1
|
Erickson AK, Sutherland DM, Welsh OL, Maples RW, Dermody TS, Pfeiffer JK. A single mutation in an enteric virus alters tropism and sensitivity to microbiota. Proc Natl Acad Sci U S A 2025; 122:e2500612122. [PMID: 40238456 PMCID: PMC12037040 DOI: 10.1073/pnas.2500612122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 03/21/2025] [Indexed: 04/18/2025] Open
Abstract
Many enteric viruses benefit from the microbiota. In mice, microbiota depletion reduces infection by noroviruses and picornaviruses. However, Reovirales viruses are outliers among enteric viruses. Rotavirus infection is inhibited by bacteria, and we determined that several reovirus strains have enhanced replication following microbiota depletion. Here, we focused on an isogenic pair of reoviruses that have opposing infection outcomes after microbiota depletion. Microbiota depletion reduces infection by reovirus strain T3SA+ but increases infection by strain T3SA-. These strains differ by a single amino acid polymorphism in the σ1 attachment protein, which confers sialic acid binding to T3SA+. Sialic acid binding facilitates T3SA+ infection of intestinal endothelial cells, while T3SA- inefficiently infects intestinal epithelial cells due to restriction by microbiota-driven, host-derived type III interferon responses. This study enhances an understanding of the interactions of enteric viruses, the microbiota, intestinal tropism, and antiviral responses.
Collapse
Affiliation(s)
- Andrea K. Erickson
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Danica M. Sutherland
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA15224
- Department of Pediatrics, Institute of Infection, Inflammation, and Immunity, University of Pittsburgh Medical Center Children’s Hospital of Pittsburgh, Pittsburgh, PA15224
| | - Olivia L. Welsh
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA15224
- Department of Pediatrics, Institute of Infection, Inflammation, and Immunity, University of Pittsburgh Medical Center Children’s Hospital of Pittsburgh, Pittsburgh, PA15224
| | - Robert W. Maples
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Terence S. Dermody
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA15224
- Department of Pediatrics, Institute of Infection, Inflammation, and Immunity, University of Pittsburgh Medical Center Children’s Hospital of Pittsburgh, Pittsburgh, PA15224
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA15224
| | - Julie K. Pfeiffer
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX75390
| |
Collapse
|
2
|
Shen X, Zhang X, Li K, Huang G, Li X, Hou Y, Ge X. Combined bacterial translocation and cholestasis aggravates liver injury by activation pyroptosis in obstructive jaundice. Heliyon 2024; 10:e35793. [PMID: 39220957 PMCID: PMC11363856 DOI: 10.1016/j.heliyon.2024.e35793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 08/02/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024] Open
Abstract
This study explores the mechanism by which obstructive jaundice (OJ) induces liver damage through pyroptosis. We induced OJ in rats via bile duct ligation and assessed liver damage using serum biochemical markers and histological analysis of liver tissue. Pyroptosis was investigated through immunofluorescence, ELISA, Western blot, and quantitative RT-PCR techniques. Additionally, we examined intestinal function and fecal microbiota alterations in the rats using 16S rDNA sequencing. In vitro experiments involved co-culturing Kupffer cells and hepatocytes, which were then exposed to bile and lipopolysaccharide (LPS). Our findings indicated that OJ modified the gut microbiota, increasing LPS levels, which, in conjunction with bile, initiated a cycle of inflammation, fibrosis, and cell death in the liver. Mechanistically, OJ elevated necrotic markers such as ATP, which in turn activated pyroptotic pathways. Increased levels of pyroptosis-related molecules, including NLRP3, caspase-1, gasdermin D, and IL-18, were confirmed. In our co-cultured cell model, bile exposure resulted in cell death and ATP release, leading to the activation of the NLRP3 inflammasome and its downstream effectors, caspase-1 and IL-18. The combination of bile and LPS significantly intensified pyroptotic responses. This study is the first to demonstrate that LPS and bile synergistically exacerbate liver injury by promoting necrosis and pyroptosis, unveiling a novel mechanism of OJ-associated hepatic damage and suggesting avenues for potential preventive or therapeutic interventions.
