1
|
Siafakas N, Anastassopoulou C, Pournaras S, Tsakris A, Alevizakis E, Kympouropoulos S, Spandidos DA, Rizos E. Viruses and psychiatric disorders: We have not crossed the borderline from hypothesis to proof yet (Review). Mol Med Rep 2025; 31:61. [PMID: 39749697 PMCID: PMC11711936 DOI: 10.3892/mmr.2024.13426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/10/2024] [Indexed: 01/04/2025] Open
Abstract
Most psychiatric disorders are heterogeneous and are attributed to the synergistic action of a multitude of factors. It is generally accepted that psychiatric disorders are the outcome of interactions between genetic predisposition and environmental perturbations, which involve psychosocial stress, or alterations in the physiological state of the organism. A number of hypotheses have been presented on such environmental influences that may include direct insults such as injury, malnutrition and hostile living conditions, or indirect sequelae following infection from viruses such as influenza, arboviruses, enteroviruses and several herpesviruses, or the differential expression of human endogenous retroviruses. It is known that the concept of viruses is far more extensive than their perception as mere agents of acute infections, or chronic debilitating diseases, such as AIDS or some forms of cancer. Notably, an apparent causal connection between viruses and the pathophysiology of diseases has been suggested; however, it remains unclear as to how to establish this causal connection. There are inherent difficulties in answering this question with certainty, which may be due to the multitude of genetic and environmental influences that can lead to psychopathology; the latent state of chronic infection exhibited by a number of neurotropic viruses; the late onset of psychiatric disorders with respect to the acute phase of viral infection at which detection tests would be successful; the complexity of the virome; and the existence of thousands of viral species. The present review aims to provide an outline of the conclusions that have thus far been reached regarding a possible association between viral infection and psychiatric disease, and the obstacles confronted during the quest for the truth behind the role of viruses.
Collapse
Affiliation(s)
- Nikolaos Siafakas
- Clinical Microbiology Laboratory, National and Kapodistrian University of Athens, Attikon University Hospital, 12462 Athens, Greece
| | - Cleo Anastassopoulou
- Laboratory of Microbiology, National and Kapodistrian University of Athens, Medical School, 11527 Athens, Greece
| | - Spyridon Pournaras
- Clinical Microbiology Laboratory, National and Kapodistrian University of Athens, Attikon University Hospital, 12462 Athens, Greece
| | - Athanasios Tsakris
- Laboratory of Microbiology, National and Kapodistrian University of Athens, Medical School, 11527 Athens, Greece
| | - Evangelos Alevizakis
- 2nd Department of Psychiatry, National and Kapodistrian University of Athens, Attikon University Hospital, 12462 Athens, Greece
| | - Stylianos Kympouropoulos
- 2nd Department of Psychiatry, National and Kapodistrian University of Athens, Attikon University Hospital, 12462 Athens, Greece
| | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Emmanouil Rizos
- 2nd Department of Psychiatry, National and Kapodistrian University of Athens, Attikon University Hospital, 12462 Athens, Greece
| |
Collapse
|
2
|
Lazar M, Moroti R, Barbu EC, Chitu-Tisu CE, Tiliscan C, Erculescu TM, Rosca RR, Frasila S, Schmilevschi ET, Simion V, Duca GT, Padiu IF, Andreescu DI, Anton AN, Pacurar CG, Perdun PM, Petre AM, Oprea CA, Popescu AM, Maria E, Ion DA, Olariu MC. The Impact of HIV on Early Brain Aging-A Pathophysiological (Re)View. J Clin Med 2024; 13:7031. [PMID: 39685490 DOI: 10.3390/jcm13237031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/14/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
Background/Objectives: This review aims to provide a comprehensive understanding of how HIV alters normal aging trajectories in the brain, presenting the HIV-related molecular mechanisms and pathophysiological pathways involved in brain aging. The review explores the roles of inflammation, oxidative stress, and viral persistence in the brain, highlighting how these factors contribute to neuronal damage and cognitive impairment and accelerate normal brain aging. Additionally, it also addresses the impact of antiretroviral therapy on brain aging and the biological markers associated with its occurrence. Methods: We extensively searched PubMed for English-language articles published from 2000 to 2024. The following keywords were used in the search: "HIV", "brain", "brain aging", "neuroinflammation", "HAART", and "HAND". This strategy yielded 250 articles for inclusion in our review. Results: A combination of blood-brain barrier dysfunction, with the direct effects of HIV on the central nervous system, chronic neuroinflammation, telomere shortening, neurogenesis impairments, and neurotoxicity associated with antiretroviral treatment (ART), alters and amplifies the mechanisms of normal brain aging. Conclusions: Current evidence suggests that HIV infection accelerates neurodegenerative processes of normal brain aging, leading to cognitive decline and structural brain changes at an earlier age than typically observed in the general population.
Collapse
Affiliation(s)
- Mihai Lazar
- Faculty of Medicine, University of Medicine and Pharmacy Carol Davila, No. 37, Dionisie Lupu Street, Sector 2, 020021 Bucharest, Romania
- National Institute for Infectious Diseases Prof. Dr. Matei Bals, No. 1, Calistrat Grozovici Street, Sector 2, 021105 Bucharest, Romania
| | - Ruxandra Moroti
- Faculty of Medicine, University of Medicine and Pharmacy Carol Davila, No. 37, Dionisie Lupu Street, Sector 2, 020021 Bucharest, Romania
- National Institute for Infectious Diseases Prof. Dr. Matei Bals, No. 1, Calistrat Grozovici Street, Sector 2, 021105 Bucharest, Romania
| | - Ecaterina Constanta Barbu
- Faculty of Medicine, University of Medicine and Pharmacy Carol Davila, No. 37, Dionisie Lupu Street, Sector 2, 020021 Bucharest, Romania
| | - Cristina Emilia Chitu-Tisu
- Faculty of Medicine, University of Medicine and Pharmacy Carol Davila, No. 37, Dionisie Lupu Street, Sector 2, 020021 Bucharest, Romania
| | - Catalin Tiliscan
- Faculty of Medicine, University of Medicine and Pharmacy Carol Davila, No. 37, Dionisie Lupu Street, Sector 2, 020021 Bucharest, Romania
- Faculty of Dental Medicine, University of Medicine and Pharmacy Carol Davila, No. 37, Dionisie Lupu Street, Sector 2, 020021 Bucharest, Romania
| | - Teodora Maria Erculescu
- Faculty of Medicine, University of Medicine and Pharmacy Carol Davila, No. 37, Dionisie Lupu Street, Sector 2, 020021 Bucharest, Romania
| | - Ruxandra Raluca Rosca
- Faculty of Medicine, University of Medicine and Pharmacy Carol Davila, No. 37, Dionisie Lupu Street, Sector 2, 020021 Bucharest, Romania
| | - Stefan Frasila
- Faculty of Medicine, University of Medicine and Pharmacy Carol Davila, No. 37, Dionisie Lupu Street, Sector 2, 020021 Bucharest, Romania
| | - Emma Teodora Schmilevschi
- Faculty of Medicine, University of Medicine and Pharmacy Carol Davila, No. 37, Dionisie Lupu Street, Sector 2, 020021 Bucharest, Romania
| | - Vladimir Simion
- Faculty of Medicine, University of Medicine and Pharmacy Carol Davila, No. 37, Dionisie Lupu Street, Sector 2, 020021 Bucharest, Romania
| | - George Theodor Duca
- Faculty of Medicine, University of Medicine and Pharmacy Carol Davila, No. 37, Dionisie Lupu Street, Sector 2, 020021 Bucharest, Romania
| | - Isabela Felicia Padiu
- Faculty of Medicine, University of Medicine and Pharmacy Carol Davila, No. 37, Dionisie Lupu Street, Sector 2, 020021 Bucharest, Romania
| | - Darie Ioan Andreescu
- Faculty of Medicine, University of Medicine and Pharmacy Carol Davila, No. 37, Dionisie Lupu Street, Sector 2, 020021 Bucharest, Romania
| | - Andreea Nicoleta Anton
- Faculty of Medicine, University of Medicine and Pharmacy Carol Davila, No. 37, Dionisie Lupu Street, Sector 2, 020021 Bucharest, Romania
| | - Cosmina Georgiana Pacurar
- Faculty of Medicine, University of Medicine and Pharmacy Carol Davila, No. 37, Dionisie Lupu Street, Sector 2, 020021 Bucharest, Romania
| | - Patricia Maria Perdun
- Faculty of Medicine, University of Medicine and Pharmacy Carol Davila, No. 37, Dionisie Lupu Street, Sector 2, 020021 Bucharest, Romania
| | - Alexandru Mihai Petre
- Faculty of Medicine, University of Medicine and Pharmacy Carol Davila, No. 37, Dionisie Lupu Street, Sector 2, 020021 Bucharest, Romania
| | - Constantin Adrian Oprea
- Faculty of Medicine, University of Medicine and Pharmacy Carol Davila, No. 37, Dionisie Lupu Street, Sector 2, 020021 Bucharest, Romania
| | - Adelina Maria Popescu
- Faculty of Medicine, University of Medicine and Pharmacy Carol Davila, No. 37, Dionisie Lupu Street, Sector 2, 020021 Bucharest, Romania
| | - Enachiuc Maria
- Faculty of Medicine, University of Medicine and Pharmacy Carol Davila, No. 37, Dionisie Lupu Street, Sector 2, 020021 Bucharest, Romania
| | - Daniela Adriana Ion
- Faculty of Medicine, University of Medicine and Pharmacy Carol Davila, No. 37, Dionisie Lupu Street, Sector 2, 020021 Bucharest, Romania
| | - Mihaela Cristina Olariu
- Faculty of Medicine, University of Medicine and Pharmacy Carol Davila, No. 37, Dionisie Lupu Street, Sector 2, 020021 Bucharest, Romania
- National Institute for Infectious Diseases Prof. Dr. Matei Bals, No. 1, Calistrat Grozovici Street, Sector 2, 021105 Bucharest, Romania
| |
Collapse
|
3
|
Park ES, Shin CY, Jeon SJ, Ham BJ. Is There such a Thing as Post-Viral Depression?: Implications for Precision Medicine. Biomol Ther (Seoul) 2024; 32:659-684. [PMID: 39428555 PMCID: PMC11535299 DOI: 10.4062/biomolther.2024.170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/06/2024] [Accepted: 10/07/2024] [Indexed: 10/22/2024] Open
Abstract
Viral infections are increasingly recognized as triggers for depressive disorders, particularly following the SARS-CoV-2 pandemic and the rise of long COVID. Viruses such as Herpes Simplex Virus (HSV), Epstein-Barr Virus (EBV), Cytomegalovirus (CMV), and Human Immunodeficiency Virus (HIV) are linked to depression through complex neurobiological mechanisms. These include immune system dysregulation, chronic inflammation, and neurotransmitter imbalances that affect brain function and mood regulation. Viral activation of the immune system leads to the release of pro-inflammatory cytokines, resulting in neuroinflammation and associated depressive symptoms. Furthermore, specific viruses can disrupt neurotransmitter systems, including serotonin, dopamine, and glutamate, all of which are essential for mood stabilization. The unique interactions of different viruses with these systems underscore the need for virus-specific therapeutic approaches. Current broad-spectrum treatments often overlook the precise neurobiological pathways involved in post-viral depression, reducing their efficacy. This review emphasizes the need to understand these virus-specific interactions to create tailored interventions that directly address the neurobiological effects induced by each type of virus. These interventions may include immunomodulatory treatments that target persistent inflammation, antiviral therapies to reduce the viral load, or neuroprotective strategies that restore neurotransmitter balance. Precision medicine offers promising avenues for the effective management of virus-induced depression, providing patient-specific approaches that address the specific biological mechanisms involved. By focusing on the development of these targeted treatments, this review aims to pave the way for a new era in psychiatric care that fully addresses the root causes of depression induced by viral infections.
Collapse
Affiliation(s)
- Eun-Sook Park
- Institute of Biomedical Science and Technology, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Chan Young Shin
- School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul 05029, Republic of Korea
- Department of Pharmacology and Department of Advanced Translational Medicine, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
- Institute of Biomedical Sciences & Technology, Konkuk University, Seoul 05029, Republic of Korea
| | - Se Jin Jeon
- Department of Pharmacology, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Byung-Joo Ham
- Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine, Seoul 02841, Republic of Korea
| |
Collapse
|
4
|
Duffy BC, King KM, Nepal B, Nonnemacher MR, Kortagere S. Acute Administration of HIV-1 Tat Protein Drives Glutamatergic Alterations in a Rodent Model of HIV-Associated Neurocognitive Disorders. Mol Neurobiol 2024; 61:8467-8480. [PMID: 38514527 DOI: 10.1007/s12035-024-04113-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 03/12/2024] [Indexed: 03/23/2024]
Abstract
HIV-1-associated neurocognitive disorders (HAND) are a major comorbidity of HIV-1 infection, marked by impairment of executive function varying in severity. HAND affects nearly half of people living with HIV (PLWH), with mild forms predominating since the use of anti-retroviral therapies (ART). The HIV-1 transactivator of transcription (Tat) protein is found in the cerebrospinal fluid of patients adherent to ART, and its administration or expression in animals causes cognitive symptoms. Studies of Tat interaction with the N-methyl-D-aspartate receptor (NMDAR) suggest that glutamate toxicity contributes to Tat-induced impairments. To identify changes in regional glutamatergic circuitry underlying cognitive impairment, we injected recombinant Tat86 or saline to medial prefrontal cortex (mPFC) of male Sprague-Dawley rats. Rats were assessed with behavioral tasks that involve intact functioning of mPFC including the novel object recognition (NOR), spatial object recognition (SOR), and temporal order (TO) tasks at 1 and 2 postoperative weeks. Following testing, mPFC tissue was collected and analyzed by RT-PCR. Results showed Tat86 in mPFC-induced impairment in SOR, and upregulation of Grin1 and Grin2a transcripts. To further understand the mechanism of Tat toxicity, we assessed the effects of full-length Tat101 on gene expression in mPFC by RNA sequencing. The results of RNAseq suggest that glutamatergic effects of Tat86 are maintained with Tat101, as Grin2a was upregulated in Tat101-injected tissue, among other differentially expressed genes. Spatial learning and memory impairment and Grin2a upregulation suggest that exposure to Tat protein drives adaptation in mPFC, altering the function of circuitry supporting spatial learning and memory.
Collapse
Affiliation(s)
- Brenna C Duffy
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Kirsten M King
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Binod Nepal
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Michael R Nonnemacher
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA.
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA.
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA.
| | - Sandhya Kortagere
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA.
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
5
|
Gay L, Desquiret-Dumas V, Nagot N, Rapenne C, Van de Perre P, Reynier P, Molès JP. Long-term persistence of mitochondrial dysfunctions after viral infections and antiviral therapies: A review of mechanisms involved. J Med Virol 2024; 96:e29886. [PMID: 39246064 DOI: 10.1002/jmv.29886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/26/2024] [Accepted: 08/13/2024] [Indexed: 09/10/2024]
Abstract
Mitochondria are vital for most cells' functions. Viruses hijack mitochondria machinery for misappropriation of energy supply or to bypass defense mechanisms. Many of these mitochondrial dysfunctions persist after recovery from treated or untreated viral infections, particularly when mitochondrial DNA is permanently damaged. Quantitative defects and structural rearrangements of mitochondrial DNA accumulate in post-mitotic tissues as recently reported long after SARS-CoV-2 or HIV infection, or following antiviral therapy. These observations are consistent with the "hit-and-run" concept proposed decades ago to explain viro-induced cell transformation and it could apply to delayed post-viral onsets of symptoms and advocate for complementary supportive care. Thus, according to this concept, following exposure to viruses or antiviral agents, mitochondrial damage could evolve into an autonomous clinical condition. It also establishes a pathogenic link between communicable and non-communicable chronic diseases.
