1
|
Xie Y, Mei H, Wang W, Li X, Hu P, Tian X, Zhou R, Liu J, Qu J. ALCAM is an entry factor for severe community acquired Pneumonia-associated Human adenovirus species B. Nat Commun 2024; 15:10889. [PMID: 39738070 DOI: 10.1038/s41467-024-55261-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 12/05/2024] [Indexed: 01/01/2025] Open
Abstract
Human adenovirus (HAdV) is a widely spread respiratory pathogen that can cause infections in multiple tissues and organs. Previous studies have established an association between HAdV species B (HAdV-B) infection and severe community-acquired pneumonia (SCAP). However, the connection between SCAP-associated HAdV-B infection and host factor expression profile in patients has not been systematically investigated. Here, we perform a CRISPR genetic screen on HAdV-B using two generations of cell surface protein-focused CRISPR libraries and identify a series of host factors including the known receptor DSG-2 and an unknown factor, activated leukocyte cell adhesion molecule (ALCAM). Further investigation shows that ALCAM affects HAdV-B infection by participating in viral internalization. Transcriptomics data from human blood samples suggests that ALCAM expression is higher in SCAP patients with HAdV-B infection than in those with other infections. Chimeric and authentic virus experiments show that ALCAM is a widely used host factor across B1 and B2 genetic clusters of HAdV-B. The dissociation constant between the knob domain of HAdV-B fiber and ALCAM is 837 nM in average. In summary, our results suggest that ALCAM is an entry factor for SCAP-associated HAdV-B.
Collapse
Affiliation(s)
- Yusang Xie
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Institutes of Respiratory Diseases, School of Medicine, Shanghai Jiao Tong University and Shanghai Key Laboratory of Emergency Prevention, Diagnosis and Treatment of Respiratory Infectious Diseases, Shanghai, China
| | - Hong Mei
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Wei Wang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xiao Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Pengfei Hu
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xingui Tian
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Rong Zhou
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
- Guangzhou National Laboratory, Guangzhou International Bio Island, No. 9 XingDaoHuanBei Road, Guangzhou, Guangdong, China
| | - Jia Liu
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
- Guangzhou National Laboratory, Guangzhou International Bio Island, No. 9 XingDaoHuanBei Road, Guangzhou, Guangdong, China.
- Shanghai Clinical Research and Trial Center, Shanghai, China.
| | - Jieming Qu
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Institutes of Respiratory Diseases, School of Medicine, Shanghai Jiao Tong University and Shanghai Key Laboratory of Emergency Prevention, Diagnosis and Treatment of Respiratory Infectious Diseases, Shanghai, China.
| |
Collapse
|
2
|
Wang WC, Sayedahmed EE, Mittal SK. Significance of Preexisting Vector Immunity and Activation of Innate Responses for Adenoviral Vector-Based Therapy. Viruses 2022; 14:v14122727. [PMID: 36560730 PMCID: PMC9787786 DOI: 10.3390/v14122727] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
An adenoviral (AdV)-based vector system is a promising platform for vaccine development and gene therapy applications. Administration of an AdV vector elicits robust innate immunity, leading to the development of humoral and cellular immune responses against the vector and the transgene antigen, if applicable. The use of high doses (1011-1013 virus particles) of an AdV vector, especially for gene therapy applications, could lead to vector toxicity due to excessive levels of innate immune responses, vector interactions with blood factors, or high levels of vector transduction in the liver and spleen. Additionally, the high prevalence of AdV infections in humans or the first inoculation with the AdV vector result in the development of vector-specific immune responses, popularly known as preexisting vector immunity. It significantly reduces the vector efficiency following the use of an AdV vector that is prone to preexisting vector immunity. Several approaches have been developed to overcome this problem. The utilization of rare human AdV types or nonhuman AdVs is the primary strategy to evade preexisting vector immunity. The use of heterologous viral vectors, capsid modification, and vector encapsulation are alternative methods to evade vector immunity. The vectors can be optimized for clinical applications with comprehensive knowledge of AdV vector immunity, toxicity, and circumvention strategies.
Collapse
|
3
|
Greber UF, Suomalainen M. Adenovirus entry: Stability, uncoating, and nuclear import. Mol Microbiol 2022; 118:309-320. [PMID: 35434852 PMCID: PMC9790413 DOI: 10.1111/mmi.14909] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/09/2022] [Accepted: 04/12/2022] [Indexed: 12/30/2022]
Abstract
Adenoviruses (AdVs) are widespread in vertebrates. They infect the respiratory and gastrointestinal tracts, the eyes, heart, liver, and kidney, and are lethal to immunosuppressed people. Mastadenoviruses infecting mammals comprise several hundred different types, and many specifically infect humans. Human adenoviruses are the most widely used vectors in clinical applications, including cancer treatment and COVID-19 vaccination. AdV vectors are physically and genetically stable and generally safe in humans. The particles have an icosahedral coat and a nucleoprotein core with a DNA genome. We describe the concept of AdV cell entry and highlight recent advances in cytoplasmic transport, uncoating, and nuclear import of the viral DNA. We highlight a recently discovered "linchpin" function of the virion protein V ensuring cytoplasmic particle stability, which is relaxed at the nuclear pore complex by cues from the E3 ubiquitin ligase Mind bomb 1 (MIB1) and the proteasome triggering disruption. Capsid disruption by kinesin motor proteins and microtubules exposes the linchpin and renders protein V a target for MIB1 ubiquitination, which dissociates V from viral DNA and enhances DNA nuclear import. These advances uncover mechanisms controlling capsid stability and premature uncoating and provide insight into nuclear transport of nucleic acids.
Collapse
Affiliation(s)
- Urs F. Greber
- Department of Molecular Life SciencesUniversity of ZurichZurichSwitzerland
| | - Maarit Suomalainen
- Department of Molecular Life SciencesUniversity of ZurichZurichSwitzerland
| |
Collapse
|
4
|
Dienst EGT, Kremer EJ. Adenovirus receptors on antigen-presenting cells of the skin. Biol Cell 2022; 114:297-308. [PMID: 35906865 DOI: 10.1111/boc.202200043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/21/2022] [Accepted: 07/26/2022] [Indexed: 12/01/2022]
Abstract
Skin, the largest human organ, is part of the first line of physical and immunological defense against many pathogens. Understanding how skin antigen-presenting cells (APCs) respond to viruses or virus-based vaccines is crucial to develop antiviral pharmaceutics, and efficient and safe vaccines. Here, we discuss the way resident and recruited skin APCs engage adenoviruses and the impact on innate immune responses. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
| | - Eric J Kremer
- Institut de Génétique Moléculaire de Montpellier, Université de Montpellier, CNRS, Montpellier, France
| |
Collapse
|
5
|
Miguel Cejalvo J, Falato C, Villanueva L, Tolosa P, González X, Pascal M, Canes J, Gavilá J, Manso L, Pascual T, Prat A, Salvador F. Oncolytic Viruses: a new immunotherapeutic approach for breast cancer treatment? Cancer Treat Rev 2022; 106:102392. [DOI: 10.1016/j.ctrv.2022.102392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/03/2022] [Accepted: 04/05/2022] [Indexed: 12/22/2022]
|
6
|
Safe and efficient in vivo hematopoietic stem cell transduction in nonhuman primates using HDAd5/35++ vectors. MOLECULAR THERAPY - METHODS & CLINICAL DEVELOPMENT 2022; 24:127-141. [PMID: 35036470 PMCID: PMC8741415 DOI: 10.1016/j.omtm.2021.12.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/04/2021] [Indexed: 12/11/2022]
Abstract
We tested a new in vivo hematopoietic stem cell (HSC) transduction/selection approach in rhesus macaques using HSC-tropic, integrating, helper-dependent adenovirus vectors (HDAd5/35++) designed for the expression of human γ-globin in red blood cells (RBCs) to treat hemoglobinopathies. We show that HDAd5/35++ vectors preferentially transduce HSCs in vivo after intravenous injection into granulocyte colony-stimulating factor (G-CSF)/AMD3100-mobilized animals and that transduced cells return to the bone marrow and spleen. The approach was well tolerated, and the activation of proinflammatory cytokines that are usually associated with intravenous adenovirus vector injection was successfully blunted by pre-treatment with dexamethasone in combination with interleukin (IL)-1 and IL-6 receptor blockers. Using our MGMTP140K-based in vivo selection approach, γ-globin+ RBCs increased in all animals with levels up to 90%. After selection, the percentage of γ-globin+ RBCs declined, most likely due to an immune response against human transgene products. Our biodistribution data indicate that γ-globin+ RBCs in the periphery were mostly derived from mobilized HSCs that homed to the spleen. Integration site analysis revealed a polyclonal pattern and no genotoxicity related to transgene integrations. This is the first proof-of-concept study in nonhuman primates to show that in vivo HSC gene therapy could be feasible in humans without the need for high-dose chemotherapy conditioning and HSC transplantation.
Collapse
|
7
|
Using oncolytic viruses to ignite the tumour immune microenvironment in bladder cancer. Nat Rev Urol 2021; 18:543-555. [PMID: 34183833 DOI: 10.1038/s41585-021-00483-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2021] [Indexed: 02/06/2023]
Abstract
The advent of immune checkpoint inhibition (ICI) has transformed the treatment paradigm for bladder cancer. However, despite the success of ICI in other tumour types, the majority of ICI-treated patients with bladder cancer failed to respond. The lack of efficacy in some patients could be attributed to a paucity of pre-existing immune reactive cells within the tumour immune microenvironment, which limits the beneficial effects of ICI. In this setting, strategies to attract lymphocytes before implementation of ICI could be helpful. Oncolytic virotherapy is thought to induce the release of damage-associated molecular patterns, eliciting a pro-inflammatory cytokine cascade and stimulating the activation of the innate immune system. Concurrently, oncolytic virotherapy-induced oncolysis leads to further release of neoantigens and subsequent epitope spreading, culminating in a robust, tumour-specific adaptive immune response. Combination therapy using oncolytic virotherapy with ICI has proven successful in a number of preclinical studies and is beginning to enter clinical trials for the treatment of both non-muscle-invasive and muscle-invasive bladder cancer. In this context, understanding of the mechanisms underpinning oncolytic virotherapy and its potential synergism with ICI will enable clinicians to effectively deploy oncolytic virotherapy, either as monotherapy or as combination therapy in the different clinical stages of bladder cancer.
Collapse
|
8
|
Hu PY, Fan XM, Zhang YN, Wang SB, Wan WJ, Pan HY, Mou XZ. The limiting factors of oncolytic virus immunotherapy and the approaches to overcome them. Appl Microbiol Biotechnol 2020; 104:8231-8242. [PMID: 32816087 DOI: 10.1007/s00253-020-10802-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 06/22/2020] [Accepted: 07/30/2020] [Indexed: 02/07/2023]
Abstract
Oncolytic virus (OV) immunotherapy is characterized by viruses which specifically target cancer cells and cause their cytolysis. They provide a unique and promising new tool for the eradication of cancer as they interact with and affect the tumor microenvironment (TME), vasculature, and immune system. Advancements of genetic engineering have allowed for these viruses to be armed in such a way to have enhanced targeting, strong immunomodulation properties, and an ability to modify the TME. However, there are still major limitations in their use, mostly due to difficulties in delivering the viral particles to the tumors and in ensuring that the immunomodulatory properties are able to stimulate the host immune response to mount a complete response. Using novel delivery systems and using OVs as a complementary therapy in a combinatorial treatment have shown some significant successes. In this review, we discuss the major issues and difficulties in using OVs as anti-tumor agents and some of the strategies put in place so far to overcome these limitations. KEY POINTS: • Oncolytic viruses (OVs) infect cancer cells and cause their cytolysis. • The major limitations in using OVs as anti-tumor therapy were discussed. • The potential strategies to overcome these limitations were summarized.
