1
|
G Popova P, Chen SP, Liao S, Sadarangani M, Blakney AK. Clinical perspective on topical vaccination strategies. Adv Drug Deliv Rev 2024; 208:115292. [PMID: 38522725 DOI: 10.1016/j.addr.2024.115292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/01/2024] [Accepted: 03/19/2024] [Indexed: 03/26/2024]
Abstract
Vaccination is one of the most successful measures in modern medicine to combat diseases, especially infectious diseases, and saves millions of lives every year. Vaccine design and development remains critical and involves many aspects, including the choice of platform, antigen, adjuvant, and route of administration. Topical vaccination, defined herein as the introduction of a vaccine to any of the three layers of the human skin, has attracted interest in recent years as an alternative vaccination approach to the conventional intramuscular administration because of its potential to be needle-free and induce a superior immune response against pathogens. In this review, we describe recent progress in developing topical vaccines, highlight progress in the development of delivery technologies for topical vaccines, discuss potential factors that might impact the topical vaccine efficacy, and provide an overview of the current clinical landscape of topical vaccines.
Collapse
Affiliation(s)
- Petya G Popova
- School of Biomedical Engineering, University of British Columbia, 2222 Health Sciences Mall, Vancouver, British Columbia V6T 2B9, Canada; Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, British Columbia V6T 1Z4, Canada
| | - Sunny P Chen
- School of Biomedical Engineering, University of British Columbia, 2222 Health Sciences Mall, Vancouver, British Columbia V6T 2B9, Canada; Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, British Columbia V6T 1Z4, Canada
| | - Suiyang Liao
- School of Biomedical Engineering, University of British Columbia, 2222 Health Sciences Mall, Vancouver, British Columbia V6T 2B9, Canada; Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, British Columbia V6T 1Z4, Canada; Life Science Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | - Manish Sadarangani
- Vaccine Evaluation Center, BC Children's Hospital Research Institute, 950 West 28th Ave, Vancouver, British Columbia V5Z 4H4, Canada; Department of Pediatrics, University of British Columbia, 4480 Oak St, Vancouver, BC V6H 0B3, Canada
| | - Anna K Blakney
- School of Biomedical Engineering, University of British Columbia, 2222 Health Sciences Mall, Vancouver, British Columbia V6T 2B9, Canada; Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, British Columbia V6T 1Z4, Canada.
| |
Collapse
|
2
|
Khalid K, Poh CL. The development of DNA vaccines against SARS-CoV-2. Adv Med Sci 2023; 68:213-226. [PMID: 37364379 PMCID: PMC10290423 DOI: 10.1016/j.advms.2023.05.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/07/2023] [Accepted: 05/31/2023] [Indexed: 06/28/2023]
Abstract
BACKGROUND The COVID-19 pandemic exerted significant impacts on public health and global economy. Research efforts to develop vaccines at warp speed against SARS-CoV-2 led to novel mRNA, viral vectored, and inactivated vaccines being administered. The current COVID-19 vaccines incorporate the full S protein of the SARS-CoV-2 Wuhan strain but rapidly emerging variants of concern (VOCs) have led to significant reductions in protective efficacies. There is an urgent need to develop next-generation vaccines which could effectively prevent COVID-19. METHODS PubMed and Google Scholar were systematically reviewed for peer-reviewed papers up to January 2023. RESULTS A promising solution to the problem of emerging variants is a DNA vaccine platform since it can be easily modified. Besides expressing whole protein antigens, DNA vaccines can also be constructed to include specific nucleotide genes encoding highly conserved and immunogenic epitopes from the S protein as well as from other structural/non-structural proteins to develop effective vaccines against VOCs. DNA vaccines are associated with low transfection efficiencies which could be enhanced by chemical, genetic, and molecular adjuvants as well as delivery systems. CONCLUSIONS The DNA vaccine platform offers a promising solution to the design of effective vaccines. The challenge of limited immunogenicity in humans might be solved through the use of genetic modifications such as the addition of nuclear localization signal (NLS) peptide gene, strong promoters, MARs, introns, TLR agonists, CD40L, and the development of appropriate delivery systems utilizing nanoparticles to increase uptake by APCs in enhancing the induction of potent immune responses.
