1
|
Samer C, McWilliam HEG, McSharry BP, Burchfield JG, Stanton RJ, Rossjohn J, Villadangos JA, Abendroth A, Slobedman B. Impaired endocytosis and accumulation in early endosomal compartments defines herpes simplex virus-mediated disruption of the nonclassical MHC class I-related molecule MR1. J Biol Chem 2024; 300:107748. [PMID: 39260697 PMCID: PMC11736056 DOI: 10.1016/j.jbc.2024.107748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 08/13/2024] [Accepted: 08/21/2024] [Indexed: 09/13/2024] Open
Abstract
Presentation of metabolites by the major histocompatibility complex class I-related protein 1 (MR1) molecule to mucosal-associated invariant T cells is impaired during herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2) infections. This is surprising given these viruses do not directly synthesise MR1 ligands. We have previously identified several HSV proteins responsible for rapidly downregulating the intracellular pool of immature MR1, effectively inhibiting new surface antigen presentation, while preexisting ligand-bound mature MR1 is unexpectedly upregulated by HSV-1. Using flow cytometry, immunoblotting, and high-throughput fluorescence microscopy, we demonstrate that the endocytosis of surface MR1 is impaired during HSV infection and that internalized molecules accumulate in EEA1-labeled early endosomes, avoiding degradation. We establish that the short MR1 cytoplasmic tail is not required for HSV-1-mediated downregulation of immature molecules; however it may play a role in the retention of mature molecules on the surface and in early endosomes. We also determine that the HSV-1 US3 protein, the shorter US3.5 kinase and the full-length HSV-2 homolog, all predominantly target mature surface rather than total MR1 levels. We propose that the downregulation of intracellular and cell surface MR1 molecules by US3 and other HSV proteins is an immune-evasive countermeasure to minimize the effect of impaired MR1 endocytosis, which might otherwise render infected cells susceptible to MR1-mediated killing by mucosal-associated invariant T cells.
Collapse
Affiliation(s)
- Carolyn Samer
- Infection, Immunity and Inflammation, School of Medical Sciences, Faculty of Medicine and Health, and the Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales, Australia
| | - Hamish E G McWilliam
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | - Brian P McSharry
- Infection, Immunity and Inflammation, School of Medical Sciences, Faculty of Medicine and Health, and the Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales, Australia; School of Dentistry and Medical Sciences, Faculty of Science and Health, and Gulbali Institute, Charles Sturt University, Wagga Wagga, New South Wales, Australia
| | - James G Burchfield
- Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales, Australia; School of Life and Environmental Sciences, The University of Sydney, Camperdown, New South Wales, Australia
| | - Richard J Stanton
- Division of Infection & Immunity, School of Medicine, Cardiff University, Cardiff, Wales, UK
| | - Jamie Rossjohn
- Division of Infection & Immunity, School of Medicine, Cardiff University, Cardiff, Wales, UK; Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Jose A Villadangos
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia; Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Allison Abendroth
- Infection, Immunity and Inflammation, School of Medical Sciences, Faculty of Medicine and Health, and the Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales, Australia
| | - Barry Slobedman
- Infection, Immunity and Inflammation, School of Medical Sciences, Faculty of Medicine and Health, and the Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales, Australia.
| |
Collapse
|
2
|
Pasamba EC, Orda MA, Villanueva BHA, Tsai PW, Tayo LL. Transcriptomic Analysis of Hub Genes Reveals Associated Inflammatory Pathways in Estrogen-Dependent Gynecological Diseases. BIOLOGY 2024; 13:397. [PMID: 38927277 PMCID: PMC11201105 DOI: 10.3390/biology13060397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/26/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024]
Abstract
Gynecological diseases are triggered by aberrant molecular pathways that alter gene expression, hormonal balance, and cellular signaling pathways, which may lead to long-term physiological consequences. This study was able to identify highly preserved modules and key hub genes that are mainly associated with gynecological diseases, represented by endometriosis (EM), ovarian cancer (OC), cervical cancer (CC), and endometrial cancer (EC), through the weighted gene co-expression network analysis (WGCNA) of microarray datasets sourced from the Gene Expression Omnibus (GEO) database. Five highly preserved modules were observed across the EM (GSE51981), OC (GSE63885), CC (GSE63514), and EC (GSE17025) datasets. The functional annotation and pathway enrichment analysis revealed that the highly preserved modules were heavily involved in several inflammatory pathways that are associated with transcription dysregulation, such as NF-kB signaling, JAK-STAT signaling, MAPK-ERK signaling, and mTOR signaling pathways. Furthermore, the results also include pathways that are relevant in gynecological disease prognosis through viral infections. Mutations in the ESR1 gene that encodes for ERα, which were shown to also affect signaling pathways involved in inflammation, further indicate its importance in gynecological disease prognosis. Potential drugs were screened through the Drug Repurposing Encyclopedia (DRE) based on the up-and downregulated hub genes, wherein a bacterial ribosomal subunit inhibitor and a benzodiazepine receptor agonist were the top candidates. Other drug candidates include a dihydrofolate reductase inhibitor, glucocorticoid receptor agonists, cholinergic receptor agonists, selective serotonin reuptake inhibitors, sterol demethylase inhibitors, a bacterial antifolate, and serotonin receptor antagonist drugs which have known anti-inflammatory effects, demonstrating that the gene network highlights specific inflammatory pathways as a therapeutic avenue in designing drug candidates for gynecological diseases.
Collapse
Affiliation(s)
- Elaine C. Pasamba
- School of Graduate Studies, Mapúa University, Manila City 1002, Philippines; (E.C.P.); (M.A.O.); (B.H.A.V.)
- School of Chemical, Biological, and Materials Engineering and Sciences, Mapúa University, Manila City 1002, Philippines
| | - Marco A. Orda
- School of Graduate Studies, Mapúa University, Manila City 1002, Philippines; (E.C.P.); (M.A.O.); (B.H.A.V.)
- School of Chemical, Biological, and Materials Engineering and Sciences, Mapúa University, Manila City 1002, Philippines
| | - Brian Harvey Avanceña Villanueva
- School of Graduate Studies, Mapúa University, Manila City 1002, Philippines; (E.C.P.); (M.A.O.); (B.H.A.V.)
- School of Chemical, Biological, and Materials Engineering and Sciences, Mapúa University, Manila City 1002, Philippines
| | - Po-Wei Tsai
- Department of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan;
| | - Lemmuel L. Tayo
- School of Graduate Studies, Mapúa University, Manila City 1002, Philippines; (E.C.P.); (M.A.O.); (B.H.A.V.)
- School of Chemical, Biological, and Materials Engineering and Sciences, Mapúa University, Manila City 1002, Philippines
- Department of Biology, School of Health Sciences, Mapúa University, Makati City 1203, Philippines
| |
Collapse
|
3
|
Deng L, Min W, Guo S, Deng J, Wu X, Tong D, Yuan A, Yang Q. Interference of pseudorabies virus infection on functions of porcine granulosa cells via apoptosis modulated by MAPK signaling pathways. Virol J 2024; 21:25. [PMID: 38263223 PMCID: PMC10807058 DOI: 10.1186/s12985-024-02289-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/06/2024] [Indexed: 01/25/2024] Open
Abstract
BACKGROUND Pseudorabies virus (PRV) is one of the major viral pathogens leading to reproductive disorders in swine. However, little is known about the effects of PRV infection on porcine reproductive system. Ovarian granulosa cells are somatic cells surrounding oocytes in ovary and required for folliculogenesis. The present study aimed to investigate the interference of PRV on functions of porcine ovarian granulosa cells in vitro. METHODS Primary granulosa cells were isolated from porcine ovaries. To investigate the PRV infectivity, transmission electron microscopy (TEM) was used to check the presence of viral particles, and the expression of viral gE gene was detected by quantitative real-time PCR (qPCR) in PRV-inoculated cells. After PRV infection, cell viability was detected by MTS assay, Ki67 for proliferative status was determined by immunofluorescence assay (IFA), cell cycle and apoptosis were detected by flow cytometry, and progesterone (P4) and estradiol (E2) were determined by radioimmunoassay. The checkpoint genes of cell cycle and apoptosis-related proteins were studied by qPCR and western blotting. RESULTS Virus particles were observed in the nucleus and cytoplasm of PRV-infected granulosa cells by TEM imaging, and the expression of viral gE gene increased in a time-dependent manner post infection. PRV infection inhibited cell viability and blocked cell cycle at S phase in porcine granulosa cells, accompanied by decreases in expression of Ki67 protein and checkpoint genes related to S phase. Radioimmunoassay revealed decreased levels in P4 and E2, and the expressions of key steroidogenic enzymes were also down-regulated post PRV-infection. In addition, PRV induced apoptosis with an increase in Bax expression and activation of caspase 9, and the phosphorylation of JNK, ERK and p38 MAPKs were significantly up-regulated in porcine ovarian granulosa cells post PRV infection. CONCLUSIONS The data indicate that PRV causes infection on porcine ovarian granulosa cells and interferes the cell functions through apoptosis, and the MAPK signaling pathway is involved in the viral pathogenesis.
