1
|
Zhang C, Zaman LA, Poluektova LY, Gorantla S, Gendelman HE, Dash PK. Humanized Mice for Studies of HIV-1 Persistence and Elimination. Pathogens 2023; 12:879. [PMID: 37513726 PMCID: PMC10383313 DOI: 10.3390/pathogens12070879] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/06/2023] [Accepted: 06/23/2023] [Indexed: 07/30/2023] Open
Abstract
A major roadblock to achieving a cure for human immunodeficiency virus type one (HIV-1) is the persistence of latent viral infections in the cells and tissue compartments of an infected human host. Latent HIV-1 proviral DNA persists in resting memory CD4+ T cells and mononuclear phagocytes (MPs; macrophages, microglia, and dendritic cells). Tissue viral reservoirs of both cell types reside in the gut, lymph nodes, bone marrow, spleen, liver, kidney, skin, adipose tissue, reproductive organs, and brain. However, despite the identification of virus-susceptible cells, several limitations persist in identifying broad latent reservoirs in infected persons. The major limitations include their relatively low abundance, the precise identification of latently infected cells, and the lack of biomarkers for identifying latent cells. While primary MP and CD4+ T cells and transformed cell lines are used to interrogate mechanisms of HIV-1 persistence, they often fail to accurately reflect the host cells and tissue environments that carry latent infections. Given the host specificity of HIV-1, there are few animal models that replicate the natural course of viral infection with any precision. These needs underlie the importance of humanized mouse models as both valuable and cost-effective tools for studying viral latency and subsequently identifying means of eliminating it. In this review, we discuss the advantages and limitations of humanized mice for studies of viral persistence and latency with an eye toward using these models to test antiretroviral and excision therapeutics. The goals of this research are to use the models to address how and under which circumstances HIV-1 latency can be detected and eliminated. Targeting latent reservoirs for an ultimate HIV-1 cure is the task at hand.
Collapse
Affiliation(s)
| | | | | | | | | | - Prasanta K. Dash
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA (S.G.)
| |
Collapse
|
2
|
Voronina DV, Shcheblyakov DV, Favorskaya IA, Esmagambetov IB, Dzharullaeva AS, Tukhvatulin AI, Zubkova OV, Popova O, Kan VY, Bandelyuk AS, Shmarov MM, Logunov DY, Naroditskiy BS, Gintsburg AL. Cross-Reactive Fc-Fused Single-Domain Antibodies to Hemagglutinin Stem Region Protect Mice from Group 1 Influenza a Virus Infection. Viruses 2022; 14:v14112485. [PMID: 36366583 PMCID: PMC9698552 DOI: 10.3390/v14112485] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/01/2022] [Accepted: 11/08/2022] [Indexed: 11/11/2022] Open
Abstract
The continued evolution of influenza viruses reduces the effectiveness of vaccination and antiviral drugs. The identification of novel and universal agents for influenza prophylaxis and treatment is an urgent need. We have previously described two potent single-domain antibodies (VHH), G2.3 and H1.2, which bind to the stem domain of hemagglutinin and efficiently neutralize H1N1 and H5N2 influenza viruses in vivo. In this study, we modified these VHHs with Fc-fragment to enhance their antiviral activity. Reformatting of G2.3 into bivalent Fc-fusion molecule increased its in vitro neutralizing activity against H1N1 and H2N3 viruses up to 80-fold and, moreover, resulted in obtaining the ability to neutralize H5N2 and H9N2 subtypes. We demonstrated that a dose as low as 0.6 mg/kg of G2.3-Fc or H1.2-Fc administered systemically or locally before infection could protect mice from lethal challenges with both H1N1 and H5N2 viruses. Furthermore, G2.3-Fc reduced the lung viral load to an undetectable level. Both VHH-Fc antibodies showed in vivo therapeutic efficacy when delivered via systemic or local route. The findings support G2.3-Fc as a potential therapeutic agent for both prophylaxis and therapy of Group 1 influenza A infection.