Collapse
Affiliation(s)
- Pei-Yang Hu
- Department of Traumatology, Tiantai People's Hospital of Zhejiang Province (Tiantai Branch of Zhejiang People's Hospital), Taizhou, 317200, China
| | - Xiao-Ming Fan
- Department of Ultrasound, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, 310014, China
| | - You-Ni Zhang
- Department of Traumatology, Tiantai People's Hospital of Zhejiang Province (Tiantai Branch of Zhejiang People's Hospital), Taizhou, 317200, China.,Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, 310014, China.,Clinical Research Institute, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, 310014, China
| | - Shi-Bing Wang
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, 310014, China.,Clinical Research Institute, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, 310014, China
| | - Wei-Jie Wan
- Shandong Xiandai University, Jinan, 250104, China
| | - Hong-Ying Pan
- Department of Infectious Diseases, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, 310014, China.
| | - Xiao-Zhou Mou
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, 310014, China. .,Clinical Research Institute, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, 310014, China.
| |
Collapse
|
9
|
Human Desmoglein-2 and Human CD46 Mediate Human Adenovirus Type 55 Infection, but Human Desmoglein-2 Plays the Major Roles. J Virol 2020; 94:JVI.00747-20. [PMID: 32581096 DOI: 10.1128/jvi.00747-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 06/20/2020] [Indexed: 02/06/2023] Open
Abstract
Human adenovirus type 55 (HAdV55) represents an emerging respiratory pathogen and causes severe pneumonia with high fatality in humans. The cellular receptors, which are essential for understanding the infection and pathogenesis of HAdV55, remain unclear. In this study, we found that HAdV55 binding and infection were sharply reduced by disrupting the interaction of viral fiber protein with human desmoglein-2 (hDSG2) but only slightly reduced by disrupting the interaction of viral fiber protein with human CD46 (hCD46). Loss-of-function studies using soluble receptors, blocking antibodies, RNA interference, and gene knockout demonstrated that hDSG2 predominantly mediated HAdV55 infection. Nonpermissive rodent cells became susceptible to HAdV55 infection when hDSG2 or hCD46 was expressed, but hDSG2 mediated more efficient HAd55 infection than hCD46. We generated two transgenic mouse lines that constitutively express either hDSG2 or hCD46. Although nontransgenic mice were resistant to HAdV55 infection, infection with HAdV55 was significantly increased in hDSG2+/+ mice but was much less increased in hCD46+/+ mice. Our findings demonstrate that both hDSG2 and hCD46 are able to mediate HAdV55 infection but hDSG2 plays the major roles. The hDSG2 transgenic mouse can be used as a rodent model for evaluation of HAdV55 vaccine and therapeutics.IMPORTANCE Human adenovirus type 55 (HAdV55) has recently emerged as a highly virulent respiratory pathogen and has been linked to severe and even fatal pneumonia in immunocompetent adults. However, the cellular receptors mediating the entry of HAdV55 into host cells remain unclear, which hinders the establishment of HAdV55-infected animal models and the development of antiviral approaches. In this study, we demonstrated that human desmoglein-2 (hDSG2) plays the major roles during HAdV55 infection. Human CD46 (hCD46) could also mediate the infection of HAdV55, but the efficiency was much lower than for hDSG2. We generated two transgenic mouse lines that express either hDSG2 or hCD46, both of which enabled HAd55 infection in otherwise nontransgenic mice. hDSG2 transgenic mice enabled more efficient HAdV55 infection than hCD46 transgenic mice. Our study adds to our understanding of HAdV55 infection and provides an animal model for evaluating HAdV55 vaccines and therapeutics.
Collapse
|
10
|
Goradel NH, Negahdari B, Ghorghanlu S, Jahangiri S, Arashkia A. Strategies for enhancing intratumoral spread of oncolytic adenoviruses. Pharmacol Ther 2020; 213:107586. [PMID: 32479843 DOI: 10.1016/j.pharmthera.2020.107586] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 05/11/2020] [Indexed: 02/06/2023]
Abstract
Oncolytic viruses, effectively replicate viruses within malignant cells to lyse them without affecting normal ones, have recently shown great promise in developing therapeutic options for cancer. Adenoviruses (Ads) are one of the candidates in oncolytic virotheraoy due to its easily manipulated genomic DNA and expression of wide rane of its receptors on the various cancers. Although systematic delivery of oncolytic adenoviruses can target both primary and metastatic tumors, there are some drawbacks in the effective systematic delivery of oncolytic adenoviruses, including pre-existing antibodies and liver tropism. To overcome these limitations, intratumural (IT) administration of oncolytic viruses have been proposed. However, IT injection of Ads leaves much of the tumor mass unaffected and Ads are not able to disperse more in the tumor microenvironment (TME). To this end, various strategies have been developed to enhance the IT spread of oncolytic adenoviruses, such as using extracellular matrix degradation enzymes, junction opening peptides, and fusogenic proteins. In the present paper, we reviewed different oncolytic adenoviruses, their application in the clinical trials, and strategies for enhancing their IT spread.
Collapse
Affiliation(s)
- Nasser Hashemi Goradel
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Babak Negahdari
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Sajjad Ghorghanlu
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Samira Jahangiri
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Arash Arashkia
- Department of Molecular Virology, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
11
|
Li C, Lieber A. Adenovirus vectors in hematopoietic stem cell genome editing. FEBS Lett 2019; 593:3623-3648. [PMID: 31705806 PMCID: PMC10473235 DOI: 10.1002/1873-3468.13668] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 10/23/2019] [Accepted: 10/27/2019] [Indexed: 12/13/2022]
Abstract
Genome editing of hematopoietic stem cells (HSCs) represents a therapeutic option for a number of hematological genetic diseases, as HSCs have the potential for self-renewal and differentiation into all blood cell lineages. This review presents advances of genome editing in HSCs utilizing adenovirus vectors as delivery vehicles. We focus on capsid-modified, helper-dependent adenovirus vectors that are devoid of all viral genes and therefore exhibit an improved safety profile. We discuss HSC genome engineering for several inherited disorders and infectious diseases including hemoglobinopathies, Fanconi anemia, hemophilia, and HIV-1 infection by ex vivo and in vivo editing in transgenic mice, nonhuman primates, as well as in human CD34+ cells. Mechanisms of therapeutic gene transfer including episomal expression of designer nucleases and base editors, transposase-mediated random integration, and targeted homology-directed repair triggered integration into selected genomic safe harbor loci are also reviewed.
Collapse
Affiliation(s)
- Chang Li
- Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, WA, USA
| | - André Lieber
- Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, WA, USA
- Department of Pathology, University of Washington, Seattle, WA, USA
| |
Collapse
|
12
|
Goswami R, Subramanian G, Silayeva L, Newkirk I, Doctor D, Chawla K, Chattopadhyay S, Chandra D, Chilukuri N, Betapudi V. Gene Therapy Leaves a Vicious Cycle. Front Oncol 2019; 9:297. [PMID: 31069169 PMCID: PMC6491712 DOI: 10.3389/fonc.2019.00297] [Citation(s) in RCA: 230] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 04/01/2019] [Indexed: 12/14/2022] Open
Abstract
The human genetic code encrypted in thousands of genes holds the secret for synthesis of proteins that drive all biological processes necessary for normal life and death. Though the genetic ciphering remains unchanged through generations, some genes get disrupted, deleted and or mutated, manifesting diseases, and or disorders. Current treatment options—chemotherapy, protein therapy, radiotherapy, and surgery available for no more than 500 diseases—neither cure nor prevent genetic errors but often cause many side effects. However, gene therapy, colloquially called “living drug,” provides a one-time treatment option by rewriting or fixing errors in the natural genetic ciphering. Since gene therapy is predominantly a viral vector-based medicine, it has met with a fair bit of skepticism from both the science fraternity and patients. Now, thanks to advancements in gene editing and recombinant viral vector development, the interest of clinicians and pharmaceutical industries has been rekindled. With the advent of more than 12 different gene therapy drugs for curing cancer, blindness, immune, and neuronal disorders, this emerging experimental medicine has yet again come in the limelight. The present review article delves into the popular viral vectors used in gene therapy, advances, challenges, and perspectives.
Collapse
Affiliation(s)
- Reena Goswami
- Neuroscience Branch, Research Division, United States Army Medical Research Institute of Chemical Defense, Aberdeen, MD, United States
| | - Gayatri Subramanian
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | - Liliya Silayeva
- Neuroscience Branch, Research Division, United States Army Medical Research Institute of Chemical Defense, Aberdeen, MD, United States
| | - Isabelle Newkirk
- Neuroscience Branch, Research Division, United States Army Medical Research Institute of Chemical Defense, Aberdeen, MD, United States
| | - Deborah Doctor
- Neuroscience Branch, Research Division, United States Army Medical Research Institute of Chemical Defense, Aberdeen, MD, United States
| | - Karan Chawla
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | - Saurabh Chattopadhyay
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | - Dhyan Chandra
- Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Nageswararao Chilukuri
- Neuroscience Branch, Research Division, United States Army Medical Research Institute of Chemical Defense, Aberdeen, MD, United States
| | - Venkaiah Betapudi
- Neuroscience Branch, Research Division, United States Army Medical Research Institute of Chemical Defense, Aberdeen, MD, United States.,Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
13
|
Lv Y, Xiao FJ, Wang Y, Zou XH, Wang H, Wang HY, Wang LS, Lu ZZ. Efficient gene transfer into T lymphocytes by fiber-modified human adenovirus 5. BMC Biotechnol 2019; 19:23. [PMID: 31014302 PMCID: PMC6480437 DOI: 10.1186/s12896-019-0514-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 04/05/2019] [Indexed: 01/26/2023] Open
Abstract
Background The gene transduction efficiency of adenovirus to hematopoietic cells, especially T lymphocytes, is needed to be improved. The purpose of this study is to improve the transduction efficiency of T lymphocytes by using fiber-modified human adenovirus 5 (HAdV-5) vectors. Results Four fiber-modified human adenovirus 5 (HAdV-5) vectors were investigated to transduce hematopoietic cells. F35-EG or F11p-EG were HAdV-35 or HAdV-11p fiber pseudotyped HAdV-5, and HR-EG or CR-EG vectors were generated by incorporating RGD motif to the HI loop or to the C-terminus of F11p-EG fiber. All vectors could transduce more than 90% of K562 or Jurkat cells at an multiplicity of infection (MOI) of 500 viral particle per cell (vp/cell). All vectors except HR-EG could transduce nearly 90% cord blood CD34+ cells or 80% primary human T cells at the MOI of 1000, and F11p-EG showed slight superiority to F35-EG and CR-EG. Adenoviral vectors transduced CD4+ T cells a little more efficiently than they did to CD8+ T cells. These vectors showed no cytotoxicity at an MOI as high as 1000 vp/cell because the infected and uninfected T cells retained the same CD4/CD8 ratio and cell growth rate. Conclusions HAdV-11p fiber pseudotyped HAdV-5 could effectively transduce human T cells when human EF1a promoter was used to control the expression of transgene, suggesting its possible application in T cell immunocellular therapy.