Collapse
Affiliation(s)
- Lingcong Deng
- College of Veterinary Medicine, Hunan Agricultural University, 410128, Changsha, Hunan, China
| | - Wenpeng Min
- College of Veterinary Medicine, Hunan Agricultural University, 410128, Changsha, Hunan, China
| | - Songyangnian Guo
- College of Veterinary Medicine, Hunan Agricultural University, 410128, Changsha, Hunan, China
| | - Jiping Deng
- College of Veterinary Medicine, Hunan Agricultural University, 410128, Changsha, Hunan, China
| | - Xiaosong Wu
- College of Veterinary Medicine, Hunan Agricultural University, 410128, Changsha, Hunan, China
| | - Dewen Tong
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, Shaanxi, China
| | - Anwen Yuan
- College of Veterinary Medicine, Hunan Agricultural University, 410128, Changsha, Hunan, China.
| | - Qing Yang
- College of Veterinary Medicine, Hunan Agricultural University, 410128, Changsha, Hunan, China.
- Research Center of Reverse Vaccinology, College of Veterinary Medicine, Hunan Agricultural University, 410128, Changsha, Hunan, China.
| |
Collapse
|
4
|
Doshi H, Spengler K, Godbole A, Gee YS, Baell J, Oakhill JS, Henke A, Heller R. AMPK protects endothelial cells against HSV-1 replication via inhibition of mTORC1 and ACC1. Microbiol Spectr 2023; 11:e0041723. [PMID: 37702499 PMCID: PMC10580915 DOI: 10.1128/spectrum.00417-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 07/06/2023] [Indexed: 09/14/2023] Open
Abstract
Herpes simplex virus type 1 (HSV-1) is a widespread contagious pathogen, mostly causing mild symptoms on the mucosal entry side. However, systemic distribution, in particular upon reactivation of the virus in immunocompromised patients, may trigger an innate immune response and induce damage of organs. In these conditions, HSV-1 may infect vascular endothelial cells, but little is known about the regulation of HSV-1 replication and possible defense mechanisms in these cells. The current study addresses the question of whether the host cell protein AMP-activated protein kinase (AMPK), an important metabolic sensor, can control HSV-1 replication in endothelial cells. We show that downregulation of the catalytic subunits AMPKα1 and/or AMPKα2 increased HSV-1 replication as monitored by TCID50 titrations, while a potent AMPK agonist, MK-8722, strongly inhibited it. MK-8722 induced a persistent phosphorylation of the AMPK downstream targets acetyl-CoA carboxylase (ACC) and the rapamycin-sensitive adaptor protein of mTOR (Raptor) and, related to this, impairment of ACC1-mediated lipid synthesis and the mechanistic target of the rapamycin complex-1 (mTORC1) pathway. Since blockade of mTOR by Torin-2 as well as downregulation of ACC1 by siRNA also decreased HSV-1 replication, MK-8722 is likely to exert its anti-viral effect via mTORC1 and ACC1 inhibition. Importantly, MK-8722 was able to reduce virus replication even when added after HSV-1. Together, our data highlight the importance of endothelial cells as host cells for HSV-1 replication upon systemic infection and identify AMPK, a metabolic host cell protein, as a potential target for antiviral strategies against HSV-1 infection and its severe consequences. IMPORTANCE Herpes simplex virus type 1 (HSV-1) is a common pathogen that causes blisters or cold sores in humans. It remains latent in infected individuals and can be reactivated multiple times. In adverse conditions, for instance, in immunocompromised patients, HSV-1 can lead to serious complications such as encephalitis, meningitis, or blindness. In these situations, infection of endothelial cells lining the surface of blood vessels may contribute to the manifestation of disease. Here, we describe the role of AMP-activated protein kinase (AMPK), a potent regulator of cellular energy metabolism, in HSV-1 replication in endothelial cells. While downregulation of AMPK potentiates HSV-1 replication, pharmacological AMPK activation inhibits it by limiting the availability of required host cell macromolecules such as proteins or fatty acids. These data highlight the role of metabolic host cell proteins as antiviral targets and reveal activation of endothelial AMPK as a potential strategy to protect from severe consequences of HSV-1 infection.
Collapse
Affiliation(s)
- Heena Doshi
- Institute for Molecular Cell Biology, Center for Molecular Biomedicine, Jena University Hospital, Jena, Germany
| | - Katrin Spengler
- Institute for Molecular Cell Biology, Center for Molecular Biomedicine, Jena University Hospital, Jena, Germany
| | - Amod Godbole
- Institute for Molecular Cell Biology, Center for Molecular Biomedicine, Jena University Hospital, Jena, Germany
| | - Yi Sing Gee
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Jonathan Baell
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, China
| | - Jonathan S. Oakhill
- Metabolic Signaling Laboratory, St. Vincent’s Institute of Medical Research, Fitzroy, Victoria, Australia
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Victoria, Australia
| | - Andreas Henke
- Section of Experimental Virology, Institute of Medical Microbiology, Jena University Hospital, Jena, Germany
| | - Regine Heller
- Institute for Molecular Cell Biology, Center for Molecular Biomedicine, Jena University Hospital, Jena, Germany
| |
Collapse
|
5
|
Pietilä MK, Bachmann JJ, Ravantti J, Pelkmans L, Fraefel C. Cellular state landscape and herpes simplex virus type 1 infection progression are connected. Nat Commun 2023; 14:4515. [PMID: 37500668 PMCID: PMC10374626 DOI: 10.1038/s41467-023-40148-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 07/14/2023] [Indexed: 07/29/2023] Open
Abstract
Prediction, prevention and treatment of virus infections require understanding of cell-to-cell variability that leads to heterogenous disease outcomes, but the source of this heterogeneity has yet to be clarified. To study the multimodal response of single human cells to herpes simplex virus type 1 (HSV-1) infection, we mapped high-dimensional viral and cellular state spaces throughout the infection using multiplexed imaging and quantitative single-cell measurements of viral and cellular mRNAs and proteins. Here we show that the high-dimensional cellular state scape can predict heterogenous infections, and cells move through the cellular state landscape according to infection progression. Spatial information reveals that infection changes the cellular state of both infected cells and of their neighbors. The multiplexed imaging of HSV-1-induced cellular modifications links infection progression to changes in signaling responses, transcriptional activity, and processing bodies. Our data show that multiplexed quantification of responses at the single-cell level, across thousands of cells helps predict infections and identify new targets for antivirals.
Collapse
Affiliation(s)
- Maija K Pietilä
- Institute of Virology, University of Zurich, Zurich, Switzerland.
| | - Jana J Bachmann
- Institute of Virology, University of Zurich, Zurich, Switzerland
| | - Janne Ravantti
- Molecular and Integrative Biosciences Research Programme, University of Helsinki, Helsinki, Finland
| | - Lucas Pelkmans
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Cornel Fraefel
- Institute of Virology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
6
|
Li CC, Chi XJ, Wang J, Potter AL, Wang XJ, Yang CFJ. Small molecule RAF265 as an antiviral therapy acts against HSV-1 by regulating cytoskeleton rearrangement and cellular translation machinery. J Med Virol 2023; 95:e28226. [PMID: 36251738 DOI: 10.1002/jmv.28226] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/03/2022] [Accepted: 10/06/2022] [Indexed: 01/11/2023]
Abstract
Host-targeting antivirals (HTAs) have received increasing attention for their potential as broad-spectrum antivirals that pose relatively low risk of developing drug resistance. The repurposing of pharmaceutical drugs for use as antivirals is emerging as a cost- and time- efficient approach to developing HTAs for the treatment of a variety of viral infections. In this study, we used a virus titer method to screen 30 small molecules for antiviral activity against Herpes simplex virus-1 (HSV-1). We found that the small molecule RAF265, an anticancer drug that has been shown to be a potent inhibitor of B-RAF V600E, reduced viral loads of HSV-1 by 4 orders of magnitude in Vero cells and reduced virus proliferation in vivo. RAF265 mediated cytoskeleton rearrangement and targeted the host cell's translation machinery, which suggests that the antiviral activity of RAF265 may be attributed to a dual inhibition strategy. This study offers a starting point for further advances toward clinical development of antivirals against HSV-1.
