInstitute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Xiuying Liu
- Ministry of Health Key Laboratory of Systems Biology of PathogensInstitute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Bo Qin
- Ministry of Health Key Laboratory of Systems Biology of PathogensInstitute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Sheng Cui
- Ministry of Health Key Laboratory of Systems Biology of PathogensInstitute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| |
Collapse
|
36
|
A view of the E2-CD81 interface at the binding site of a neutralizing antibody against hepatitis C virus. J Virol 2014; 89:492-501. [PMID: 25339761 DOI: 10.1128/jvi.01661-14] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
UNLABELLED Hepatitis C virus (HCV) glycoprotein E2 is considered a major target for generating neutralizing antibodies against HCV, primarily due to its role of engaging host entry factors, such as CD81, a key cell surface protein associated with HCV entry. Based on a series of biochemical analyses in combination with molecular docking, we present a description of a potential binding interface formed between the E2 protein and CD81. The virus side of this interface includes a hydrophobic helix motif comprised of residues W(437)LAGLF(442), which encompasses the binding site of a neutralizing monoclonal antibody, mAb41. The helical conformation of this motif provides a structural framework for the positioning of residues F442 and Y443, serving as contact points for the interaction with CD81. The cell side of this interface likewise involves a surface-exposed hydrophobic helix, namely, the D-helix of CD81, which coincides with the binding site of 1D6, a monoclonal anti-CD81 antibody known to block HCV entry. Our illustration of this virus-host interface suggests an important role played by the W(437)LAGLF(442) helix of the E2 protein in the hydrophobic interaction with the D-helix of CD81, thereby facilitating our understanding of the mechanism for antibody-mediated neutralization of HCV. IMPORTANCE Characterization of the interface established between a virus and host cells can provide important information that may be used for the control of virus infections. The interface that enables hepatitis C virus (HCV) to infect human liver cells has not been well understood because of the number of cell surface proteins, factors, and conditions found to be associated with the infection process. Based on a series of biochemical analyses in combination with molecular docking, we present such an interface, consisting of two hydrophobic helical structures, from the HCV E2 surface glycoprotein and the CD81 protein, a major host cell receptor recognized by all HCV strains. Our study reveals the critical role played by hydrophobic interactions in the formation of this virus-host interface, thereby contributing to our understanding of the mechanism for antibody-mediated neutralization of HCV.
Collapse
|
37
|
Abstract
Tetraspanins are a family of proteins with four transmembrane domains that play a role in many aspects of cell biology and physiology; they are also used by several pathogens for infection and regulate cancer progression. Many tetraspanins associate specifically and directly with a limited number of proteins, and also with other tetraspanins, thereby generating a hierarchical network of interactions. Through these interactions, tetraspanins are believed to have a role in cell and membrane compartmentalization. In this Cell Science at a Glance article and the accompanying poster, we describe the basic principles underlying tetraspanin-based assemblies and highlight examples of how tetraspanins regulate the trafficking and function of their partner proteins that are required for the normal development and function of several organs, including, in humans, the eye, the kidney and the immune system.
Collapse
Affiliation(s)
- Stéphanie Charrin
- Inserm, U1004, F-94807, Villejuif, France Université Paris-Sud, Institut André Lwoff, F-94807 Villejuif, France
| | - Stéphanie Jouannet
- Inserm, U1004, F-94807, Villejuif, France Université Paris-Sud, Institut André Lwoff, F-94807 Villejuif, France
| | - Claude Boucheix
- Inserm, U1004, F-94807, Villejuif, France Université Paris-Sud, Institut André Lwoff, F-94807 Villejuif, France
| | - Eric Rubinstein
- Inserm, U1004, F-94807, Villejuif, France Université Paris-Sud, Institut André Lwoff, F-94807 Villejuif, France
| |
Collapse
|
38
|
Shalom-Elazari H, Zazrin-Greenspon H, Shaked H, Chill JH. Global fold and backbone dynamics of the hepatitis C virus E2 glycoprotein transmembrane domain determined by NMR. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:2919-28. [PMID: 25109935 DOI: 10.1016/j.bbamem.2014.07.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 06/30/2014] [Accepted: 07/22/2014] [Indexed: 01/13/2023]
Abstract
E1 and E2 are two hepatitis C viral envelope glycoproteins that assemble into a heterodimer that is essential for membrane fusion and penetration into the target cell. Both extracellular and transmembrane (TM) glycoprotein domains contribute to this interaction, but study of TM-TM interactions has been limited because synthesis and structural characterization of these highly hydrophobic segments present significant challenges. In this NMR study, by successful expression and purification of the E2 transmembrane domain as a fusion construct we have determined the global fold and characterized backbone motions for this peptide incorporated in phospholipid micelles. Backbone resonance frequencies, relaxation rates and solvent exposure measurements concur in showing this domain to adopt a helical conformation, with two helical segments spanning residues 717-726 and 732-746 connected by an unstructured linker containing the charged residues D728 and R730 involved in E1 binding. Although this linker exhibits increased local motions on the ps timescale, the dominating contribution to its relaxation is the global tumbling motion with an estimated correlation time of 12.3ns. The positioning of the helix-linker-helix architecture within the mixed micelle was established by paramagnetic NMR spectroscopy and phospholipid-peptide cross relaxation measurements. These indicate that while the helices traverse the hydrophobic interior of the micelle, the linker lies closer to the micelle perimeter to accommodate its charged residues. These results lay the groundwork for structure determination of the E1/E2 complex and a molecular understanding of glycoprotein heterodimerization.