Collapse
Affiliation(s)
- Laetitia Gay
- Pathogenesis and Control of Chronic and Emerging Infections, University of Montpellier, INSERM, Etablissement Français du Sang, University of Antilles, Montpellier, France
| | - Valérie Desquiret-Dumas
- Department of Biochemistry and Molecular Biology, University Hospital of Angers, Angers, France
- MITOVASC Research Unit, CNRS 6015, INSERM U1083, University of Angers, Angers, France
| | - Nicolas Nagot
- Pathogenesis and Control of Chronic and Emerging Infections, University of Montpellier, INSERM, Etablissement Français du Sang, University of Antilles, Montpellier, France
| | - Clara Rapenne
- Department of Biochemistry and Molecular Biology, University Hospital of Angers, Angers, France
- MITOVASC Research Unit, CNRS 6015, INSERM U1083, University of Angers, Angers, France
| | - Philippe Van de Perre
- Pathogenesis and Control of Chronic and Emerging Infections, University of Montpellier, INSERM, Etablissement Français du Sang, University of Antilles, Montpellier, France
| | - Pascal Reynier
- Department of Biochemistry and Molecular Biology, University Hospital of Angers, Angers, France
- MITOVASC Research Unit, CNRS 6015, INSERM U1083, University of Angers, Angers, France
| | - Jean-Pierre Molès
- Pathogenesis and Control of Chronic and Emerging Infections, University of Montpellier, INSERM, Etablissement Français du Sang, University of Antilles, Montpellier, France
| |
Collapse
|
6
|
Song X, Wang Y, Zou W, Wang Z, Cao W, Liang M, Li F, Zeng Q, Ren Z, Wang Y, Zheng K. Inhibition of mitophagy via the EIF2S1-ATF4-PRKN pathway contributes to viral encephalitis. J Adv Res 2024:S2090-1232(24)00326-6. [PMID: 39103048 DOI: 10.1016/j.jare.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 08/07/2024] Open
Abstract
INTRODUCTION Mitophagy, a selective form of autophagy responsible for maintaining mitochondrial homeostasis, regulates the antiviral immune response and acts as viral replication platforms to facilitate infection with various viruses. However, its precise role in herpes simplex virus 1 (HSV-1) infection and herpes simplex encephalitis (HSE) remains largely unknown. OBJECTIVES We aimed to investigate the regulation of mitophagy by HSV-1 neurotropic infection and its role in viral encephalitis, and to identify small compounds that regulate mitophagy to affect HSV-1 infection. METHODS The antiviral effects of compounds were investigated by Western blot, RT-PCR and plaque assay. The changes of Parkin (PRKN)-mediated mitophagy and Nuclear Factor kappa B (NFKB)-mediated neuroinflammation were examined by TEM, RT-qPCR, Western blot and ELISA. The therapeutic effect of taurine or PRKN-overexpression was confirmed in the HSE mouse model by evaluating survival rate, eye damage, neurodegenerative symptoms, immunohistochemistry analysis and histopathology. RESULTS HSV-1 infection caused the accumulation of damaged mitochondria in neuronal cells and in the brain tissue of HSE mice. Early HSV-1 infection led to mitophagy activation, followed by inhibition in the later viral infection. The HSV-1 proteins ICP34.5 or US11 deregulated the EIF2S1-ATF4 axis to suppress PRKN/Parkin mRNA expression, thereby impeding PRKN-dependent mitophagy. Consequently, inhibition of mitophagy by specific inhibitor midiv-1 promoted HSV-1 infection, whereas mitophagy activation by PRKN overexpression or agonists (CCCP and rotenone) attenuated HSV-1 infection and reduced the NF-κB-mediated neuroinflammation. Moreover, PRKN-overexpressing mice showed enhanced resistance to HSV-1 infection and ameliorated HSE pathogenesis. Furthermore, taurine, a differentially regulated gut microbial metabolite upon HSV-1 infection, acted as a mitophagy activator that transcriptionally promotes PRKN expression to stimulate mitophagy and to limit HSV-1 infection both in vitro and in vivo. CONCLUSION These results reveal the protective function of mitophagy in HSE pathogenesis and highlight mitophagy activation as a potential antiviral therapeutic strategy for HSV-1-related diseases.
Collapse
Affiliation(s)
- Xiaowei Song
- Institute of Biomedicine, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Key Laboratory of Innovative Technology Research on Natural Products and Cosmetics Raw Materials, Jinan University, Guangzhou 510632, China; Center for Mitochondrial Genetics and Health, Greater Bay Area Institute of Precision Medicine (Guangzhou), Fudan University, Guangzhou 511400, China
| | - Yiliang Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510440, China
| | - Weixiangmin Zou
- Institute of Biomedicine, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Key Laboratory of Innovative Technology Research on Natural Products and Cosmetics Raw Materials, Jinan University, Guangzhou 510632, China
| | - Zexu Wang
- Institute of Biomedicine, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Key Laboratory of Innovative Technology Research on Natural Products and Cosmetics Raw Materials, Jinan University, Guangzhou 510632, China
| | - Wenyan Cao
- Institute of Biomedicine, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Key Laboratory of Innovative Technology Research on Natural Products and Cosmetics Raw Materials, Jinan University, Guangzhou 510632, China
| | - Minting Liang
- Institute of Biomedicine, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Key Laboratory of Innovative Technology Research on Natural Products and Cosmetics Raw Materials, Jinan University, Guangzhou 510632, China
| | - Feng Li
- Infectious Diseases Institute, Guangzhou Eighth People's Hospital, Guangzhou 510440, China
| | - Qiongzhen Zeng
- Institute of Biomedicine, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Key Laboratory of Innovative Technology Research on Natural Products and Cosmetics Raw Materials, Jinan University, Guangzhou 510632, China
| | - Zhe Ren
- Institute of Biomedicine, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Key Laboratory of Innovative Technology Research on Natural Products and Cosmetics Raw Materials, Jinan University, Guangzhou 510632, China
| | - Yifei Wang
- Institute of Biomedicine, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Key Laboratory of Innovative Technology Research on Natural Products and Cosmetics Raw Materials, Jinan University, Guangzhou 510632, China.
| | - Kai Zheng
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China.
| |
Collapse
|
7
|
Deshetty UM, Chatterjee N, Buch S, Periyasamy P. HIV-1 Tat-Mediated Human Müller Glial Cell Senescence Involves Endoplasmic Reticulum Stress and Dysregulated Autophagy. Viruses 2024; 16:903. [PMID: 38932195 PMCID: PMC11209317 DOI: 10.3390/v16060903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 05/25/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
Antiretroviral treatments have notably extended the lives of individuals with HIV and reduced the occurrence of comorbidities, including ocular manifestations. The involvement of endoplasmic reticulum (ER) stress in HIV-1 pathogenesis raises questions about its correlation with cellular senescence or its role in initiating senescent traits. This study investigated how ER stress and dysregulated autophagy impact cellular senescence triggered by HIV-1 Tat in the MIO-M1 cell line (human Müller glial cells). Cells exposed to HIV-1 Tat exhibited increased vimentin expression combined with markers of ER stress (BiP, p-eIF2α), autophagy (LC3, Beclin-1, p62), and the senescence marker p21 compared to control cells. Western blotting and staining techniques like SA-β-gal were employed to examine these markers. Additionally, treatments with ER stress inhibitor 4-PBA before HIV-1 Tat exposure led to a decreased expression of ER stress, senescence, and autophagy markers. Conversely, pre-treatment with the autophagy inhibitor 3-MA resulted in reduced autophagy and senescence markers but did not alter ER stress markers compared to control cells. The findings suggest a link between ER stress, dysregulated autophagy, and the initiation of a senescence phenotype in MIO-M1 cells induced by HIV-1 Tat exposure.
Collapse
Affiliation(s)
- Uma Maheswari Deshetty
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA;
| | - Nivedita Chatterjee
- Vision Research Foundation, Sankara Netralaya, 18, College Road, Chennai 600006, India;
| | - Shilpa Buch
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA;
| | - Palsamy Periyasamy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA;
| |
Collapse
|
8
|
Wongchitrat P, Chanmee T, Govitrapong P. Molecular Mechanisms Associated with Neurodegeneration of Neurotropic Viral Infection. Mol Neurobiol 2024; 61:2881-2903. [PMID: 37946006 PMCID: PMC11043213 DOI: 10.1007/s12035-023-03761-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/31/2023] [Indexed: 11/12/2023]
Abstract
Viral infections of the central nervous system (CNS) cause variable outcomes from acute to severe neurological sequelae with increased morbidity and mortality. Viral neuroinvasion directly or indirectly induces encephalitis via dysregulation of the immune response and contributes to the alteration of neuronal function and the degeneration of neuronal cells. This review provides an overview of the cellular and molecular mechanisms of virus-induced neurodegeneration. Neurotropic viral infections influence many aspects of neuronal dysfunction, including promoting chronic inflammation, inducing cellular oxidative stress, impairing mitophagy, encountering mitochondrial dynamics, enhancing metabolic rewiring, altering neurotransmitter systems, and inducing misfolded and aggregated pathological proteins associated with neurodegenerative diseases. These pathogenetic mechanisms create a multidimensional injury of the brain that leads to specific neuronal and brain dysfunction. The understanding of the molecular mechanisms underlying the neurophathogenesis associated with neurodegeneration of viral infection may emphasize the strategies for prevention, protection, and treatment of virus infection of the CNS.
Collapse
Affiliation(s)
- Prapimpun Wongchitrat
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, 999 Phutthamonthon 4 Road, Salaya, Phutthamonthon, Nakhon Pathom, 73170, Thailand.
| | - Theerawut Chanmee
- Department of Clinical Chemistry, Faculty of Medical Technology, Mahidol University, Salaya, Nakhon Pathom, Thailand
| | | |
Collapse
|
9
|
Li Z, Zhang Y, Zhao B, Xue Q, Wang C, Wan S, Wang J, Chen X, Qi X. Non-cytopathic bovine viral diarrhea virus (BVDV) inhibits innate immune responses via induction of mitophagy. Vet Res 2024; 55:27. [PMID: 38443986 PMCID: PMC10916263 DOI: 10.1186/s13567-024-01284-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 01/29/2024] [Indexed: 03/07/2024] Open
Abstract
Bovine viral diarrhea virus (BVDV) belongs to the genus Pestivirus within the family Flaviviridae. Mitophagy plays important roles in virus-host interactions. Here, we provide evidence that non-cytopathic (NCP) BVDV shifts the balance of mitochondrial dynamics toward fission and induces mitophagy to inhibit innate immune responses. Mechanistically, NCP BVDV triggers the translocation of dynamin-related protein (Drp1) to mitochondria and stimulates its phosphorylation at Ser616, leading to mitochondrial fission. In parallel, NCP BVDV-induced complete mitophagy via Parkin-dependent pathway contributes to eliminating damaged mitochondria to inhibit MAVS- and mtDNA-cGAS-mediated innate immunity responses, mtROS-mediated inflammatory responses and apoptosis initiation. Importantly, we demonstrate that the LIR motif of ERNS is essential for mitophagy induction. In conclusion, this study is the first to show that NCP BVDV-induced mitophagy plays a central role in promoting cell survival and inhibiting innate immune responses in vitro.
Collapse
Affiliation(s)
- Zhijun Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agriculture and Rural Affairs, Xi'an, China
| | - Ying Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agriculture and Rural Affairs, Xi'an, China
| | - Bao Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Shaanxi Animal Disease Control Center, Xi'an, China
| | - Qinghong Xue
- China Institute of Veterinary Drug Control, Beijing, China
| | - Chunjiang Wang
- Hebei Veyong Pharmaceutical Co., Ltd, Shijiazhuang, China
| | - Siyu Wan
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agriculture and Rural Affairs, Xi'an, China
| | - Jingyu Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agriculture and Rural Affairs, Xi'an, China
| | - Xiwen Chen
- Animal Disease Prevention and Control & Healthy Breeding Engineering Technology Research Center, Mianyang Normal University, Mianyang, Sichuan, China.
| | - Xuefeng Qi
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.
- Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agriculture and Rural Affairs, Xi'an, China.
| |
Collapse
|
10
|
Aguilera MO, Delgui LR, Reggiori F, Romano PS, Colombo MI. Autophagy as an innate immunity response against pathogens: a Tango dance. FEBS Lett 2024; 598:140-166. [PMID: 38101809 DOI: 10.1002/1873-3468.14788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/18/2023] [Accepted: 10/27/2023] [Indexed: 12/17/2023]
Abstract
Intracellular infections as well as changes in the cell nutritional environment are main events that trigger cellular stress responses. One crucial cell response to stress conditions is autophagy. During the last 30 years, several scenarios involving autophagy induction or inhibition over the course of an intracellular invasion by pathogens have been uncovered. In this review, we will present how this knowledge was gained by studying different microorganisms. We intend to discuss how the cell, via autophagy, tries to repel these attacks with the objective of destroying the intruder, but also how some pathogens have developed strategies to subvert this. These two fates can be compared with a Tango, a dance originated in Buenos Aires, Argentina, in which the partner dancers are in close connection. One of them is the leader, embracing and involving the partner, but the follower may respond escaping from the leader. This joint dance is indeed highly synchronized and controlled, perfectly reflecting the interaction between autophagy and microorganism.
Collapse
Affiliation(s)
- Milton O Aguilera
- Laboratorio de Mecanismos Moleculares Implicados en el Tráfico Vesicular y la Autofagia-Instituto de Histología y Embriología (IHEM), Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina
- Facultad de Odontología, Microbiología, Parasitología e Inmunología, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Laura R Delgui
- Instituto de Histología y Embriología de Mendoza, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro Universitario M5502JMA, Universidad Nacional de Cuyo (UNCuyo), Mendoza, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo (UNCuyo), Mendoza, Argentina
| | - Fulvio Reggiori
- Department of Biomedicine, Aarhus University, Denmark
- Aarhus Institute of Advanced Studies (AIAS), Aarhus University, Denmark
| | - Patricia S Romano
- Laboratorio de Biología de Trypanosoma cruzi y la célula hospedadora - Instituto de Histología y Embriología de Mendoza, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro Universitario M5502JMA, Universidad Nacional de Cuyo (UNCuyo), Mendoza, Argentina
- Facultad de Ciencias Médicas, Centro Universitario M5502JMA, Universidad Nacional de Cuyo (UNCuyo), Mendoza, Argentina
| | - María I Colombo
- Laboratorio de Mecanismos Moleculares Implicados en el Tráfico Vesicular y la Autofagia-Instituto de Histología y Embriología (IHEM), Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina
- Facultad de Ciencias Médicas, Centro Universitario M5502JMA, Universidad Nacional de Cuyo (UNCuyo), Mendoza, Argentina
| |
Collapse
|
11
|
Figarola-Centurión I, Escoto-Delgadillo M, González-Enríquez GV, Gutiérrez-Sevilla JE, Vázquez-Valls E, Cárdenas-Bedoya J, Torres-Mendoza BM. HIV-1 Tat Induces Dysregulation of PGC1-Alpha and Sirtuin 3 Expression in Neurons: The Role of Mitochondrial Biogenesis in HIV-Associated Neurocognitive Disorder (HAND). Int J Mol Sci 2023; 24:17566. [PMID: 38139395 PMCID: PMC10743616 DOI: 10.3390/ijms242417566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023] Open
Abstract
During the antiretroviral era, individuals living with HIV continue to experience milder forms of HIV-associated neurocognitive disorder (HAND). Viral proteins, including Tat, play a pivotal role in the observed alterations within the central nervous system (CNS), with mitochondrial dysfunction emerging as a prominent hallmark. As a result, our objective was to examine the expression of genes associated with mitophagy and mitochondrial biogenesis in the brain exposed to the HIV-1 Tat protein. We achieved this by performing bilateral stereotaxic injections of 100 ng of HIV-1 Tat into the hippocampus of Sprague-Dawley rats, followed by immunoneuromagnetic cell isolation. Subsequently, we assessed the gene expression of Ppargc1a, Pink1, and Sirt1-3 in neurons using RT-qPCR. Additionally, to understand the role of Tert in telomeric dysfunction, we quantified the activity and expression of Tert. Our results revealed that only Ppargc1a, Pink1, and mitochondrial Sirt3 were downregulated in response to the presence of HIV-1 Tat in hippocampal neurons. Interestingly, we observed a reduction in the activity of Tert in the experimental group, while mRNA levels remained relatively stable. These findings support the compelling evidence of dysregulation in both mitophagy and mitochondrial biogenesis in neurons exposed to HIV-1 Tat, which in turn induces telomeric dysfunction.