Collapse
Affiliation(s)
- Cui-Cui Li
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, Department of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xiao-Jing Chi
- Department of Pathogen Biology, Chinese Academy of Medical Sciences, Beijing, China
| | - Jing Wang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, Department of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Alexandra L Potter
- Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Xiao-Jia Wang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, Department of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Chi-Fu Jeffrey Yang
- Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA.,Division of Thoracic Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
7
|
Abstract
Receptor-interacting serine/threonine-protein kinase 1 (RIPK1) has emerged as a key upstream regulator of cell death and inflammation. RIPK1-mediated signaling governs the outcome of signaling pathways initiated by tumor necrosis factor receptor 1 (TNFR1), Toll-like receptor 3 (TLR3), TLR4, retinoic acid-inducible gene 1 (RIG-I)/melanoma differentiation-associated protein 5 (MDA-5), and Z-binding protein 1 (ZBP1) by signaling for NF-κB activation, mitogen-associated protein kinase (MAPK) and interferon regulatory factor 3/7 (IRF3/7) phosphorylation, and cell death via apoptosis and necroptosis. Both cell death and inflammatory responses play a major role in controlling virus infections. Therefore, viruses have evolved multifaceted mechanisms to exploit host immune responses by targeting RIPK1. This review focuses on the current understanding of RIPK1-mediated inflammatory and cell death pathways and multiple mechanisms by which viruses manipulate these pathways by targeting RIPK1. We also discuss gaps in our knowledge regarding RIPK1-mediated signaling pathways and highlight potential avenues for future research.
Collapse
|
8
|
Prohibitin-1 Contributes to Cell-to-Cell Transmission of Herpes Simplex Virus 1 via the MAPK/ERK Signaling Pathway. J Virol 2021; 95:JVI.01413-20. [PMID: 33177205 DOI: 10.1128/jvi.01413-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 11/05/2020] [Indexed: 12/26/2022] Open
Abstract
Viral cell-to-cell spread, a method employed by several viral families for entrance via cell junctions, is highly relevant to the pathogenesis of various viral infections. Cell-to-cell spread of herpes simplex virus 1 (HSV-1) is known to depend greatly on envelope glycoprotein E (gE). However, the molecular mechanism by which gE acts in HSV-1 cell-to-cell spread and the mechanisms of cell-to-cell spread by other herpesviruses remain poorly understood. Here, we describe our identification of prohibitin-1 as a novel gE-interacting host cell protein. Ectopic expression of prohibitin-1 increased gE-dependent HSV-1 cell-to-cell spread. As observed with the gE-null mutation, decreased expression or pharmacological inhibition of prohibitin-1 reduced HSV-1 cell-to-cell spread without affecting the yield of virus progeny. Similar effects were produced by pharmacological inhibition of the mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) pathway, wherein prohibitin-1 acts as a protein scaffold and is required for induction of this pathway. Furthermore, artificial activation of the MAPK/ERK pathway restored HSV-1 cell-to-cell spread impaired by the gE-null mutation. Notably, pharmacological inhibition of prohibitins or the MAPK/ERK pathway reduced viral cell-to-cell spread of representative members in all herpesvirus subfamilies. Our results suggest that prohibitin-1 contributes to gE-dependent HSV-1 cell-to-cell spread via the MAPK/ERK pathway and that this mechanism is conserved throughout the Herpesviridae, whereas gE is conserved only in the Alphaherpesvirinae subfamily.IMPORTANCE Herpesviruses are ubiquitous pathogens of various animals, including humans. These viruses primarily pass through cell junctions to spread to uninfected cells. This method of cell-to-cell spread is an important pathogenic characteristic of these viruses. Here, we show that the host cell protein prohibitin-1 contributes to HSV-1 cell-to-cell spread via a downstream intracellular signaling cascade, the MAPK/ERK pathway. We also demonstrate that the role of the prohibitin-1-mediated MAPK/ERK pathway in viral cell-to-cell spread is conserved in representative members of every herpesvirus subfamily. This study has revealed a common molecular mechanism of the cell-to-cell spread of herpesviruses.
Collapse
|
9
|
Upregulation of DUSP6 impairs infectious bronchitis virus replication by negatively regulating ERK pathway and promoting apoptosis. Vet Res 2021; 52:7. [PMID: 33431056 PMCID: PMC7798014 DOI: 10.1186/s13567-020-00866-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 11/02/2020] [Indexed: 11/10/2022] Open
Abstract
Elucidating virus-cell interactions is fundamental to understanding viral replication and identifying targets for therapeutic control of viral infection. The extracellular signal-regulated kinase (ERK) pathway has been shown to regulate pathogenesis during many viral infections, but its role during coronavirus infection is undetermined. Infectious bronchitis virus is the representative strain of Gammacoronavirus, which causes acute and highly contagious diseases in the poultry farm. In this study, we investigated the role of ERK1/2 signaling pathway in IBV infection. We found that IBV infection activated ERK1/2 signaling and the up-regulation of phosphatase DUSP6 formed a negative regulation loop. Pharmacological inhibition of MEK1/2-ERK1/2 signaling suppressed the expression of DUSP6, promoted cell death, and restricted virus replication. In contrast, suppression of DUSP6 by chemical inhibitor or siRNA increased the phosphorylation of ERK1/2, protected cells from apoptosis, and facilitated IBV replication. Overexpression of DUSP6 decreased the level of phospho-ERK1/2, promoted apoptosis, while dominant negative mutant DUSP6-DN lost the regulation function on ERK1/2 signaling and apoptosis. In conclusion, these data suggest that MEK-ERK1/2 signaling pathway facilitates IBV infection, probably by promoting cell survival; meanwhile, induction of DUSP6 forms a negative regulation loop to restrict ERK1/2 signaling, correlated with increased apoptosis and reduced viral load. Consequently, components of the ERK pathway, such as MEK1/2 and DUSP6, represent excellent targets for the development of antiviral drugs.
Collapse
|
10
|
Human Cytomegalovirus miR-US5-2 Downregulation of GAB1 Regulates Cellular Proliferation and UL138 Expression through Modulation of Epidermal Growth Factor Receptor Signaling Pathways. mSphere 2020; 5:5/4/e00582-20. [PMID: 32759334 PMCID: PMC7407068 DOI: 10.1128/msphere.00582-20] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Human cytomegalovirus (HCMV) causes significant disease in immunocompromised individuals, including transplant patients. HCMV establishes latency in hematopoietic stem cells in the bone marrow. The mechanisms governing latency and reactivation of viral replication are complex and not fully understood. HCMV-encoded miRNAs are small regulatory RNAs that reduce protein expression. In this study, we found that the HCMV miRNA miR-US5-2 targets the epidermal growth factor receptor (EGFR) adaptor protein GAB1 which directly affects downstream cellular signaling pathways activated by EGF. Consequently, miR-US5-2 blocks the EGF-mediated proliferation of human fibroblasts. Early growth response gene 1 (EGR1) is a transcription factor activated by EGFR signaling that regulates expression of HCMV UL138. We show that miR-US5-2 regulates UL138 expression through GAB1-mediated downregulation of the signaling pathways that lead to EGR1 expression. These data suggest that miR-US5-2, through downregulation of GAB1, could play a critical role during reactivation from latency by reducing proliferation and UL138 expression. Regulation of epidermal growth factor (EGF) receptor (EGFR) signaling is critical for the replication of human cytomegalovirus (HCMV) as well as latency and reactivation in CD34+ hematopoietic progenitor cells. HCMV microRNAs (miRNAs) provide a means to modulate the signaling activated by EGF through targeting components of the EGFR signaling pathways. Here, we demonstrate that HCMV miR-US5-2 directly downregulates the critical EGFR adaptor protein GAB1 that mediates activation and sustained signaling through the phosphatidylinositol 3-kinase (PI3K) and MEK/extracellular signal-regulated kinase (ERK) pathways and cellular proliferation in response to EGF. Expression of HCMV UL138 is regulated by the transcription factor early growth response gene 1 (EGR1) downstream of EGFR-induced MEK/ERK signaling. We show that by targeting GAB1 and attenuating MEK/ERK signaling, miR-US5-2 indirectly regulates EGR1 and UL138 expression, which implicates the miRNA in critical regulation of HCMV latency. IMPORTANCE Human cytomegalovirus (HCMV) causes significant disease in immunocompromised individuals, including transplant patients. HCMV establishes latency in hematopoietic stem cells in the bone marrow. The mechanisms governing latency and reactivation of viral replication are complex and not fully understood. HCMV-encoded miRNAs are small regulatory RNAs that reduce protein expression. In this study, we found that the HCMV miRNA miR-US5-2 targets the epidermal growth factor receptor (EGFR) adaptor protein GAB1 which directly affects downstream cellular signaling pathways activated by EGF. Consequently, miR-US5-2 blocks the EGF-mediated proliferation of human fibroblasts. Early growth response gene 1 (EGR1) is a transcription factor activated by EGFR signaling that regulates expression of HCMV UL138. We show that miR-US5-2 regulates UL138 expression through GAB1-mediated downregulation of the signaling pathways that lead to EGR1 expression. These data suggest that miR-US5-2, through downregulation of GAB1, could play a critical role during reactivation from latency by reducing proliferation and UL138 expression.