Collapse
Affiliation(s)
| | | | - Hadassa Shaked
- Department of Chemistry, Bar Ilan University, Ramat Gan 52900, Israel
| | - Jordan H Chill
- Department of Chemistry, Bar Ilan University, Ramat Gan 52900, Israel.
| |
Collapse
|
39
|
Fénéant L, Levy S, Cocquerel L. CD81 and hepatitis C virus (HCV) infection. Viruses 2014; 6:535-72. [PMID: 24509809 PMCID: PMC3939471 DOI: 10.3390/v6020535] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Revised: 01/29/2014] [Accepted: 02/02/2014] [Indexed: 12/16/2022] Open
Abstract
Hepatitis C Virus (HCV) infection is a global public health problem affecting over 160 million individuals worldwide. Its symptoms include chronic hepatitis, liver cirrhosis and hepatocellular carcinoma. HCV is an enveloped RNA virus mainly targeting liver cells and for which the initiation of infection occurs through a complex multistep process involving a series of specific cellular entry factors. This process is likely mediated through the formation of a tightly orchestrated complex of HCV entry factors at the plasma membrane. Among HCV entry factors, the tetraspanin CD81 is one of the best characterized and it is undoubtedly a key player in the HCV lifecycle. In this review, we detail the current knowledge on the involvement of CD81 in the HCV lifecycle, as well as in the immune response to HCV infection.
Collapse
Affiliation(s)
- Lucie Fénéant
- Center for Infection and Immunity of Lille, CNRS-UMR8204, Inserm-U1019, Institut Pasteur de Lille, Université Lille Nord de France, Institut de Biologie de Lille, 1 rue du Pr Calmette, CS50447, 59021 Lille Cedex, France.
| | - Shoshana Levy
- Department of Medicine, Division of Oncology, CCSR, Stanford University Medical Center, Stanford, CA 94305, USA.
| | - Laurence Cocquerel
- Center for Infection and Immunity of Lille, CNRS-UMR8204, Inserm-U1019, Institut Pasteur de Lille, Université Lille Nord de France, Institut de Biologie de Lille, 1 rue du Pr Calmette, CS50447, 59021 Lille Cedex, France.
| |
Collapse
|
40
|
Jia X, Schulte L, Loukas A, Pickering D, Pearson M, Mobli M, Jones A, Rosengren KJ, Daly NL, Gobert GN, Jones MK, Craik DJ, Mulvenna J. Solution structure, membrane interactions, and protein binding partners of the tetraspanin Sm-TSP-2, a vaccine antigen from the human blood fluke Schistosoma mansoni. J Biol Chem 2014; 289:7151-7163. [PMID: 24429291 DOI: 10.1074/jbc.m113.531558] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The tetraspanins (TSPs) are a family of integral membrane proteins that are ubiquitously expressed at the surface of eukaryotic cells. TSPs mediate a range of processes at the surface of the plasma membrane by providing a scaffold for the assembly of protein complexes known as tetraspanin-enriched microdomains (TEMs). We report here the structure of the surface-exposed EC2 domain from Sm-TSP-2, a TSP from Schistosoma mansoni and one of the better prospects for the development of a vaccine against schistosomiasis. This is the first solution structure of this domain, and our investigations of its interactions with lipid micelles provide a general model for interactions between TSPs, membranes, and other proteins. Using chemical cross-linking, eight potential protein constituents of Sm-TSP-2-mediated TEMs were also identified. These include proteins important for membrane maintenance and repair, providing further evidence for the functional role of Sm-TSP-2- and Sm-TSP-2-mediated TEMs. The identification of calpain, Sm29, and fructose-bisphosphate aldolase, themselves potential vaccine antigens, suggests that the Sm-TSP-2-mediated TEMs could be disrupted via multiple targets. The identification of further Sm-TSP-2-mediated TEM proteins increases the available candidates for multiplex vaccines and/or novel drugs targeting TEMs in the schistosome tegument.