Collapse
Affiliation(s)
- Izchel Figarola-Centurión
- Doctorado en Genética Humana, Departamento de Biología Molecular y Genómica, Universidad de Guadalajara, Guadalajara 44340, Mexico;
- Laboratorio de Inmunodeficiencias y Retrovirus Humanos, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara 44340, Mexico; (J.E.G.-S.); (J.C.-B.)
| | - Martha Escoto-Delgadillo
- Laboratorio de Inmunodeficiencias y Retrovirus Humanos, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara 44340, Mexico; (J.E.G.-S.); (J.C.-B.)
- Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Guadalajara 44600, Mexico
| | - Gracia Viviana González-Enríquez
- Departamento de Disciplinas Filosófico, Metodológicas e Instrumentales, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico;
| | - Juan Ernesto Gutiérrez-Sevilla
- Laboratorio de Inmunodeficiencias y Retrovirus Humanos, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara 44340, Mexico; (J.E.G.-S.); (J.C.-B.)
- Doctorado en Microbiología Médica, Departamento de Microbiología y Patología, Universidad de Guadalajara, Guadalajara 44340, Mexico
| | | | - Jhonathan Cárdenas-Bedoya
- Laboratorio de Inmunodeficiencias y Retrovirus Humanos, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara 44340, Mexico; (J.E.G.-S.); (J.C.-B.)
- Departamento de Disciplinas Filosófico, Metodológicas e Instrumentales, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico;
| | - Blanca Miriam Torres-Mendoza
- Laboratorio de Inmunodeficiencias y Retrovirus Humanos, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara 44340, Mexico; (J.E.G.-S.); (J.C.-B.)
- Departamento de Disciplinas Filosófico, Metodológicas e Instrumentales, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico;
| |
Collapse
|
12
|
Sun Y, Cai M, Liang Y, Zhang Y. Disruption of blood-brain barrier: effects of HIV Tat on brain microvascular endothelial cells and tight junction proteins. J Neurovirol 2023; 29:658-668. [PMID: 37899420 DOI: 10.1007/s13365-023-01179-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/01/2023] [Accepted: 10/12/2023] [Indexed: 10/31/2023]
Abstract
Although the widespread use of antiretroviral therapy (ART) has prolonged the life span of people living with HIV (PLWH), the incidence of HIV-associated neurocognitive disorders (HAND) in PLWH is also gradually increasing, seriously affecting the quality of life for PLWH. However, the pathogenesis of HAND has not been elucidated, which leaves HAND without effective treatment. HIV protein transactivator of transcription (Tat), as an important regulatory protein, is crucial in the pathogenesis of HAND, and its mechanism of HAND has received widespread attention. The blood-brain barrier (BBB) and its cellular component brain microvascular endothelial cells (BMVECs) play a necessary role in protecting the central nervous system (CNS), and their damage associated with Tat is a potential therapeutic target of HAND. In this review, we will study the Tat-mediated damage mechanism of the BBB and present multiple lines of evidence related to BMVEC damage caused by Tat.
Collapse
Affiliation(s)
- Yuqing Sun
- Department of Respiratory and Critical Care Medicine, Beijing You An Hospital, Capital Medical University, Beijing, 100069, China
| | - Miaotian Cai
- Department of Respiratory and Critical Care Medicine, Beijing You An Hospital, Capital Medical University, Beijing, 100069, China
| | - Ying Liang
- Department of Respiratory and Critical Care Medicine, Beijing You An Hospital, Capital Medical University, Beijing, 100069, China
| | - Yulin Zhang
- Department of Respiratory and Critical Care Medicine, Beijing You An Hospital, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
13
|
Tian G, Huang C, Li Z, Lu Z, Feng C, Zhuang Y, Li G, Liu P, Hu G, Gao X, Guo X. Baicalin mitigates nephropathogenic infectious bronchitis virus infection-induced spleen injury via modulation of mitophagy and macrophage polarization in Hy-Line chick. Vet Microbiol 2023; 286:109891. [PMID: 37866328 DOI: 10.1016/j.vetmic.2023.109891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/14/2023] [Accepted: 10/12/2023] [Indexed: 10/24/2023]
Abstract
Nephropathogenic infectious bronchitis virus (NIBV) infections continue to pose a significant hazard in the poultry industry. Baicalin is a natural flavonoid that has been reported to have antiviral activity, but its function in NIBV infection largely remains unclear. In this study, the antiviral mechanism of baicalin in the spleen of NIBV-infected chicks was mainly elucidated in mitophagy and macrophage polarization. 28-day-old Hy-Line brown chicks were randomly divided into four groups: the group of chicks was treated intranasally (in) with normal saline (0.2 mL) and subsequently divided into two groups: the Con group (basic diet), the Con+BA group (basic diet+10 mg/kg Baicalin); another group of chicks was intranasally infected with SX9 (10-5/0.2 mL) and subsequently divided into two groups: the Dis group (basic diet), the Dis+BA group (basic diet+10 mg/kg Baicalin). Spleen tissues were collected at 3, 7, and 11 days post infection (dpi). NIBV copy number was strikingly decreased in the spleens under BA treatment with infectious time. Histopathological examination showed enlarged and hemorrhagic white pulp and no clearly defined boundary between white pulp and red pulp in the Dis group, which could be improved by BA treatment. Meanwhile, the loss of cristae structure and vacuolization in mitochondria caused by NIBV infection was repaired in the Dis+BA group by ultrastructure observation. In addition, BA treatment inhibited the induction of mitophagy by NIBV infection. BA treatment also promoted innate immunity by enhancing type I IFN levels. Moreover, BA treatment up-regulated M1-related cytokines (iNOS, TNF-α, IL-1β, IL-6) and inhibited M2-related cytokines (ARG2, IL-4, IL-10, Pparg) at the mRNA and protein levels. However, the results from the splenic tissues at 11 dpi are opposite results from 3 and 7 dpi. Immunofluorescence analysis for M1 macrophage marker iNOS and M2 macrophage marker CD163 further validated this result. Collectively, BA inhibited mitophagy and triggered IFN activation, and M1 polarization, which contributed to the inhibition of NIBV infection.
Collapse
Affiliation(s)
- Guanming Tian
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, PR China
| | - Cheng Huang
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, PR China
| | - Zhengqing Li
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, PR China
| | - Zhihua Lu
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, PR China
| | - Chenlu Feng
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, PR China
| | - Yu Zhuang
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, PR China
| | - Guyue Li
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, PR China
| | - Ping Liu
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, PR China
| | - Guoliang Hu
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, PR China
| | - Xiaona Gao
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, PR China.
| | - Xiaoquan Guo
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, PR China.
| |
Collapse
|
14
|
Ellis RJ, Marquine MJ, Kaul M, Fields JA, Schlachetzki JCM. Mechanisms underlying HIV-associated cognitive impairment and emerging therapies for its management. Nat Rev Neurol 2023; 19:668-687. [PMID: 37816937 PMCID: PMC11052664 DOI: 10.1038/s41582-023-00879-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2023] [Indexed: 10/12/2023]
Abstract
People living with HIV are affected by the chronic consequences of neurocognitive impairment (NCI) despite antiretroviral therapies that suppress viral replication, improve health and extend life. Furthermore, viral suppression does not eliminate the virus, and remaining infected cells may continue to produce viral proteins that trigger neurodegeneration. Comorbidities such as diabetes mellitus are likely to contribute substantially to CNS injury in people living with HIV, and some components of antiretroviral therapy exert undesirable side effects on the nervous system. No treatment for HIV-associated NCI has been approved by the European Medicines Agency or the US Food and Drug Administration. Historically, roadblocks to developing effective treatments have included a limited understanding of the pathophysiology of HIV-associated NCI and heterogeneity in its clinical manifestations. This heterogeneity might reflect multiple underlying causes that differ among individuals, rather than a single unifying neuropathogenesis. Despite these complexities, accelerating discoveries in HIV neuropathogenesis are yielding potentially druggable targets, including excessive immune activation, metabolic alterations culminating in mitochondrial dysfunction, dysregulation of metal ion homeostasis and lysosomal function, and microbiome alterations. In addition to drug treatments, we also highlight the importance of non-pharmacological interventions. By revisiting mechanisms implicated in NCI and potential interventions addressing these mechanisms, we hope to supply reasons for optimism in people living with HIV affected by NCI and their care providers.
Collapse
Affiliation(s)
- Ronald J Ellis
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA.
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA.
| | - María J Marquine
- Department of Medicine, Duke University, Durham, NC, USA
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
| | - Marcus Kaul
- School of Medicine, Division of Biomedical Sciences, University of California Riverside, Riverside, CA, USA
| | - Jerel Adam Fields
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Johannes C M Schlachetzki
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
15
|
Endres K, Friedland K. Talk to Me-Interplay between Mitochondria and Microbiota in Aging. Int J Mol Sci 2023; 24:10818. [PMID: 37445995 DOI: 10.3390/ijms241310818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/21/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
The existence of mitochondria in eukaryotic host cells as a remnant of former microbial organisms has been widely accepted, as has their fundamental role in several diseases and physiological aging. In recent years, it has become clear that the health, aging, and life span of multicellular hosts are also highly dependent on the still-residing microbiota, e.g., those within the intestinal system. Due to the common evolutionary origin of mitochondria and these microbial commensals, it is intriguing to investigate if there might be a crosstalk based on preserved common properties. In the light of rising knowledge on the gut-brain axis, such crosstalk might severely affect brain homeostasis in aging, as neuronal tissue has a high energy demand and low tolerance for according functional decline. In this review, we summarize what is known about the impact of both mitochondria and the microbiome on the host's aging process and what is known about the aging of both entities. For a long time, bacteria were assumed to be immortal; however, recent evidence indicates their aging and similar observations have been made for mitochondria. Finally, we present pathways by which mitochondria are affected by microbiota and give information about therapeutic anti-aging approaches that are based on current knowledge.
Collapse
Affiliation(s)
- Kristina Endres
- Department of Psychiatry and Psychotherapy, University Medical Center of the Johannes Gutenberg-University, 55131 Mainz, Germany
| | - Kristina Friedland
- Department of Pharmacology and Toxicology, Institute for Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University, 55128 Mainz, Germany
| |
Collapse
|
16
|
Du C, Li G, Han G. Biosafety and mental health: Virus induced cognitive decline. BIOSAFETY AND HEALTH 2023; 5:159-167. [PMID: 40078510 PMCID: PMC11895046 DOI: 10.1016/j.bsheal.2023.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/27/2023] [Accepted: 04/10/2023] [Indexed: 03/14/2025] Open
Abstract
Biological agents threats people's life through different ways, one of which lies in the impairment of cognition. It is believed cognitive decline may result from biological agents mediated neuron damage directly, or from the activation of the host immune response to eradicate the pathogen. However, direct linkage between infections and cognitive decline is very limited. Here we focus on the mechanisms of how different biological virus or they induced systemic and local inflammation link to the cognitive impairment, focusing on the roles of activated microglia and several molecular pathways mediated neurotoxicity.
Collapse
Affiliation(s)
- Chunxiao Du
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Ge Li
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Gencheng Han
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| |
Collapse
|
17
|
White CJ, Goodkin K. Bioenergetics and neuroimaging research: a neuropathophysiological linkage in the setting of cocaine use amongst persons with HIV. AIDS 2023; 37:1001-1003. [PMID: 37017022 PMCID: PMC10101129 DOI: 10.1097/qad.0000000000003535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 02/24/2023] [Indexed: 04/06/2023]
Affiliation(s)
- Cory J. White
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, MD
| | - Karl Goodkin
- Department of Psychiatry
- Institute of Neuroscience, The University of Texas at Rio Grande Valley, Harlingen, TX, USA
| |
Collapse
|
18
|
Shrestha J, Santerre M, Allen CN, Arjona SP, Hooper R, Mukerjee R, Kaul M, Shcherbik N, Soboloff J, Sawaya BE. HIV-1 gp120 protein promotes HAND through the calcineurin pathway activation. Mitochondrion 2023; 70:31-40. [PMID: 36925028 PMCID: PMC10484070 DOI: 10.1016/j.mito.2023.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 02/21/2023] [Accepted: 03/08/2023] [Indexed: 03/18/2023]
Abstract
For over two decades, highly active antiretroviral therapy (HAART) was able to help prolong the life expectancy of people living with HIV-1 (PLWH) and eliminate the virus to an undetectable level. However, an increased prevalence of HIV- associated neurocognitive disorders (HAND) was observed. These symptoms range from neuronal dysfunction to cell death. Among the markers of neuronal deregulation, we cite the alteration of synaptic plasticity and neuronal communications. Clinically, these dysfunctions led to neurocognitive disorders such as learning alteration and loss of spatial memory, which promote premature brain aging even in HAART-treated patients. In support of these observations, we showed that the gp120 protein deregulates miR-499-5p and its downstream target, the calcineurin (CaN) protein. The gp120 protein also promotes the accumulation of calcium (Ca2+) and reactive oxygen species (ROS) inside the neurons leading to the activation of CaN and the inhibition of miR-499-5p. gp120 protein also caused mitochondrial fragmentation and changes in shape and size. The use of mimic miR-499 restored mitochondrial functions, appearance, and size. These results demonstrated the additional effect of the gp120 protein on neurons through the miR-499-5p/calcineurin pathway.