Collapse
|
11
|
MG132 exerts anti-viral activity against HSV-1 by overcoming virus-mediated suppression of the ERK signaling pathway. Sci Rep 2020; 10:6671. [PMID: 32317666 PMCID: PMC7174428 DOI: 10.1038/s41598-020-63438-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 03/27/2020] [Indexed: 01/18/2023] Open
Abstract
Herpes simplex virus 1 (HSV-1) causes a number of clinical manifestations including cold sores, keratitis, meningitis and encephalitis. Although current drugs are available to treat HSV-1 infection, they can cause side effects such as nephrotoxicity. Moreover, owing to the emergence of drug-resistant HSV-1 strains, new anti-HSV-1 compounds are needed. Because many viruses exploit cellular host proteases and encode their own viral proteases for survival, we investigated the inhibitory effects of a panel of protease inhibitors (TLCK, TPCK, E64, bortezomib, or MG132) on HSV-1 replication and several host cell signaling pathways. We found that HSV-1 infection suppressed c-Raf-MEK1/2-ERK1/2-p90RSK signaling in host cells, which facilitated viral replication. The mechanism by which HSV-1 inhibited ERK signaling was mediated through the polyubiquitination and proteasomal degradation of Ras-guanine nucleotide-releasing factor 2 (Ras-GRF2). Importantly, the proteasome inhibitor MG132 inhibited HSV-1 replication by reversing ERK suppression in infected cells, inhibiting lytic genes (ICP5, ICP27 and UL42) expression, and overcoming the downregulation of Ras-GRF2. These results indicate that the suppression of ERK signaling via proteasomal degradation of Ras-GRF2 is necessary for HSV-1 infection and replication. Given that ERK activation by MG132 exhibits anti-HSV-1 activity, these results suggest that the proteasome inhibitor could serve as a novel therapeutic agent against HSV-1 infection.
Collapse
|
12
|
VHS, US3 and UL13 viral tegument proteins are required for Herpes Simplex Virus-Induced modification of protein kinase R. Sci Rep 2020; 10:5580. [PMID: 32221365 PMCID: PMC7101438 DOI: 10.1038/s41598-020-62619-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 03/13/2020] [Indexed: 02/07/2023] Open
Abstract
To replicate, spread and persist in the host environment, viruses have evolved several immunological escape mechanisms via the action of specific viral proteins. The model "host shut off" adopted by virion host shut off (VHS) protein of Herpes simplex type 1 (HSV-1) represents an immune evasion mechanism which affects the best-characterized component of the innate immunological response, protein kinase R (PKR). However, up to now, the real mechanism employed by VHS to control PKR is still unknown. In this paper, we implement and extend our previous findings reporting that wild-type HSV-1 is able to control PKR, whereas a VHS mutant virus (R2621) clearly induces an accumulation of phosphorylated PKR in several cell types in a VHS-RNase activity-dependent manner. Furthermore, we demonstrate for the first time a new PKR-regulatory mechanism based on the involvement of Us3 and UL13 tegument viral proteins. The combined approach of transfection and infection assay was useful to discover the new role of both viral proteins in the immunological escape and demonstrate that Us3 and UL13 control the accumulation of the phosphorylated form (ph-PKR). Lastly, since protein kinases are tightly regulated by phosphorylation events and, at the same time, phosphorylate other proteins by inducing post-translational modifications, the interplay between Us3 and VHS during HSV-1 infection has been investigated. Interestingly, we found that VHS protein accumulates at higher molecular weight following Us3 transfection, suggesting an Us3-mediated phosphorylation of VHS. These findings reveal a new intriguing interplay between viral proteins during HSV-1 infection involved in the regulation of the PKR-mediated immune response.
Collapse
|
13
|
Buehler J, Carpenter E, Zeltzer S, Igarashi S, Rak M, Mikell I, Nelson JA, Goodrum F. Host signaling and EGR1 transcriptional control of human cytomegalovirus replication and latency. PLoS Pathog 2019; 15:e1008037. [PMID: 31725811 PMCID: PMC6855412 DOI: 10.1371/journal.ppat.1008037] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 08/21/2019] [Indexed: 12/15/2022] Open
Abstract
Sustained phosphotinositide3-kinase (PI3K) signaling is critical to the maintenance of alpha and beta herpesvirus latency. We have previously shown that the beta-herpesvirus, human cytomegalovirus (CMV), regulates epidermal growth factor receptor (EGFR), upstream of PI3K, to control states of latency and reactivation. How signaling downstream of EGFR is regulated and how this impacts CMV infection and latency is not fully understood. We demonstrate that CMV downregulates EGFR early in the productive infection, which blunts the activation of EGFR and its downstream pathways in response to stimuli. However, CMV infection sustains basal levels of EGFR and downstream pathway activity in the context of latency in CD34+ hematopoietic progenitor cells (HPCs). Inhibition of MEK/ERK, STAT or PI3K/AKT pathways downstream of EGFR increases viral reactivation from latently infected CD34+ HPCs, defining a role for these pathways in latency. We hypothesized that CMV modulation of EGFR signaling might impact viral transcription important to latency. Indeed, EGF-stimulation increased expression of the UL138 latency gene, but not immediate early or early viral genes, suggesting that EGFR signaling promotes latent gene expression. The early growth response-1 (EGR1) transcription factor is induced downstream of EGFR signaling through the MEK/ERK pathway and is important for the maintenance of hematopoietic stemness. We demonstrate that EGR1 binds the viral genome upstream of UL138 and is sufficient to promote UL138 expression. Further, disruption of EGR1 binding upstream of UL138 prevents the establishment of latency in CD34+ HPCs. Our results indicate a model whereby UL138 modulation of EGFR signaling feeds back to promote UL138 gene expression and suppression of replication for latency. By this mechanism, the virus has hardwired itself into host cell biology to sense and respond to changes in homeostatic host cell signaling. Host signaling is important for regulating states of cytomegalovirus (CMV) replication and latency. We have shown that human cytomegalovirus regulates EGFR levels and trafficking and that sustained EGFR or downstream PI3K signaling is a requirement for viral latency. Changes in host signaling have the ability to alter viral and host gene expression to impact the outcome of infection. Here we show that EGFR signaling through MEK/ERK pathway induces the host EGR1 transcription factor that is highly expressed in hematopoietic stem cells and necessary for the maintenance of hematopoietic stemness. Downregulation of EGR1 promotes stem cell mobilization and differentiation, known stimuli for CMV reactivation. We identified functional EGR1 binding sites upstream of the UL138 CMV latency gene and EGR1 stimulated UL138 expression to reinforce the latent infection. Mutant viruses where the regulation of UL138 by EGR1 is disrupted are unable to establish latency in CD34+ HPCs. This study advances our understanding of how host signaling impacts decisions to enter into or exit from latency. The regulation of viral gene expression by host signaling allows the virus to sense and respond to changes in host stress or differentiation.