Collapse
Affiliation(s)
- Yun Lv
- Graduate School of Anhui Medical University, 81 Meishan Road, Shu Shan Qu, Hefei, Anhui, People's Republic of China.,Department of Experimental Hematology, Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing, China.,State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 100 Ying Xin Jie, Beijing, China
| | - Feng-Jun Xiao
- Department of Experimental Hematology, Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing, China
| | - Yi Wang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 100 Ying Xin Jie, Beijing, China
| | - Xiao-Hui Zou
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 100 Ying Xin Jie, Beijing, China
| | - Hua Wang
- Department of Experimental Hematology, Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing, China
| | - Hai-Yan Wang
- Affiliated Hospital of Qingdao University, 16 JiangSu Road, Qingdao, People's Republic of China
| | - Li-Sheng Wang
- Department of Experimental Hematology, Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing, China. .,Affiliated Hospital of Qingdao University, 16 JiangSu Road, Qingdao, People's Republic of China.
| | - Zhuo-Zhuang Lu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 100 Ying Xin Jie, Beijing, China.
| |
Collapse
|
14
|
Rodents Versus Pig Model for Assessing the Performance of Serotype Chimeric Ad5/3 Oncolytic Adenoviruses. Cancers (Basel) 2019; 11:cancers11020198. [PMID: 30744019 PMCID: PMC6406826 DOI: 10.3390/cancers11020198] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 02/01/2019] [Accepted: 02/06/2019] [Indexed: 12/31/2022] Open
Abstract
Oncolytic adenoviruses (Ad) are promising tools for cancer therapeutics. Most Ad-based therapies utilize species C serotypes, with Adenovirus type 5 (Ad5) most commonly employed. Prior clinical trials demonstrated low efficiency of oncolytic Ad5 vectors, mainly due to the absence of Ad5 primary receptor (Coxsackie and Adenovirus Receptor, CAR) on cancer cells. Engineering serotype chimeric vectors (Ad5/3) to utilize Adenovirus type 3 (Ad3) receptors has greatly improved their oncolytic potential. Clinical translation of these infectivity-enhanced vectors has been challenging due to a lack of replication permissive animal models. In this study, we explored pigs as a model to study the performance of fiber-modified Ad5/3 chimeric vectors. As a control, the Ad5 fiber-unmodified virus was used. We analyzed binding, gene transfer, replication, and cytolytic ability of Ad5 and Ad5/3 in various non-human cell lines (murine, hamster, canine, porcine). Among all tested cell lines only porcine cells supported active binding and replication of Ad5/3. Syrian hamster cells supported Ad5 replication but showed no evidence of productive viral replication after infection with Ad5/3 vectors. Transduction and replication ability of Ad5/3 in porcine cells outperformed Ad5, a phenomenon often observed in human cancer cell lines. Replication of Ad5 and Ad5/3 was subsequently evaluated in vivo in immunocompetent pigs. Quantitative PCR analyses 7 days post infection revealed Ad5 and Ad5/3 DNA and replication-dependent luciferase activity in the swine lungs and spleen indicating active replication in these tissues. These studies demonstrated the flaws in using Syrian hamsters for testing serotype chimeric Ad5/3 vectors. This is the first report to validate the pig as a valuable model for preclinical testing of oncolytic adenoviruses utilizing Adenovirus type 3 receptors. We hope that these data will help to foster the clinical translation of oncolytic adenoviruses including those with Ad3 retargeted tropism.
Collapse
|
15
|
Wang H, Georgakopoulou A, Psatha N, Li C, Capsali C, Samal HB, Anagnostopoulos A, Ehrhardt A, Izsvák Z, Papayannopoulou T, Yannaki E, Lieber A. In vivo hematopoietic stem cell gene therapy ameliorates murine thalassemia intermedia. J Clin Invest 2019; 129:598-615. [PMID: 30422819 PMCID: PMC6355219 DOI: 10.1172/jci122836] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 11/06/2018] [Indexed: 12/16/2022] Open
Abstract
Current thalassemia gene therapy protocols require the collection of hematopoietic stem/progenitor cells (HSPCs), in vitro culture, lentivirus vector transduction, and retransplantation into myeloablated patients. Because of cost and technical complexity, it is unlikely that such protocols will be applicable in developing countries, where the greatest demand for a β-thalassemia therapy lies. We have developed a simple in vivo HSPC gene therapy approach that involves HSPC mobilization and an intravenous injection of integrating HDAd5/35++ vectors. Transduced HSPCs homed back to the bone marrow, where they persisted long-term. HDAd5/35++ vectors for in vivo gene therapy of thalassemia had a unique capsid that targeted primitive HSPCs through human CD46, a relatively safe SB100X transposase-based integration machinery, a micro-LCR-driven γ-globin gene, and an MGMT(P140K) system that allowed for increasing the therapeutic effect by short-term treatment with low-dose O6-benzylguanine plus bis-chloroethylnitrosourea. We showed in "healthy" human CD46-transgenic mice and in a mouse model of thalassemia intermedia that our in vivo approach resulted in stable γ-globin expression in the majority of circulating red blood cells. The high marking frequency was maintained in secondary recipients. In the thalassemia model, a near-complete phenotypic correction was achieved. The treatment was well tolerated. This cost-efficient and "portable" approach could permit a broader clinical application of thalassemia gene therapy.
Collapse
Affiliation(s)
- Hongjie Wang
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Aphrodite Georgakopoulou
- Gene and Cell Therapy Center, Hematology Department, George Papanicolaou Hospital, Thessaloniki, Greece
- Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Nikoletta Psatha
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Chang Li
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Chrysi Capsali
- Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Achilles Anagnostopoulos
- Gene and Cell Therapy Center, Hematology Department, George Papanicolaou Hospital, Thessaloniki, Greece
| | | | | | | | - Evangelia Yannaki
- Gene and Cell Therapy Center, Hematology Department, George Papanicolaou Hospital, Thessaloniki, Greece
| | - André Lieber
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, Washington, USA
- Department of Pathology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
16
|
Iscaro A, Howard NF, Muthana M. Nanoparticles: Properties and Applications in Cancer Immunotherapy. Curr Pharm Des 2019; 25:1962-1979. [PMID: 31566122 DOI: 10.2174/1381612825666190708214240] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 06/19/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Tumours are no longer regarded as isolated masses of aberrantly proliferating epithelial cells. Rather, their properties depend on complex interactions between epithelial cancer cells and the surrounding stromal compartment within the tumour microenvironment. In particular, leukocyte infiltration plays a role in controlling tumour development and is now considered one of the hallmarks of cancer. Thus, in the last few years, immunotherapy has become a promising strategy to fight cancer, as its goal is to reprogram or activate antitumour immunity to kill tumour cells, without damaging the normal cells and provide long-lasting results where other therapies fail. However, the immune-related adverse events due to the low specificity in tumour cell targeting, strongly limit immunotherapy efficacy. In this regard, nanomedicine offers a platform for the delivery of different immunotherapeutic agents specifically to the tumour site, thus increasing efficacy and reducing toxicity. Indeed, playing with different material types, several nanoparticles can be formulated with different shape, charge, size and surface chemical modifications making them the most promising platform for biomedical applications. AIM In this review, we will summarize the different types of cancer immunotherapy currently in clinical trials or already approved for cancer treatment. Then, we will focus on the most recent promising strategies to deliver immunotherapies directly to the tumour site using nanoparticles. CONCLUSION Nanomedicine seems to be a promising approach to improve the efficacy of cancer immunotherapy. However, additional investigations are needed to minimize the variables in the production processes in order to make nanoparticles suitable for clinical use.
Collapse
Affiliation(s)
- Alessandra Iscaro
- Department of Oncology & Metabolism, University of Sheffield, Medical School, Beech Hill Road, Sheffield, United Kingdom
| | - Nutter F Howard
- Department of Oncology & Metabolism, University of Sheffield, Medical School, Beech Hill Road, Sheffield, United Kingdom
| | - Munitta Muthana
- Department of Oncology & Metabolism, University of Sheffield, Medical School, Beech Hill Road, Sheffield, United Kingdom
| |
Collapse
|
17
|
Lasswitz L, Chandra N, Arnberg N, Gerold G. Glycomics and Proteomics Approaches to Investigate Early Adenovirus-Host Cell Interactions. J Mol Biol 2018; 430:1863-1882. [PMID: 29746851 PMCID: PMC7094377 DOI: 10.1016/j.jmb.2018.04.039] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 04/24/2018] [Accepted: 04/30/2018] [Indexed: 12/14/2022]
Abstract
Adenoviruses as most viruses rely on glycan and protein interactions to attach to and enter susceptible host cells. The Adenoviridae family comprises more than 80 human types and they differ in their attachment factor and receptor usage, which likely contributes to the diverse tropism of the different types. In the past years, methods to systematically identify glycan and protein interactions have advanced. In particular sensitivity, speed and coverage of mass spectrometric analyses allow for high-throughput identification of glycans and peptides separated by liquid chromatography. Also, developments in glycan microarray technologies have led to targeted, high-throughput screening and identification of glycan-based receptors. The mapping of cell surface interactions of the diverse adenovirus types has implications for cell, tissue, and species tropism as well as drug development. Here we review known adenovirus interactions with glycan- and protein-based receptors, as well as glycomics and proteomics strategies to identify yet elusive virus receptors and attachment factors. We finally discuss challenges, bottlenecks, and future research directions in the field of non-enveloped virus entry into host cells.
Collapse
Affiliation(s)
- Lisa Lasswitz
- Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Medical School Hannover and the Helmholtz Centre for Infection Research, 30625 Hannover, Germany
| | - Naresh Chandra
- Department of Clinical Microbiology, Virology, Umeå University, SE-90185 Umeå, Sweden; Molecular Infection Medicine Sweden (MIMS), Umeå University, SE-90185 Umea, Sweden
| | - Niklas Arnberg
- Department of Clinical Microbiology, Virology, Umeå University, SE-90185 Umeå, Sweden; Molecular Infection Medicine Sweden (MIMS), Umeå University, SE-90185 Umea, Sweden.
| | - Gisa Gerold
- Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Medical School Hannover and the Helmholtz Centre for Infection Research, 30625 Hannover, Germany; Department of Clinical Microbiology, Virology, Umeå University, SE-90185 Umeå, Sweden; Wallenberg Centre for Molecular Medicine (WCMM), Umeå University, SE-90185 Umea, Sweden.
| |
Collapse
|
18
|
Vassal-Stermann E, Mottet M, Ducournau C, Iseni F, Vragniau C, Wang H, Zubieta C, Lieber A, Fender P. Mapping of Adenovirus of serotype 3 fibre interaction to desmoglein 2 revealed a novel 'non-classical' mechanism of viral receptor engagement. Sci Rep 2018; 8:8381. [PMID: 29849084 PMCID: PMC5976663 DOI: 10.1038/s41598-018-26871-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 05/18/2018] [Indexed: 12/05/2022] Open
Abstract
High-affinity binding of the trimeric fibre protein to a cell surface primary receptor is a common feature shared by all adenovirus serotypes. Recently, a long elusive species B adenovirus receptor has been identified. Desmoglein 2 (DSG2) a component of desmosomal junction, has been reported to interact at high affinity with Human adenoviruses HAd3, HAd7, HAd11 and HAd14. Little is known with respect to the molecular interactions of adenovirus fibre with the DSG2 ectodomain. By using different DSG2 ectodomain constructs and biochemical and biophysical experiments, we report that the third extracellular cadherin domain (EC3) of DSG2 is critical for HAd3 fibre binding. Unexpectedly, stoichiometry studies using multi-angle laser light scattering (MALLS) and analytical ultra-centrifugation (AUC) revealed a non-classical 1:1 interaction (one DSG2 per trimeric fibre), thus differentiating ‘DSG2-interacting’ adenoviruses from other protein receptor interacting adenoviruses in their infection strategy.