Collapse
Affiliation(s)
- Xin Shen
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xin Zhang
- Luoyang Orthopedic-Traumatological Hospital of Henan Province (Henan Provincial Orthopedic Hospital), Luoyang, 471002, Henan, China
| | - Kaiyu Li
- Department of General Surgery, Heilongjiang Provincial Hospital, 82 Zhongshan Road, Harbin, 150036, Heilongjiang, China
| | - Guangming Huang
- Department of General Surgery, Heilongjiang Provincial Hospital, 82 Zhongshan Road, Harbin, 150036, Heilongjiang, China
| | - Xinyu Li
- Department of General Surgery, Heilongjiang Provincial Hospital, 82 Zhongshan Road, Harbin, 150036, Heilongjiang, China
| | - Yunlong Hou
- National Key Laboratory of Collateral Disease Research and Innovative Chinese Medicine, Shijiazhuang, 050000, Hebei, China
| | - Xin Ge
- Department of General Surgery, Heilongjiang Provincial Hospital, 82 Zhongshan Road, Harbin, 150036, Heilongjiang, China
| |
Collapse
|
3
|
Li X, Xiu X, Su R, Ma S, Li Z, Zhang L, Wang Z, Zhu Y, Ma F. Immune cell receptor-specific nanoparticles as a potent adjuvant for nasal split influenza vaccine delivery. NANOTECHNOLOGY 2024; 35:125101. [PMID: 38100843 DOI: 10.1088/1361-6528/ad1644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 12/15/2023] [Indexed: 12/17/2023]
Abstract
Mucosal delivery systems have gained much attention as effective way for antigen delivery that induces both systemic and mucosal immunity. However, mucosal vaccination faces the challenges of mucus barrier and effective antigen uptake and presentation. In particular, split, subunit and recombinant protein vaccines that do not have an intact pathogen structure lack the efficiency to stimulate mucosal immunity. In this study, poly (lactic acid-co-glycolic acid-polyethylene glycol) (PLGA-PEG) block copolymers were modified by mannose to form a PLGA-PEG-Man conjugate (mannose modified PLGA-PEG), which were characterized. The novel nanoparticles (NPs) prepared with this material had a particle size of about 150 nm and a zeta potential of -15 mV, and possessed ideal mucus permeability, immune cell targeting, stability and low toxicity. Finally, PLGA-PEG-Man nanoparticles (PLGA-PEG-Man NPs) were successfully applied for intranasal delivery of split influenza vaccine in rat for the first time, which triggered strong systemic and mucosal immune responses. These studies suggest that PLGA-PEG-Man NPs could function as competitive potential nano-adjuvants to address the challenge of inefficient mucosal delivery of non-allopathogenic antigens.
Collapse
Affiliation(s)
- Xuemei Li
- Laboratory of Biologics and Biomaterials, College of Pharmacy, Zhejiang University of Technology, Deqing 313216, People's Republic of China
| | - Xueliang Xiu
- Laboratory of Biologics and Biomaterials, College of Pharmacy, Zhejiang University of Technology, Deqing 313216, People's Republic of China
| | - Rui Su
- Laboratory of Biologics and Biomaterials, College of Pharmacy, Zhejiang University of Technology, Deqing 313216, People's Republic of China
| | - Shichao Ma
- Laboratory of Biologics and Biomaterials, College of Pharmacy, Zhejiang University of Technology, Deqing 313216, People's Republic of China
| | - Zhipeng Li
- Laboratory of Biologics and Biomaterials, College of Pharmacy, Zhejiang University of Technology, Deqing 313216, People's Republic of China
| | - Li Zhang
- Laboratory of Biologics and Biomaterials, College of Pharmacy, Zhejiang University of Technology, Deqing 313216, People's Republic of China
| | - Zhi Wang
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences; and State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Yihan Zhu
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences; and State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Fengsen Ma
- Laboratory of Biologics and Biomaterials, College of Pharmacy, Zhejiang University of Technology, Deqing 313216, People's Republic of China
- Micro-nano Scale Biomedical Engineering Laboratory, Institute for Frontiers and Interdisciplinary Sciences, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
- Zhejiang Provincial Key Laboratory of Quantum Precision Measurement, Hangzhou 310023, People's Republic of China
| |
Collapse
|
4
|
Mills JT, Minogue SC, Snowden JS, Arden WKC, Rowlands DJ, Stonehouse NJ, Wobus CE, Herod MR. Amino acid substitutions in norovirus VP1 dictate host dissemination via variations in cellular attachment. J Virol 2023; 97:e0171923. [PMID: 38032199 PMCID: PMC10734460 DOI: 10.1128/jvi.01719-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 11/03/2023] [Indexed: 12/01/2023] Open
Abstract
IMPORTANCE All viruses initiate infection by utilizing receptors to attach to target host cells. These virus-receptor interactions can therefore dictate viral replication and pathogenesis. Understanding the nature of virus-receptor interactions could also be important for the development of novel therapies. Noroviruses are non-enveloped icosahedral viruses of medical importance. They are a common cause of acute gastroenteritis with no approved vaccine or therapy and are a tractable model for studying fundamental virus biology. In this study, we utilized the murine norovirus model system to show that variation in a single amino acid of the major capsid protein alone can affect viral infectivity through improved attachment to suspension cells. Modulating plasma membrane mobility reduced infectivity, suggesting an importance of membrane mobility for receptor recruitment and/or receptor conformation. Furthermore, different substitutions at this site altered viral tissue distribution in a murine model, illustrating how in-host capsid evolution could influence viral infectivity and/or immune evasion.