Collapse
Affiliation(s)
- Daria V. Voronina
- Department of Genetics and Molecular Biology of Bacteria, National Research Center for Epidemiology and Microbiology Named after the Honorary Academician N. F. Gamaleya, 123098 Moscow, Russia
- Correspondence:
| | - Dmitry V. Shcheblyakov
- Department of Genetics and Molecular Biology of Bacteria, National Research Center for Epidemiology and Microbiology Named after the Honorary Academician N. F. Gamaleya, 123098 Moscow, Russia
| | - Irina A. Favorskaya
- Medical Microbiology Department, National Research Center for Epidemiology and Microbiology Named after the Honorary Academician N. F. Gamaleya, 123098 Moscow, Russia
| | - Ilias B. Esmagambetov
- Department of Genetics and Molecular Biology of Bacteria, National Research Center for Epidemiology and Microbiology Named after the Honorary Academician N. F. Gamaleya, 123098 Moscow, Russia
| | - Alina S. Dzharullaeva
- Medical Microbiology Department, National Research Center for Epidemiology and Microbiology Named after the Honorary Academician N. F. Gamaleya, 123098 Moscow, Russia
| | - Amir I. Tukhvatulin
- Medical Microbiology Department, National Research Center for Epidemiology and Microbiology Named after the Honorary Academician N. F. Gamaleya, 123098 Moscow, Russia
| | - Olga V. Zubkova
- Department of Genetics and Molecular Biology of Bacteria, National Research Center for Epidemiology and Microbiology Named after the Honorary Academician N. F. Gamaleya, 123098 Moscow, Russia
| | - Olga Popova
- Department of Genetics and Molecular Biology of Bacteria, National Research Center for Epidemiology and Microbiology Named after the Honorary Academician N. F. Gamaleya, 123098 Moscow, Russia
| | - Vladislav Y. Kan
- Department of Genetics and Molecular Biology of Bacteria, National Research Center for Epidemiology and Microbiology Named after the Honorary Academician N. F. Gamaleya, 123098 Moscow, Russia
| | - Alina S. Bandelyuk
- Department of Genetics and Molecular Biology of Bacteria, National Research Center for Epidemiology and Microbiology Named after the Honorary Academician N. F. Gamaleya, 123098 Moscow, Russia
| | - Maxim M. Shmarov
- Department of Genetics and Molecular Biology of Bacteria, National Research Center for Epidemiology and Microbiology Named after the Honorary Academician N. F. Gamaleya, 123098 Moscow, Russia
| | - Denis Y. Logunov
- Medical Microbiology Department, National Research Center for Epidemiology and Microbiology Named after the Honorary Academician N. F. Gamaleya, 123098 Moscow, Russia
| | - Boris S. Naroditskiy
- Department of Genetics and Molecular Biology of Bacteria, National Research Center for Epidemiology and Microbiology Named after the Honorary Academician N. F. Gamaleya, 123098 Moscow, Russia
| | - Aleksandr L. Gintsburg
- Department of Genetics and Molecular Biology of Bacteria, National Research Center for Epidemiology and Microbiology Named after the Honorary Academician N. F. Gamaleya, 123098 Moscow, Russia
| |
Collapse
|
3
|
Herskovitz J, Hasan M, Patel M, Blomberg WR, Cohen JD, Machhi J, Shahjin F, Mosley RL, McMillan J, Kevadiya BD, Gendelman HE. CRISPR-Cas9 Mediated Exonic Disruption for HIV-1 Elimination. EBioMedicine 2021; 73:103678. [PMID: 34774454 PMCID: PMC8633974 DOI: 10.1016/j.ebiom.2021.103678] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/04/2021] [Accepted: 10/22/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND A barrier to HIV-1 cure rests in the persistence of proviral DNA in infected CD4+ leukocytes. The high HIV-1 mutation rate leads to viral diversity, immune evasion, and consequent antiretroviral drug resistance. While CRISPR-spCas9 can eliminate latent proviral DNA, its efficacy is limited by HIV strain diversity and precision target cell delivery. METHODS A library of guide RNAs (gRNAs) designed to disrupt five HIV-1 exons (tat1-2/rev1-2/gp41) was constructed. The gRNAs were derived from a conseensus sequence of the transcriptional regulator tat from 4004 HIV-1 strains. Efficacy was affirmed by gRNA cell entry through transfection, electroporation, or by lentivirus or lipid nanoparticle (LNP) delivery. Treated cells were evaluated for viral excision by monitoring HIV-1 DNA, RNA, protein, and progeny virus levels. FINDINGS Virus was reduced in all transmitted founder strains by 82 and 94% after CRISPR TatDE transfection or lentivirus treatments, respectively. No recorded off-target cleavages were detected. Electroporation of TatDE ribonucleoprotein and delivery of LNP TatDE gRNA and spCas9 mRNA to latently infected cells resulted in up to 100% viral excision. Protection against HIV-1-challenge or induction of virus during latent infection, in primary or transformed CD4+ T cells or monocytes was achieved. We propose that multi-exon gRNA TatDE disruption delivered by LNPs enables translation for animal and human testing. INTERPRETATION These results provide "proof of concept' for CRISPR gRNA treatments for HIV-1 elimination. The absence of full-length viral DNA by LNP delivery paired with undetectable off-target affirms the importance of payload delivery for effective viral gene editing. FUNDING The work was supported by the University of Nebraska Foundation, including donations from the Carol Swarts, M.D. Emerging Neuroscience Research Laboratory, the Margaret R. Larson Professorship, and individual donor support from the Frances and Louie Blumkin Foundation and from Harriet Singer. The research received support from National Institutes of Health grants T32 NS105594, 5R01MH121402, 1R01Al158160, R01 DA054535, PO1 DA028555, R01 NS126089, R01 NS36126, PO1 MH64570, P30 MH062261, and 2R01 NS034239.