Collapse
Affiliation(s)
- Kanwal Khalid
- Centre for Virus and Vaccine Research, School of Medical and Life Sciences, Sunway University, Bandar Sunway, Malaysia
| | - Chit Laa Poh
- Centre for Virus and Vaccine Research, School of Medical and Life Sciences, Sunway University, Bandar Sunway, Malaysia.
| |
Collapse
|
3
|
Immunogenicity after outbreak response immunization activities among young healthcare workers with secondary vaccine failure during the measles epidemic in Korea, 2019. BMC Infect Dis 2022; 22:530. [PMID: 35676650 PMCID: PMC9175155 DOI: 10.1186/s12879-022-07511-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/27/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Despite high vaccination coverage, measles outbreaks have been reported in measles elimination countries, especially among healthcare workers in their 20 and 30 s. This study was designed to identify measles-susceptible individuals and to evaluate whether primary or secondary vaccine failure occurred during measles outbreak response immunization (ORI) activities. METHODS The study population was divided into three groups as follows: natural immunity group (Group 1), vaccine-induced immunity group (Group 2), and vaccine failure group (Group 3). We evaluated the immunogenicity of measles among healthcare workers using three methods-enzyme-linked immunoassays, plaque reduction neutralization tests, and avidity assays. The results were assessed at baseline, 4 weeks after, and 6 months after the completion of measles-mumps-rubella (MMR) vaccination. RESULTS In total, 120 subjects were enrolled, with 40 subjects in each group. The median age of Group 3 was 29 years, which was significantly lower than that of the other groups. The baseline negative measles virus (MeV) IgG in Group 3 increased to a median value of 165 AU/mL at 4 weeks after ORI and was lower than that in Groups 1 and 2. The median neutralizing antibody titer was highest in Group 1, and this was significantly different from that in Group 2 or Group 3 at 4 weeks (944 vs. 405 vs. 482 mIU/mL, P = 0.001) and 6 months (826 vs. 401 vs. 470, P = 0.011) after ORI. The rates of high MeV avidity IgG were highest in Group 2, and these were significantly different from those in Groups 1 or 3 at 4 weeks (77.5 vs. 90% vs. 88.6%, P = 0.03) and 6 months (81 vs. 94.8 vs. 82.1%, P = 0.01) after ORI. CONCLUSIONS Considering the MeV-neutralizing antibodies and IgG avidity after MMR vaccination in measles-susceptible group, vaccine failure is inferred as secondary vaccine failure, and further data regarding the maintenance of immunogenicity are needed based on long-term data. The MeV-neutralizing antibody levels were highest in the natural immunity group, and the primary vaccine-induced immunity group showed the highest rates of high MeV IgG avidity.
Collapse
|
4
|
Abstract
My great-grandparents were immigrants from Sweden and settled as farmers in Iowa and Illinois. My father, the oldest of six children, was the first in his family to go to college and had careers as a petroleum geologist and an academic. My mother, the youngest of four children, had older siblings in education, and she focused on early childhood education. My childhood in Oklahoma with two younger sisters was happy and comfortable, and public school prepared me well. My career trajectory into virology did not involve much if any advance planning but was characterized by recognizing the fascinating puzzles of virus diseases, being in good places at the right time, taking advantage of opportunities as they presented themselves, and being surrounded by great mentors, colleagues, trainees, and family. Most of my career was spent studying two diseases caused by RNA viruses, alphavirus encephalomyelitis and measles, and was enriched with several leadership opportunities.