Collapse
Affiliation(s)
- Jenny Shrestha
- Molecular Studies of Neurodegenerative Diseases Lab; FELS Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine - Temple University Philadelphia, PA 19140, USA.
| | - Maryline Santerre
- Molecular Studies of Neurodegenerative Diseases Lab; FELS Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine - Temple University Philadelphia, PA 19140, USA
| | - Charles N Allen
- Molecular Studies of Neurodegenerative Diseases Lab; FELS Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine - Temple University Philadelphia, PA 19140, USA
| | - Sterling P Arjona
- Molecular Studies of Neurodegenerative Diseases Lab; FELS Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine - Temple University Philadelphia, PA 19140, USA
| | - Robert Hooper
- FELS Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine - Temple University Philadelphia, PA 19140, USA
| | - Ruma Mukerjee
- Molecular Studies of Neurodegenerative Diseases Lab; FELS Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine - Temple University Philadelphia, PA 19140, USA
| | - Marcus Kaul
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA; Department of Psychiatry, UCSD, San Diego, CA, USA; Division of Biomedical Sciences, School of Medicine, UCR, Riverside, CA, USA
| | - Natalia Shcherbik
- Department for Cell Biology and Neuroscience, School of Osteopathic Medicine, Rowan University, 2 Medical Center Drive, Stratford, NJ 08084, USA
| | - Jonathan Soboloff
- FELS Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine - Temple University Philadelphia, PA 19140, USA; Department of Cancer and Cellular Biology, Lewis Katz School of Medicine - Temple University Philadelphia, PA 19140, USA
| | - Bassel E Sawaya
- Molecular Studies of Neurodegenerative Diseases Lab; FELS Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine - Temple University Philadelphia, PA 19140, USA; Department of Cancer and Cellular Biology, Lewis Katz School of Medicine - Temple University Philadelphia, PA 19140, USA.
| |
Collapse
|
19
|
Chen T, Tu S, Ding L, Jin M, Chen H, Zhou H. The role of autophagy in viral infections. J Biomed Sci 2023; 30:5. [PMID: 36653801 PMCID: PMC9846652 DOI: 10.1186/s12929-023-00899-2] [Citation(s) in RCA: 86] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/10/2023] [Indexed: 01/20/2023] Open
Abstract
Autophagy is an evolutionarily conserved catabolic cellular process that exerts antiviral functions during a viral invasion. However, co-evolution and co-adaptation between viruses and autophagy have armed viruses with multiple strategies to subvert the autophagic machinery and counteract cellular antiviral responses. Specifically, the host cell quickly initiates the autophagy to degrade virus particles or virus components upon a viral infection, while cooperating with anti-viral interferon response to inhibit the virus replication. Degraded virus-derived antigens can be presented to T lymphocytes to orchestrate the adaptive immune response. Nevertheless, some viruses have evolved the ability to inhibit autophagy in order to evade degradation and immune responses. Others induce autophagy, but then hijack autophagosomes as a replication site, or hijack the secretion autophagy pathway to promote maturation and egress of virus particles, thereby increasing replication and transmission efficiency. Interestingly, different viruses have unique strategies to counteract different types of selective autophagy, such as exploiting autophagy to regulate organelle degradation, metabolic processes, and immune responses. In short, this review focuses on the interaction between autophagy and viruses, explaining how autophagy serves multiple roles in viral infection, with either proviral or antiviral functions.
Collapse
Affiliation(s)
- Tong Chen
- grid.35155.370000 0004 1790 4137State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430030 China ,grid.35155.370000 0004 1790 4137Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430030 China
| | - Shaoyu Tu
- grid.35155.370000 0004 1790 4137State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430030 China ,grid.35155.370000 0004 1790 4137Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430030 China
| | - Ling Ding
- grid.35155.370000 0004 1790 4137State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430030 China ,grid.35155.370000 0004 1790 4137Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430030 China
| | - Meilin Jin
- grid.35155.370000 0004 1790 4137State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430030 China ,grid.35155.370000 0004 1790 4137Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430030 China
| | - Huanchun Chen
- grid.35155.370000 0004 1790 4137State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430030 China ,grid.35155.370000 0004 1790 4137Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430030 China
| | - Hongbo Zhou
- grid.35155.370000 0004 1790 4137State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430030 China ,grid.35155.370000 0004 1790 4137Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430030 China
| |
Collapse
|
20
|
Li M, Gao ZL, Zhang QP, Luo AX, Xu WY, Duan TQ, Wen XP, Zhang RQ, Zeng R, Huang JF. Autophagy in glaucoma pathogenesis: Therapeutic potential and future perspectives. Front Cell Dev Biol 2022; 10:1068213. [PMID: 36589756 PMCID: PMC9795220 DOI: 10.3389/fcell.2022.1068213] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/02/2022] [Indexed: 12/16/2022] Open
Abstract
Glaucoma is a common blinding eye disease characterized by progressive loss of retinal ganglion cells (RGCs) and their axons, progressive loss of visual field, and optic nerve atrophy. Autophagy plays a pivotal role in the pathophysiology of glaucoma and is closely related to its pathogenesis. Targeting autophagy and blocking the apoptosis of RGCs provides emerging guidance for the treatment of glaucoma. Here, we provide a systematic review of the mechanisms and targets of interventions related to autophagy in glaucoma and discuss the outlook of emerging ideas, techniques, and multidisciplinary combinations to provide a new basis for further research and the prevention of glaucomatous visual impairment.
Collapse
Affiliation(s)
- Min Li
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Zhao-Lin Gao
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Quan-Peng Zhang
- Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, China,Anatomy Laboratory, Hainan Medical University, Haikou, China
| | - Ai-Xiang Luo
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Wei-Ye Xu
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Tian-Qi Duan
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Xu-Peng Wen
- Transplantation Center, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Ru-Qi Zhang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Ru Zeng
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Ju-Fang Huang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China,*Correspondence: Ju-Fang Huang,
| |
Collapse
|
21
|
Donoso M, D’Amico D, Valdebenito S, Hernandez CA, Prideaux B, Eugenin EA. Identification, Quantification, and Characterization of HIV-1 Reservoirs in the Human Brain. Cells 2022; 11:2379. [PMID: 35954221 PMCID: PMC9367788 DOI: 10.3390/cells11152379] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/19/2022] [Accepted: 07/26/2022] [Indexed: 02/04/2023] Open
Abstract
The major barrier to cure HIV infection is the early generation and extended survival of HIV reservoirs in the circulation and tissues. Currently, the techniques used to detect and quantify HIV reservoirs are mostly based on blood-based assays; however, it has become evident that viral reservoirs remain in tissues. Our study describes a novel multi-component imaging method (HIV DNA, mRNA, and viral proteins in the same assay) to identify, quantify, and characterize viral reservoirs in tissues and blood products obtained from HIV-infected individuals even when systemic replication is undetectable. In the human brains of HIV-infected individuals under ART, we identified that microglia/macrophages and a small population of astrocytes are the main cells with integrated HIV DNA. Only half of the cells with integrated HIV DNA expressed viral mRNA, and one-third expressed viral proteins. Surprisingly, we identified residual HIV-p24, gp120, nef, vpr, and tat protein expression and accumulation in uninfected cells around HIV-infected cells suggesting local synthesis, secretion, and bystander uptake. In conclusion, our data show that ART reduces the size of the brain's HIV reservoirs; however, local/chronic viral protein secretion still occurs, indicating that the brain is still a major anatomical target to cure HIV infection.
Collapse
Affiliation(s)
| | | | | | | | | | - Eliseo A. Eugenin
- Department of Neuroscience, Cell Biology, and Anatomy, University of Texas Medical Branch (UTMB), Research Building 17, Fifth Floor, 105 11th Street, Galveston, TX 77555, USA; (M.D.); (D.D.); (S.V.); (C.A.H.); (B.P.)
| |
Collapse
|
22
|
Desquiret-Dumas V, D’Ottavi M, Monnin A, Goudenège D, Méda N, Vizeneux A, Kankasa C, Tylleskar T, Bris C, Procaccio V, Nagot N, Van de Perre P, Reynier P, Molès JP. Long-Term Persistence of Mitochondrial DNA Instability in HIV-Exposed Uninfected Children during and after Exposure to Antiretroviral Drugs and HIV. Biomedicines 2022; 10:biomedicines10081786. [PMID: 35892686 PMCID: PMC9331317 DOI: 10.3390/biomedicines10081786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 11/16/2022] Open
Abstract
HIV-exposed uninfected (HEU) children show impaired health outcomes during childhood. A high rate of mitochondrial DNA (mtDNA) instability was reported in the blood of HEU at birth. We aimed to explore the relationship between these health outcomes and mtDNA deletions over time in a case series of 24 HEU children. MtDNA instability was assessed by deep sequencing and analyzed by eKLIPse-v2 algorithm at three time points, namely birth, 1 year, and 6 years of age. Association between mtDNA deletion and health outcomes, including growth, clinical, and neurodevelopmental parameters, were explored using univariate statistical analyses and after stratification with relevant variables. HEU children were selected with an equal male:female ratio. An elevated number of mtDNA deletions and duplications events was observed at 7 days’ post-partum. Median heteroplasmy increased at one year of life and then returned to baseline by six years of age. The mtDNA instability was acquired and was not transmitted by the mother. No risk factors were significantly associated with mtDNA instability. In this small case series, we did not detect any association between any health outcome at 6 years and mtDNA instability measures. A significant effect modification of the association between the duration of maternal prophylaxis and child growth was observed after stratification with heteroplasmy rate. Genomic instability persists over time among HEU children but, despite its extension, stays subclinical at six years.
Collapse
Affiliation(s)
- Valérie Desquiret-Dumas
- Department of Biochemistry and Genetics, University Hospital of Angers, F-49000 Angers, France; (V.D.-D.); (D.G.); (C.B.); (V.P.); (P.R.)
- UMR MITOVASC, CNRS 6015, INSERM U1083, University of Angers, F-49000 Angers, France
| | - Morgana D’Ottavi
- Pathogenesis and Control of Chronic and Emerging Infections, INSERM, Etablissement Français du Sang, University of Montpellier, University of Antilles, F-34394 Montpellier, France; (M.D.); (A.M.); (A.V.); (N.N.); (P.V.d.P.)
| | - Audrey Monnin
- Pathogenesis and Control of Chronic and Emerging Infections, INSERM, Etablissement Français du Sang, University of Montpellier, University of Antilles, F-34394 Montpellier, France; (M.D.); (A.M.); (A.V.); (N.N.); (P.V.d.P.)
| | - David Goudenège
- Department of Biochemistry and Genetics, University Hospital of Angers, F-49000 Angers, France; (V.D.-D.); (D.G.); (C.B.); (V.P.); (P.R.)
- UMR MITOVASC, CNRS 6015, INSERM U1083, University of Angers, F-49000 Angers, France
| | - Nicolas Méda
- Centre MURAZ, Bobo-Dioulasso 01 B.P. 390, Burkina Faso;
| | - Amélie Vizeneux
- Pathogenesis and Control of Chronic and Emerging Infections, INSERM, Etablissement Français du Sang, University of Montpellier, University of Antilles, F-34394 Montpellier, France; (M.D.); (A.M.); (A.V.); (N.N.); (P.V.d.P.)
| | - Chipepo Kankasa
- Department of Paediatrics and Child Health, University Teaching Hospital, Lusaka P.O. Box 50001, Zambia;
| | - Thorkild Tylleskar
- Centre for International Health, University of Bergen, N-5020 Bergen, Norway;
| | - Céline Bris
- Department of Biochemistry and Genetics, University Hospital of Angers, F-49000 Angers, France; (V.D.-D.); (D.G.); (C.B.); (V.P.); (P.R.)
- UMR MITOVASC, CNRS 6015, INSERM U1083, University of Angers, F-49000 Angers, France
| | - Vincent Procaccio
- Department of Biochemistry and Genetics, University Hospital of Angers, F-49000 Angers, France; (V.D.-D.); (D.G.); (C.B.); (V.P.); (P.R.)
- UMR MITOVASC, CNRS 6015, INSERM U1083, University of Angers, F-49000 Angers, France
| | - Nicolas Nagot
- Pathogenesis and Control of Chronic and Emerging Infections, INSERM, Etablissement Français du Sang, University of Montpellier, University of Antilles, F-34394 Montpellier, France; (M.D.); (A.M.); (A.V.); (N.N.); (P.V.d.P.)
| | - Philippe Van de Perre
- Pathogenesis and Control of Chronic and Emerging Infections, INSERM, Etablissement Français du Sang, University of Montpellier, University of Antilles, F-34394 Montpellier, France; (M.D.); (A.M.); (A.V.); (N.N.); (P.V.d.P.)
| | - Pascal Reynier
- Department of Biochemistry and Genetics, University Hospital of Angers, F-49000 Angers, France; (V.D.-D.); (D.G.); (C.B.); (V.P.); (P.R.)
- UMR MITOVASC, CNRS 6015, INSERM U1083, University of Angers, F-49000 Angers, France
| | - Jean-Pierre Molès
- Pathogenesis and Control of Chronic and Emerging Infections, INSERM, Etablissement Français du Sang, University of Montpellier, University of Antilles, F-34394 Montpellier, France; (M.D.); (A.M.); (A.V.); (N.N.); (P.V.d.P.)
- Correspondence: ; Tel.: +33-434-35-91-07
| |
Collapse
|
23
|
Seth P. Insights Into the Role of Mortalin in Alzheimer’s Disease, Parkinson’s Disease, and HIV-1-Associated Neurocognitive Disorders. Front Cell Dev Biol 2022; 10:903031. [PMID: 35859895 PMCID: PMC9292388 DOI: 10.3389/fcell.2022.903031] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/06/2022] [Indexed: 11/13/2022] Open
Abstract
Mortalin is a chaperone protein that regulates physiological functions of cells. Its multifactorial role allows cells to survive pathological conditions. Pharmacological, chemical, and siRNA-mediated downregulation of mortalin increases oxidative stress, mitochondrial dysfunction leading to unregulated inflammation. In addition to its well-characterized function in controlling oxidative stress, mitochondrial health, and maintaining physiological balance, recent evidence from human brain autopsies and cell culture–based studies suggests a critical role of mortalin in attenuating the damage seen in several neurodegenerative diseases. Overexpression of mortalin provides an important line of defense against accumulated proteins, inflammation, and neuronal loss, a key characteristic feature observed in neurodegeneration. Neurodegenerative diseases are a group of progressive disorders, sharing pathological features in Alzheimer’s disease, Parkinson’s disease, multiple sclerosis, and HIV-associated neurocognitive disorder. Aggregation of insoluble amyloid beta-proteins and neurofibrillary tangles in Alzheimer’s disease are among the leading cause of neuropathology in the brain. Parkinson’s disease is characterized by the degeneration of dopamine neurons in substantia nigra pars compacta. A substantial synaptic loss leading to cognitive decline is the hallmark of HIV-associated neurocognitive disorder (HAND). Brain autopsies and cell culture studies showed reduced expression of mortalin in Alzheimer’s, Parkinson’s, and HAND cases and deciphered the important role of mortalin in brain cells. Here, we discuss mortalin and its regulation and describe how neurotoxic conditions alter the expression of mortalin and modulate its functions. In addition, we also review the neuroprotective role of mortalin under neuropathological conditions. This knowledge showcases the importance of mortalin in diverse brain functions and offers new opportunities for the development of therapeutic targets that can modulate the expression of mortalin using chemical compounds.