Collapse
Affiliation(s)
- Jason Buehler
- BIO5 Institute, University of Arizona, Tucson, Arizona, United States of America
| | - Ethan Carpenter
- BIO5 Institute, University of Arizona, Tucson, Arizona, United States of America
| | - Sebastian Zeltzer
- BIO5 Institute, University of Arizona, Tucson, Arizona, United States of America
| | - Suzu Igarashi
- BIO5 Institute, University of Arizona, Tucson, Arizona, United States of America
| | - Michael Rak
- BIO5 Institute, University of Arizona, Tucson, Arizona, United States of America
| | - Iliyana Mikell
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Jay A. Nelson
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Felicia Goodrum
- BIO5 Institute, University of Arizona, Tucson, Arizona, United States of America
- Department of Immunobiology, University of Arizona, Tucson, Arizona, United States of America
- * E-mail:
| |
Collapse
|
14
|
DuShane JK, Maginnis MS. Human DNA Virus Exploitation of the MAPK-ERK Cascade. Int J Mol Sci 2019; 20:ijms20143427. [PMID: 31336840 PMCID: PMC6679023 DOI: 10.3390/ijms20143427] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/09/2019] [Accepted: 07/11/2019] [Indexed: 12/19/2022] Open
Abstract
The extracellular signal-regulated kinases (ERKs) comprise a particular branch of the mitogen-activated protein kinase cascades (MAPK) that transmits extracellular signals into the intracellular environment to trigger cellular growth responses. Similar to other MAPK cascades, the MAPK-ERK pathway signals through three core kinases—Raf, MAPK/ERK kinase (MEK), and ERK—which drive the signaling mechanisms responsible for the induction of cellular responses from extracellular stimuli including differentiation, proliferation, and cellular survival. However, pathogens like DNA viruses alter MAPK-ERK signaling in order to access DNA replication machineries, induce a proliferative state in the cell, or even prevent cell death mechanisms in response to pathogen recognition. Differential utilization of this pathway by multiple DNA viruses highlights the dynamic nature of the MAPK-ERK pathway within the cell and the importance of its function in regulating a wide variety of cellular fates that ultimately influence viral infection and, in some cases, result in tumorigenesis.
Collapse
Affiliation(s)
- Jeanne K DuShane
- Department of Molecular and Biomedical Sciences, The University of Maine, Orono, ME 04401, USA
| | - Melissa S Maginnis
- Department of Molecular and Biomedical Sciences, The University of Maine, Orono, ME 04401, USA.
- Graduate School in Biomedical Sciences and Engineering, The University of Maine, Orono, ME 04401, USA.
| |
Collapse
|
15
|
Newcastle Disease Virus V Protein Promotes Viral Replication in HeLa Cells through the Activation of MEK/ERK Signaling. Viruses 2018; 10:v10090489. [PMID: 30213106 PMCID: PMC6163439 DOI: 10.3390/v10090489] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 08/25/2018] [Accepted: 09/05/2018] [Indexed: 12/12/2022] Open
Abstract
Newcastle disease virus (NDV) can infect a wide range of domestic and wild bird species. The non-structural V protein of NDV plays an important role in antagonizing innate host defenses to facilitate viral replication. However, there is a lack of knowledge related to the mechanisms through which the V protein regulates viral replication. The extracellular signal-regulated kinase (ERK) signaling pathway in the host is involved in a variety of functions and is activated by several stimuli, including viral replication. In this study, we show that both the lentogenic strain, La Sota, and the velogenic strain, F48E9, of NDV activate the mitogen-activated protein kinase (MEK)/ERK signaling pathway. The pharmacological inhibition of ERK1/2 phosphorylation using the highly selective inhibitors U0126 and SCH772984 resulted in the reduced levels of NDV RNA in cells and virus titers in the cell supernatant, which established an important role for the MEK/ERK signaling pathway in NDV replication. Moreover, the overexpression of the V protein in HeLa cells increased the phosphorylation of ERK1/2 and induced the transcriptional changes in the genes downstream of the MEK/ERK signaling pathway. Taken together, our results demonstrate that the V protein is involved in the ERK signaling pathway-mediated promotion of NDV replication and thus, can be investigated as a potential antiviral target.
Collapse
|
16
|
LaMassa N, Arenas-Mena C, Phillips GR. Electron microscopic characterization of nuclear egress in the sea urchin gastrula. J Morphol 2018; 279:609-615. [PMID: 29383750 DOI: 10.1002/jmor.20796] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 01/02/2018] [Accepted: 01/13/2018] [Indexed: 11/08/2022]
Abstract
Nuclear egress, also referred to as nuclear envelope (NE) budding, is a process of transport in which vesicles containing molecular complexes or viral particles leave the nucleus through budding from the inner nuclear membrane (INM) to enter the perinuclear space. Following this event, the perinuclear vesicles (PNVs) fuse with the outer nuclear membrane (ONM), where they release their contents into the cytoplasm. Nuclear egress is thought to participate in many functions such as viral replication, cellular differentiation, and synaptic development. The molecular basis for nuclear egress is now beginning to be elucidated. Here, we observe in the sea urchin gastrula, using serial section transmission electron microscopy, strikingly abundant PNVs containing as yet unidentified granules that resemble the ribonucleoprotein complexes (RNPs) previously observed in similar types of PNVs. Some PNVs were observed in the process of fusion with the ONM where they appeared to release their contents into the cytoplasm. These vesicles were abundantly observed in all three presumptive germ layers. These findings indicate that nuclear egress is likely to be an important mechanism for nucleocytoplasmic transfer during sea urchin development. The sea urchin may be a useful model to characterize further and gain a better understanding of the process of nuclear egress.
Collapse
Affiliation(s)
- Nicole LaMassa
- Department of Biology, College of Staten Island, City University of New York, Staten Island, New York, United States of America.,Center for Developmental Neuroscience, College of Staten Island, City University of New York, Staten Island, New York, United States of America.,Program in Neuroscience, The Graduate Center, City University of New York, New York, New York, United States of America
| | - Cesar Arenas-Mena
- Department of Biology, College of Staten Island, City University of New York, Staten Island, New York, United States of America
| | - Greg R Phillips
- Department of Biology, College of Staten Island, City University of New York, Staten Island, New York, United States of America.,Center for Developmental Neuroscience, College of Staten Island, City University of New York, Staten Island, New York, United States of America.,Program in Neuroscience, The Graduate Center, City University of New York, New York, New York, United States of America
| |
Collapse
|
17
|
Colao I, Pennisi R, Venuti A, Nygårdas M, Heikkilä O, Hukkanen V, Sciortino MT. The ERK-1 function is required for HSV-1-mediated G1/S progression in HEP-2 cells and contributes to virus growth. Sci Rep 2017; 7:9176. [PMID: 28835716 PMCID: PMC5569015 DOI: 10.1038/s41598-017-09529-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 07/17/2017] [Indexed: 12/22/2022] Open
Abstract
The herpes simplex virus 1 is able to readdress different cellular pathways including cell cycle to facilitate its replication and spread. During infection, the progression of the cell cycle from G1 to S phase makes the cellular replication machinery accessible to viral DNA replication. In this work we established that HSV-1, in asynchronized HEp-2 cells, strictly controls cell cycle progression increasing S-phase population from 9 hours post infection until the end of HSV-1 replication. The G1/S phases progression depends on two important proteins, cyclin E and CDK2. We demonstrate that their phosphorylated status and then their activity during the infection is strongly correlated to viral replication events. In addition, HSV-1 is able to recruit and distribute ERK1/2 proteins in a spatio-temporal fashion, highlighting its downstream regulatory effects on cellular processes. According with this data, using chemical inhibitor U0126 and ERK dominant negative cells we found that the lack of ERK1 activity affects cyclin E protein accumulation, viral gene transcription and percentage of the cells in S phase, during the viral replication. These data suggested a complex interaction between ERK, cell cycle progression and HSV-1 replication.
Collapse
Affiliation(s)
- Ivana Colao
- Department of Biological and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, 98166, Messina, Italy
| | - Rosamaria Pennisi
- Department of Biological and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, 98166, Messina, Italy
| | - Assunta Venuti
- Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
| | | | - Outi Heikkilä
- Department of Virology, University of Turku, Turku, Finland
| | - Veijo Hukkanen
- Department of Virology, University of Turku, Turku, Finland
| | - Maria Teresa Sciortino
- Department of Biological and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, 98166, Messina, Italy.
| |
Collapse
|
18
|
Strunk U, Ramos DG, Saffran HA, Smiley JR. Role of Herpes simplex virus 1 VP11/12 tyrosine-based binding motifs for Src family kinases, p85, Grb2 and Shc in activation of the phosphoinositide 3-kinase-Akt pathway. Virology 2016; 498:31-35. [DOI: 10.1016/j.virol.2016.08.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 08/05/2016] [Accepted: 08/08/2016] [Indexed: 12/25/2022]
|
19
|
Zhu L, Yuan C, Huang L, Ding X, Wang J, Zhang D, Zhu G. The activation of p38MAPK and JNK pathways in bovine herpesvirus 1 infected MDBK cells. Vet Res 2016; 47:91. [PMID: 27590675 PMCID: PMC5010765 DOI: 10.1186/s13567-016-0377-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 06/28/2016] [Indexed: 12/31/2022] Open
Abstract
We have shown previously that BHV-1 infection activates Erk1/2 signaling. Here, we show that BHV-1 provoked an early-stage transient and late-stage sustained activation of JNK, p38MAPK and c-Jun signaling in MDBK cells. C-Jun phosphorylation was dependent on JNK. These early events were partially due to the viral entry process. Unexpectedly, reactive oxygen species were not involved in the later activation phase. Interestingly, only activated JNK facilitated the viral multiplication identified through both chemical inhibitor and siRNA. Collectively, this study provides insight into our understanding of early stages of BHV-1 infection.