Collapse
Affiliation(s)
- Emilie Vassal-Stermann
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes, CNRS, CEA, 71 Avenue des Martyrs, 38042, Grenoble, France
| | - Manon Mottet
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes, CNRS, CEA, 71 Avenue des Martyrs, 38042, Grenoble, France
| | - Corinne Ducournau
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes, CNRS, CEA, 71 Avenue des Martyrs, 38042, Grenoble, France.,Unité de Virologie, Institut de Recherche Biomédicale des Armées, BP 73, 91223, Brétigny-sur-Orge Cedex, France
| | - Frédéric Iseni
- Unité de Virologie, Institut de Recherche Biomédicale des Armées, BP 73, 91223, Brétigny-sur-Orge Cedex, France
| | - Charles Vragniau
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes, CNRS, CEA, 71 Avenue des Martyrs, 38042, Grenoble, France
| | - Hongjie Wang
- University of Washington, Department of Medicine, Division of Medical Genetics, Box 357720, Seattle, WA, 98195, USA
| | - Chloe Zubieta
- Laboratoire de Physiologie Cellulaire et Végétale, Biosciences and Biotechnology Institute of Grenoble, UMR5168, CNRS/CEA/INRA/UGA, 17 Rue des Martyrs, 38054, Grenoble, France
| | - André Lieber
- University of Washington, Department of Medicine, Division of Medical Genetics, Box 357720, Seattle, WA, 98195, USA.
| | - Pascal Fender
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes, CNRS, CEA, 71 Avenue des Martyrs, 38042, Grenoble, France.
| |
Collapse
|
19
|
Reactivation of γ-globin in adult β-YAC mice after ex vivo and in vivo hematopoietic stem cell genome editing. Blood 2018; 131:2915-2928. [PMID: 29789357 DOI: 10.1182/blood-2018-03-838540] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 05/14/2018] [Indexed: 12/12/2022] Open
Abstract
Disorders involving β-globin gene mutations, primarily β-thalassemia and sickle cell disease, represent a major target for hematopoietic stem/progenitor cell (HSPC) gene therapy. This includes CRISPR/Cas9-mediated genome editing approaches in adult CD34+ cells aimed toward the reactivation of fetal γ-globin expression in red blood cells. Because models involving erythroid differentiation of CD34+ cells have limitations in assessing γ-globin reactivation, we focused on human β-globin locus-transgenic (β-YAC) mice. We used a helper-dependent human CD46-targeting adenovirus vector expressing CRISPR/Cas9 (HDAd-HBG-CRISPR) to disrupt a repressor binding region within the γ-globin promoter. We transduced HSPCs from β-YAC/human CD46-transgenic mice ex vivo and subsequently transplanted them into irradiated recipients. Furthermore, we used an in vivo HSPC transduction approach that involves HSPC mobilization and the intravenous injection of HDAd-HBG-CRISPR into β-YAC/CD46-transgenic mice. In both models, we demonstrated efficient target site disruption, resulting in a pronounced switch from human β- to γ-globin expression in red blood cells of adult mice that was maintained after secondary transplantation of HSPCs. In long-term follow-up studies, we did not detect hematological abnormalities, indicating that HBG promoter editing does not negatively affect hematopoiesis. This is the first study that shows successful in vivo HSPC genome editing by CRISPR/Cas9.
Collapse
|
20
|
|
21
|
Cho YS, Do MH, Kwon SY, Moon C, Kim K, Lee K, Lee SJ, Hemmi S, Joo YE, Kim MS, Jung C. Efficacy of CD46-targeting chimeric Ad5/35 adenoviral gene therapy for colorectal cancers. Oncotarget 2018; 7:38210-38223. [PMID: 27203670 PMCID: PMC5122383 DOI: 10.18632/oncotarget.9427] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 04/28/2016] [Indexed: 01/01/2023] Open
Abstract
CD46 is a complement inhibitor membrane cofactor which also acts as a receptor for various microbes, including species B adenoviruses (Ads). While most Ad gene therapy vectors are derived from species C and infect cells through coxsackie-adenovirus receptor (CAR), CAR expression is downregulated in many cancer cells, resulting inefficient Ad-based therapeutics. Despite a limited knowledge on the expression status of many cancer cells, an increasing number of cancer gene therapy studies include fiber-modified Ad vectors redirected to the more ubiquitously expressed CD46. Since our finding from tumor microarray indicate that CD46 was overexpressed in cancers of the prostate and colon, fiber chimeric Ad5/35 vectors that have infection tropism for CD46 were employed to demonstrate its efficacy in colorectal cancers (CRC). CD46-overexpressed cells showed a significantly higher response to Ad5/35-GFP and to Ad5/35-tk/GCV. While CRC cells express variable levels of CD46, CD46 expression was positively correlated with Ad5/35-mediated GFP fluorescence and accordingly its cell killing. Injection of Ad5/35-tk/GCV caused much greater tumor-suppression in mice bearing CD46-overexpressed cancer xenograft compared to mock group. Analysis of CRC samples revealed that patients with positive CD46 expression had a higher survival rate (p=0.031), carried tumors that were well-differentiated, but less invasive and metastatic, and with a low T stage (all p<0.05). Taken together, our study demonstrated that species B-based adenoviral gene therapy is a suitable approach for generally CD46-overexpressed CRC but would require careful consideration preceding CD46 analysis and categorizing CRC patients.
Collapse
Affiliation(s)
- Young-Suk Cho
- Department of Anatomy, Chonnam National University Medical School, Gwangju, Korea
| | - Manh-Hung Do
- Department of Anatomy, Chonnam National University Medical School, Gwangju, Korea
| | - Se-Young Kwon
- Department of Anatomy, Chonnam National University Medical School, Gwangju, Korea
| | - Changjong Moon
- College of Veterinary Medicine, Chonnam National University, Gwangju, Korea
| | - Kwonseop Kim
- College of Pharmacy, Chonnam National University, Gwangju, Korea
| | - Keesook Lee
- Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju, Korea
| | - Sang-Jin Lee
- Genitourinary Cancer Branch, Research Institute of National Cancer Center, Goyang, Gyeonggi-do, Korea
| | - Silvio Hemmi
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Young-Eun Joo
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Korea
| | - Min Soo Kim
- Department of Statistics, College of Natural Sciences, Chonnam National University, Gwangju, Korea
| | - Chaeyong Jung
- Department of Anatomy, Chonnam National University Medical School, Gwangju, Korea
| |
Collapse
|
22
|
Sahu SK, Kumar M. Application of Oncolytic Virus as a Therapy of Cancer. Microb Biotechnol 2018. [DOI: 10.1007/978-981-10-7140-9_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
23
|
Sharon D, Kamen A. Advancements in the design and scalable production of viral gene transfer vectors. Biotechnol Bioeng 2017; 115:25-40. [PMID: 28941274 DOI: 10.1002/bit.26461] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 09/16/2017] [Accepted: 09/19/2017] [Indexed: 01/22/2023]
Abstract
The last 10 years have seen a rapid expansion in the use of viral gene transfer vectors, with approved therapies and late stage clinical trials underway for the treatment of genetic disorders, and multiple forms of cancer, as well as prevention of infectious diseases through vaccination. With this increased interest and widespread adoption of viral vectors by clinicians and biopharmaceutical industries, there is an imperative to engineer safer and more efficacious vectors, and develop robust, scalable and cost-effective production platforms for industrialization. This review will focus on major innovations in viral vector design and production systems for three of the most widely used viral vectors: Adenovirus, Adeno-Associated Virus, and Lentivirus.
Collapse
Affiliation(s)
- David Sharon
- Department of Bioengineering, McGill University, Montreal, Quebec, Canada
| | - Amine Kamen
- Department of Bioengineering, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
24
|
Wang XJ, Xiang BY, Ding YH, Chen L, Zou H, Mou XZ, Xiang C. Human menstrual blood-derived mesenchymal stem cells as a cellular vehicle for malignant glioma gene therapy. Oncotarget 2017; 8:58309-58321. [PMID: 28938558 PMCID: PMC5601654 DOI: 10.18632/oncotarget.17621] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 04/20/2017] [Indexed: 02/06/2023] Open
Abstract
Despite many advances in conventional treatment strategies, there is no effective treatment modality for malignant gliomas. Gene therapy may offer a promising option for gliomas and several gene therapy approaches have shown anti-tumor efficiency in previous studies. Mesenchymal stem cell-based gene therapies, in which stem cells are genetically engineered to express therapeutic molecules, have shown tremendous potential because of their innate homing ability. In this study, human menstrual blood-derived MSCs (MenSC), a novel type of multipotential MSCs displays tropism for human malignant glioma when used as a gene delivery vehicle for therapeutics. Secretable trimeric TRAIL (stTRAIL) contains the receptor-binding domain of TRAIL, a death ligand that induces apoptosis in tumor cells. To overexpress stTRAIL, MenSCs were infected with efficient adenoviral serotype 35 vectors that had no influence on its broad multipotency and low immunophenotype. The modified MenSCs served as an excellent local drug delivery system for tumor site-specific targeted delivery and demonstrated therapeutic efficacy in an animal xenografts tumor model of U-87 MG cells. The MenSC-stTRAIL cells induced antitumor effects in vitro by significantly increasing apoptosis (P < 0.05). It also significantly reduced tumor burden in vivo (P < 0.05). The results showed that the proliferation of tumor cells was significantly reduced (P < 0.05). The MenSC, as a cellular delivery vehicle has a wide potential therapeutic role, which includes the treatment of tumors.
Collapse
Affiliation(s)
- Xiao-Jun Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Bing-Yu Xiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Ya-Hui Ding
- Department of Cardiology, Zhejiang Provincial People's Hospital, Hangzhou 310014, China.,People's Hospital of Hangzhou Medical College, Hangzhou 310014, China
| | - Lu Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Hai Zou
- Department of Cardiology, Zhejiang Provincial People's Hospital, Hangzhou 310014, China.,People's Hospital of Hangzhou Medical College, Hangzhou 310014, China
| | - Xiao-Zhou Mou
- Clinical Research Institute, Zhejiang Provincial People's Hospital, Hangzhou 310014, China
| | - Charlie Xiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310014, China
| |
Collapse
|
25
|
Studies on the Interaction of Tumor-Derived HD5 Alpha Defensins with Adenoviruses and Implications for Oncolytic Adenovirus Therapy. J Virol 2017; 91:JVI.02030-16. [PMID: 28077642 DOI: 10.1128/jvi.02030-16] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 12/20/2016] [Indexed: 12/19/2022] Open
Abstract
Defensins are small antimicrobial peptides capable of neutralizing human adenovirus (HAdV) in vitro by binding capsid proteins and blocking endosomal escape of virus. In humans, the alpha defensin HD5 is produced by specialized epithelial cells of the gastrointestinal and genito-urinary tracts. Here, we demonstrate, using patient biopsy specimens, that HD5 is also expressed as an active, secreted peptide by epithelial ovarian and lung cancer cells in situ This finding prompted us to study the role of HD5 in infection and spread of replication-competent, oncolytic HAdV type 3 (HAdV3). HAdV3 produces large amounts of penton-dodecahedra (PtDd), virus-like particles, during replication. We have previously shown that PtDd are involved in opening epithelial junctions, thus facilitating lateral spread of de novo-produced virions. Here, we describe a second function of PtDd, namely, the blocking of HD5. A central tool to prove that viral PtDd neutralize HD5 and support spread of progeny virus was an HAdV3 mutant virus in which formation of PtDd was disabled (mut-Ad3GFP, where GFP is green fluorescent protein). We demonstrated that viral spread of mut-Ad3GFP was blocked by synthetic HD5 whereas that of the wild-type (wt) form (wt-Ad3GFP) was only minimally impacted. In human colon cancer Caco-2 cells, induction of cellular HD5 expression by fibroblast growth factor 9 (FGF9) significantly inhibited viral spread and progeny virus production of mut-Ad3GFP but not of wt-Ad3GFP. Finally, the ectopic expression of HD5 in tumor cells diminished the in vivo oncolytic activity of mut-Ad3GFP but not of wt-Ad3GFP. These data suggest a new mechanism of HAdV3 to overcome innate antiviral host responses. Our study has implications for oncolytic adenovirus therapy.IMPORTANCE Previously, it has been reported that human defensin HD5 inactivates specific human adenoviruses by binding to capsid proteins and blocking endosomal escape of virus. The central new findings described in our manuscript are the following: (i) the discovery of a new mechanism used by human adenovirus serotype 3 to overcome innate antiviral host responses that is based on the capacity of HAdV3 to produce subviral penton-dodecahedral particles that act as decoys for HD5, thus preventing the inactivation of virus progeny produced upon replication; (ii) the demonstration that ectopic HD5 expression in cancer cells decreases the oncolytic efficacy of a serotype 5-based adenovirus vector; and (iii) the demonstration that epithelial ovarian and lung cancers express HD5. The study improves our understanding of how adenoviruses establish infection in epithelial tissues and has implications for cancer therapy with oncolytic adenoviruses.