Collapse
Affiliation(s)
- Diane E Griffin
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205, USA;
| |
Collapse
|
5
|
Julik E, Reyes-Del Valle J. A Recombinant Measles Vaccine with Enhanced Resistance to Passive Immunity. Viruses 2017; 9:v9100265. [PMID: 28934110 PMCID: PMC5691617 DOI: 10.3390/v9100265] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 09/19/2017] [Accepted: 09/19/2017] [Indexed: 12/12/2022] Open
Abstract
Current measles vaccines suffer from poor effectiveness in young infants due primarily to the inhibitory effect of residual maternal immunity on vaccine responses. The development of a measles vaccine that resists such passive immunity would strongly contribute to the stalled effort toward measles eradication. In this concise communication, we show that a measles virus (MV) with enhanced hemagglutinin (H) expression and incorporation, termed MVvac2-H2, retained its enhanced immunogenicity, previously established in older mice, when administered to very young, genetically modified, MV-susceptible mice in the presence of passive anti-measles immunity. This immunity level mimics the sub-neutralizing immunity prevalent in infants too young to be vaccinated. Additionally, toward a more physiological small animal model of maternal anti-measles immunity interference, we document vertical transfer of passive anti-MV immunity in genetically-modified, MV susceptible mice and show in this physiological model a better MVvac2-H2 immunogenic profile than that of the parental vaccine strain. In sum, these data support the notion that enhancing MV hemagglutinin incorporation can circumvent in vivo neutralization. This strategy merits additional exploration as an alternative pediatric measles vaccine.
Collapse
Affiliation(s)
- Emily Julik
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA.
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Jorge Reyes-Del Valle
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA.
- Process Development Department, Virus and Gene Therapy, Merck KGaA, 64293 Darmstadt, Germany.
| |
Collapse
|
6
|
Evolution of T Cell Responses during Measles Virus Infection and RNA Clearance. Sci Rep 2017; 7:11474. [PMID: 28904342 PMCID: PMC5597584 DOI: 10.1038/s41598-017-10965-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 08/17/2017] [Indexed: 01/21/2023] Open
Abstract
Measles is an acute viral disease associated both with immune suppression and development of life-long immunity. Clearance of measles virus (MeV) involves rapid elimination of infectious virus during the rash followed by slow elimination of viral RNA. To characterize cellular immune responses during recovery, we analyzed the appearance, specificity and function of MeV-specific T cells for 6 months after respiratory infection of rhesus macaques with wild type MeV. IFN-γ and IL-17-producing cells specific for the hemagglutinin and nucleocapsid proteins appeared in circulation in multiple waves approximately 2-3, 8 and 18–24 weeks after infection. IFN-γ-secreting cells were most abundant early and IL-17-secreting cells late. Both CD4+ and CD8+ T cells were sources of IFN-γ and IL-17, and IL-17-producing cells expressed RORγt. Therefore, the cellular immune response evolves during MeV clearance to produce functionally distinct subsets of MeV-specific CD4+ and CD8+ T cells at different times after infection.
Collapse
|
7
|
Silveira MM, Conceição FR, Mendonça M, Moreira GMSG, Da Cunha CEP, Conrad NL, Oliveira PDD, Hartwig DD, De Leon PMM, Moreira ÂN. Saccharomyces boulardii improves humoral immune response to DNA vaccines against leptospirosis. J Med Microbiol 2017; 66:184-190. [DOI: 10.1099/jmm.0.000414] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Affiliation(s)
- Marcelle Moura Silveira
- Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Campus Universitário S/N, Caixa Postal 354, 96010-900 Pelotas, RS, Brazil
| | - Fabricio Rochedo Conceição
- Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Campus Universitário S/N, Caixa Postal 354, 96010-900 Pelotas, RS, Brazil
| | - Marcelo Mendonça
- Curso de Medicina Veterinária, Universidade Federal Rural de Pernambuco, Unidade Acadêmica de Garanhuns, Avenida Bom Pastor, S/N, Boa Vista, 55292-270 Garanhuns, PE, Brazil
- Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Campus Universitário S/N, Caixa Postal 354, 96010-900 Pelotas, RS, Brazil
| | - Gustavo Marçal Schmidt Garcia Moreira
- Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Campus Universitário S/N, Caixa Postal 354, 96010-900 Pelotas, RS, Brazil
| | - Carlos Eduardo Pouey Da Cunha
- Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Campus Universitário S/N, Caixa Postal 354, 96010-900 Pelotas, RS, Brazil
| | - Neida Lucia Conrad
- Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Campus Universitário S/N, Caixa Postal 354, 96010-900 Pelotas, RS, Brazil
| | - Patrícia Diaz de Oliveira
- Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Campus Universitário S/N, Caixa Postal 354, 96010-900 Pelotas, RS, Brazil
| | - Daiane Drawanz Hartwig