Collapse
Affiliation(s)
- Jonathan Herskovitz
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198-5900 USA.
| | - Mahmudul Hasan
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5800 USA; Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198-6120 USA
| | - Milankumar Patel
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5800 USA
| | - Wilson R Blomberg
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5800 USA; School of Medicine, Creighton University Medical Center, Omaha, NE 68124
| | - Jacob D Cohen
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5800 USA
| | - Jatin Machhi
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5800 USA
| | - Farah Shahjin
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5800 USA
| | - R Lee Mosley
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5800 USA
| | - JoEllyn McMillan
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5800 USA
| | - Bhavesh D Kevadiya
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5800 USA
| | - Howard E Gendelman
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198-5900 USA; Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5800 USA; Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198-6120 USA.
| |
Collapse
|
4
|
Li W, Chen C, Drelich A, Martinez DR, Gralinski LE, Sun Z, Schäfer A, Kulkarni SS, Liu X, Leist SR, Zhelev DV, Zhang L, Kim YJ, Peterson EC, Conard A, Mellors JW, Tseng CTK, Falzarano D, Baric RS, Dimitrov DS. Rapid identification of a human antibody with high prophylactic and therapeutic efficacy in three animal models of SARS-CoV-2 infection. Proc Natl Acad Sci U S A 2020; 117:29832-29838. [PMID: 33139569 PMCID: PMC7703590 DOI: 10.1073/pnas.2010197117] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Effective therapies are urgently needed for the SARS-CoV-2/COVID-19 pandemic. We identified panels of fully human monoclonal antibodies (mAbs) from large phage-displayed Fab, scFv, and VH libraries by panning against the receptor binding domain (RBD) of the SARS-CoV-2 spike (S) glycoprotein. A high-affinity Fab was selected from one of the libraries and converted to a full-size antibody, IgG1 ab1, which competed with human ACE2 for binding to RBD. It potently neutralized replication-competent SARS-CoV-2 but not SARS-CoV, as measured by two different tissue culture assays, as well as a replication-competent mouse ACE2-adapted SARS-CoV-2 in BALB/c mice and native virus in hACE2-expressing transgenic mice showing activity at the lowest tested dose of 2 mg/kg. IgG1 ab1 also exhibited high prophylactic and therapeutic efficacy in a hamster model of SARS-CoV-2 infection. The mechanism of neutralization is by competition with ACE2 but could involve antibody-dependent cellular cytotoxicity (ADCC) as IgG1 ab1 had ADCC activity in vitro. The ab1 sequence has a relatively low number of somatic mutations, indicating that ab1-like antibodies could be quickly elicited during natural SARS-CoV-2 infection or by RBD-based vaccines. IgG1 ab1 did not aggregate, did not exhibit other developability liabilities, and did not bind to any of the 5,300 human membrane-associated proteins tested. These results suggest that IgG1 ab1 has potential for therapy and prophylaxis of SARS-CoV-2 infections. The rapid identification (within 6 d of availability of antigen for panning) of potent mAbs shows the value of large antibody libraries for response to public health threats from emerging microbes.