Collapse
|
26
|
Yumul R, Richter M, Lu ZZ, Saydaminova K, Wang H, Wang CHK, Carter D, Lieber A. Epithelial Junction Opener Improves Oncolytic Adenovirus Therapy in Mouse Tumor Models. Hum Gene Ther 2016; 27:325-37. [PMID: 26993072 DOI: 10.1089/hum.2016.022] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
A central resistance mechanism in solid tumors is the maintenance of epithelial junctions between malignant cells that prevent drug penetration into the tumor. Human adenoviruses (Ads) have evolved mechanisms to breach epithelial barriers. For example, during Ad serotype 3 (Ad3) infection of epithelial tumor cells, massive amounts of subviral penton-dodecahedral particles (PtDd) are produced and released from infected cells to trigger the transient opening of epithelial junctions, thus facilitating lateral virus spread. We show here that an Ad3 mutant that is disabled for PtDd production is significantly less effective in killing of epithelial human xenograft tumors than the wild-type Ad3 virus. Intratumoral spread and therapeutic effect of the Ad3 mutant was enhanced by co-administration of a small recombinant protein (JO; produced in Escherichia coli) that incorporated the minimal junction opening domains of PtDd. We then demonstrated that co-administration of JO with replication-competent Ads that do not produce PtDd (Ad5, Ad35) resulted in greater attenuation of tumor growth than virus injection alone. Furthermore, we genetically modified a conditionally replicating Ad5-based oncolytic Ad (Ad5Δ24) to express a secreted form of JO upon replication in tumor cells. The JO-expressing virus had a significantly greater antitumor effect than the unmodified AdΔ24 version. Our findings indicate that epithelial junctions limit the efficacy of oncolytic Ads and that this problem can be address by co-injection or expression of JO. JO has also the potential for improving cancer therapy with other types of oncolytic viruses.
Collapse
Affiliation(s)
- Roma Yumul
- 1 Division of Medical Genetics, University of Washington , Seattle, Washington
| | - Maximilian Richter
- 1 Division of Medical Genetics, University of Washington , Seattle, Washington
| | - Zhuo-Zhuang Lu
- 1 Division of Medical Genetics, University of Washington , Seattle, Washington.,2 National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention , Beijing, PR China
| | - Kamola Saydaminova
- 1 Division of Medical Genetics, University of Washington , Seattle, Washington
| | - Hongjie Wang
- 1 Division of Medical Genetics, University of Washington , Seattle, Washington
| | | | - Darrick Carter
- 4 Compliment Corp. , Seattle, Washington.,5 PAI Life Sciences Inc. , Seattle, Washington
| | - André Lieber
- 1 Division of Medical Genetics, University of Washington , Seattle, Washington.,4 Compliment Corp. , Seattle, Washington.,6 Department of Pathology, University of Washington , Seattle, Washington
| |
Collapse
|
27
|
Activation of myeloid and endothelial cells by CD40L gene therapy supports T-cell expansion and migration into the tumor microenvironment. Gene Ther 2016; 24:92-103. [PMID: 27906162 PMCID: PMC5441514 DOI: 10.1038/gt.2016.80] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 10/30/2016] [Accepted: 11/11/2016] [Indexed: 12/12/2022]
Abstract
CD40 is an interesting target in cancer immunotherapy due to its ability to stimulate T-helper 1 immunity via maturation of dendritic cells and to drive M2 to M1 macrophage differentiation. Pancreatic cancer has a high M2 content that has shown responsive to anti-CD40 agonist therapy and CD40 may thus be a suitable target for immune activation in these patients. In this study, a novel oncolytic adenovirus armed with a trimerized membrane-bound extracellular CD40L (TMZ-CD40L) was evaluated as a treatment of pancreatic cancer. Further, the CD40L mechanisms of action were elucidated in cancer models. The results demonstrated that the virus transferring TMZ-CD40L had oncolytic capacity in pancreatic cancer cells and could control tumor progression. TMZ-CD40L was a potent stimulator of human myeloid cells and T-cell responses. Further, CD40L-mediated stimulation increased tumor-infiltrating T cells in vivo, which may be due to a direct activation of endothelial cells to upregulate receptors for lymphocyte attachment and transmigration. In conclusion, CD40L-mediated gene therapy is an interesting concept for the treatment of tumors with high levels of M2 macrophages, such as pancreatic cancer, and an oncolytic virus as carrier of CD40L may further boost tumor killing and immune activation.
Collapse
|
28
|
In vivo transduction of primitive mobilized hematopoietic stem cells after intravenous injection of integrating adenovirus vectors. Blood 2016; 128:2206-2217. [PMID: 27554082 DOI: 10.1182/blood-2016-04-711580] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 08/10/2016] [Indexed: 12/31/2022] Open
Abstract
Current protocols for hematopoietic stem/progenitor cell (HSPC) gene therapy, involving the transplantation of ex vivo genetically modified HSPCs are complex and not without risk for the patient. We developed a new approach for in vivo HSPC transduction that does not require myeloablation and transplantation. It involves subcutaneous injections of granulocyte-colony-stimulating factor/AMD3100 to mobilize HSPCs from the bone marrow (BM) into the peripheral blood stream and the IV injection of an integrating, helper-dependent adenovirus (HD-Ad5/35++) vector system. These vectors target CD46, a receptor that is uniformly expressed on HSPCs. We demonstrated in human CD46 transgenic mice and immunodeficient mice with engrafted human CD34+ cells that HSPCs transduced in the periphery home back to the BM where they stably express the transgene. In hCD46 transgenic mice, we showed that our in vivo HSPC transduction approach allows for the stable transduction of primitive HSPCs. Twenty weeks after in vivo transduction, green fluorescent protein (GFP) marking in BM HSPCs (Lin-Sca1+Kit- cells) in most of the mice was in the range of 5% to 10%. The percentage of GFP-expressing primitive HSPCs capable of forming multilineage progenitor colonies (colony-forming units [CFUs]) increased from 4% of all CFUs at week 4 to 16% at week 12, indicating transduction and expansion of long-term surviving HSPCs. Our approach was well tolerated, did not result in significant transduction of nonhematopoietic tissues, and was not associated with genotoxicty. The ability to stably genetically modify HSPCs without the need of myeloablative conditioning is relevant for a broader clinical application of gene therapy.
Collapse
|
29
|
Ma YY, Wang XJ, Han Y, Li G, Wang HJ, Wang SB, Chen XY, Liu FL, He XL, Tong XM, Mou XZ. Loss of coxsackie and adenovirus receptor expression in human colorectal cancer: A potential impact on the efficacy of adenovirus-mediated gene therapy in Chinese Han population. Mol Med Rep 2016; 14:2541-7. [PMID: 27485384 PMCID: PMC4991754 DOI: 10.3892/mmr.2016.5536] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 05/11/2016] [Indexed: 01/05/2023] Open
Abstract
The coxsackie and adenovirus receptor (CAR) is considered a tumor suppressor and critical factor for the efficacy of therapeutic strategies that employ the adenovirus. However, data on CAR expression levels in colorectal cancer are conflicting and its clinical relevance remains to be elucidated. Immunohistochemistry was performed on tissue microarrays containing 251 pairs of colon cancer and adjacent normal tissue samples from Chinese Han patients to assess the expression levels of CAR. Compared with healthy mucosa, decreased CAR expression (40.6% vs. 95.6%; P<0.001) was observed in colorectal cancer samples. The CAR immunopositivity in tumor tissues was not significantly associated with gender, age, tumor size, differentiation, TNM stage, lymph node metastasis or distant metastasis in patients with colon cancer. However, expression of CAR is present in 83.3% of the tumor tissues from patient with colorectal liver metastasis, which was significantly higher than those without liver metastasis (39.6%; P=0.042). At the plasma membrane, CAR was observed in 29.5% normal mucosa samples, which was significantly higher than in colorectal cancer samples (4.0%; P<0.001). In addition, the survival analysis demonstrated that the expression level of CAR has no association with the prognosis of colorectal cancer. CAR expression was observed to be downregulated in colorectal cancer, and it exerts complex effects during colorectal carcinogenesis, potentially depending on the stage of the cancer development and progression. High CAR expression may promote liver metastasis. With regard to oncolytic therapy, CAR expression analysis should be performed prior to adenoviral oncolytic treatment to stratify Chinese Han patients for treatment.
Collapse
Affiliation(s)
- Ying-Yu Ma
- Clinical Research Institute, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang 310014, P.R. China
| | - Xiao-Jun Wang
- Department of Anus, Rectum and Colon Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310014, P.R. China
| | - Yong Han
- Clinical Research Institute, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang 310014, P.R. China
| | - Gang Li
- Colorectal Department of Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, Zhejiang 312000, P.R. China
| | - Hui-Ju Wang
- Clinical Research Institute, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang 310014, P.R. China
| | - Shi-Bing Wang
- Clinical Research Institute, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang 310014, P.R. China
| | - Xiao-Yi Chen
- Clinical Research Institute, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang 310014, P.R. China
| | - Fan-Long Liu
- Department of Anus, Rectum and Colon Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310014, P.R. China
| | - Xiang-Lei He
- Department of Pathology, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang 310014, P.R. China
| | - Xiang-Min Tong
- Clinical Research Institute, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang 310014, P.R. China
| | - Xiao-Zhou Mou
- Clinical Research Institute, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang 310014, P.R. China
| |
Collapse
|
30
|
Rosewell Shaw A, Suzuki M. Recent advances in oncolytic adenovirus therapies for cancer. Curr Opin Virol 2016; 21:9-15. [PMID: 27379906 DOI: 10.1016/j.coviro.2016.06.009] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 06/14/2016] [Accepted: 06/17/2016] [Indexed: 12/11/2022]
Abstract
Oncolytic adenoviruses (Onc.Ads) selectively replicate in and lyse cancer cells and are therefore commonly used vectors in clinical trials for cancer gene therapy. Building upon the well-characterized adenoviral natural tropism, genetic modification of Onc.Ad can enhance/regulate their transduction and replication within specific cancer cell types. However, Onc.Ad-mediated tumor cell lysis cannot fully eliminate tumors. The hostile tumor microenvironment provides many barriers to efficient oncolytic virotherapy, as tumors develop structure and immune-evasion mechanisms in order to grow and ultimately spread. For these reasons, Onc.Ads modified to deliver structural or immune modulatory molecules (Armed Onc.Ads) have been developed to overcome the physical and immunological barriers of solid tumors. The combination of oncolysis with tumor microenvironment modulation/destruction may provide a promising platform for Ad-based cancer gene therapy.