- Departamento de Microbiologia e Parasitologia, Instituto de Biologia, Universidade Federal de Pelotas, Campus Universitário S/N, Caixa Postal 354, 96010-900 Pelotas, RS, Brazil
- Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Campus Universitário S/N, Caixa Postal 354, 96010-900 Pelotas, RS, Brazil
| | - Priscila Marques Moura De Leon
- Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Campus Universitário S/N, Caixa Postal 354, 96010-900 Pelotas, RS, Brazil
| | - Ângela Nunes Moreira
- Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Campus Universitário S/N, Caixa Postal 354, 96010-900 Pelotas, RS, Brazil
- Departamento de Nutrição, Faculdade de Nutrição, Universidade Federal de Pelotas, Campus Porto/Anglo, Rua Gomes Carneiro, 01 – Centro, Caixa Postal 354, 96010-610 Pelotas, RS, Brazil
| |
Collapse
|
8
|
Griffin DE. The Immune Response in Measles: Virus Control, Clearance and Protective Immunity. Viruses 2016; 8:v8100282. [PMID: 27754341 PMCID: PMC5086614 DOI: 10.3390/v8100282] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 10/04/2016] [Accepted: 10/06/2016] [Indexed: 12/25/2022] Open
Abstract
Measles is an acute systemic viral infection with immune system interactions that play essential roles in multiple stages of infection and disease. Measles virus (MeV) infection does not induce type 1 interferons, but leads to production of cytokines and chemokines associated with nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB) signaling and activation of the NACHT, LRR and PYD domains-containing protein (NLRP3) inflammasome. This restricted response allows extensive virus replication and spread during a clinically silent latent period of 10–14 days. The first appearance of the disease is a 2–3 day prodrome of fever, runny nose, cough, and conjunctivitis that is followed by a characteristic maculopapular rash that spreads from the face and trunk to the extremities. The rash is a manifestation of the MeV-specific type 1 CD4+ and CD8+ T cell adaptive immune response with lymphocyte infiltration into tissue sites of MeV replication and coincides with clearance of infectious virus. However, clearance of viral RNA from blood and tissues occurs over weeks to months after resolution of the rash and is associated with a period of immunosuppression. However, during viral RNA clearance, MeV-specific antibody also matures in type and avidity and T cell functions evolve from type 1 to type 2 and 17 responses that promote B cell development. Recovery is associated with sustained levels of neutralizing antibody and life-long protective immunity.
Collapse
Affiliation(s)
- Diane E Griffin
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA.
| |
Collapse
|
9
|
Generation of a More Immunogenic Measles Vaccine by Increasing Its Hemagglutinin Expression. J Virol 2016; 90:5270-5279. [PMID: 26984727 DOI: 10.1128/jvi.00348-16] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 03/11/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Imported measles virus (MV) outbreaks are maintained by poor vaccine responders and unvaccinated people. A convenient but more immunogenic vaccination strategy would enhance vaccine performance, contributing to measles eradication efforts. We report here the generation of alternative pediatric vaccines against MV with increased expression of the H protein in the background of the current MV vaccine strain. We generated two recombinants: MVvac2-H2, with increased full-length H expression resulting in a 3-fold increase in H incorporation into virions, and MVvac2-Hsol, vectoring a truncated, soluble form of the H protein that is secreted into the supernatants of infected cells. Replication fitness was conserved despite the duplication of the H cistron for both vectors. The modification to the envelope of MVvac2-H2 conferred upon this virus a measurable level of resistance to in vitro neutralization by MV polyclonal immune sera without altering its thermostability. Most interestingly, both recombinant MVs with enhanced H expression were significantly more immunogenic than their parental strain in outbred mice, while MVvac2-H2 additionally proved more immunogenic after a single, human-range dose in genetically modified MV-susceptible mice. IMPORTANCE Measles incidence was reduced drastically following the introduction of attenuated vaccines, but progress toward the eradication of this virus has stalled, and MV still threatens unvaccinated populations. Due to the contributions of primary vaccine failures and too-young-to-be-vaccinated infants to this problem, more immunogenic measles vaccines are highly desirable. We generated two experimental MV vaccines based on a current vaccine's genome but with enriched production of the H protein, the main MV antigen in provoking immunity. One vaccine incorporated H at higher rates in the viral envelope, and the other secreted a soluble H protein from infected cells. The increased expression of H by these vectors improved neutralizing responses induced in two small-animal models of MV immunogenicity. The enhanced immunogenicity of these vectors, mainly from the MV that incorporates additional H, suggests their value as potential alternative pediatric MV vaccines.