Collapse
Affiliation(s)
- Pankaj Seth
- Department of Cellular and Molecular Neuroscience, National Brain Research Centre, Gurgaon, India
| |
Collapse
|
24
|
Proulx J, Stacy S, Park IW, Borgmann K. A Non-Canonical Role for IRE1α Links ER and Mitochondria as Key Regulators of Astrocyte Dysfunction: Implications in Methamphetamine use and HIV-Associated Neurocognitive Disorders. Front Neurosci 2022; 16:906651. [PMID: 35784841 PMCID: PMC9247407 DOI: 10.3389/fnins.2022.906651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/20/2022] [Indexed: 11/13/2022] Open
Abstract
Astrocytes are one of the most numerous glial cells in the central nervous system (CNS) and provide essential support to neurons to ensure CNS health and function. During a neuropathological challenge, such as during human immunodeficiency virus (HIV)-1 infection or (METH)amphetamine exposure, astrocytes shift their neuroprotective functions and can become neurotoxic. Identifying cellular and molecular mechanisms underlying astrocyte dysfunction are of heightened importance to optimize the coupling between astrocytes and neurons and ensure neuronal fitness against CNS pathology, including HIV-1-associated neurocognitive disorders (HAND) and METH use disorder. Mitochondria are essential organelles for regulating metabolic, antioxidant, and inflammatory profiles. Moreover, endoplasmic reticulum (ER)-associated signaling pathways, such as calcium and the unfolded protein response (UPR), are important messengers for cellular fate and function, including inflammation and mitochondrial homeostasis. Increasing evidence supports that the three arms of the UPR are involved in the direct contact and communication between ER and mitochondria through mitochondria-associated ER membranes (MAMs). The current study investigated the effects of HIV-1 infection and chronic METH exposure on astrocyte ER and mitochondrial homeostasis and then examined the three UPR messengers as potential regulators of astrocyte mitochondrial dysfunction. Using primary human astrocytes infected with pseudotyped HIV-1 or exposed to low doses of METH for 7 days, astrocytes had increased mitochondrial oxygen consumption rate (OCR), cytosolic calcium flux and protein expression of UPR mediators. Notably, inositol-requiring protein 1α (IRE1α) was most prominently upregulated following both HIV-1 infection and chronic METH exposure. Moreover, pharmacological inhibition of the three UPR arms highlighted IRE1α as a key regulator of astrocyte metabolic function. To further explore the regulatory role of astrocyte IRE1α, astrocytes were transfected with an IRE1α overexpression vector followed by activation with the proinflammatory cytokine interleukin 1β. Overall, our findings confirm IRE1α modulates astrocyte mitochondrial respiration, glycolytic function, morphological activation, inflammation, and glutamate uptake, highlighting a novel potential target for regulating astrocyte dysfunction. Finally, these findings suggest both canonical and non-canonical UPR mechanisms of astrocyte IRE1α. Thus, additional studies are needed to determine how to best balance astrocyte IRE1α functions to both promote astrocyte neuroprotective properties while preventing neurotoxic properties during CNS pathologies.
Collapse
|
25
|
Halcrow PW, Kumar N, Quansah DNK, Baral A, Liang B, Geiger JD. Endolysosome Iron Chelation Inhibits HIV-1 Protein-Induced Endolysosome De-Acidification-Induced Increases in Mitochondrial Fragmentation, Mitophagy, and Cell Death. Cells 2022; 11:1811. [PMID: 35681506 PMCID: PMC9180803 DOI: 10.3390/cells11111811] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/19/2022] [Accepted: 05/24/2022] [Indexed: 02/04/2023] Open
Abstract
People with human immunodeficiency virus-1 (PLWH) experience high rates of HIV-1-associated neurocognitive disorders (HANDs); clinical symptoms range from being asymptomatic to experiencing HIV-associated dementia. Antiretroviral therapies have effectively prolonged the life expectancy related to PLWH; however, the prevalence of HANDs has increased. Implicated in the pathogenesis of HANDs are two HIV-1 proteins, transactivator of transcription (Tat) and gp120; both are neurotoxic and damage mitochondria. The thread-like morphological features of functional mitochondria become fragmented when levels of reactive oxygen species (ROS) increase, and ROS can be generated via Fenton-like chemistry in the presence of ferrous iron (Fe2+). Endolysosomes are central to iron trafficking in cells and contain readily releasable Fe2+ stores. However, it is unclear whether the endolysosome store is sufficient to account for insult-induced increases in levels of ROS, mitochondrial fragmentation, autophagy, and cell death. Using U87MG astrocytoma and SH-SY5Y neuroblastoma cells, we determined that chloroquine (CQ), Tat, and gp120 all (1) de-acidified endolysosomes, (2) decreased endolysosome numbers and increased endolysosome sizes, (3) increased mitochondrial numbers (fragmentation), (4) increased autophagosome numbers, (5) increased autolysosome numbers, (6) increased mitochondrial fragments within endolysosomes, and (7) increased cell death. These effects were all blocked by the endolysosome-specific iron chelator deferoxamine (DFO). Thus, the endolysosome de-acidification-induced release of endolysosome Fe2+ is sufficient to account for inter-organellar signaling events and cell biology consequences of HIV-1 proteins, including mitochondrial fragmentation, autophagy, and cell death.
Collapse
Affiliation(s)
| | | | | | | | | | - Jonathan D. Geiger
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, 504 Hamline Street, Room 110, Grand Forks, ND 58203, USA; (P.W.H.); (N.K.); (D.N.K.Q.); (A.B.); (B.L.)
| |
Collapse
|
26
|
Vijayan M, Yin L, Reddy PH, Benamar K. Behavioral Evidence for a Tau and HIV-gp120 Interaction. Int J Mol Sci 2022; 23:ijms23105514. [PMID: 35628323 PMCID: PMC9146203 DOI: 10.3390/ijms23105514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 12/07/2022] Open
Abstract
Despite successful virologic control with combination antiretroviral therapy (cART), about half of people living with the human immunodeficiency virus-1 (HIV) develop an HIV-associated neurocognitive disorder (HAND). It is estimated that 50% of individuals who are HIV-positive in the United States are aged 50 years or older. Therefore, a new challenge looms as individuals living with HIV increase in age. There is concern that Alzheimer’s disease (AD) may become prevalent with an earlier onset of cognitive decline in people living with HIV (PLWH). Clinical data studies reported the presence of AD biomarkers in PLWH. However, the functional significance of the interaction between HIV or HIV viral proteins and AD biomarkers is still not well studied. The main goal of the present study is to address this knowledge gap by determining if the HIV envelope glycoprotein 120 (HIV-gp120) can affect the cognitive functions in the Tau mouse AD model. Male Tau and age-matched, wild-type (WT) control mice were treated intracerebroventricularly (ICV) with HIV-gp120. The animals were evaluated for cognitive function using a Y-maze. We found that HIV-gp120 altered cognitive function in Tau mice. Notably, HIV-gp120 was able to promote a cognitive decline in transgenic Tau (P301L) mice compared to the control (HIV-gp120 and WT). We provide the first in vivo evidence of a cognitive interaction between an HIV viral protein and Tau mice.
Collapse
Affiliation(s)
- Murali Vijayan
- Internal Medicine Department, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX 79430, USA; (M.V.); (P.H.R.)
| | - Linda Yin
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA;
| | - P. Hemachandra Reddy
- Internal Medicine Department, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX 79430, USA; (M.V.); (P.H.R.)
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA;
| | - Khalid Benamar
- Department of Pharmacology and Neuroscience, School of Medicine Lubbock, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Correspondence: ; Tel.: +1-806-743-3570; Fax: +1-806-743-2744
| |
Collapse
|
27
|
Synergistic effects of alcohol and HIV TAT protein on macrophage migration and neurotoxicity. J Neuroimmunol 2022; 368:577869. [DOI: 10.1016/j.jneuroim.2022.577869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 12/24/2021] [Accepted: 04/10/2022] [Indexed: 11/18/2022]
|
28
|
Allen CNS, Arjona SP, Santerre M, De Lucia C, Koch WJ, Sawaya BE. Metabolic Reprogramming in HIV-Associated Neurocognitive Disorders. Front Cell Neurosci 2022; 16:812887. [PMID: 35418836 PMCID: PMC8997587 DOI: 10.3389/fncel.2022.812887] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 02/21/2022] [Indexed: 12/20/2022] Open
Abstract
A significant number of patients infected with HIV-1 suffer from HIV-associated neurocognitive disorders (HAND) such as spatial memory impairments and learning disabilities (SMI-LD). SMI-LD is also observed in patients using combination antiretroviral therapy (cART). Our lab has demonstrated that the HIV-1 protein, gp120, promotes SMI-LD by altering mitochondrial functions and energy production. We have investigated cellular processes upstream of the mitochondrial functions and discovered that gp120 causes metabolic reprogramming. Effectively, the addition of gp120 protein to neuronal cells disrupted the glycolysis pathway at the pyruvate level. Looking for the players involved, we found that gp120 promotes increased expression of polypyrimidine tract binding protein 1 (PTBP1), causing the splicing of pyruvate kinase M (PKM) into PKM1 and PKM2. We have also shown that these events lead to the accumulation of advanced glycation end products (AGEs) and prevent the cleavage of pro-brain-derived neurotrophic factor (pro-BDNF) protein into mature brain-derived neurotrophic factor (BDNF). The accumulation of proBDNF results in signaling that increases the expression of the inducible cAMP early repressor (ICER) protein which then occupies the cAMP response element (CRE)-binding sites within the BDNF promoters II and IV, thus altering normal synaptic plasticity. We reversed these events by adding Tepp-46, which stabilizes the tetrameric form of PKM2. Therefore, we concluded that gp120 reprograms cellular metabolism, causing changes linked to disrupted memory in HIV-infected patients and that preventing the disruption of the metabolism presents a potential cure against HAND progression.
Collapse
Affiliation(s)
- Charles N. S. Allen
- Molecular Studies of Neurodegenerative Diseases Lab, Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Sterling P. Arjona
- Molecular Studies of Neurodegenerative Diseases Lab, Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Maryline Santerre
- Molecular Studies of Neurodegenerative Diseases Lab, Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Claudio De Lucia
- Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Walter J. Koch
- Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Bassel E. Sawaya
- Molecular Studies of Neurodegenerative Diseases Lab, Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
- Department of Cancer and Cellular Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
- Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
- *Correspondence: Bassel E. Sawaya,
| |
Collapse
|
29
|
Montano M, Oursler KK, Xu K, Sun YV, Marconi VC. Biological ageing with HIV infection: evaluating the geroscience hypothesis. THE LANCET. HEALTHY LONGEVITY 2022; 3:e194-e205. [PMID: 36092375 PMCID: PMC9454292 DOI: 10.1016/s2666-7568(21)00278-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Although people with HIV are living longer, as they age they remain disproportionately burdened with multimorbidity that is exacerbated in resource-poor settings. The geroscience hypothesis postulates that a discrete set of between five and ten hallmarks of biological ageing drive multimorbidity, but these processes have not been systematically examined in the context of people with HIV. We examine four major hallmarks of ageing (macromolecular damage, senescence, inflammation, and stem-cell dysfunction) as gerodrivers in the context of people with HIV. As a counterbalance, we introduce healthy ageing, physiological reserve, intrinsic capacity, and resilience as promoters of geroprotection that counteract gerodrivers. We discuss emerging geroscience-based diagnostic biomarkers and therapeutic strategies, and provide examples based on recent advances in cellular senescence, and other, non-pharmacological approaches. Finally, we present a conceptual model of biological ageing in the general population and in people with HIV that integrates gerodrivers and geroprotectors as modulators of homoeostatic reserves and organ function over the lifecourse.
Collapse
|
30
|
The Role of Mitophagy in Viral Infection. Cells 2022; 11:cells11040711. [PMID: 35203359 PMCID: PMC8870278 DOI: 10.3390/cells11040711] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 02/06/2022] [Accepted: 02/15/2022] [Indexed: 02/04/2023] Open
Abstract
Mitophagy, which is able to selectively clear excess or damaged mitochondria, plays a vital role in the quality control of mitochondria and the maintenance of normal mitochondrial functions in eukaryotic cells. Mitophagy is involved in many physiological and pathological processes, including apoptosis, innate immunity, inflammation, cell differentiation, signal transduction, and metabolism. Viral infections cause physical dysfunction and thus pose a significant threat to public health. An accumulating body of evidence reveals that some viruses hijack mitophagy to enable immune escape and self-replication. In this review, we systematically summarize the pathway of mitophagy initiation and discuss the functions and mechanisms of mitophagy in infection with classical swine fever virus and other specific viruses, with the aim of providing a theoretical basis for the prevention and control of related diseases.
Collapse
|
31
|
Retroviral infection of human neurospheres and use of stem Cell EVs to repair cellular damage. Sci Rep 2022; 12:2019. [PMID: 35132117 PMCID: PMC8821538 DOI: 10.1038/s41598-022-05848-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 01/05/2022] [Indexed: 12/18/2022] Open
Abstract
HIV-1 remains an incurable infection that is associated with substantial economic and epidemiologic impacts. HIV-associated neurocognitive disorders (HAND) are commonly linked with HIV-1 infection; despite the development of combination antiretroviral therapy (cART), HAND is still reported to affect at least 50% of HIV-1 infected individuals. It is believed that the over-amplification of inflammatory pathways, along with release of toxic viral proteins from infected cells, are primarily responsible for the neurological damage that is observed in HAND; however, the underlying mechanisms are not well-defined. Therefore, there is an unmet need to develop more physiologically relevant and reliable platforms for studying these pathologies. In recent years, neurospheres derived from induced pluripotent stem cells (iPSCs) have been utilized to model the effects of different neurotropic viruses. Here, we report the generation of neurospheres from iPSC-derived neural progenitor cells (NPCs) and we show that these cultures are permissive to retroviral (e.g. HIV-1, HTLV-1) replication. In addition, we also examine the potential effects of stem cell derived extracellular vesicles (EVs) on HIV-1 damaged cells as there is abundant literature supporting the reparative and regenerative properties of stem cell EVs in the context of various CNS pathologies. Consistent with the literature, our data suggests that stem cell EVs may modulate neuroprotective and anti-inflammatory properties in damaged cells. Collectively, this study demonstrates the feasibility of NPC-derived neurospheres for modeling HIV-1 infection and, subsequently, highlights the potential of stem cell EVs for rescuing cellular damage induced by HIV-1 infection.
Collapse
|
32
|
Salahuddin MF, Qrareya AN, Mahdi F, Moss E, Akins NS, Li J, Le HV, Paris JJ. Allopregnanolone and neuroHIV: Potential benefits of neuroendocrine modulation in the era of antiretroviral therapy. J Neuroendocrinol 2022; 34:e13047. [PMID: 34651359 PMCID: PMC8866218 DOI: 10.1111/jne.13047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 09/24/2021] [Accepted: 09/28/2021] [Indexed: 12/12/2022]
Abstract
Forty years into the HIV pandemic, approximately 50% of infected individuals still suffer from a constellation of neurological disorders collectively known as 'neuroHIV.' Although combination antiretroviral therapy (cART) has been a tremendous success, in its present form, it cannot eradicate HIV. Reservoirs of virus reside within the central nervous system, serving as sources of HIV virotoxins that damage mitochondria and promote neurotoxicity. Although understudied, there is evidence that HIV or the HIV regulatory protein, trans-activator of transcription (Tat), can dysregulate neurosteroid formation potentially contributing to endocrine dysfunction. People living with HIV commonly suffer from endocrine disorders, including hypercortisolemia accompanied by paradoxical adrenal insufficiency upon stress. Age-related comorbidities often onset sooner and with greater magnitude among people living with HIV and are commonly accompanied by hypogonadism. In the post-cART era, these derangements of the hypothalamic-pituitary-adrenal and -gonadal axes are secondary (i.e., relegated to the brain) and indicative of neuroendocrine dysfunction. We review the clinical and preclinical evidence for neuroendocrine dysfunction in HIV, the capacity for hormone therapeutics to play an ameliorative role and the future steroid-based therapeutics that may have efficacy as novel adjunctives to cART.