Collapse
Affiliation(s)
- Amanda Rosewell Shaw
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA; Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston Methodist Hospital, Houston, TX, USA
| | - Masataka Suzuki
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA; Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston Methodist Hospital, Houston, TX, USA.
| |
Collapse
|
31
|
Human Adenovirus Serotype 3 Vector Packaged by a Rare Serotype 14 Hexon. PLoS One 2016; 11:e0156984. [PMID: 27328032 PMCID: PMC4915686 DOI: 10.1371/journal.pone.0156984] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 05/23/2016] [Indexed: 11/19/2022] Open
Abstract
Recombinant adenovirus serotype 3 (rAd3), which infects cells through the receptor desmoglein 2 (DSG2), has been investigated as a vector for gene therapy or vaccination. However, pre-existing anti-vector immunity may limit the practical application of rAd3. In this study, we investigated the seroprevalence and neutralizing antibody (NAb) titers to Ad3 and alternate serotypes in normal healthy adults in southern China. Sera samples had a high seroprevalence (80.00%) against Ad3 and Ad7 (85.83%), compared with Ad14 (22.50%). Furthermore, 19.17% and 25.83% of samples had high-titer neutralizing antibodies to Ad3 and Ad7, respectively, compared with 3.33% against Ad14. We constructed a chimeric adenovirus, rAd3H14, designed to evade anti-vector immunity by replacing the enhanced green fluorescent protein (EGFP)-expressing hexon of the rAd3EGFP vector with a hexon from Ad14. The chimeric vector rAd3H14 was not neutralized in vitro efficiently by Ad3 NAbs using sera from mice and normal healthy human volunteers. Furthermore, in contrast to the unmodified vector rAd3EGFP, rAd3H14 induced robust antibody responses against EGFP in mice with high levels of pre-existing anti-Ad3 immunity. In conclusion, the chimeric vector rAd3H14 may be a useful alternative vector in adult populations with a high prevalence of Ad3 NAbs.
Collapse
|
32
|
Abstract
Human adenovirus (Ad) has been used extensively to develop gene transfer vectors for vaccine and gene therapy applications. A major factor limiting the efficacy of the current generation of Ad vectors is their inability to accomplish specific gene delivery to the cells of interest. Transductional targeting strategies seek to redirect virus binding to the appropriate cellular receptor to increase infection efficiency in selected cell types to achieve therapeutic intervention. These efforts mainly focused on incorporating targeting ligands by means of chemical conjugation or genetic modification of Ad capsid proteins and using bispecific adapter molecules to mediate virus recognition of target cells. This review summarizes current progress in Ad tropism modification maneuvers that embody genetic capsid modification and adapter-based approaches that have encouraging implications for further development of advanced vectors suitable for clinical translation.
Collapse
|
33
|
Intracellular Signaling and Desmoglein 2 Shedding Triggered by Human Adenoviruses Ad3, Ad14, and Ad14P1. J Virol 2015; 89:10841-59. [PMID: 26292319 DOI: 10.1128/jvi.01425-15] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 08/10/2015] [Indexed: 01/10/2023] Open
Abstract
UNLABELLED We recently discovered that desmoglein 2 (DSG2) is a receptor for human adenovirus species B serotypes Ad3, Ad7, Ad11, and Ad14. Ad3 is considered to be a widely distributed human pathogen. Ad3 binding to DSG2 triggers the transient opening of epithelial junctions. Here, we further delineate the mechanism that leads to DSG2-mediated epithelial junction opening in cells exposed to Ad3 and recombinant Ad3 fiber proteins. We identified an Ad3 fiber knob-dependent pathway that involves the phosphorylation of mitogen-activated protein (MAP) kinases triggering the activation of the matrix-metalloproteinase ADAM17. ADAM17, in turn, cleaves the extracellular domain of DSG2 that links epithelial cells together. The shed DSG2 domain can be detected in cell culture supernatant and also in serum of mice with established human xenograft tumors. We then extended our studies to Ad14 and Ad14P1. Ad14 is an important research and clinical object because of the recent appearance of a new, more pathogenic strain (Ad14P1). In a human epithelial cancer xenograft model, Ad14P1 showed more efficient viral spread and oncolysis than Ad14. Here, we tested the hypothesis that a mutation in the Ad14P1 fiber knob could account for the differences between the two strains. While our X-ray crystallography studies suggested an altered three-dimensional (3D) structure of the Ad14P1 fiber knob in the F-G loop region, this did not significantly change the fiber knob affinity to DSG2 or the intracellular signaling and DSG2 shedding in epithelial cancer cells. IMPORTANCE A number of widely distributed adenoviruses use the epithelial junction protein DSG2 as a receptor for infection and lateral spread. Interaction with DSG2 allows the virus not only to enter cells but also to open epithelial junctions which form a physical barrier to virus spread. Our study elucidates the mechanism beyond virus-triggered junction opening with a focus on adenovirus serotype 3. Ad3 binds to DSG2 with its fiber knob domain and triggers intracellular signaling that culminates in the cleavage of the extracellular domain of DSG2, thereby disrupting DSG2 homodimers between epithelial cells. We confirmed this pathway with a second DSG2-interacting serotype, Ad14, and its recently emerged strain Ad14P1. These new insights in basic adenovirus biology can be employed to develop novel drugs to treat adenovirus infection as well as be used as tools for gene delivery into epithelial tissues or epithelial tumors.
Collapse
|
34
|
Suzuki T, Kawamura K, Li Q, Okamoto S, Tada Y, Tatsumi K, Shimada H, Hiroshima K, Yamaguchi N, Tagawa M. Mesenchymal stem cells are efficiently transduced with adenoviruses bearing type 35-derived fibers and the transduced cells with the IL-28A gene produces cytotoxicity to lung carcinoma cells co-cultured. BMC Cancer 2014; 14:713. [PMID: 25255777 PMCID: PMC4182771 DOI: 10.1186/1471-2407-14-713] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 09/23/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Transduction of human mesenchymal stem cells (MSCs) with type 5 adenoviruses (Ad5) is limited in the efficacy because of the poor expression level of the coxsackie adenovirus receptor (CAR) molecules. We examined a possible improvement of Ad-mediated gene transfer in MSCs by substituting the fiber region of type 5 Ad with that of type 35 Ad. METHODS Expression levels of CAR and CD46 molecules, which are the major receptors for type 5 and type 35 Ad, respectively, were assayed with flow cytometry. We constructed vectors expressing the green fluorescent protein gene with Ad5 or modified Ad5 bearing the type 35 fiber region (AdF35), and examined the infectivity to MSCs with flow cytometry. We investigated anti-tumor effects of MSCs transduced with interleukin (IL)-28A gene on human lung carcinoma cells with a colorimetric assay. Expression of IL-28A receptors was tested with the polymerase chain reaction. A promoter activity of transcriptional regulatory regions in MSCs was determined with a luciferase assay and a tumor growth-promoting ability of MSCs was tested with co-injection of human tumor cells in nude mice. RESULTS MSCs expressed CD46 but scarcely CAR molecules, and subsequently were transduced with AdF35 but not with Ad5. Growth of MSCs transduced with the IL-28A gene remained the same as that of untransduced cells since MSCs were negative for the IL-28A receptors. The IL-28A-transduced MSCs however suppressed growth of lung carcinoma cells co-cultured, whereas MSCs transduced with AdF35 expressing the β-galactosidase gene did not. A regulatory region of the cyclooygenase-2 gene possessed transcriptional activities greater than other tumor promoters but less than the cytomegalovirus promoter, and MSCs themselves did not support tumor growth in vivo. CONCLUSIONS AdF35 is a suitable vector to transduce MSCs that are resistant to Ad5-mediated gene transfer. MSCs infected with AdF35 that activate an exogenous gene by the cytomegalovirus promoter can be a vehicle to deliver the gene product to targeted cells.
Collapse
Affiliation(s)
- Takeo Suzuki
- />Department of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
- />Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, Chiba, Japan
| | - Kiyoko Kawamura
- />Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, Chiba, Japan
| | - Quanhai Li
- />Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, Chiba, Japan
- />Department of Molecular Biology and Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Shinya Okamoto
- />Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, Chiba, Japan
- />Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yuji Tada
- />Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Koichiro Tatsumi
- />Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hideaki Shimada
- />Department of Surgery, School of Medicine, Toho University, Tokyo, Japan
| | - Kenzo Hiroshima
- />Department of Pathology, Tokyo Women’s Medical University Yachiyo Medical Center, Yachiyo, Japan
| | - Naoto Yamaguchi
- />Department of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Masatoshi Tagawa
- />Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, Chiba, Japan
- />Department of Molecular Biology and Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
35
|
Kaliberov SA, Kaliberova LN, Buchsbaum DJ, Curiel DT. Experimental virotherapy of chemoresistant pancreatic carcinoma using infectivity-enhanced fiber-mosaic oncolytic adenovirus. Cancer Gene Ther 2014; 21:264-74. [PMID: 24903014 PMCID: PMC4157623 DOI: 10.1038/cgt.2014.26] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 05/02/2014] [Accepted: 05/02/2014] [Indexed: 12/21/2022]
Abstract
Pancreatic cancer is a significant clinical problem and novel therapeutic approaches are desperately needed. Recent advances in conditionally replicative adenovirus-based (CRAd) oncolytic virus design allow the application of CRAd vectors as a therapeutic strategy to efficiently target and eradicate chemoresistant pancreatic cancer cells, thereby improving the efficacy of pancreatic cancer treatment. The goal of this study was to construct and validate the efficacy of an infectivity-enhanced, liver-untargeted, tumor-specific CRAd vector. A panel of CRAds has been derived that embodies the C-X-C chemokine receptor type 4 promoter for conditional replication, two-fiber complex mosaicism for targeting expansion and hexon hypervariable region 7 (HVR7) modification for liver untargeting. We evaluated CRAds for cancer virotherapy using a human pancreatic tumor xenograft model. Employment of the fiber mosaic approach improved CRAd replication in pancreatic tumor xenografts. Substitution of the HVR7 of the Ad5 hexon for Ad serotype 3 hexon resulted in decreased liver tropism of systemically administrated CRAd. Obtained data demonstrated that employment of complex mosaicism increased efficacy of the combination of oncolytic virotherapy with chemotherapy in a human pancreatic tumor xenograft model.
Collapse
Affiliation(s)
- S A Kaliberov
- Department of Radiation Oncology, School of Medicine, Washington University in St Louis, St Louis, MO, USA
| | - L N Kaliberova
- Department of Radiation Oncology, School of Medicine, Washington University in St Louis, St Louis, MO, USA
| | - D J Buchsbaum
- Division of Radiation Biology, Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - D T Curiel
- Department of Radiation Oncology, School of Medicine, Washington University in St Louis, St Louis, MO, USA
| |
Collapse
|
36
|
Human placenta mesenchymal stem cells expressing exogenous kringle1-5 protein by fiber-modified adenovirus suppress angiogenesis. Cancer Gene Ther 2014; 21:200-8. [DOI: 10.1038/cgt.2014.19] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2013] [Revised: 04/09/2014] [Accepted: 04/14/2014] [Indexed: 11/08/2022]
|
37
|
Bramante S, Koski A, Kipar A, Diaconu I, Liikanen I, Hemminki O, Vassilev L, Parviainen S, Cerullo V, Pesonen SK, Oksanen M, Heiskanen R, Rouvinen-Lagerström N, Merisalo-Soikkeli M, Hakonen T, Joensuu T, Kanerva A, Pesonen S, Hemminki A. Serotype chimeric oncolytic adenovirus coding for GM-CSF for treatment of sarcoma in rodents and humans. Int J Cancer 2014; 135:720-30. [PMID: 24374597 DOI: 10.1002/ijc.28696] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 11/13/2013] [Indexed: 12/29/2022]
Abstract
Sarcomas are a relatively rare cancer, but often incurable at the late metastatic stage. Oncolytic immunotherapy has gained attention over the past years, and a wide range of oncolytic viruses have been delivered via intratumoral injection with positive safety and promising efficacy data. Here, we report preclinical and clinical results from treatment of sarcoma with oncolytic adenovirus Ad5/3-D24-GMCSF (CGTG-102). Ad5/3-D24-GMCSF is a serotype chimeric oncolytic adenovirus coding for human granulocyte-macrophage colony-stimulating factor (GM-CSF). The efficacy of Ad5/3-D24-GMCSF was evaluated on a panel of soft-tissue sarcoma (STS) cell lines and in two animal models. Sarcoma specific human data were also collected from the Advanced Therapy Access Program (ATAP), in preparation for further clinical development. Efficacy was seen in both in vitro and in vivo STS models. Fifteen patients with treatment-refractory STS (13/15) or primary bone sarcoma (2/15) were treated in ATAP, and treatments appeared safe and well-tolerated. A total of 12 radiological RECIST response evaluations were performed, and two cases of minor response, six cases of stable disease and four cases of progressive disease were detected in patients progressing prior to virus treatment. Overall, the median survival time post treatment was 170 days. One patient is still alive at 1,459 days post virus treatment. In summary, Ad5/3-D24-GMCSF appears promising for the treatment of advanced STS; a clinical trial for treatment of refractory injectable solid tumors including STS is ongoing.