Collapse
Affiliation(s)
- Wei Li
- Department of Medicine, Division of Infectious Diseases, Center for Antibody Therapeutics, University of Pittsburgh Medical School, Pittsburgh, PA 15261;
| | - Chuan Chen
- Department of Medicine, Division of Infectious Diseases, Center for Antibody Therapeutics, University of Pittsburgh Medical School, Pittsburgh, PA 15261
| | - Aleksandra Drelich
- Department of Microbiology and Immunology, Centers for Biodefense and Emerging Diseases, Galveston National Laboratory, Galveston, TX 77550
| | - David R Martinez
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Lisa E Gralinski
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Zehua Sun
- Department of Medicine, Division of Infectious Diseases, Center for Antibody Therapeutics, University of Pittsburgh Medical School, Pittsburgh, PA 15261
| | - Alexandra Schäfer
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Swarali S Kulkarni
- Department of Veterinary Microbiology, Vaccine and Infectious Disease Organization-International Vaccine Centre, University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
| | - Xianglei Liu
- Department of Medicine, Division of Infectious Diseases, Center for Antibody Therapeutics, University of Pittsburgh Medical School, Pittsburgh, PA 15261
| | - Sarah R Leist
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Doncho V Zhelev
- Department of Medicine, Division of Infectious Diseases, Center for Antibody Therapeutics, University of Pittsburgh Medical School, Pittsburgh, PA 15261
| | - Liyong Zhang
- Department of Medicine, Division of Infectious Diseases, Center for Antibody Therapeutics, University of Pittsburgh Medical School, Pittsburgh, PA 15261
| | - Ye-Jin Kim
- Department of Medicine, Division of Infectious Diseases, Center for Antibody Therapeutics, University of Pittsburgh Medical School, Pittsburgh, PA 15261
| | | | | | - John W Mellors
- Department of Medicine, Division of Infectious Diseases, Center for Antibody Therapeutics, University of Pittsburgh Medical School, Pittsburgh, PA 15261
- Abound Bio, Pittsburgh, PA 15219
| | - Chien-Te K Tseng
- Department of Microbiology and Immunology, Centers for Biodefense and Emerging Diseases, Galveston National Laboratory, Galveston, TX 77550
| | - Darryl Falzarano
- Department of Veterinary Microbiology, Vaccine and Infectious Disease Organization-International Vaccine Centre, University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
| | - Ralph S Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Dimiter S Dimitrov
- Department of Medicine, Division of Infectious Diseases, Center for Antibody Therapeutics, University of Pittsburgh Medical School, Pittsburgh, PA 15261;
- Abound Bio, Pittsburgh, PA 15219
| |
Collapse
|
5
|
Dash PK, Kevadiya BD, Su H, Banoub MG, Gendelman HE. Pathways towards human immunodeficiency virus elimination. EBioMedicine 2020; 53:102667. [PMID: 32114397 PMCID: PMC7047153 DOI: 10.1016/j.ebiom.2020.102667] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/23/2020] [Accepted: 01/24/2020] [Indexed: 12/17/2022] Open
Abstract
Antiretroviral therapy (ART) suppresses human immunodeficiency virus (HIV) infection. Research seeking to transform viral suppression into elimination has generated novel immune, chemical and molecular antiviral agents. However, none, to date, have excised latent integrated proviral DNA or removed infected cells from infected persons. These efforts included, but are not limited to, broadly neutralizing antibodies, "shock" and "kill" latency-reversing agents, innate immune regulators, and sequential long-acting antiretroviral nanoformulated prodrugs and CRISPR-Cas9 gene editing. While, the latter, enabled the complete excision of latent HIV-1 from the host genome success was so far limited. We contend that improvements in antiretroviral delivery, potency, agent specificity, or combinatorial therapies can provide a pathway towards complete HIV elimination.
Collapse
Affiliation(s)
- Prasanta K Dash
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Bhavesh D Kevadiya
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Hang Su
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Mary G Banoub
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Howard E Gendelman
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA.
| |
Collapse
|
6
|
Engineering a Novel Antibody-Peptide Bispecific Fusion Protein Against MERS-CoV. Antibodies (Basel) 2019; 8:antib8040053. [PMID: 31690009 PMCID: PMC6963733 DOI: 10.3390/antib8040053] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 10/19/2019] [Accepted: 10/23/2019] [Indexed: 01/01/2023] Open
Abstract
In recent years, tremendous efforts have been made in the engineering of bispecific or multi-specific antibody-based therapeutics by combining two or more functional antigen-recognizing elements into a single construct. However, to the best of our knowledge there has been no reported cases of effective antiviral antibody-peptide bispecific fusion proteins. We previously developed potent fully human monoclonal antibodies and inhibitory peptides against Middle East Respiratory Syndrome Coronavirus (MERS-CoV), a novel coronavirus that causes severe acute respiratory illness with high mortality. Here, we describe the generation of antibody-peptide bispecific fusion proteins, each of which contains an anti-MERS-CoV single-chain antibody m336 (or normal human IgG1 CH3 domain as a control) linked with, or without, a MERS-CoV fusion inhibitory peptide HR2P. We found that one of these fusion proteins, designated as m336 diabody-pep, exhibited more potent inhibitory activity than the antibody or the peptide alone against pseudotyped MERS-CoV infection and MERS-CoV S protein-mediated cell-cell fusion, suggesting its potential to be developed as an effective bispecific immunotherapeutic for clinical use.
Collapse
|