Collapse
Affiliation(s)
- Jake T. Mills
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Susanna C. Minogue
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Joseph S. Snowden
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Wynter K. C. Arden
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - David J. Rowlands
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Nicola J. Stonehouse
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Christiane E. Wobus
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Morgan R. Herod
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
5
|
Bai GH, Tsai MC, Lin SC, Hsu YH, Chen SY. Unraveling the interplay between norovirus infection, gut microbiota, and novel antiviral approaches: a comprehensive review. Front Microbiol 2023; 14:1212582. [PMID: 37485533 PMCID: PMC10359435 DOI: 10.3389/fmicb.2023.1212582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/15/2023] [Indexed: 07/25/2023] Open
Abstract
Norovirus infection is a leading cause of acute gastroenteritis worldwide and can also cause harmful chronic infections in individuals with weakened immune systems. The role of the gut microbiota in the interactions between the host and noroviruses has been extensively studied. While most past studies were conducted in vitro or focused on murine noroviruses, recent research has expanded to human noroviruses using in vivo or ex vivo human intestinal enteroids culture studies. The gut microbiota has been observed to have both promoting and inhibiting effects on human noroviruses. Understanding the interaction between noroviruses and the gut microbiota or probiotics is crucial for studying the pathogenesis of norovirus infection and its potential implications, including probiotics and vaccines for infection control. Recently, several clinical trials of probiotics and norovirus vaccines have also been published. Therefore, in this review, we discuss the current understanding and recent updates on the interactions between noroviruses and gut microbiota, including the impact of norovirus on the microbiota profile, pro-viral and antiviral effects of microbiota on norovirus infection, the use of probiotics for treating norovirus infections, and human norovirus vaccine development.
Collapse
Affiliation(s)
- Geng-Hao Bai
- Department of Internal Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Meng-Chen Tsai
- Department of General Medicine, Taipei Medical University Hospital, Taipei, Taiwan
| | - Sheng-Chieh Lin
- Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Pediatrics, Division of Allergy, Asthma and Immunology, Shuang Ho Hospital, New Taipei, Taiwan
| | - Yi-Hsiang Hsu
- Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
- Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Shih-Yen Chen
- Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Pediatrics, Division of Pediatric Gastroenterology and Hepatology, Shuang Ho Hospital, New Taipei, Taiwan
- TMU Research Center for Digestive Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
6
|
Mills JT, Minogue SC, Snowden JS, Arden WKC, Rowlands DJ, Stonehouse NJ, Wobus CE, Herod MR. Amino acid substitutions in norovirus VP1 dictate cell tropism via an attachment process dependent on membrane mobility. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.17.528071. [PMID: 36824911 PMCID: PMC9949111 DOI: 10.1101/2023.02.17.528071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
Viruses interact with receptors on the cell surface to initiate and co-ordinate infection. The distribution of receptors on host cells can be a key determinant of viral tropism and host infection. Unravelling the complex nature of virus-receptor interactions is, therefore, of fundamental importance to understanding viral pathogenesis. Noroviruses are non-enveloped, icosahedral, positive-sense RNA viruses of global importance to human health, with no approved vaccine or antiviral agent available. Here we use murine norovirus as a model for the study of molecular mechanisms of virus-receptor interactions. We show that variation at a single amino acid residue in the major viral capsid protein had a key impact on the interaction between virus and receptor. This variation did not affect virion production or virus growth kinetics, but a specific amino acid was rapidly selected through evolution experiments, and significantly improved cellular attachment when infecting immune cells in suspension. However, reducing plasma membrane mobility counteracted this phenotype, providing insight into for the role of membrane fluidity and receptor recruitment in norovirus cellular attachment. When the infectivity of a panel of recombinant viruses with single amino acid variations was compared in vivo, there were significant differences in the distribution of viruses in a murine model, demonstrating a role in cellular tropism in vivo. Overall, these results highlight the importance of lipid rafts and virus-induced receptor recruitment in viral infection, as well as how capsid evolution can greatly influence cellular tropism, within-host spread and pathogenicity.