Collapse
Affiliation(s)
- Xinying Jia
- Queensland Institute of Medical Research, Brisbane, QLD 4006, Australia
| | - Leigh Schulte
- Queensland Institute of Medical Research, Brisbane, QLD 4006, Australia; The University of Queensland, School of Veterinary Sciences, Gatton, QLD 4343, Australia
| | - Alex Loukas
- Centre for Biodiscovery and Molecular Development of Therapeutics, Queensland Tropical Health Alliance, James Cook University, Cairns, QLD 4878, Australia
| | - Darren Pickering
- Centre for Biodiscovery and Molecular Development of Therapeutics, Queensland Tropical Health Alliance, James Cook University, Cairns, QLD 4878, Australia
| | - Mark Pearson
- Centre for Biodiscovery and Molecular Development of Therapeutics, Queensland Tropical Health Alliance, James Cook University, Cairns, QLD 4878, Australia
| | - Mehdi Mobli
- The University of Queensland, Centre for Advanced Imaging, Brisbane, QLD 4072, Australia
| | - Alun Jones
- The University of Queensland, Institute for Molecular Bioscience, Brisbane, QLD 4072, Australia
| | - Karl J Rosengren
- The University of Queensland, School of Biomedical Sciences, Brisbane, QLD 4072, Australia
| | - Norelle L Daly
- Centre for Biodiscovery and Molecular Development of Therapeutics, Queensland Tropical Health Alliance, James Cook University, Cairns, QLD 4878, Australia
| | - Geoffrey N Gobert
- Queensland Institute of Medical Research, Brisbane, QLD 4006, Australia
| | - Malcolm K Jones
- Queensland Institute of Medical Research, Brisbane, QLD 4006, Australia; The University of Queensland, School of Veterinary Sciences, Gatton, QLD 4343, Australia
| | - David J Craik
- The University of Queensland, Institute for Molecular Bioscience, Brisbane, QLD 4072, Australia
| | - Jason Mulvenna
- Queensland Institute of Medical Research, Brisbane, QLD 4006, Australia; The University of Queensland, School of Biomedical Sciences, Brisbane, QLD 4072, Australia.
| |
Collapse
|
41
|
Abstract
An abundance of evidence shows supporting roles for tetraspanin proteins in human cancer. Many studies show that the expression of tetraspanins correlates with tumour stage, tumour type and patient outcome. In addition, perturbations of tetraspanins in tumour cell lines can considerably affect cell growth, morphology, invasion, tumour engraftment and metastasis. This Review emphasizes new studies that have used de novo mouse cancer models to show that select tetraspanin proteins have key roles in tumour initiation, promotion and metastasis. This Review also emphasizes how tetraspanin proteins can sometimes participate in tumour angiogenesis. These recent data build an increasingly strong case for tetraspanins as therapeutic targets.
Collapse
|
42
|
Zazrin H, Shaked H, Chill JH. Architecture of the hepatitis C virus E1 glycoprotein transmembrane domain studied by NMR. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1838:784-92. [PMID: 24192053 DOI: 10.1016/j.bbamem.2013.10.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 10/24/2013] [Accepted: 10/28/2013] [Indexed: 10/26/2022]
Abstract
Oligomerization of hepatitis C viral envelope proteins E1 and E2 is essential to virus fusion and assembly. Although interactions within the transmembrane (TM) domains of these glycoproteins have proven contributions to the E1/E2 heterodimerization process and consequent infectivity, there is little structural information on this entry mechanism. Here, as a first step towards our long-term goal of understanding the interaction between E1 and E2 TM-domains, we have expressed, purified and characterized E1-TM using structural biomolecular NMR methods. An MBP-fusion expression system yielded sufficient quantities of pure E1-TM, which was solubilized in two membrane-mimicking environments, SDS- and LPPG-micelles, affording samples amenable to NMR studies. Triple resonance assignment experiments and relaxation measurements provided information on the secondary structure and global fold of E1-TM in these environments. In SDS micelles E1-TM adopts a helical conformation, with helical stretches at residues 354-363 and 371-379 separated by a more flexible segment of residues 364-370. In LPPG micelles a helical conformation was observed for residues 354-377 with greater flexibility in the 366-367 dyad, suggesting LPPG provides a more native environment for the peptide. Replacement of key positively charged residue K370 with an alanine did not affect the secondary structure of E1-TM but did change the relative positioning within the micelle of the two helices. These results lay the foundation for structure determination of E1-TM and a molecular understanding of how E1-TM flexibility enhances its interaction with E2-TM during heterodimerization and membrane fusion.
Collapse
Affiliation(s)
- Hadas Zazrin
- Department of Chemistry, Bar Ilan University, Ramat Gan 52900, Israel
| | - Hadassa Shaked
- Department of Chemistry, Bar Ilan University, Ramat Gan 52900, Israel
| | - Jordan H Chill
- Department of Chemistry, Bar Ilan University, Ramat Gan 52900, Israel.
| |
Collapse
|