Collapse
Affiliation(s)
- Mohammed F. Salahuddin
- Department of BioMolecular SciencesSchool of PharmacyUniversity of MississippiUniversityMSUSA
| | - Alaa N. Qrareya
- Department of BioMolecular SciencesSchool of PharmacyUniversity of MississippiUniversityMSUSA
| | - Fakhri Mahdi
- Department of BioMolecular SciencesSchool of PharmacyUniversity of MississippiUniversityMSUSA
| | - Emaya Moss
- Department of BioMolecular SciencesSchool of PharmacyUniversity of MississippiUniversityMSUSA
| | - Nicholas S. Akins
- Department of BioMolecular SciencesSchool of PharmacyUniversity of MississippiUniversityMSUSA
| | - Jing Li
- Department of BioMolecular SciencesSchool of PharmacyUniversity of MississippiUniversityMSUSA
- Research Institute of Pharmaceutical SciencesSchool of PharmacyUniversity of MississippiUniversityMSUSA
| | - Hoang V. Le
- Department of BioMolecular SciencesSchool of PharmacyUniversity of MississippiUniversityMSUSA
- Research Institute of Pharmaceutical SciencesSchool of PharmacyUniversity of MississippiUniversityMSUSA
| | - Jason J. Paris
- Department of BioMolecular SciencesSchool of PharmacyUniversity of MississippiUniversityMSUSA
- Research Institute of Pharmaceutical SciencesSchool of PharmacyUniversity of MississippiUniversityMSUSA
| |
Collapse
|
33
|
Figarola-Centurión I, Escoto-Delgadillo M, González-Enríquez GV, Gutiérrez-Sevilla JE, Vázquez-Valls E, Torres-Mendoza BM. Sirtuins Modulation: A Promising Strategy for HIV-Associated Neurocognitive Impairments. Int J Mol Sci 2022; 23:643. [PMID: 35054829 PMCID: PMC8775450 DOI: 10.3390/ijms23020643] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/24/2021] [Accepted: 12/29/2021] [Indexed: 02/01/2023] Open
Abstract
HIV-Associated neurocognitive disorder (HAND) is one of the major concerns since it persists in 40% of this population. Nowadays, HAND neuropathogenesis is considered to be caused by the infected cells that cross the brain-blood barrier and produce viral proteins that can be secreted and internalized into neurons leading to disruption of cellular processes. The evidence points to viral proteins such as Tat as the causal agent for neuronal alteration and thus HAND. The hallmarks in Tat-induced neurodegeneration are endoplasmic reticulum stress and mitochondrial dysfunction. Sirtuins (SIRTs) are NAD+-dependent deacetylases involved in mitochondria biogenesis, unfolded protein response, and intrinsic apoptosis pathway. Tat interaction with these deacetylases causes inhibition of SIRT1 and SIRT3. Studies revealed that SIRTs activation promotes neuroprotection in neurodegenerative diseases such Alzheimer's and Parkinson's disease. Therefore, this review focuses on Tat-induced neurotoxicity mechanisms that involve SIRTs as key regulators and their modulation as a therapeutic strategy for tackling HAND and thereby improving the quality of life of people living with HIV.
Collapse
Affiliation(s)
- Izchel Figarola-Centurión
- Doctorado en Genética Humana, Departamento de Biología Molecular y Genómica, Universidad de Guadalajara, Guadalajara 44340, Mexico;
- Laboratorio de Inmunodeficiencias y Retrovirus Humanos, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara 44340, Mexico; (M.E.-D.); (J.E.G.-S.)
| | - Martha Escoto-Delgadillo
- Laboratorio de Inmunodeficiencias y Retrovirus Humanos, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara 44340, Mexico; (M.E.-D.); (J.E.G.-S.)
- Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Guadalajara 44600, Mexico
| | - Gracia Viviana González-Enríquez
- Departamento de Disciplinas Filosófico, Metodológicas e Instrumentales, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico;
| | - Juan Ernesto Gutiérrez-Sevilla
- Laboratorio de Inmunodeficiencias y Retrovirus Humanos, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara 44340, Mexico; (M.E.-D.); (J.E.G.-S.)
- Microbiología Médica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
| | - Eduardo Vázquez-Valls
- Generación de Recursos Profesionales, Investigación y Desarrollo, Secretaria de Salud, Jalisco, Guadalajara 44100, Mexico;
| | - Blanca Miriam Torres-Mendoza
- Laboratorio de Inmunodeficiencias y Retrovirus Humanos, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara 44340, Mexico; (M.E.-D.); (J.E.G.-S.)
- Departamento de Disciplinas Filosófico, Metodológicas e Instrumentales, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico;
| |
Collapse
|
34
|
Borrajo A, Spuch C, Penedo MA, Olivares JM, Agís-Balboa RC. Important role of microglia in HIV-1 associated neurocognitive disorders and the molecular pathways implicated in its pathogenesis. Ann Med 2021; 53:43-69. [PMID: 32841065 PMCID: PMC7877929 DOI: 10.1080/07853890.2020.1814962] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 08/13/2020] [Indexed: 12/11/2022] Open
Abstract
The development of effective combined anti-retroviral therapy (cART) led to a significant reduction in the death rate associated with human immunodeficiency virus type 1 (HIV-1) infection. However, recent studies indicate that considerably more than 50% of all HIV-1 infected patients develop HIV-1-associated neurocognitive disorder (HAND). Microglia are the foremost cells infected by HIV-1 in the central nervous system (CNS), and so, are also likely to contribute to the neurotoxicity observed in HAND. The activation of microglia induces the release of pro-inflammatory markers and altered secretion of cytokines, chemokines, secondary messengers, and reactive oxygen species (ROS) which activate signalling pathways that initiate neuroinflammation. In turn, ROS and inflammation also play critical roles in HAND. However, more efforts are required to understand the physiology of microglia and the processes involved in their activation in order to better understand the how HIV-1-infected microglia are involved in the development of HAND. In this review, we summarize the current state of knowledge about the involvement of oxidative stress mechanisms and role of HIV-induced ROS in the development of HAND. We also examine the academic literature regarding crucial HIV-1 pathogenicity factors implicated in neurotoxicity and inflammation in order to identify molecular pathways that could serve as potential therapeutic targets for treatment of this disease. KEY MESSAGES Neuroinflammation and excitotoxicity mechanisms are crucial in the pathogenesis of HAND. CNS infiltration by HIV-1 and immune cells through the blood brain barrier is a key process involved in the pathogenicity of HAND. Factors including calcium dysregulation and autophagy are the main challenges involved in HAND.
Collapse
Affiliation(s)
- A. Borrajo
- Department of Microbiology and Parasitology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Roma, Italy
| | - C. Spuch
- Translational Neuroscience Group, Galicia Sur Health Research Institute (IIS Galicia Sur)-Área Sanitaria de Vigo, SERGAS-UVigo, CIBERSAM, Vigo, Spain
| | - M. A. Penedo
- Translational Neuroscience Group, Galicia Sur Health Research Institute (IIS Galicia Sur)-Área Sanitaria de Vigo, SERGAS-UVigo, CIBERSAM, Vigo, Spain
| | - J. M. Olivares
- Department of Psychiatry, Área Sanitaria de Vigo, Vigo, Spain
- Translational Neuroscience Group, Galicia Sur Health Research Institute (IIS Galicia Sur)-Área Sanitaria de Vigo, SERGAS-UVigo, CIBERSAM, Vigo, Spain
| | - R. C. Agís-Balboa
- Translational Neuroscience Group, Galicia Sur Health Research Institute (IIS Galicia Sur)-Área Sanitaria de Vigo, SERGAS-UVigo, CIBERSAM, Vigo, Spain
| |
Collapse
|
35
|
Romero‐Cordero S, Noguera‐Julian A, Cardellach F, Fortuny C, Morén C. Mitochondrial changes associated with viral infectious diseases in the paediatric population. Rev Med Virol 2021; 31:e2232. [PMID: 33792105 PMCID: PMC9286481 DOI: 10.1002/rmv.2232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 02/15/2021] [Accepted: 02/17/2021] [Indexed: 12/24/2022]
Abstract
Infectious diseases occur worldwide with great frequency in both adults and children, causing 350,000 deaths in 2017, according to the latest World Health Organization reports. Both infections and their treatments trigger mitochondrial interactions at multiple levels: (i) incorporation of damaged or mutated proteins into the complexes of the electron transport chain; (ii) impact on mitochondrial genome (depletion, deletions and point mutations) and mitochondrial dynamics (fusion and fission); (iii) membrane potential impairment; (iv) apoptotic regulation; and (v) generation of reactive oxygen species, among others. Such alterations may result in serious adverse clinical events with considerable impact on the quality of life of the children and could even cause death. Herein, we use a systematic review to explore the association between mitochondrial alterations in paediatric infections including human immunodeficiency virus, cytomegalovirus, herpes viruses, various forms of hepatitis, adenovirus, T-cell lymphotropic virus and influenza. We analyse how these paediatric viral infectious processes may cause mitochondrial deterioration in this especially vulnerable population, with consideration for the principal aspects of research and diagnosis leading to improved disease understanding, management and surveillance.
Collapse
Affiliation(s)
- Sonia Romero‐Cordero
- Faculty of MedicinePompeu Fabra UniversityBarcelonaSpain
- Faculty of MedicineUniversitat Autònoma de BarcelonaBellaterraSpain
| | - Antoni Noguera‐Julian
- Malalties Infeccioses i Resposta Inflamatòria Sistèmica en PediatriaUnitat d´InfeccionsServei de PediatriaInstitut de Recerca Pediàtrica Hospital Sant Joan de DéuBarcelonaSpain
- Departament de PediatriaUniversitat de BarcelonaBarcelonaSpain
- CIBER de Epidemiología y Salud Pública, CIBERESP (ISCIII)MadridSpain
- Red de Investigación Translacional en Infectología PediátricaRITIPMadridSpain
| | - Francesc Cardellach
- Faculty of Medicine and Health SciencesMuscle Research and Mitochondrial Function LaboratoryCellex‐IDIBAPSUniversity of BarcelonaBarcelonaSpain
- CIBER de Enfermedades RarasCIBERER (ISCIII)MadridSpain
- Internal Medicine DepartmentHospital Clínic of Barcelona (HCB)BarcelonaSpain
| | - Clàudia Fortuny
- Malalties Infeccioses i Resposta Inflamatòria Sistèmica en PediatriaUnitat d´InfeccionsServei de PediatriaInstitut de Recerca Pediàtrica Hospital Sant Joan de DéuBarcelonaSpain
- Departament de PediatriaUniversitat de BarcelonaBarcelonaSpain
- CIBER de Epidemiología y Salud Pública, CIBERESP (ISCIII)MadridSpain
- Red de Investigación Translacional en Infectología PediátricaRITIPMadridSpain
| | - Constanza Morén
- Faculty of Medicine and Health SciencesMuscle Research and Mitochondrial Function LaboratoryCellex‐IDIBAPSUniversity of BarcelonaBarcelonaSpain
- CIBER de Enfermedades RarasCIBERER (ISCIII)MadridSpain
- Internal Medicine DepartmentHospital Clínic of Barcelona (HCB)BarcelonaSpain
| |
Collapse
|
36
|
Proulx J, Park IW, Borgmann K. Cal'MAM'ity at the Endoplasmic Reticulum-Mitochondrial Interface: A Potential Therapeutic Target for Neurodegeneration and Human Immunodeficiency Virus-Associated Neurocognitive Disorders. Front Neurosci 2021; 15:715945. [PMID: 34744606 PMCID: PMC8566765 DOI: 10.3389/fnins.2021.715945] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 09/10/2021] [Indexed: 01/21/2023] Open
Abstract
The endoplasmic reticulum (ER) is a multifunctional organelle and serves as the primary site for intracellular calcium storage, lipid biogenesis, protein synthesis, and quality control. Mitochondria are responsible for producing the majority of cellular energy required for cell survival and function and are integral for many metabolic and signaling processes. Mitochondria-associated ER membranes (MAMs) are direct contact sites between the ER and mitochondria that serve as platforms to coordinate fundamental cellular processes such as mitochondrial dynamics and bioenergetics, calcium and lipid homeostasis, autophagy, apoptosis, inflammation, and intracellular stress responses. Given the importance of MAM-mediated mechanisms in regulating cellular fate and function, MAMs are now known as key molecular and cellular hubs underlying disease pathology. Notably, neurons are uniquely susceptible to mitochondrial dysfunction and intracellular stress, which highlights the importance of MAMs as potential targets to manipulate MAM-associated mechanisms. However, whether altered MAM communication and connectivity are causative agents or compensatory mechanisms in disease development and progression remains elusive. Regardless, exploration is warranted to determine if MAMs are therapeutically targetable to combat neurodegeneration. Here, we review key MAM interactions and proteins both in vitro and in vivo models of Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. We further discuss implications of MAMs in HIV-associated neurocognitive disorders (HAND), as MAMs have not yet been explored in this neuropathology. These perspectives specifically focus on mitochondrial dysfunction, calcium dysregulation and ER stress as notable MAM-mediated mechanisms underlying HAND pathology. Finally, we discuss potential targets to manipulate MAM function as a therapeutic intervention against neurodegeneration. Future investigations are warranted to better understand the interplay and therapeutic application of MAMs in glial dysfunction and neurotoxicity.
Collapse
Affiliation(s)
| | | | - Kathleen Borgmann
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center (HSC), Fort Worth, TX, United States
| |
Collapse
|
37
|
Durand M, Nagot N, Nhu QBT, Vallo R, Thuy LLT, Duong HT, Thanh BN, Rapoud D, Quillet C, Tran HT, Michel L, Tuyet TNT, Hai OKT, Hai VV, Feelemyer J, Perre PV, Jarlais DD, Minh KP, Laureillard D, Molès JP. Mitochondrial Genotoxicity of Hepatitis C Treatment among People Who Inject Drugs. J Clin Med 2021; 10:jcm10214824. [PMID: 34768343 PMCID: PMC8584601 DOI: 10.3390/jcm10214824] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 12/12/2022] Open
Abstract
Antiviral nucleoside analogues (ANA) are newly used therapeutics acting against the hepatitis C virus (HCV). This class of drug is well known to exhibit toxicity on mitochondrial DNA (mtDNA). People who inject drugs (PWID) are particularly affected by HCV infection and cumulated mitotoxic drug exposure from HIV treatments (antiretrovirals, ARV) and other illicit drugs. This study aims to explore the impact of direct-acting antiviral (DAA) treatments on mtDNA among PWID. A total of 470 actively injecting heroin users were included. We used quantitative PCR on whole blood to determine the mitochondrial copy number per cell (MCN) and the proportion of mitochondrial DNA deletion (MDD). These parameters were assessed before and after DAA treatment. MDD was significantly increased after HCV treatment, while MCN did not differ. MDD was even greater when subjects were cotreated with ARV. In multivariate analysis, we identified that poly-exposure to DAA and daily heroin injection or regular consumption of methamphetamines were positively associated with high MCN loss while DAA and ARV treatments or methadone use were identified as risk factors for having mtDNA deletion. These observations deserve attention since they were previously associated with premature cell ageing or cell transformation and therefore call for a long-term follow-up.
Collapse
Affiliation(s)
- Mélusine Durand
- Pathogenesis and Control of Chronic and Emerging Infections, University of Montpellier, INSERM, EFS, University of Antilles, 34394 Montpellier, France; (N.N.); (R.V.); (D.R.); (C.Q.); (P.V.P.); (D.L.); (J.-P.M.)