Collapse
Affiliation(s)
- Jake T Mills
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Susanna C Minogue
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Joseph S Snowden
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Wynter K C Arden
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48130, USA
| | - David J Rowlands
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Nicola J Stonehouse
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Christiane E Wobus
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48130, USA
| | - Morgan R Herod
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| |
Collapse
|
7
|
Lucero Y, Matson DO, Ashkenazi S, George S, O’Ryan M. Norovirus: Facts and Reflections from Past, Present, and Future. Viruses 2021; 13:v13122399. [PMID: 34960668 PMCID: PMC8707792 DOI: 10.3390/v13122399] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/18/2021] [Accepted: 11/23/2021] [Indexed: 02/07/2023] Open
Abstract
Human Norovirus is currently the main viral cause of acute gastroenteritis (AGEs) in most countries worldwide. Nearly 50 years after the discovery of the "Norwalk virus" by Kapikian and colleagues, the scientific and medical community continue to generate new knowledge on the full biological and disease spectrum of Norovirus infection. Nevertheless, several areas remain incompletely understood due to the serious constraints to effectively replicate and propagate the virus. Here, we present a narrated historic perspective and summarize our current knowledge, including insights and reflections on current points of interest for a broad medical community, including clinical and molecular epidemiology, viral-host-microbiota interactions, antivirals, and vaccine prototypes. We also include a reflection on the present and future impacts of the COVID-19 pandemic on Norovirus infection and disease.
Collapse
Affiliation(s)
- Yalda Lucero
- Microbiology and Mycology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile; (Y.L.); (S.G.)
- Hospital Dr. Roberto del Río Hospital, Department of Pediatrics and Pediatric Surgery (Northern Campus), Faculty of Medicine, Universidad de Chile, Santiago 8380418, Chile
- Clínica Alemana de Santiago, Faculty of Medicine, Universidad del Desarrollo-Clínica Alemana, Santiago 7650568, Chile
| | - David O. Matson
- Eastern Shore Health Department, Virginia Department of Public Health, Accomack County, VA 23301, USA;
| | - Shai Ashkenazi
- Adelson School of Medicine, Ariel University, Ariel 40700, Israel;
- Department of Pediatrics A, Schneider Children’s Medical Center, Petach Tikva 49202, Israel
| | - Sergio George
- Microbiology and Mycology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile; (Y.L.); (S.G.)
| | - Miguel O’Ryan
- Microbiology and Mycology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile; (Y.L.); (S.G.)
- Correspondence:
| |
Collapse
|
8
|
Wei H, Wang JY. Role of Polymeric Immunoglobulin Receptor in IgA and IgM Transcytosis. Int J Mol Sci 2021; 22:ijms22052284. [PMID: 33668983 PMCID: PMC7956327 DOI: 10.3390/ijms22052284] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 02/20/2021] [Accepted: 02/22/2021] [Indexed: 12/13/2022] Open
Abstract
Transcytosis of polymeric IgA and IgM from the basolateral surface to the apical side of the epithelium and subsequent secretion into mucosal fluids are mediated by the polymeric immunoglobulin receptor (pIgR). Secreted IgA and IgM have vital roles in mucosal immunity in response to pathogenic infections. Binding and recognition of polymeric IgA and IgM by pIgR require the joining chain (J chain), a small protein essential in the formation and stabilization of polymeric Ig structures. Recent studies have identified marginal zone B and B1 cell-specific protein (MZB1) as a novel regulator of polymeric IgA and IgM formation. MZB1 might facilitate IgA and IgM transcytosis by promoting the binding of J chain to Ig. In this review, we discuss the roles of pIgR in transcytosis of IgA and IgM, the roles of J chain in the formation of polymeric IgA and IgM and recognition by pIgR, and focus particularly on recent progress in understanding the roles of MZB1, a molecular chaperone protein.