Collapse
|
10
|
Fiebelkorn AP, Coleman LA, Belongia EA, Freeman SK, York D, Bi D, Kulkarni A, Audet S, Mercader S, McGrew M, Hickman CJ, Bellini WJ, Shivakoti R, Griffin DE, Beeler J. Measles Virus Neutralizing Antibody Response, Cell-Mediated Immunity, and Immunoglobulin G Antibody Avidity Before and After Receipt of a Third Dose of Measles, Mumps, and Rubella Vaccine in Young Adults. J Infect Dis 2015; 213:1115-23. [PMID: 26597262 DOI: 10.1093/infdis/jiv555] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 11/11/2015] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Two doses of measles, mumps, and rubella (MMR) vaccine are 97% effective against measles, but waning antibody immunity to measles and failure of the 2-dose vaccine occur. We administered a third MMR dose (MMR3) to young adults and assessed immunogenicity over 1 year. METHODS Measles virus (MeV) neutralizing antibody concentrations, cell-mediated immunity (CMI), and immunoglobulin G (IgG) antibody avidity were assessed at baseline and 1 month and 1 year after MMR3 receipt. RESULTS Of 662 subjects at baseline, 1 (0.2%) was seronegative for MeV-neutralizing antibodies (level, <8 mIU/mL), and 23 (3.5%) had low antibody levels (8-120 mIU/mL). One month after MMR3 receipt, 1 subject (0.2%) was seronegative, and 6 (0.9%) had low neutralizing antibodies, with only 21 of 662 (3.2%) showing a ≥ 4-fold rise in neutralizing antibodies. One year after MMR3 receipt, no subject was seronegative, and 10 of 617 (1.6%) had low neutralizing antibody levels. CMI analyses showed low levels of spot-forming cells after stimulation, suggesting the presence of T-cell memory, but the response was minimal after MMR3 receipt. MeV IgG avidity did not correlate with findings of neutralization analyses. CONCLUSIONS Most subjects were seropositive before MMR3 receipt, and very few had a secondary immune response after MMR3 receipt. Similarly, CMI and avidity analyses showed minimal qualitative improvements in immune response after MMR3 receipt. We did not find compelling data to support a routine third dose of MMR vaccine.
Collapse
Affiliation(s)
- Amy Parker Fiebelkorn
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | | | | | | | - Daphne York
- Marshfield Clinic Research Foundation, Wisconsin
| | - Daoling Bi
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Ashwin Kulkarni
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring
| | - Susette Audet
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring
| | - Sara Mercader
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Marcia McGrew
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Carole J Hickman
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - William J Bellini
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Rupak Shivakoti
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Diane E Griffin
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Judith Beeler
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring
| |
Collapse
|
11
|
Grunwald T, Ulbert S. Improvement of DNA vaccination by adjuvants and sophisticated delivery devices: vaccine-platforms for the battle against infectious diseases. Clin Exp Vaccine Res 2015; 4:1-10. [PMID: 25648133 PMCID: PMC4313101 DOI: 10.7774/cevr.2015.4.1.1] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 11/30/2014] [Accepted: 12/31/2014] [Indexed: 01/24/2023] Open
Abstract
Advantages of DNA vaccination against infectious diseases over more classical immunization methods include the possibilities for rapid manufacture, fast adaptation to newly emerging pathogens and high stability at ambient temperatures. In addition, upon DNA immunization the antigen is produced by the cells of the vaccinated individual, which leads to activation of both cellular and humoral immune responses due to antigen presentation via MHC I and MHC II molecules. However, so far DNA vaccines have shown most efficient immunogenicity mainly in small rodent models, whereas in larger animals including humans there is still the need to improve effectiveness. This is mostly due to inefficient delivery of the DNA plasmid into cells and nuclei. Here, we discuss technologies used to overcome this problem, including physical means such as in vivo electroporation and co-administration of adjuvants. Several of these methods have already entered clinical testing in humans.