Collapse
Affiliation(s)
- Simona Bramante
- Cancer Gene Therapy Group Department of Pathology and Transplantation Laboratory, Haartman Institute, University of Helsinki, Helsinki, Finland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Carter D, Lieber A. Protein engineering to target complement evasion in cancer. FEBS Lett 2013; 588:334-40. [PMID: 24239543 DOI: 10.1016/j.febslet.2013.11.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 11/07/2013] [Accepted: 11/08/2013] [Indexed: 01/31/2023]
Abstract
The complement system is composed of soluble factors in plasma that enhance or "complement" immune-mediated killing through innate and adaptive mechanisms. Activation of complement causes recruitment of immune cells; opsonization of coated cells; and direct killing of affected cells through a membrane attack complex (MAC). Tumor cells up-regulate complement inhibitory factors - one of several strategies to evade the immune system. In many cases as the tumor progresses, dramatic increases in complement inhibitory factors are found on these cells. This review focuses on the classic complement pathway and the role of major complement inhibitory factors in cancer immune evasion as well as on how current protein engineering efforts are being employed to increase complement fixing or to reverse complement resistance leading to better therapeutic outcomes in oncology. Strategies discussed include engineering of antibodies to enhance complement fixation, antibodies that neutralize complement inhibitory proteins as well as engineered constructs that specifically target inhibition of the complement system.
Collapse
Affiliation(s)
- Darrick Carter
- PAI Life Sciences Inc., Seattle, WA, United States; Compliment Corp., Seattle, WA, United States.
| | - André Lieber
- Department of Medicine, University of Washington, Seattle, WA, United States
| |
Collapse
|
39
|
Penton-dodecahedral particles trigger opening of intercellular junctions and facilitate viral spread during adenovirus serotype 3 infection of epithelial cells. PLoS Pathog 2013; 9:e1003718. [PMID: 24204268 PMCID: PMC3814681 DOI: 10.1371/journal.ppat.1003718] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 09/04/2013] [Indexed: 11/19/2022] Open
Abstract
Human adenovirus serotypes Ad3, Ad7, Ad11, and Ad14 use the epithelial junction protein desmoglein 2 (DSG2) as a receptor for infection. During Ad infection, the fiber and penton base capsid proteins are produced in vast excess and form hetero-oligomers, called pentons. It has been shown for Ad3 that pentons self-assemble into penton-dodecahedra (PtDd). Our previous studies with recombinant purified Ad3 PtDd (produced in insect cells) showed that PtDd bind to DSG2 and trigger intracellular signaling resulting in the transient opening of junctions between epithelial cells. So far, a definitive proof for a function of Ad3 PtDd in the viral life cycle is elusive. Based on the recently published 3D structure of recombinant Ad3 PtDd, we generated a penton base mutant Ad3 vector (mu-Ad3GFP). mu-Ad3GFP is identical to its wild-type counterpart (wt-Ad3GFP) in the efficiency of progeny virus production; however, it is disabled in the production of PtDd. For infection studies we used polarized epithelial cancer cells or cell spheroids. We showed that in wt-Ad3GFP infected cultures, PtDd were released from cells before viral cytolysis and triggered the restructuring of epithelial junctions. This in turn facilitated lateral viral spread of de novo produced virions. These events were nearly absent in mu-Ad3GFP infected cultures. Our in vitro findings were consolidated in mice carrying xenograft tumors derived from human epithelial cancer cells. Furthermore, we provide first evidence that PtDd are also formed by another DSG2-interacting Ad serotype, the newly emerged, highly pathogenic Ad14 strain (Ad14p1). The central finding of this study is that a subgroup of Ads has evolved to generate PtDd as a strategy to achieve penetration into and dissemination in epithelial tissues. Our findings are relevant for basic and applied virology, specifically for cancer virotherapy. We have recently reported that a group of human Ads uses DSG2 as a receptor for infection. Among the DSG2-interacting Ads is serotype 3, which is widely distributed in the human population. During Ad3 infection, subviral particles (PtDd) formed by two capsid proteins are produced in vast excess and released early in infection. In this study, we demonstrate that PtDd trigger the opening of epithelial junctions and thus support the lateral spread of Ad3 progeny virus in epithelial tissues. Our study contributes to a better understanding of Ad3 infection and pathology. It also has implications for Ad-mediated gene transfer into epithelial tissues and tumors.
Collapse
|
40
|
Viral and non-viral gene delivery and its role in pluripotent stem cell engineering. DRUG DISCOVERY TODAY. TECHNOLOGIES 2013; 5:e105-48. [PMID: 24125542 DOI: 10.1016/j.ddtec.2008.10.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
41
|
Structural and functional studies on the interaction of adenovirus fiber knobs and desmoglein 2. J Virol 2013; 87:11346-62. [PMID: 23946456 DOI: 10.1128/jvi.01825-13] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Human adenovirus (Ad) serotypes Ad3, Ad7, Ad11, and Ad14, as well as a recently emerged strain of Ad14 (Ad14p1), use the epithelial junction protein desmoglein 2 (DSG2) as a receptor for infection. Unlike Ad interaction with CAR and CD46, structural details for Ad binding to DSG2 are still elusive. Using an approach based on Escherichia coli expression libraries of random Ad3 and Ad14p1 fiber knob mutants, we identified amino acid residues that, when mutated individually, ablated or reduced Ad knob binding to DSG2. These residues formed three clusters inside one groove at the extreme distal end of the fiber knob. The Ad3 fiber knob mutant library was also used to identify variants with increased affinity to DSG2. We found a number of mutations within or near the EF loop of the Ad3 knob that resulted in affinities to DSG2 that were several orders of magnitude higher than those to the wild-type Ad3 knob. Crystal structure analysis of one of the mutants showed that the introduced mutations make the EF loop more flexible, which might facilitate the interaction with DSG2. Our findings have practical relevance for cancer therapy. We have recently reported that an Ad3 fiber knob-containing recombinant protein (JO-1) is able to trigger opening of junctions between epithelial cancer cells which, in turn, greatly improved the intratumoral penetration and efficacy of therapeutic agents (I. Beyer, et al., Clin. Cancer Res. 18:3340-3351, 2012; I. Beyer, et al., Cancer Res. 71:7080-7090, 2011). Here, we show that affinity-enhanced versions of JO-1 are therapeutically more potent than the parental protein in a series of cancer models.
Collapse
|
42
|
Janssen JM, Liu J, Skokan J, Gonçalves MAFV, de Vries AAF. Development of an AdEasy-based system to produce first- and second-generation adenoviral vectors with tropism for CAR- or CD46-positive cells. J Gene Med 2013; 15:1-11. [PMID: 23225636 DOI: 10.1002/jgm.2687] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Revised: 11/14/2012] [Accepted: 11/26/2012] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The AdEasy system has acquired preeminence amongst the various methods for producing first-generation, early region 1 (E1)-deleted human adenovirus (HAdV) vectors (AdVs) as a result of the fast and reproducible recovery of full-length AdV genomes via homologous recombination in Escherichia coli. METHODS From the classical AdEasy system, a new production platform was derived to assemble first- and second-generation [i.e. E1- plus early region 2A (E2A)-deleted] AdVs displaying on their surface HAdV serotype 5 (HAdV5) fibers (F5) or chimeric fibers (F5/50) comprising the tail of F5 and the fiber shaft and knob of HAdV serotype 50 (HAdV50). The CD46-interacting chimeric fibers allow for the high-level transduction of various human primary cell types of clinical interest with low or no surface expression of the Coxsackievirus and adenovirus receptor. RESULTS A new set of pAdEasy plasmid 'backbones' with or without E2A and encoding F5 or F5/50 was constructed and recombined in E. coli strain BJ5183 with a 'shuttle' plasmid coding for β-galactosidase. The resulting clones yielded AdV preparations with similar high titers following their rescue and propagation in producer cells. The AdVs with F5/50 were superior to those carrying F5 with respect to transducing human skeletal myocytes and mesenchymal stem cells. CONCLUSIONS In the present study, an AdEasy system tailored for the production of not only first-, but also second-generation AdVs equipped with the receptor-interacting fiber domains of the prototypic species C HAdV5 or of the species B member HAdV50 is presented. This system expands the range of applications for this robust and versatile AdV production platform.
Collapse
Affiliation(s)
- Josephine M Janssen
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | |
Collapse
|
43
|
Koski A, Karli E, Kipar A, Escutenaire S, Kanerva A, Hemminki A. Mutation of the fiber shaft heparan sulphate binding site of a 5/3 chimeric adenovirus reduces liver tropism. PLoS One 2013; 8:e60032. [PMID: 23585829 PMCID: PMC3621953 DOI: 10.1371/journal.pone.0060032] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 02/21/2013] [Indexed: 11/18/2022] Open
Abstract
Natural tropism to the liver is a major obstacle in systemic delivery of adenoviruses in cancer gene therapy. Adenovirus binding to soluble coagulation factors and to cellular heparan sulphate proteoglycans via the fiber shaft KKTK domain are suggested to cause liver tropism. Serotype 5 adenovirus constructs with mutated KKTK regions exhibit liver detargeting, but they also transduce tumors less efficiently, possibly due to altered fiber conformation. We constructed Ad5/3lucS*, a 5/3 chimeric adenovirus with a mutated KKTK region. The fiber knob swap was hypothesized to facilitate tumor transduction. This construct was studied with or without additional coagulation factor ablation. Ad5/3lucS* exhibited significantly reduced transduction of human hepatic cells in vitro and mouse livers in vivo. Combination of coagulation factor ablation by warfarinization to Ad5/3lucS* seemed to further enhance liver detargeting. Cancer cell transduction by Ad5/3lucS* was retained in vitro. In vivo, viral particle accumulation in M4A4-LM3 xenograft tumors was comparable to controls, but Ad5/3lucS* transgene expression was nearly abolished. Coagulation factor ablation did not affect tumor transduction. These studies set the stage for further investigations into the effects of the KKTK mutation and coagulation factor ablation in the context of 5/3 serotype chimerism. Of note, the putative disconnect between tumor transduction and transgene expression could prove useful in further understanding of adenovirus biology.
Collapse
Affiliation(s)
- Anniina Koski
- Cancer Gene Therapy Group, Molecular Cancer Biology Program and Transplantation Laboratory and Haartman Institute, University of Helsinki, Helsinki, Finland
| | - Eerika Karli
- Cancer Gene Therapy Group, Molecular Cancer Biology Program and Transplantation Laboratory and Haartman Institute, University of Helsinki, Helsinki, Finland
| | - Anja Kipar
- Finnish Centre for Laboratory Animal Pathology, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
- Veterinary Pathology, School of Veterinary Science and Department of Infection Biology, Institute of Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Sophie Escutenaire
- Cancer Gene Therapy Group, Molecular Cancer Biology Program and Transplantation Laboratory and Haartman Institute, University of Helsinki, Helsinki, Finland
| | - Anna Kanerva
- Cancer Gene Therapy Group, Molecular Cancer Biology Program and Transplantation Laboratory and Haartman Institute, University of Helsinki, Helsinki, Finland
- Department of Obstetrics and Gynecology, Helsinki University Central Hospital, Helsinki, Finland
| | - Akseli Hemminki
- Cancer Gene Therapy Group, Molecular Cancer Biology Program and Transplantation Laboratory and Haartman Institute, University of Helsinki, Helsinki, Finland
| |
Collapse
|
44
|
Abstract
Respiratory viruses (including adenovirus, influenza virus, respiratory syncytial virus, coronavirus, and rhinovirus) cause a broad spectrum of disease in humans, ranging from mild influenza-like symptoms to acute respiratory failure. While species D adenoviruses and subtype H7 influenza viruses are known to possess an ocular tropism, documented human ocular disease has been reported following infection with all principal respiratory viruses. In this review, we describe the anatomical proximity and cellular receptor distribution between ocular and respiratory tissues. All major respiratory viruses and their association with human ocular disease are discussed. Research utilizing in vitro and in vivo models to study the ability of respiratory viruses to use the eye as a portal of entry as well as a primary site of virus replication is highlighted. Identification of shared receptor-binding preferences, host responses, and laboratory modeling protocols among these viruses provides a needed bridge between clinical and laboratory studies of virus tropism.