Collapse
Affiliation(s)
- Hao Wei
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China;
| | - Ji-Yang Wang
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China;
- Department of Clinical Immunology, Children’s Hospital of Fudan University, Shanghai 201102, China
- Department of Microbiology and Immunology, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
- Correspondence: ; Tel.: +86-(21)-54237957
| |
Collapse
|
9
|
Abstract
The lumen of the gastrointestinal tract harbors a diverse community of microbes, fungi, archaea, and viruses. In addition to occupying the same enteric niche, recent evidence suggests that microbes and viruses can act synergistically and, in some cases, promote disease. In this review, we focus on the disease-promoting interactions of the gut microbiota and rotavirus, norovirus, poliovirus, reovirus, and astrovirus. Microbes and microbial compounds can directly interact with viruses, promote viral fitness, alter the glycan structure of viral adhesion sites, and influence the immune system, among other mechanisms. These interactions can directly and indirectly affect viral infection. By focusing on microbe–virus interplay, we hope to identify potential strategies for targeting offending microbes and minimizing viral infection.
Collapse
|
10
|
Affiliation(s)
- Ursula Neu
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Bernardo A. Mainou
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Children’s Healthcare of Atlanta, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
11
|
Hassan E, Baldridge MT. Norovirus encounters in the gut: multifaceted interactions and disease outcomes. Mucosal Immunol 2019; 12:1259-1267. [PMID: 31501514 PMCID: PMC7479810 DOI: 10.1038/s41385-019-0199-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 08/20/2019] [Indexed: 02/04/2023]
Abstract
Noroviruses are major causes of gastroenteritis, with epidemic outbreaks occurring frequently. They are an important global health concern, especially for pediatric and immunocompromised populations, and are challenging pathogens to target immunologically due to their rapid rates of genetic and antigenic evolution and failure to stimulate durable protective immunity. In this Review, we summarize our current understanding of norovirus pathogenesis, noting the prominent role of murine norovirus as a small animal model for norovirus research. We highlight intriguing data supporting the possible involvement of norovirus in sequelae including irritable bowel syndrome and inflammatory bowel diseases, and describe the innate and adaptive immune mechanisms involved in control of both human and murine norovirus infection. Furthermore, we discuss the potential implications of recent discoveries regarding norovirus interactions with the gut microbiota, and briefly detail current understanding of noroviral evolution and its influence on viral pathogenesis. Our mechanistic understanding of norovirus pathogenesis continues to improve with increasing availability of powerful model systems, which will ultimately facilitate development of effective preventive and therapeutic approaches for this pathogen.
Collapse
Affiliation(s)
- Ebrahim Hassan
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Megan T. Baldridge
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA.,Correspondence: Megan T. Baldridge, MD, PhD, Phone: 314-273-1212, Fax: 314-362-2156,
| |
Collapse
|
12
|
Roth AN, Grau KR, Karst SM. Diverse Mechanisms Underlie Enhancement of Enteric Viruses by the Mammalian Intestinal Microbiota. Viruses 2019; 11:v11080760. [PMID: 31426458 PMCID: PMC6722614 DOI: 10.3390/v11080760] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/13/2019] [Accepted: 08/15/2019] [Indexed: 12/24/2022] Open
Abstract
Over the past two decades, there has been tremendous progress in understanding the impact of the intestinal microbiota on mammalian metabolism, physiology, and immune development and function. There has also been substantial advancement in elucidating the interplay between commensal and pathogenic bacteria. Relatively more recently, researchers have begun to investigate the effect of the intestinal microbiota on viral pathogenesis. Indeed, a growing body of literature has reported that commensal bacteria within the mammalian intestinal tract enhance enteric virus infections through a variety of mechanisms. Commensal bacteria or bacterial glycans can increase the stability of enteric viruses, enhance virus binding to host receptors, modulate host immune responses in a proviral manner, expand the numbers of host cell targets, and facilitate viral recombination. In this review, we will summarize the current literature exploring these effects of the intestinal microbiota on enteric virus infections.