Collapse
Affiliation(s)
- Liqian Zhu
- College of Veterinary Medicine and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, 48 Wenhui East Road, Yangzhou, 225009, China
| | - Chen Yuan
- College of Veterinary Medicine and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, 48 Wenhui East Road, Yangzhou, 225009, China
| | - Liyuan Huang
- College of Veterinary Medicine and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, 48 Wenhui East Road, Yangzhou, 225009, China
| | - Xiuyan Ding
- College of Veterinary Medicine and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, 48 Wenhui East Road, Yangzhou, 225009, China.,The Test Center of Yangzhou University, 48 Wenhui East Road, Yangzhou, 225009, China
| | - Jianye Wang
- College of Veterinary Medicine and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, 48 Wenhui East Road, Yangzhou, 225009, China
| | - Dong Zhang
- College of Veterinary Medicine and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, 48 Wenhui East Road, Yangzhou, 225009, China
| | - Guoqiang Zhu
- College of Veterinary Medicine and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, 48 Wenhui East Road, Yangzhou, 225009, China.
| |
Collapse
|
20
|
Royer DJ, Conrady CD, Carr DJJ. Herpesvirus-Associated Lymphadenitis Distorts Fibroblastic Reticular Cell Microarchitecture and Attenuates CD8 T Cell Responses to Neurotropic Infection in Mice Lacking the STING-IFNα/β Defense Pathways. THE JOURNAL OF IMMUNOLOGY 2016; 197:2338-52. [PMID: 27511736 DOI: 10.4049/jimmunol.1600574] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 07/06/2016] [Indexed: 01/02/2023]
Abstract
Type I IFN (IFN-α/β)-driven immune responses to acute viral infection are critical to counter replication and prevent dissemination. However, the mechanisms underlying host resistance to HSV type 1 (HSV-1) are incompletely understood. In this study, we show that mice with deficiencies in IFN-α/β signaling or stimulator of IFN genes (STING) exhibit exacerbated neurovirulence and atypical lymphotropic dissemination of HSV-1 following ocular infection. Synergy between IFN-α/β signaling and efficacy of early adaptive immune responses to HSV-1 were dissected using bone marrow chimeras and adoptive cell transfer approaches to profile clonal expansion, effector function, and recruitment of HSV-specific CD8(+) T cells. Lymphotropic viral dissemination was commensurate with abrogated CD8(+) T cell responses and pathological alterations of fibroblastic reticular cell networks in the draining lymph nodes. Our results show that resistance to HSV-1 in the trigeminal ganglia during acute infection is conferred in part by STING and IFN-α/β signaling in both bone marrow-derived and -resident cells, which coalesce to support a robust HSV-1-specific CD8(+) T cell response.
Collapse
Affiliation(s)
- Derek J Royer
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104; and Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - Christopher D Conrady
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104; and
| | - Daniel J J Carr
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104; and Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| |
Collapse
|
21
|
Gershburg S, Geltz J, Peterson KE, Halford WP, Gershburg E. The UL13 and US3 Protein Kinases of Herpes Simplex Virus 1 Cooperate to Promote the Assembly and Release of Mature, Infectious Virions. PLoS One 2015; 10:e0131420. [PMID: 26115119 PMCID: PMC4482649 DOI: 10.1371/journal.pone.0131420] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 06/02/2015] [Indexed: 11/18/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1) encodes two bona fide serine/threonine protein kinases, the US3 and UL13 gene products. HSV-1 ΔUS3 mutants replicate with wild-type efficiency in cultured cells, and HSV-1 ΔUL13 mutants exhibit <10-fold reduction in infectious viral titers. Given these modest phenotypes, it remains unclear how the US3 and UL13 protein kinases contribute to HSV-1 replication. In the current study, we designed a panel of HSV-1 mutants, in which portions of UL13 and US3 genes were replaced by expression cassettes encoding mCherry protein or green fluorescent protein (GFP), respectively, and analyzed DNA replication, protein expression, and spread of these mutants in several cell types. Loss of US3 function alone had largely negligible effect on viral DNA accumulation, gene expression, virion release, and spread. Loss of UL13 function alone also had no appreciable effects on viral DNA levels. However, loss of UL13 function did result in a measurable decrease in the steady-state levels of two viral glycoproteins (gC and gD), release of total and infectious virions, and viral spread. Disruption of both genes did not affect the accumulation of viral DNA, but resulted in further reduction in gC and gD steady-state levels, and attenuation of viral spread and infectious virion release. These data show that the UL13 kinase plays an important role in the late phase of HSV-1 infection, likely by affecting virion assembly and/or release. Moreover, the data suggest that the combined activities of the US3 and UL13 protein kinases are critical to the efficient assembly and release of infectious virions from HSV-1-infected cells.
Collapse
Affiliation(s)
- Svetlana Gershburg
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL 62794–9626, United States of America
| | - Joshua Geltz
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL 62794–9626, United States of America
| | - Karin E. Peterson
- Rocky Mountain Laboratories, National Institute of Allergy and Infectious Disease, Hamilton, MT 59840, United States of America
| | - William P. Halford
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL 62794–9626, United States of America
| | - Edward Gershburg
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL 62794–9626, United States of America
- * E-mail:
| |
Collapse
|
22
|
Involvement of ERK pathway in interferon alpha-mediated antiviral activity against hepatitis C virus. Cytokine 2015; 72:17-24. [DOI: 10.1016/j.cyto.2014.11.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 11/23/2014] [Accepted: 11/26/2014] [Indexed: 01/19/2023]
|
23
|
Royall E, Doyle N, Abdul-Wahab A, Emmott E, Morley SJ, Goodfellow I, Roberts LO, Locker N. Murine norovirus 1 (MNV1) replication induces translational control of the host by regulating eIF4E activity during infection. J Biol Chem 2015; 290:4748-4758. [PMID: 25561727 PMCID: PMC4335213 DOI: 10.1074/jbc.m114.602649] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Protein synthesis is a tightly controlled process responding to several stimuli, including viral infection. As obligate intracellular parasites, viruses depend on the translation machinery of the host and can manipulate it by affecting the availability and function of specific eukaryotic initiation factors (eIFs). Human norovirus is a member of the Caliciviridae family and is responsible for gastroenteritis outbreaks. Previous studies on feline calicivirus and murine norovirus 1 (MNV1) demonstrated that the viral protein, genome-linked (VPg), acts to direct translation by hijacking the host protein synthesis machinery. Here we report that MNV1 infection modulates the MAPK pathway to activate eIF4E phosphorylation. Our results show that the activation of p38 and Mnk during MNV1 infection is important for MNV1 replication. Furthermore, phosphorylated eIF4E relocates to the polysomes, and this contributes to changes in the translational state of specific host mRNAs. We propose that global translational control of the host by eIF4E phosphorylation is a key component of the host-pathogen interaction.