Collapse
Affiliation(s)
- Jessica A Belser
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| | | | | |
Collapse
|
45
|
Cerullo V, Koski A, Vähä-Koskela M, Hemminki A. Chapter eight--Oncolytic adenoviruses for cancer immunotherapy: data from mice, hamsters, and humans. Adv Cancer Res 2013; 115:265-318. [PMID: 23021247 DOI: 10.1016/b978-0-12-398342-8.00008-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Adenovirus is one of the most commonly used vectors for gene therapy and two products have already been approved for treatment of cancer in China (Gendicine(R) and Oncorine(R)). An intriguing aspect of oncolytic adenoviruses is that by their very nature they potently stimulate multiple arms of the immune system. Thus, combined tumor killing via oncolysis and inherent immunostimulatory properties in fact make these viruses in situ tumor vaccines. When further engineered to express cytokines, chemokines, tumor-associated antigens, or other immunomodulatory elements, they have been shown in various preclinical models to induce antigen-specific effector and memory responses, resulting both in full therapeutic cures and even induction of life-long tumor immunity. Here, we review the state of the art of oncolytic adenovirus, in the context of their capability to stimulate innate and adaptive arms of the immune system and finally how we can modify these viruses to direct the immune response toward cancer.
Collapse
Affiliation(s)
- Vincenzo Cerullo
- Laboratory of Immunovirotherapy, Division of Biopharmaceutics and Pharmacokinetics, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland.
| | | | | | | |
Collapse
|
46
|
Yu D, Jin C, Ramachandran M, Xu J, Nilsson B, Korsgren O, Le Blanc K, Uhrbom L, Forsberg-Nilsson K, Westermark B, Adamson R, Maitland N, Fan X, Essand M. Adenovirus serotype 5 vectors with Tat-PTD modified hexon and serotype 35 fiber show greatly enhanced transduction capacity of primary cell cultures. PLoS One 2013; 8:e54952. [PMID: 23372800 PMCID: PMC3555985 DOI: 10.1371/journal.pone.0054952] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 12/18/2012] [Indexed: 12/14/2022] Open
Abstract
Recombinant adenovirus serotype 5 (Ad5) vectors represent one of the most efficient gene delivery vectors in life sciences. However, Ad5 is dependent on expression of the coxsackievirus-adenovirus-receptor (CAR) on the surface of target cell for efficient transduction, which limits it’s utility for certain cell types. Herein we present a new vector, Ad5PTDf35, which is an Ad5 vector having serotype 35 fiber-specificity and Tat-PTD hexon-modification. This vector shows dramatically increased transduction capacity of primary human cell cultures including T cells, monocytes, macrophages, dendritic cells, pancreatic islets and exocrine cells, mesenchymal stem cells and tumor initiating cells. Biodistribution in mice following systemic administration (tail-vein injection) show significantly reduced uptake in the liver and spleen of Ad5PTDf35 compared to unmodified Ad5. Therefore, replication-competent viruses with these modifications may be further developed as oncolytic agents for cancer therapy. User-friendly backbone plasmids containing these modifications were developed for compatibility to the AdEasy-system to facilitate the development of surface-modified adenoviruses for gene delivery to difficult-to-transduce cells in basic, pre-clinical and clinical research.
Collapse
Affiliation(s)
- Di Yu
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Chuan Jin
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Mohanraj Ramachandran
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Jing Xu
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Berith Nilsson
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Olle Korsgren
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Katarina Le Blanc
- Division of Clinical Immunology, Karolinska University Hospital, Huddinge, Sweden
| | - Lene Uhrbom
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Karin Forsberg-Nilsson
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Bengt Westermark
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Rachel Adamson
- Department of Biology, YCR Cancer Research Unit, University of York, Heslington, United Kingdom
| | - Norman Maitland
- Department of Biology, YCR Cancer Research Unit, University of York, Heslington, United Kingdom
| | - Xiaolong Fan
- Rausing Laboratory, Lund University, Lund, Sweden
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Magnus Essand
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- * E-mail:
| |
Collapse
|
47
|
Holkers M, Maggio I, Liu J, Janssen JM, Miselli F, Mussolino C, Recchia A, Cathomen T, Gonçalves MAFV. Differential integrity of TALE nuclease genes following adenoviral and lentiviral vector gene transfer into human cells. Nucleic Acids Res 2012; 41:e63. [PMID: 23275534 PMCID: PMC3597656 DOI: 10.1093/nar/gks1446] [Citation(s) in RCA: 207] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The array of genome editing strategies based on targeted double-stranded DNA break formation have recently been enriched through the introduction of transcription activator-like type III effector (TALE) nucleases (TALENs). To advance the testing of TALE-based approaches, it will be crucial to deliver these custom-designed proteins not only into transformed cell types but also into more relevant, chromosomally stable, primary cells. Viral vectors are among the most effective gene transfer vehicles. Here, we investigated the capacity of human immunodeficiency virus type 1- and adenovirus-based vectors to package and deliver functional TALEN genes into various human cell types. To this end, we attempted to assemble particles of these two vector classes, each encoding a monomer of a TALEN pair targeted to a bipartite sequence within the AAVS1 ‘safe harbor’ locus. Vector DNA analyses revealed that adenoviral vectors transferred intact TALEN genes, whereas lentiviral vectors failed to do so, as shown by their heterogeneously sized proviruses in target cells. Importantly, adenoviral vector-mediated TALEN gene delivery resulted in site-specific double-stranded DNA break formation at the intended AAVS1 target site at similarly high levels in both transformed and non-transformed cells. In conclusion, we demonstrate that adenoviral, but not lentiviral, vectors constitute a valuable TALEN gene delivery platform.
Collapse
Affiliation(s)
- Maarten Holkers
- Department of Molecular Cell Biology, Leiden University Medical Center, Eithovenweg 20, 2333 ZC Leiden, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Characterization of malleability and immunological properties of human adenovirus type 3 hexon hypervariable region 1. Arch Virol 2012; 157:1709-18. [PMID: 22669318 DOI: 10.1007/s00705-012-1364-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2012] [Accepted: 04/26/2012] [Indexed: 12/20/2022]
Abstract
Adenovirus (Ad) capsids that display exogenous epitopes can be potently immunogenic, eliciting a potent humoral response against components of the capsid. We used the epitopes flag, his(6)flag, his(6)lgsflag and AdV4HVR5 as model antigens to characterize the hexon hypervariable region (HVR) 1 as a site for epitope insertion. A peptide of up to 17 amino acids could be incorporated into HVR1 of the Ad3 hexon without adversely affecting the biological characteristics of the virus. Multiple vaccinations with capsid-modified Ad3 induced a humoral response against the epitope inserted in HVR1. However, antiserum against the his(6)flag or his(6)lgsflag epitope did not recognize glutathione S-transferase (GST)-his(6) and GST-flag fusion protein. Our study illustrates that there is an immune response against the new epitope within the amino acids of his(6)flag or his(6)lgsflag epitopes. This discovery could be a warning for the generation of multivalent vaccine vectors by incorporation of multiple epitopes into single HVRs.
Collapse
|
49
|
Wang H, Beyer I, Persson J, Song H, Li Z, Richter M, Cao H, van Rensburg R, Yao X, Hudkins K, Yumul R, Zhang XB, Yu M, Fender P, Hemminki A, Lieber A. A new human DSG2-transgenic mouse model for studying the tropism and pathology of human adenoviruses. J Virol 2012; 86:6286-302. [PMID: 22457526 PMCID: PMC3372198 DOI: 10.1128/jvi.00205-12] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Accepted: 03/16/2012] [Indexed: 12/12/2022] Open
Abstract
We have recently reported that a group of human adenoviruses (HAdVs) uses desmoglein 2 (DSG2) as a receptor for infection. Among these are the widely distributed serotypes HAdV-B3 and HAdV-B7, as well as a newly emerged strain derived from HAdV-B14. These serotypes do not infect rodent cells and could not up until now be studied in small-animal models. We therefore generated transgenic mice containing the human DSG2 locus. These mice expressed human DSG2 (hDSG2) at a level and in a pattern similar to those found for humans and nonhuman primates. As an initial application of hDSG2-transgenic mice, we used a green fluorescent protein (GFP)-expressing HAdV-B3 vector (Ad3-GFP) and studied GFP transgene expression by quantitative reverse transcription-PCR (qRT-PCR) and immunohistochemistry subsequent to intranasal and intravenous virus application. After intranasal application, we found efficient transduction of bronchial and alveolar epithelial cells in hDSG2-transgenic mice. Intravenous Ad3-GFP injection into hDSG2-transgenic mice resulted in hDSG2-dependent transduction of epithelial cells in the intestinal and colon mucosa. Our findings give an explanation for clinical symptoms associated with infection by DSG2-interacting HAdVs and provide a rationale for using Ad3-derived vectors in gene therapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hua Cao
- Division of Medical Genetics
| | | | | | - Kelly Hudkins
- Department of Pathology, University of Washington, Seattle, Washington, USA
| | | | - Xiao-Bing Zhang
- Loma Linda University, Department of Medicine, Division of Regenerative Medicine, Loma Linda, California, USA
| | - Mujun Yu
- Medical Laboratory Associates, Seattle, Washington, USA
| | - Pascal Fender
- Unit of Virus Host Cell Interactions, UMI3265, CNRS/EMBL/UJF, Grenoble, France
| | - Akseli Hemminki
- Cancer Gene Therapy Group, Molecular Cancer Biology Research Program, Transplantation Laboratory & Haartman Institute, University of Helsinki, Helsinki, Finland
| | - André Lieber
- Division of Medical Genetics
- Department of Pathology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
50
|
Arnberg N. Adenovirus receptors: implications for targeting of viral vectors. Trends Pharmacol Sci 2012; 33:442-8. [PMID: 22621975 DOI: 10.1016/j.tips.2012.04.005] [Citation(s) in RCA: 145] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 04/11/2012] [Accepted: 04/18/2012] [Indexed: 12/19/2022]
Abstract
Cancer, cardiovascular disease, and infectious diseases are all global health threats. To combat these diseases with gene therapies, adenovirus-based vectors have been developed. Although certain clinical trials appear successful, there is an obvious need to improve the efficacy of most adenovirus-based vectors. For the most commonly used vector (based on type 5; Ad5), a main problem is its accumulation in the liver, which can be attributed to interactions with specific host factors. The diverse tropism for types other than Ad5 implies that vectors based on alternative types could have advantages. The numerous interactions of different adenoviruses with host molecules - such as the recently identified desmoglein-2 receptor - may cause novel and unexpected obstacles, but also may provide possibilities for vectors based on alternative types. This review provides an update of new and previously known molecules that mediate cellular attachment of human adenoviruses and discusses how these may influence the targeting of adenovirus-based vectors.
Collapse
Affiliation(s)
- Niklas Arnberg
- Division of Virology, Department of Clinical Microbiology, Umeå University, Umeå, Sweden.
| |
Collapse
|