Collapse
Affiliation(s)
- Alexa N Roth
- Department of Molecular Genetics & Microbiology, Emerging Pathogens Institute, Center for Inflammation and Mucosal Immunology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Katrina R Grau
- Department of Molecular Genetics & Microbiology, Emerging Pathogens Institute, Center for Inflammation and Mucosal Immunology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Stephanie M Karst
- Department of Molecular Genetics & Microbiology, Emerging Pathogens Institute, Center for Inflammation and Mucosal Immunology, College of Medicine, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
13
|
Walker FC, Baldridge MT. Interactions between noroviruses, the host, and the microbiota. Curr Opin Virol 2019; 37:1-9. [PMID: 31096124 PMCID: PMC6768699 DOI: 10.1016/j.coviro.2019.04.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 04/11/2019] [Accepted: 04/12/2019] [Indexed: 12/25/2022]
Abstract
In recent years, appreciation has been growing for the role that the microbiota plays in interactions between the host and various pathogens, including norovirus. Proviral and antiviral effects of the microbiota have been observed for both human and murine noroviruses, and it has become clear that direct effects of microbes and their metabolites as well as indirect effects of commensals on the host are key in modulating pathogenesis. In particular, a common thread has emerged in the ability of members of the microbiota to regulate the host interferon response, thereby modulating norovirus infection. Here, we highlight key differences between human and murine noroviruses and their interactions with the microbiota, while also underscoring shared characteristics between noroviruses and other gastrointestinal viruses.
Collapse
Affiliation(s)
- Forrest C Walker
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Megan T Baldridge
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
14
|
The Antigenic Topology of Norovirus as Defined by B and T Cell Epitope Mapping: Implications for Universal Vaccines and Therapeutics. Viruses 2019; 11:v11050432. [PMID: 31083353 PMCID: PMC6563215 DOI: 10.3390/v11050432] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/07/2019] [Accepted: 05/08/2019] [Indexed: 12/11/2022] Open
Abstract
Human norovirus (HuNoV) is the leading cause of acute nonbacterial gastroenteritis. Vaccine design has been confounded by the antigenic diversity of these viruses and a limited understanding of protective immunity. We reviewed 77 articles published since 1988 describing the isolation, function, and mapping of 307 unique monoclonal antibodies directed against B cell epitopes of human and murine noroviruses representing diverse Genogroups (G). Of these antibodies, 91, 153, 21, and 42 were reported as GI-specific, GII-specific, MNV GV-specific, and G cross-reactive, respectively. Our goal was to reconstruct the antigenic topology of noroviruses in relationship to mapped epitopes with potential for therapeutic use or inclusion in universal vaccines. Furthermore, we reviewed seven published studies of norovirus T cell epitopes that identified 18 unique peptide sequences with CD4- or CD8-stimulating activity. Both the protruding (P) and shell (S) domains of the major capsid protein VP1 contained B and T cell epitopes, with the majority of neutralizing and HBGA-blocking B cell epitopes mapping in or proximal to the surface-exposed P2 region of the P domain. The majority of broadly reactive B and T cell epitopes mapped to the S and P1 arm of the P domain. Taken together, this atlas of mapped B and T cell epitopes offers insight into the promises and challenges of designing universal vaccines and immunotherapy for the noroviruses.