Collapse
Affiliation(s)
- Elizabeth Royall
- University of Surrey, Faculty of Health and Medical Sciences, School of Biosciences and Medicine, Guildford GU2 7HX, United Kingdom
| | - Nicole Doyle
- University of Surrey, Faculty of Health and Medical Sciences, School of Biosciences and Medicine, Guildford GU2 7HX, United Kingdom
| | - Azimah Abdul-Wahab
- University of Surrey, Faculty of Health and Medical Sciences, School of Biosciences and Medicine, Guildford GU2 7HX, United Kingdom
| | - Ed Emmott
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2QQ, United Kingdom
| | - Simon J Morley
- Department of Biochemistry and Molecular Biology, School of Life Sciences, University of Sussex, JMS Building, Brighton BN1 9RH, United Kingdom
| | - Ian Goodfellow
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2QQ, United Kingdom
| | - Lisa O Roberts
- University of Surrey, Faculty of Health and Medical Sciences, School of Biosciences and Medicine, Guildford GU2 7HX, United Kingdom
| | - Nicolas Locker
- University of Surrey, Faculty of Health and Medical Sciences, School of Biosciences and Medicine, Guildford GU2 7HX, United Kingdom.
| |
Collapse
|
24
|
Pseudorabies virus triggers glycoprotein gE-mediated ERK1/2 activation and ERK1/2-dependent migratory behavior in T cells. J Virol 2014; 89:2149-56. [PMID: 25473050 DOI: 10.1128/jvi.02549-14] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
UNLABELLED The interaction between viruses and immune cells of the host may lead to modulation of intracellular signaling pathways and to subsequent changes in cellular behavior that are of benefit for either virus or host. ERK1/2 (extracellular signal regulated kinase 1/2) signaling represents one of the key cellular signaling axes. Here, using wild-type and gE null virus, recombinant gE, and gE-transfected cells, we show that the gE glycoprotein of the porcine Varicellovirus pseudorabies virus (PRV) triggers ERK1/2 phosphorylation in Jurkat T cells and primary porcine T lymphocytes. PRV-induced ERK1/2 signaling resulted in homotypic T cell aggregation and increased motility of T lymphocytes. Our study reveals a new function of the gE glycoprotein of PRV and suggests that PRV, through activation of ERK1/2 signaling, has a substantial impact on T cell behavior. IMPORTANCE Herpesviruses are known to be highly successful in evading the immune system of their hosts, subverting signaling pathways of the host to their own advantage. The ERK1/2 signaling pathway, being involved in many cellular processes, represents a particularly attractive target for viral manipulation. Glycoprotein E (gE) is an important virulence factor of alphaherpesviruses, involved in viral spread. In this study, we show that gE has the previously uncharacterized ability to trigger ERK1/2 phosphorylation in T lymphocytes. We also show that virus-induced ERK1/2 signaling leads to increased migratory behavior of T cells and that migratory T cells can spread the infection to susceptible cells. In conclusion, our results point to a novel function for gE and suggest that virus-induced ERK1/2 activation may trigger PRV-carrying T lymphocytes to migrate and infect other cells susceptible to PRV replication.
Collapse
|
25
|
Herpes simplex virus 1 protein kinase US3 hyperphosphorylates p65/RelA and dampens NF-κB activation. J Virol 2014; 88:7941-51. [PMID: 24807716 DOI: 10.1128/jvi.03394-13] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Nuclear factor κB (NF-κB) plays important roles in innate immune responses by regulating the expression of a large number of target genes involved in the immune and inflammatory response, apoptosis, cell proliferation, differentiation, and survival. To survive in the host cells, viruses have evolved multiple strategies to evade and subvert the host immune response. Herpes simplex virus 1 (HSV-1) bears a large DNA genome, with the capacity to encode many different viral proteins to counteract the host immune responses. In the present study, we demonstrated that HSV-1 protein kinase US3 significantly inhibited NF-κB activation and decreased the expression of inflammatory chemokine interleukin-8 (IL-8). US3 was also shown to hyperphosphorylate p65 at serine 75 and block its nuclear translocation. Two US3 mutants, K220M and D305A, still interacted with p65; however, they could not hyperphosphorylate p65, indicating that the kinase activity of US3 was indispensable for the function. The attenuation of NF-κB activation by HSV-1 US3 protein kinase may represent a critical adaptation to enable virus persistence within the host. Importance: This study demonstrated that HSV-1 protein kinase US3 significantly inhibited NF-κB activation and decreased the expression of inflammatory chemokine interleukin-8 (IL-8). US3 hyperphosphorylated p65 at serine 75 to inhibit NF-κB activation. The kinase activity of US3 was indispensable for its hyperphosphorylation of p65 and abrogation of the nuclear translocation of p65. The present study elaborated a novel mechanism of HSV-1 US3 to evade the host innate immunity.
Collapse
|
26
|
Herpes simplex virus protein kinases US3 and UL13 modulate VP11/12 phosphorylation, virion packaging, and phosphatidylinositol 3-kinase/Akt signaling activity. J Virol 2014; 88:7379-88. [PMID: 24741093 DOI: 10.1128/jvi.00712-14] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
UNLABELLED The phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway plays key roles in diverse cellular activities and promotes cell growth and survival. It is therefore unsurprising that most viruses modify this pathway in order to facilitate their replication and spread. Previous work has suggested that the herpes simplex virus 1 (HSV-1) tegument proteins VP11/12 and US3 protein kinase modulate the PI3K/Akt pathway, albeit in opposing ways: VP11/12 binds and activates Src family kinases (SFKs), is tyrosine phosphorylated, recruits PI3K in an SFK-dependent fashion, and is required for HSV-induced phosphorylation of Akt on its activating residues; in contrast, US3 inhibits Akt activation and directly phosphorylates downstream Akt targets. We examined if US3 negatively regulates Akt by dampening the signaling activity of VP11/12. Consistent with this hypothesis, the enhanced Akt activation that occurs during US3-null infection requires VP11/12 and correlates with an increase in SFK-dependent VP11/12 tyrosine phosphorylation. In addition, deleting US3 leads to a striking increase in the relative abundances of several VP11/12 species that migrate with reduced mobility during SDS-PAGE. These forms arise through phosphorylation, strictly require the viral UL13 protein kinase, and are excluded from virions. Taken in combination, these data indicate that US3 dampens SFK-dependent tyrosine and UL13-dependent serine/threonine phosphorylation of VP11/12, thereby inhibiting VP11/12 signaling and promoting virion packaging of VP11/12. These results illustrate that protein phosphorylation events mediated by viral protein kinases serve to coordinate the roles of VP11/12 as a virion component and intracellular signaling molecule. IMPORTANCE Herpesvirus tegument proteins play dual roles during the viral life cycle, serving both as structural components of the virus particle and as modulators of cellular and viral functions in infected cells. How these two roles are coordinated during infection and virion assembly is a fundamental and largely unanswered question. Here we addressed this issue with herpes simplex virus VP11/12, a tegument protein that activates the cellular PI3K/Akt signaling pathway. We showed that protein phosphorylation mediated by the viral US3 and UL13 kinases serves to orchestrate its functions: UL13 appears to inhibit VP11/12 virion packaging, while US3 antagonizes UL13 action and independently dampens VP11/12 signaling activity.
Collapse
|
27
|
Pseudorabies virus pUL46 induces activation of ERK1/2 and regulates herpesvirus-induced nuclear envelope breakdown. J Virol 2014; 88:6003-11. [PMID: 24623429 DOI: 10.1128/jvi.00501-14] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
UNLABELLED Herpesvirus capsid morphogenesis occurs in the nucleus, while final maturation takes place in the cytosol, requiring translocation of capsids through the nuclear envelope. The nuclear egress complex, consisting of homologs of herpes simplex virus pUL31 and pUL34, is required for efficient nuclear egress via primary envelopment and de-envelopment. Recently, we described an alternative mode of nuclear escape by fragmentation of the nuclear envelope induced by replication-competent pUL31 and pUL34 deletion mutants of the alphaherpesvirus pseudorabies virus (PrV), which had been selected by serial passaging in cell culture. Both passaged viruses carry congruent mutations in seven genes, including UL46, which encodes one of the major tegument proteins. Herpesvirus pUL46 homologs have recently been shown to activate the PI3K-Akt and ERK1/2 signaling pathways, which are involved in regulation of mitosis and apoptosis. Since in uninfected cells fragmentation of the nuclear envelope occurs during mitosis and apoptosis, we analyzed whether pUL46 of PrV is involved in signaling events impairing the integrity of the nuclear envelope. We show here that PrV pUL46 is able to induce phosphorylation of ERK1/2 and, thus, expression of ERK1/2 target genes but fails to activate the PI3K-Akt pathway. Deletion of UL46 from PrV-ΔUL34Pass and PrV-ΔUL31Pass or replacement by wild-type UL46 resulted in enhanced nuclear envelope breakdown, indicating that the mutations in pUL46 may limit the extent of NEBD. Thus, although pUL46 induces ERK1/2 phosphorylation, controlling the integrity of the nuclear envelope is independent of the ERK1/2 signaling pathway. IMPORTANCE Herpesvirus nucleocapsids can leave the nucleus by regulated, vesicle-mediated transport through the nuclear envelope, designated nuclear egress, or by inducing nuclear envelope breakdown (NEBD). The viral proteins involved in NEBD are unknown. We show here that the pseudorabies virus tegument protein pUL46 induces the ERK1/2 signaling pathway and modulates NEBD. However, these two processes are independent and ERK1/2 signaling induced by pUL46 is not involved in herpesvirus-induced NEBD.