- Correspondence: ; Tel.: +33-43435-9120
| | - Nicolas Nagot
- Pathogenesis and Control of Chronic and Emerging Infections, University of Montpellier, INSERM, EFS, University of Antilles, 34394 Montpellier, France; (N.N.); (R.V.); (D.R.); (C.Q.); (P.V.P.); (D.L.); (J.-P.M.)
| | - Quynh Bach Thi Nhu
- Faculty of Public Health, Hai Phong University of Medicine and Pharmacy, Haiphong 04212, Vietnam; (Q.B.T.N.); (L.L.T.T.); (H.T.D.); (B.N.T.); (H.T.T.); (K.P.M.)
| | - Roselyne Vallo
- Pathogenesis and Control of Chronic and Emerging Infections, University of Montpellier, INSERM, EFS, University of Antilles, 34394 Montpellier, France; (N.N.); (R.V.); (D.R.); (C.Q.); (P.V.P.); (D.L.); (J.-P.M.)
| | - Linh Le Thi Thuy
- Faculty of Public Health, Hai Phong University of Medicine and Pharmacy, Haiphong 04212, Vietnam; (Q.B.T.N.); (L.L.T.T.); (H.T.D.); (B.N.T.); (H.T.T.); (K.P.M.)
| | - Huong Thi Duong
- Faculty of Public Health, Hai Phong University of Medicine and Pharmacy, Haiphong 04212, Vietnam; (Q.B.T.N.); (L.L.T.T.); (H.T.D.); (B.N.T.); (H.T.T.); (K.P.M.)
| | - Binh Nguyen Thanh
- Faculty of Public Health, Hai Phong University of Medicine and Pharmacy, Haiphong 04212, Vietnam; (Q.B.T.N.); (L.L.T.T.); (H.T.D.); (B.N.T.); (H.T.T.); (K.P.M.)
| | - Delphine Rapoud
- Pathogenesis and Control of Chronic and Emerging Infections, University of Montpellier, INSERM, EFS, University of Antilles, 34394 Montpellier, France; (N.N.); (R.V.); (D.R.); (C.Q.); (P.V.P.); (D.L.); (J.-P.M.)
| | - Catherine Quillet
- Pathogenesis and Control of Chronic and Emerging Infections, University of Montpellier, INSERM, EFS, University of Antilles, 34394 Montpellier, France; (N.N.); (R.V.); (D.R.); (C.Q.); (P.V.P.); (D.L.); (J.-P.M.)
| | - Hong Thi Tran
- Faculty of Public Health, Hai Phong University of Medicine and Pharmacy, Haiphong 04212, Vietnam; (Q.B.T.N.); (L.L.T.T.); (H.T.D.); (B.N.T.); (H.T.T.); (K.P.M.)
| | - Laurent Michel
- CESP UMR1018, Paris Saclay, Pierre Nicole Center, French Red Cross, 75005 Paris, France;
| | - Thanh Nham Thi Tuyet
- Supporting Community Development Initiatives, Hanoi 11513, Vietnam; (T.N.T.T.); (O.K.T.H.)
| | - Oanh Khuat Thi Hai
- Supporting Community Development Initiatives, Hanoi 11513, Vietnam; (T.N.T.T.); (O.K.T.H.)
| | - Vinh Vu Hai
- Infectious & Tropical Diseases Department, Viet Tiep Hospital, Haiphong 04708, Vietnam;
| | - Jonathan Feelemyer
- School of Global Public Health, New York University, New York, NY 10003, USA; (J.F.); (D.D.J.)
| | - Philippe Vande Perre
- Pathogenesis and Control of Chronic and Emerging Infections, University of Montpellier, INSERM, EFS, University of Antilles, 34394 Montpellier, France; (N.N.); (R.V.); (D.R.); (C.Q.); (P.V.P.); (D.L.); (J.-P.M.)
| | - Don Des Jarlais
- School of Global Public Health, New York University, New York, NY 10003, USA; (J.F.); (D.D.J.)
| | - Khue Pham Minh
- Faculty of Public Health, Hai Phong University of Medicine and Pharmacy, Haiphong 04212, Vietnam; (Q.B.T.N.); (L.L.T.T.); (H.T.D.); (B.N.T.); (H.T.T.); (K.P.M.)
| | - Didier Laureillard
- Pathogenesis and Control of Chronic and Emerging Infections, University of Montpellier, INSERM, EFS, University of Antilles, 34394 Montpellier, France; (N.N.); (R.V.); (D.R.); (C.Q.); (P.V.P.); (D.L.); (J.-P.M.)
- Infectious & Tropical Diseases Department, Caremeau University Hospital, 30029 Nîmes, France
| | - Jean-Pierre Molès
- Pathogenesis and Control of Chronic and Emerging Infections, University of Montpellier, INSERM, EFS, University of Antilles, 34394 Montpellier, France; (N.N.); (R.V.); (D.R.); (C.Q.); (P.V.P.); (D.L.); (J.-P.M.)
| |
Collapse
|
38
|
Mitochondria as a Cellular Hub in Infection and Inflammation. Int J Mol Sci 2021; 22:ijms222111338. [PMID: 34768767 PMCID: PMC8583510 DOI: 10.3390/ijms222111338] [Citation(s) in RCA: 170] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 10/13/2021] [Indexed: 12/14/2022] Open
Abstract
Mitochondria are the energy center of the cell. They are found in the cell cytoplasm as dynamic networks where they adapt energy production based on the cell’s needs. They are also at the center of the proinflammatory response and have essential roles in the response against pathogenic infections. Mitochondria are a major site for production of Reactive Oxygen Species (ROS; or free radicals), which are essential to fight infection. However, excessive and uncontrolled production can become deleterious to the cell, leading to mitochondrial and tissue damage. Pathogens exploit the role of mitochondria during infection by affecting the oxidative phosphorylation mechanism (OXPHOS), mitochondrial network and disrupting the communication between the nucleus and the mitochondria. The role of mitochondria in these biological processes makes these organelle good targets for the development of therapeutic strategies. In this review, we presented a summary of the endosymbiotic origin of mitochondria and their involvement in the pathogen response, as well as the potential promising mitochondrial targets for the fight against infectious diseases and chronic inflammatory diseases.
Collapse
|
39
|
Buckley S, Byrnes S, Cochrane C, Roche M, Estes JD, Selemidis S, Angelovich TA, Churchill MJ. The role of oxidative stress in HIV-associated neurocognitive disorders. Brain Behav Immun Health 2021; 13:100235. [PMID: 34589750 PMCID: PMC8474476 DOI: 10.1016/j.bbih.2021.100235] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 01/18/2021] [Accepted: 02/24/2021] [Indexed: 12/02/2022] Open
Abstract
HIV-associated neurocognitive disorders (HAND) are a leading cause of morbidity in up to 50% of individuals living with HIV, despite effective treatment with antiretroviral therapy (ART). Current evidence suggests that chronic inflammation associated with HIV is especially attributed to the dysregulated production of reactive oxygen species (ROS) that contribute to neurodegeneration and poor clinical outcomes. While ROS have beneficial effects in eliciting immune responses to infection, chronic ROS production causes damage to macromolecules such as DNA and lipids that has been linked to altered redox homeostasis associated with antioxidant dysregulation. As a result, this disruption in the balance between antioxidant-dependent mechanisms of ROS inactivation and ROS production by enzymes such as the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase family, as well as from the electron transport chain of the mitochondria can result in oxidative stress. This is particularly relevant to the brain, which is exquisitely susceptible to oxidative stress due to its inherently high lipid concentration and ROS levels that have been linked to many neurodegenerative diseases that have similar stages of pathogenesis to HAND. In this review, we discuss the possible role and mechanisms of ROS production leading to oxidative stress that underpin HAND pathogenesis even when HIV is suppressed by current gold-standard antiretroviral therapies. Furthermore, we highlight that pathological ROS can serve as biomarkers for HIV-dependent HAND, and how manipulation of oxidative stress and antioxidant-dependent pathways may facilitate novel strategies for HIV cure. Production of reactive oxygen species has been linked to neurodegenerative diseases. ROS production contributes to HIV-associated neurocognitive disorders. ROS may be used as a biomarker for HIV-associated neurocognitive disorders. Manipulation of antioxidant pathways may present novel HIV cure strategies.
Collapse
Affiliation(s)
- Sarah Buckley
- Chronic Infectious and Inflammatory Diseases Program, School of Health and Biomedical Sciences, RMIT University, Melbourne, Australia
| | - Sarah Byrnes
- Chronic Infectious and Inflammatory Diseases Program, School of Health and Biomedical Sciences, RMIT University, Melbourne, Australia
| | - Catherine Cochrane
- Chronic Infectious and Inflammatory Diseases Program, School of Health and Biomedical Sciences, RMIT University, Melbourne, Australia
| | - Michael Roche
- Chronic Infectious and Inflammatory Diseases Program, School of Health and Biomedical Sciences, RMIT University, Melbourne, Australia.,The Peter Doherty Institute for Infection and Immunity, The University of Melbourne and Royal Melbourne Hospital, Melbourne, Australia
| | - Jacob D Estes
- Chronic Infectious and Inflammatory Diseases Program, School of Health and Biomedical Sciences, RMIT University, Melbourne, Australia.,Vaccine and Gene Therapy Institute, Oregon National Primate Research Centre, Oregon Health & Science University, United States
| | - Stavros Selemidis
- Chronic Infectious and Inflammatory Diseases Program, School of Health and Biomedical Sciences, RMIT University, Melbourne, Australia
| | - Thomas A Angelovich
- Chronic Infectious and Inflammatory Diseases Program, School of Health and Biomedical Sciences, RMIT University, Melbourne, Australia.,Life Sciences, Burnet Institute, Melbourne, Australia
| | - Melissa J Churchill
- Chronic Infectious and Inflammatory Diseases Program, School of Health and Biomedical Sciences, RMIT University, Melbourne, Australia.,Life Sciences, Burnet Institute, Melbourne, Australia.,Departments of Microbiology and Medicine, Monash University, Clayton, Australia
| |
Collapse
|
40
|
Roca-Bayerri C, Robertson F, Pyle A, Hudson G, Payne BAI. Mitochondrial DNA Damage and Brain Aging in Human Immunodeficiency Virus. Clin Infect Dis 2021; 73:e466-e473. [PMID: 32722761 PMCID: PMC8282328 DOI: 10.1093/cid/ciaa984] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 07/14/2020] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Neurocognitive impairment (NCI) remains common in people living with human immunodeficiency virus (PLWH), despite suppressive antiretroviral therapy (ART), but the reasons remain incompletely understood. Mitochondrial dysfunction is a hallmark of aging and of neurodegenerative diseases. We hypothesized that human immunodeficiency virus (HIV) or ART may lead to mitochondrial abnormalities in the brain, thus contributing to NCI. METHODS We studied postmortem frozen brain samples from 52 PLWH and 40 HIV-negative controls. Cellular mitochondrial DNA (mtDNA) content and levels of large-scale mtDNA deletions were measured by real-time polymerase chain reaction. Heteroplasmic mtDNA point mutations were quantified by deep sequencing (Illumina). Neurocognitive data were taken within 48 months antemortem. RESULTS We observed a decrease in mtDNA content, an increase in the mtDNA "common deletion," and an increase in mtDNA point mutations with age (all P < .05). Each of these changes was exacerbated in HIV-positive cases compared with HIV-negative controls (all P < .05). ART exposures, including nucleoside analogue reverse transcriptase inhibitors, were not associated with changes in mtDNA. The number of mtDNA point mutations was associated with low CD4/CD8 ratio (P = .04) and with NCI (global T-score, P = .007). CONCLUSIONS In people with predominantly advanced HIV infection, there is exacerbation of age-associated mtDNA damage. This change is driven by HIV per se rather than by ART toxicity and may contribute to NCI. These data suggest that mitochondrial dysfunction may be a mediator of adverse aging phenotypes in PLWH.
Collapse
Affiliation(s)
- Carla Roca-Bayerri
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| | - Fiona Robertson
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| | - Angela Pyle
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| | - Gavin Hudson
- Wellcome Centre for Mitochondrial Research, Biosciences Institute, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| | - Brendan A I Payne
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle-upon-Tyne, United Kingdom
- Department of Infection and Tropical Medicine, Newcastle-upon-Tyne Hospitals, Newcastle-upon-Tyne, United Kingdom
| |
Collapse
|
41
|
Gorska AM, Donoso M, Valdebenito S, Prideaux B, Queen S, Scemes E, Clements J, Eugenin E. Human immunodeficiency virus-1/simian immunodeficiency virus infection induces opening of pannexin-1 channels resulting in neuronal synaptic compromise: A novel therapeutic opportunity to prevent NeuroHIV. J Neurochem 2021; 158:500-521. [PMID: 33899944 DOI: 10.1111/jnc.15374] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/27/2021] [Accepted: 04/21/2021] [Indexed: 01/16/2023]
Abstract
In healthy conditions, pannexin-1 (Panx-1) channels are in a close state, but in several pathological conditions, including human immunodeficiency virus-1 (HIV) and NeuroHIV, the channel becomes open. However, the mechanism or contribution of Panx-1 channels to the HIV pathogenesis and NeuroHIV is unknown. To determine the contribution of Panx-1 channels to the pathogenesis of NeuroHIV, we used a well-established model of simian immunodeficiency virus (SIV) infection in macaques (Macaca mulatta) in the presence of and absence of a Panx-1 blocker to later examine the synaptic/axonal compromise induced for the virus. Using Golgi's staining, we demonstrated that SIV infection compromised synaptic and axonal structures, especially in the white matter. Blocking Panx-1 channels after SIV infection prevented the synaptic and axonal compromise induced by the virus, especially by maintaining the more complex synapses. Our data demonstrated that targeting Panx-1 channels can prevent and maybe revert brain synaptic compromise induced by SIV infection.
Collapse
Affiliation(s)
- Anna Maria Gorska
- Department of Neuroscience, Cell Biology, and Anatomy, University of Texas Medical Branch (UTMB), Galveston, TX, USA
| | - Maribel Donoso
- Department of Neuroscience, Cell Biology, and Anatomy, University of Texas Medical Branch (UTMB), Galveston, TX, USA
| | - Silvana Valdebenito
- Department of Neuroscience, Cell Biology, and Anatomy, University of Texas Medical Branch (UTMB), Galveston, TX, USA
| | - Brendan Prideaux
- Department of Neuroscience, Cell Biology, and Anatomy, University of Texas Medical Branch (UTMB), Galveston, TX, USA
| | - Suzanne Queen
- Department of Molecular and Comparative Pathobiology, John Hopkins Medical Center, Baltimore, MD, USA
| | - Eliana Scemes
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY, USA
| | - Janice Clements
- Department of Molecular and Comparative Pathobiology, John Hopkins Medical Center, Baltimore, MD, USA
| | - Eliseo Eugenin
- Department of Neuroscience, Cell Biology, and Anatomy, University of Texas Medical Branch (UTMB), Galveston, TX, USA
| |
Collapse
|
42
|
Han MM, Frizzi KE, Ellis RJ, Calcutt NA, Fields JA. Prevention of HIV-1 TAT Protein-Induced Peripheral Neuropathy and Mitochondrial Disruption by the Antimuscarinic Pirenzepine. Front Neurol 2021; 12:663373. [PMID: 34211430 PMCID: PMC8239242 DOI: 10.3389/fneur.2021.663373] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/21/2021] [Indexed: 12/25/2022] Open
Abstract
HIV-associated distal sensory polyneuropathy (HIV-DSP) affects about one third of people with HIV and is characterized by distal degeneration of axons. The pathogenesis of HIV-DSP is not known and there is currently no FDA-approved treatment. HIV trans-activator of transcription (TAT) is associated with mitochondrial dysfunction and neurotoxicity in the brain and may play a role in the pathogenesis of HIV-DSP. In the present study, we measured indices of peripheral neuropathy in the doxycycline (DOX)-inducible HIV-TAT (iTAT) transgenic mouse and investigated the therapeutic efficacy of a selective muscarinic subtype-1 receptor (M1R) antagonist, pirenzepine (PZ). PZ was selected as we have previously shown that it prevents and/or reverses indices of peripheral neuropathy in multiple disease models. DOX alone induced weight loss, tactile allodynia and paw thermal hypoalgesia in normal C57Bl/6J mice. Conduction velocity of large motor fibers, density of small sensory nerve fibers in the cornea and expression of mitochondria-associated proteins in sciatic nerve were unaffected by DOX in normal mice, whereas these parameters were disrupted when DOX was given to iTAT mice to induce TAT expression. Daily injection of PZ (10 mg/kg s.c.) prevented all of the disorders associated with TAT expression. These studies demonstrate that TAT expression disrupts mitochondria and induces indices of sensory and motor peripheral neuropathy and that M1R antagonism may be a viable treatment for HIV-DSP. However, some indices of neuropathy in the DOX-inducible TAT transgenic mouse model can be ascribed to DOX treatment rather than TAT expression and data obtained from animal models in which gene expression is modified by DOX should be accompanied by appropriate controls and treated with due caution.