Collapse
|
15
|
Breedveld A, van Egmond M. IgA and FcαRI: Pathological Roles and Therapeutic Opportunities. Front Immunol 2019; 10:553. [PMID: 30984170 PMCID: PMC6448004 DOI: 10.3389/fimmu.2019.00553] [Citation(s) in RCA: 162] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 03/01/2019] [Indexed: 12/12/2022] Open
Abstract
Immunoglobulin A (IgA) is the most abundant antibody class present at mucosal surfaces. The production of IgA exceeds the production of all other antibodies combined, supporting its prominent role in host-pathogen defense. IgA closely interacts with the intestinal microbiota to enhance its diversity, and IgA has a passive protective role via immune exclusion. Additionally, inhibitory ITAMi signaling via the IgA Fc receptor (FcαRI; CD89) by monomeric IgA may play a role in maintaining homeostatic conditions. By contrast, IgA immune complexes (e.g., opsonized pathogens) potently activate immune cells via cross-linking FcαRI, thereby inducing pro-inflammatory responses resulting in elimination of pathogens. The importance of IgA in removal of pathogens is emphasized by the fact that several pathogens developed mechanisms to break down IgA or evade FcαRI-mediated activation of immune cells. Augmented or aberrant presence of IgA immune complexes can result in excessive neutrophil activation, potentially leading to severe tissue damage in multiple inflammatory, or autoimmune diseases. Influencing IgA or FcαRI-mediated functions therefore provides several therapeutic possibilities. On the one hand (passive) IgA vaccination strategies can be developed for protection against infections. Furthermore, IgA monoclonal antibodies that are directed against tumor antigens may be effective as cancer treatment. On the other hand, induction of ITAMi signaling via FcαRI may reduce allergy or inflammation, whereas blocking FcαRI with monoclonal antibodies, or peptides may resolve IgA-induced tissue damage. In this review both (patho)physiological roles as well as therapeutic possibilities of the IgA-FcαRI axis are addressed.
Collapse
Affiliation(s)
- Annelot Breedveld
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Amsterdam, Netherlands
- Amsterdam Infection and Immunity Institute, Amsterdam UMC, Amsterdam, Netherlands
| | - Marjolein van Egmond
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Amsterdam, Netherlands
- Amsterdam Infection and Immunity Institute, Amsterdam UMC, Amsterdam, Netherlands
- Department of Surgery, Amsterdam UMC, Amsterdam, Netherlands
| |
Collapse
|
16
|
Natural Secretory Immunoglobulins Promote Enteric Viral Infections. J Virol 2018; 92:JVI.00826-18. [PMID: 30232191 DOI: 10.1128/jvi.00826-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 09/05/2018] [Indexed: 12/27/2022] Open
Abstract
Noroviruses are enteric pathogens causing significant morbidity, mortality, and economic losses worldwide. Secretory immunoglobulins (sIg) are a first line of mucosal defense against enteric pathogens. They are secreted into the intestinal lumen via the polymeric immunoglobulin receptor (pIgR), where they bind to antigens. However, whether natural sIg protect against norovirus infection remains unknown. To determine if natural sIg alter murine norovirus (MNV) pathogenesis, we infected pIgR knockout (KO) mice, which lack sIg in mucosal secretions. Acute MNV infection was significantly reduced in pIgR KO mice compared to controls, despite increased MNV target cells in the Peyer's patch. Natural sIg did not alter MNV binding to the follicle-associated epithelium (FAE) or crossing of the FAE into the lymphoid follicle. Instead, naive pIgR KO mice had enhanced levels of the antiviral inflammatory molecules interferon gamma (IFN-γ) and inducible nitric oxide synthase (iNOS) in the ileum compared to controls. Strikingly, depletion of the intestinal microbiota in pIgR KO and control mice resulted in comparable IFN-γ and iNOS levels, as well as MNV infectious titers. IFN-γ treatment of wild-type (WT) mice and neutralization of IFN-γ in pIgR KO mice modulated MNV titers, implicating the antiviral cytokine in the phenotype. Reduced gastrointestinal infection in pIgR KO mice was also observed with another enteric virus, reovirus. Collectively, our findings suggest that natural sIg are not protective during enteric virus infection, but rather, that sIg promote enteric viral infection through alterations in microbial immune responses.IMPORTANCE Enteric virus, such as norovirus, infections cause significant morbidity and mortality worldwide. However, direct antiviral infection prevention strategies are limited. Blocking host entry and initiation of infection provides an established avenue for intervention. Here, we investigated the role of the polymeric immunoglobulin receptor (pIgR)-secretory immunoglobulin (sIg) cycle during enteric virus infections. The innate immune functions of sIg (agglutination, immune exclusion, neutralization, and expulsion) were not required during control of acute murine norovirus (MNV) infection. Instead, lack of pIgR resulted in increased IFN-γ levels, which contributed to reduced MNV titers. Another enteric virus, reovirus, also showed decreased infection in pIgR KO mice. Collectively, our data point to a model in which sIg-mediated microbial sensing promotes norovirus and reovirus infection. These data provide the first evidence of the proviral role of natural sIg during enteric virus infections and provide another example of how intestinal bacterial communities indirectly influence MNV pathogenesis.
Collapse
|