Collapse
|
28
|
Epidermal growth factor receptor-PI3K signaling controls cofilin activity to facilitate herpes simplex virus 1 entry into neuronal cells. mBio 2014; 5:e00958-13. [PMID: 24425731 PMCID: PMC3903278 DOI: 10.1128/mbio.00958-13] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Herpes simplex virus type 1 (HSV-1) establishes latency in neurons and can cause severe disseminated infection with neurological impairment and high mortality. This neurodegeneration is thought to be tightly associated with virus-induced cytoskeleton disruption. Currently, the regulation pattern of the actin cytoskeleton and the involved molecular mechanisms during HSV-1 entry into neurons remain unclear. Here, we demonstrate that the entry of HSV-1 into neuronal cells induces biphasic remodeling of the actin cytoskeleton and an initial inactivation followed by the subsequent activation of cofilin, a member of the actin depolymerizing factor family that is critical for actin reorganization. The disruption of F-actin dynamics or the modulation of cofilin activity by mutation, knockdown, or overexpression affects HSV-1 entry efficacy and virus-mediated cell ruffle formation. Binding of the HSV-1 envelope initiates the epidermal growth factor receptor (EGFR)-phosphatidylinositide 3-kinase (PI3K) signaling pathway, which leads to virus-induced early cofilin phosphorylation and F-actin polymerization. Moreover, the extracellular signal-regulated kinase (ERK) kinase and Rho-associated, coiled-coil-containing protein kinase 1 (ROCK) are recruited as downstream mediators of the HSV-1-induced cofilin inactivation pathway. Inhibitors specific for those kinases significantly reduce the virus infectivity without affecting virus binding to the target cells. Additionally, lipid rafts are clustered to promote EGFR-associated signaling cascade transduction. We propose that HSV-1 hijacks cofilin to initiate infection. These results could promote a better understanding of the pathogenesis of HSV-1-induced neurological diseases. The actin cytoskeleton is involved in many crucial cellular processes and acts as an obstacle to pathogen entry into host cells. Because HSV-1 establishes lifelong latency in neurons and because neuronal cytoskeletal disruption is thought to be the main cause of HSV-1-induced neurodegeneration, understanding the F-actin remodeling pattern by HSV-1 infection and the molecular interactions that facilitate HSV-1 entry into neurons is important. In this study, we showed that HSV-1 infection induces the rearrangement of the cytoskeleton as well as the initial inactivation and subsequent activation of cofilin. Then, we determined that activation of the EGFR-PI3K-Erk1/2 signaling pathway inactivates cofilin and promotes F-actin polymerization. We postulate that by regulating actin cytoskeleton dynamics, cofilin biphasic activation could represent the specific cellular machinery usurped by pathogen infection, and these results will greatly contribute to the understanding of HSV-1-induced early and complex changes in host cells that are closely linked to HSV-1 pathogenesis.
Collapse
|
29
|
Plus-end tracking proteins, CLASPs, and a viral Akt mimic regulate herpesvirus-induced stable microtubule formation and virus spread. Proc Natl Acad Sci U S A 2013; 110:18268-73. [PMID: 24145430 DOI: 10.1073/pnas.1310760110] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Although microtubules (MTs) frequently form highly dynamic networks, subsets of MTs become stabilized in response to environmental cues and function as specialized tracks for vesicle and macromolecular trafficking. MT stabilization is controlled by specialized plus-end tracking proteins (+TIPs) whose accumulation at the MT ends is facilitated by the end-binding protein, EB1, and regulated by various signaling pathways. As cargoes themselves, viruses are dependent on MTs for their intracellular movement. Although many viruses affect MT organization, the potential contribution of MT stabilization by +TIPs to infection remains unknown. Here we show that early in infection of primary human fibroblasts, herpes simplex virus type 1 (HSV-1) disrupts the centrosome, the primary MT organizing center in many cell types. As infection progresses HSV-1 induces the formation of stable MT subsets through inactivation of glycogen synthase kinase 3beta by the viral Ser/Thr kinase, Us3. Stable MT formation is reduced in cells infected with Us3 mutants and those stable MTs that form cluster around the trans-Golgi network. Downstream of glycogen synthase kinase 3beta, cytoplasmic linker-associated proteins (CLASPs), specialized host +TIPs that control MT formation at the trans-Golgi network and cortical capture, are specifically required for virus-induced MT stabilization and HSV-1 spread. Our findings demonstrate the biological importance of +TIPs to viral infection and suggest that HSV-1 has evolved to exploit the trans-Golgi network as an alternate MT organizing center to facilitate virus spread.
Collapse
|
30
|
Herpes simplex virus 1 serine/threonine kinase US3 hyperphosphorylates IRF3 and inhibits beta interferon production. J Virol 2013; 87:12814-27. [PMID: 24049179 DOI: 10.1128/jvi.02355-13] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Viral infection initiates a series of signaling cascades that lead to the transcription of interferons (IFNs), finally inducing interferon-stimulated genes (ISGs) to eliminate viruses. Viruses have evolved a variety of strategies to modulate host IFN-mediated immune responses. Herpes simplex virus 1 (HSV-1) US3, a Ser/Thr kinase conserved in alphaherpesviruses, was previously reported to counteract host innate immunity; however, the molecular mechanism is elusive. In this study, we report that US3 blocks IFN-β production by hyperphosphorylating IFN regulatory factor 3 (IRF3). Ectopic expression of US3 protein significantly inhibited Sendai virus (SeV)-mediated activation of IFN-β and IFN-stimulated response element (ISRE) promoters and the transcription of IFN-β, ISG54, and ISG56. US3 was also shown to block SeV-induced dimerization and nuclear translocation of IRF3. The kinase activity was indispensable for its inhibitory function, as kinase-dead (KD) US3 mutants K220M and D305A could not inhibit IFN-β production. Furthermore, US3 interacted with and hyperphosphorylated IRF3 at Ser175 to prevent IRF3 activation. Finally, the US3 KD mutant viruses were constructed and denoted K220M or D305A HSV-1, respectively. Cells and mice infected with both mutant viruses produced remarkably larger amounts of IFN-β than those infected with wild-type HSV-1. For the first time, these findings provide convincing evidence that US3 hyperphosphorylates IRF3, blocks the production of IFN-β, and subverts host innate immunity.
Collapse
|
31
|
Role of herpes simplex virus VP11/12 tyrosine-based motifs in binding and activation of the Src family kinase Lck and recruitment of p85, Grb2, and Shc. J Virol 2013; 87:11276-86. [PMID: 23946459 DOI: 10.1128/jvi.01702-13] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Previous studies have shown that the abundant herpes simplex virus 1 (HSV-1) tegument protein VP11/12, encoded by gene UL46, stimulates phosphatidylinositol 3-kinase (PI3-kinase)/Akt signaling: it binds the Src family kinase (SFK) Lck, is tyrosine phosphorylated, recruits the p85 subunit of PI3-kinase, and is essential for the activation of Akt during HSV-1 infection. The C-terminal region of VP11/12 contains tyrosine-based motifs predicted to bind the SH2 domains of SFKs (YETV and YEEI), p85 (YTHM), and Grb2 (YENV) and the phosphotyrosine-binding (PTB) domain of Shc (NPLY). We inactivated each of these motifs in the context of the intact viral genome and examined effects on binding and activation of Lck and recruitment of p85, Grb2, and Shc. Inactivating the p85, Grb2, or Shc motif reduced (p85) or eliminated (Grb2 and Shc) the interaction with the cognate signaling molecule without greatly affecting the other interactions or activation of Lck. Inactivating either SFK motif had only a minor effect on Lck binding and little or no effect on recruitment of p85, Grb2, or Shc. In contrast, inactivation of both SFK motifs severely reduced Lck binding and activation and tyrosine phosphorylation of VP11/12 and reduced (p85) or eliminated (Grb2 and Shc) binding of other signaling proteins. Overall, these data demonstrate the key redundant roles of the VP11/12 SFK-binding motifs in the recruitment and activation of SFKs and indicate that activated SFKs then lead (directly or indirectly) to phosphorylation of the additional motifs involved in recruiting p85, Grb2, and Shc. Thus, VP11/12 appears to mimic an activated growth factor receptor.
Collapse
|