Collapse
Affiliation(s)
- May Madi Han
- Department of Pathology, University of California, San Diego, La Jolla, CA, United States
| | - Katie E Frizzi
- Department of Pathology, University of California, San Diego, La Jolla, CA, United States
| | - Ronald J Ellis
- Department of Neuroscience, University of California, San Diego, La Jolla, CA, United States.,Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
| | - Nigel A Calcutt
- Department of Pathology, University of California, San Diego, La Jolla, CA, United States
| | - Jerel Adam Fields
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
43
|
Abstract
PURPOSE OF REVIEW Some older people living with HIV (PLWH) exhibit features of unsuccessful ageing, such as frailty. Mitochondrial dysfunction is one of the best characterized ageing mechanisms. There has been recent interest in whether some people ageing with HIV may have an excess of mitochondrial dysfunction. This review aims to address this question through: analogy with ageing and chronic disease; discussion of the key unknowns; suggested ways that measures of mitochondrial dysfunction might be incorporated into HIV research studies. RECENT FINDINGS Recent data suggest that mitochondrial dysfunction in PLWH may not be wholly a legacy effect of historical nucleoside analog reverse transcriptase inhibitor exposures. Research in the non-HIV setting has altered our understanding of the important mediators of mitochondrial dysfunction in ageing. SUMMARY Mitochondrial dysfunction is a very plausible driver of adverse ageing phenotypes in some older PLWH. As such it may be a target for therapeutic interventions. Currently, however, there remain considerable uncertainties around the extent of this phenomenon, and its relative importance. Current studies are likely to clarify these questions over the next few years.
Collapse
|
44
|
Sanna PP, Fu Y, Masliah E, Lefebvre C, Repunte-Canonigo V. Central nervous system (CNS) transcriptomic correlates of human immunodeficiency virus (HIV) brain RNA load in HIV-infected individuals. Sci Rep 2021; 11:12176. [PMID: 34108514 PMCID: PMC8190104 DOI: 10.1038/s41598-021-88052-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 02/26/2021] [Indexed: 11/08/2022] Open
Abstract
To generate new mechanistic hypotheses on the pathogenesis and disease progression of neuroHIV and identify novel therapeutic targets to improve neuropsychological function in people with HIV, we investigated host genes and pathway dysregulations associated with brain HIV RNA load in gene expression profiles of the frontal cortex, basal ganglia, and white matter of HIV+ patients. Pathway analyses showed that host genes correlated with HIV expression in all three brain regions were predominantly related to inflammation, neurodegeneration, and bioenergetics. HIV RNA load directly correlated particularly with inflammation genesets representative of cytokine signaling, and this was more prominent in white matter and the basal ganglia. Increases in interferon signaling were correlated with high brain HIV RNA load in the basal ganglia and the white matter although not in the frontal cortex. Brain HIV RNA load was inversely correlated with genesets that are indicative of neuronal and synaptic genes, particularly in the cortex, indicative of synaptic injury and neurodegeneration. Brain HIV RNA load was inversely correlated with genesets that are representative of oxidative phosphorylation, electron transfer, and the tricarboxylic acid cycle in all three brain regions. Mitochondrial dysfunction has been implicated in the toxicity of some antiretrovirals, and these results indicate that mitochondrial dysfunction is also associated with productive HIV infection. Genes and pathways correlated with brain HIV RNA load suggest potential therapeutic targets to ameliorate neuropsychological functioning in people living with HIV.
Collapse
Affiliation(s)
- Pietro Paolo Sanna
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA.
| | - Yu Fu
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- European Bioinformatics Institute (EMBL-EBI), Hinxton, UK
| | - Eliezer Masliah
- Division of Neuroscience and Laboratory of Neurogenetics, National Institute On Aging, National Institutes of Health, Bethesda, MD, USA
| | - Celine Lefebvre
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- , Paris, France
| | - Vez Repunte-Canonigo
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
45
|
Herpesvirus Regulation of Selective Autophagy. Viruses 2021; 13:v13050820. [PMID: 34062931 PMCID: PMC8147283 DOI: 10.3390/v13050820] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 12/18/2022] Open
Abstract
Selective autophagy has emerged as a key mechanism of quality and quantity control responsible for the autophagic degradation of specific subcellular organelles and materials. In addition, a specific type of selective autophagy (xenophagy) is also activated as a line of defense against invading intracellular pathogens, such as viruses. However, viruses have evolved strategies to counteract the host’s antiviral defense and even to activate some proviral types of selective autophagy, such as mitophagy, for their successful infection and replication. This review discusses the current knowledge on the regulation of selective autophagy by human herpesviruses.
Collapse
|
46
|
Staitieh BS, Auld SC, Ahmed M, Fan X, Smirnova N, Yeligar SM. Granulocyte Macrophage-Colony Stimulating Factor Reverses HIV Protein-Induced Mitochondrial Derangements in Alveolar Macrophages. AIDS Res Hum Retroviruses 2021; 37:224-232. [PMID: 33059459 DOI: 10.1089/aid.2020.0176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Despite the advent of antiretroviral therapy, people living with HIV suffer from a range of infectious and noninfectious pulmonary complications. HIV impairs antioxidant defenses and innate immune function of the alveolar macrophage by diminishing granulocyte macrophage-colony stimulating factor (GM-CSF) signaling. Since GM-CSF may be linked to mitochondria, we sought to determine the effects of HIV on GM-CSF receptor expression and alveolar macrophage mitochondrial function. At an academic medical center, studies were completed on alveolar macrophages isolated from both wild-type and HIV transgenic (HIV Tg) rats and human subjects with and without HIV. Primary macrophages were plated and evaluated for expression of GM-CSF receptor beta, phagocytic index, and mitochondrial function in the presence and absence of GM-CSF treatment. GM-CSF receptor expression and mitochondrial function were impaired in macrophages isolated from HIV Tg rats, and treatment with GM-CSF restored GM-CSF receptor expression and mitochondrial function. GM-CSF treatment of HIV Tg rats also increased alveolar macrophage levels of the mitochondrial proteins voltage-dependent anion-selective channel 1 (VDAC) and glucose-regulated protein 75 (Grp75). Similar to the HIV Tg rat model, impairments in mitochondrial bioenergetics were confirmed in alveolar macrophages isolated from human subjects with HIV. HIV-associated impairments in alveolar macrophage mitochondrial bioenergetics likely contribute to innate immune dysfunction in HIV infection, and GM-CSF treatment may offer a novel therapeutic strategy for mitigating these deleterious effects.
Collapse
Affiliation(s)
- Bashar S. Staitieh
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Sara C. Auld
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Mariam Ahmed
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Xian Fan
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Natalia Smirnova
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Samantha M. Yeligar
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
- Atlanta VA Health Care System, Decatur, Georgia, USA
| |
Collapse
|
47
|
Thangaraj A, Chivero ET, Tripathi A, Singh S, Niu F, Guo ML, Pillai P, Periyasamy P, Buch S. HIV TAT-mediated microglial senescence: Role of SIRT3-dependent mitochondrial oxidative stress. Redox Biol 2020; 40:101843. [PMID: 33385630 PMCID: PMC7779826 DOI: 10.1016/j.redox.2020.101843] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 12/10/2020] [Accepted: 12/20/2020] [Indexed: 02/07/2023] Open
Abstract
The advent of combined antiretroviral treatment (cART) as a treatment for HIV-1 infection has not only resulted in a dramatic decrease in the peripheral viral load but has also led to increased life expectancy of the infected individuals. Paradoxically, increased lifespan is accompanied with higher prevalence of age-related comorbidities, including HIV-associated neurocognitive disorders (HAND). Present study was aimed at exploring the role of HIV TAT protein in mediating microglial mitochondrial oxidative stress, ultimately resulting in neuroinflammation and microglial senescence. Our findings demonstrated that exposure of mouse primary microglial cells (mPMs) to HIV TAT protein resulted in a senescence-like phenotype, that was characterized by elevated expression of both p16 and p21 proteins, increased numbers of senescence-associated-β-galactosidase positive cells, augmented cell-cycle arrest, increased release of proinflammatory cytokines and decreased telomerase activity. Additionally, exposure of mPMs to HIV TAT also resulted downregulation of SIRT3 with a concomitant increase in mitochondrial oxidative stress. Dual luciferase reporter assay identified miR-505 as a novel target of SIRT3, which was upregulated in mPMs exposed to HIV TAT. Furthermore, transient transfection of mPMs with either the SIRT3 plasmid or miRNA-505 inhibitor upregulated the expression of SIRT3 and mitochondrial antioxidant enzymes, with a concomitant decrease in microglial senescence. These in vitro findings were also validated in the prefrontal cortices and striatum of HIV transgenic rats as well as cART-treated HIV-infected individuals. In summary, this study underscores a yet undiscovered novel mechanism(s) underlying HIV TAT-mediated induction of senescence phenotype in microglia, involving the miR-505-SIRT3 axis-mediated induction of mitochondrial oxidative stress. HIV TAT induces senescence-like phenotype in microglia. HIV TAT decreases SIRT3 with concomitant increase of mitochondrial ROS. Overexpression of SIRT3 attenuated HIV TAT-mediated microglial senescence. miR-505 negatively regulate SIRT3 expression. miR-505 inhibition prevents SIRT3-mediated mitochondria stress and glial senescence.
Collapse
Affiliation(s)
- Annadurai Thangaraj
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Ernest T Chivero
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Ashutosh Tripathi
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Seema Singh
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Fang Niu
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Ming-Lei Guo
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Prakash Pillai
- Division of Neurobiology, Department of Zoology, Faculty of Science, The M.S. University of Baroda, Vadodara, India
| | - Palsamy Periyasamy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Shilpa Buch
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA.
| |
Collapse
|
48
|
Ramdas P, Sahu AK, Mishra T, Bhardwaj V, Chande A. From Entry to Egress: Strategic Exploitation of the Cellular Processes by HIV-1. Front Microbiol 2020; 11:559792. [PMID: 33343516 PMCID: PMC7746852 DOI: 10.3389/fmicb.2020.559792] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 11/05/2020] [Indexed: 01/23/2023] Open
Abstract
HIV-1 employs a rich arsenal of viral factors throughout its life cycle and co-opts intracellular trafficking pathways. This exquisitely coordinated process requires precise manipulation of the host microenvironment, most often within defined subcellular compartments. The virus capitalizes on the host by modulating cell-surface proteins and cleverly exploiting nuclear import pathways for post entry events, among other key processes. Successful virus–cell interactions are indeed crucial in determining the extent of infection. By evolving defenses against host restriction factors, while simultaneously exploiting host dependency factors, the life cycle of HIV-1 presents a fascinating montage of an ongoing host–virus arms race. Herein, we provide an overview of how HIV-1 exploits native functions of the host cell and discuss recent findings that fundamentally change our understanding of the post-entry replication events.
Collapse
Affiliation(s)
- Pavitra Ramdas
- Molecular Virology Laboratory, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, India
| | - Amit Kumar Sahu
- Molecular Virology Laboratory, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, India
| | - Tarun Mishra
- Molecular Virology Laboratory, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, India
| | - Vipin Bhardwaj
- Molecular Virology Laboratory, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, India
| | - Ajit Chande
- Molecular Virology Laboratory, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, India
| |
Collapse
|
49
|
Xu W, Ocak U, Gao L, Tu S, Lenahan CJ, Zhang J, Shao A. Selective autophagy as a therapeutic target for neurological diseases. Cell Mol Life Sci 2020; 78:1369-1392. [PMID: 33067655 PMCID: PMC7904548 DOI: 10.1007/s00018-020-03667-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 09/03/2020] [Accepted: 10/05/2020] [Indexed: 12/12/2022]
Abstract
The neurological diseases primarily include acute injuries, chronic neurodegeneration, and others (e.g., infectious diseases of the central nervous system). Autophagy is a housekeeping process responsible for the bulk degradation of misfolded protein aggregates and damaged organelles through the lysosomal machinery. Recent studies have suggested that autophagy, particularly selective autophagy, such as mitophagy, pexophagy, ER-phagy, ribophagy, lipophagy, etc., is closely implicated in neurological diseases. These forms of selective autophagy are controlled by a group of important proteins, including PTEN-induced kinase 1 (PINK1), Parkin, p62, optineurin (OPTN), neighbor of BRCA1 gene 1 (NBR1), and nuclear fragile X mental retardation-interacting protein 1 (NUFIP1). This review highlights the characteristics and underlying mechanisms of different types of selective autophagy, and their implications in various forms of neurological diseases.
Collapse
Affiliation(s)
- Weilin Xu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Umut Ocak
- Department of Emergency Medicine, Bursa Yuksek Ihtisas Training and Research Hospital, University of Health Sciences, 16310, Bursa, Turkey.,Department of Emergency Medicine, Bursa City Hospital, 16110, Bursa, Turkey
| | - Liansheng Gao
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Sheng Tu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310009, Zhejiang, China
| | | | - Jianmin Zhang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China. .,Brain Research Institute, Zhejiang University, Hangzhou, China. .,Collaborative Innovation Center for Brain Science, Zhejiang University, Hangzhou, China.
| | - Anwen Shao
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
50
|
Zhao MM, Wang RS, Zhou YL, Yang ZG. Emerging relationship between RNA helicases and autophagy. J Zhejiang Univ Sci B 2020; 21:767-778. [PMID: 33043643 PMCID: PMC7606199 DOI: 10.1631/jzus.b2000245] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 08/10/2020] [Indexed: 01/15/2023]
Abstract
RNA helicases, the largest family of proteins that participate in RNA metabolism, stabilize the intracellular environment through various processes, such as translation and pre-RNA splicing. These proteins are also involved in some diseases, such as cancers and viral diseases. Autophagy, a self-digestive and cytoprotective trafficking process in which superfluous organelles and cellular garbage are degraded to stabilize the internal environment or maintain basic cellular survival, is associated with human diseases. Interestingly, similar to autophagy, RNA helicases play important roles in maintaining cellular homeostasis and are related to many types of diseases. According to recent studies, RNA helicases are closely related to autophagy, participate in regulating autophagy, or serve as a bridge between autophagy and other cellular activities that widely regulate some pathophysiological processes or the development and progression of diseases. Here, we summarize the most recent studies to understand how RNA helicases function as regulatory proteins and determine their association with autophagy in various diseases.
Collapse
Affiliation(s)
- Miao-miao Zhao
- The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003, China
| | - Ru-sha Wang
- The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003, China
| | - Yan-lin Zhou
- Department of Gastroenterology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310006, China
| | - Zheng-gang Yang
- The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003, China
| |
Collapse
|