Collapse
Affiliation(s)
- Thomas Grunwald
- Department of Immunology, Fraunhofer-Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Sebastian Ulbert
- Department of Immunology, Fraunhofer-Institute for Cell Therapy and Immunology, Leipzig, Germany
| |
Collapse
|
12
|
|
13
|
Kulkarni V, Rosati M, Valentin A, Jalah R, Alicea C, Yu L, Guan Y, Shen X, Tomaras GD, LaBranche C, Montefiori DC, Irene C, Prattipati R, Pinter A, Sullivan SM, Pavlakis GN, Felber BK. Vaccination with Vaxfectin(®) adjuvanted SIV DNA induces long-lasting humoral immune responses able to reduce SIVmac251 Viremia. Hum Vaccin Immunother 2013; 9:2069-80. [PMID: 23820294 DOI: 10.4161/hv.25442] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
We evaluated the immunogenicity and efficacy of Vaxfectin(®) adjuvanted SIV DNA vaccines in mice and macaques. Vaccination of mice with Vaxfectin(®) adjuvanted SIV gag DNA induced higher humoral immune responses than administration of unadjuvanted DNA, whereas similar levels of cellular immunity were elicited. Vaxfectin(®) adjuvanted SIVmac251 gag and env DNA immunization of rhesus macaques was used to examine magnitude, durability, and efficacy of humoral immunity. Vaccinated macaques elicited potent neutralizing antibodies able to cross-neutralize the heterologous SIVsmE660 Env. We found remarkable durability of Gag and Env humoral responses, sustained during ~2 y of follow-up. The Env-specific antibody responses induced by Vaxfectin(®) adjuvanted env DNA vaccination disseminated into mucosal tissues, as demonstrated by their presence in saliva, including responses to the V1-V2 region, and rectal fluids. The efficacy of the immune responses was evaluated upon intrarectal challenge with low repeated dose SIVmac251. Although 2 of the 3 vaccinees became infected, these animals showed significantly lower peak virus loads and lower chronic viremia than non-immunized infected controls. Thus, Vaxfectin(®) adjuvanted DNA is a promising vaccine approach for inducing potent immune responses able to control the highly pathogenic SIVmac251.
Collapse
Affiliation(s)
- Viraj Kulkarni
- Human Retrovirus Pathogenesis Section; Vaccine Branch; Center for Cancer Research; National Cancer Institute; Frederick, MD USA
| | - Margherita Rosati
- Human Retrovirus Section; Vaccine Branch; Center for Cancer Research; National Cancer Institute; Frederick, MD USA
| | - Antonio Valentin
- Human Retrovirus Section; Vaccine Branch; Center for Cancer Research; National Cancer Institute; Frederick, MD USA
| | - Rashmi Jalah
- Human Retrovirus Pathogenesis Section; Vaccine Branch; Center for Cancer Research; National Cancer Institute; Frederick, MD USA
| | - Candido Alicea
- Human Retrovirus Pathogenesis Section; Vaccine Branch; Center for Cancer Research; National Cancer Institute; Frederick, MD USA
| | - Lei Yu
- Institute of Human Virology and Department of Microbiology & Immunology; University of Maryland School of Medicine; Baltimore, MD USA
| | - Yongjun Guan
- Institute of Human Virology and Department of Microbiology & Immunology; University of Maryland School of Medicine; Baltimore, MD USA
| | | | | | | | | | - Carmela Irene
- Public Health Research Institute; University of Medicine and Dentistry of New Jersey; Newark, NJ USA
| | - Rajasekhar Prattipati
- Public Health Research Institute; University of Medicine and Dentistry of New Jersey; Newark, NJ USA
| | - Abraham Pinter
- Public Health Research Institute; University of Medicine and Dentistry of New Jersey; Newark, NJ USA
| | | | - George N Pavlakis
- Human Retrovirus Section; Vaccine Branch; Center for Cancer Research; National Cancer Institute; Frederick, MD USA
| | - Barbara K Felber
- Human Retrovirus Pathogenesis Section; Vaccine Branch; Center for Cancer Research; National Cancer Institute; Frederick, MD USA
| |
Collapse
|