1
|
Watanabe SM, Nyenhuis DA, Khan M, Ehrlich LS, Ischenko I, Powell MD, Tjandra N, Carter CA. Tsg101 UEV Interaction with Nedd4 HECT Relieves E3 Ligase Auto-Inhibition, Promoting HIV-1 Assembly and CA-SP1 Maturation Cleavage. Viruses 2024; 16:1566. [PMID: 39459900 PMCID: PMC11512315 DOI: 10.3390/v16101566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/23/2024] [Accepted: 09/28/2024] [Indexed: 10/28/2024] Open
Abstract
Tsg101, a component of the endosomal sorting complex required for transport (ESCRT), is responsible for recognition of events requiring the machinery, as signaled by cargo tagging with ubiquitin (Ub), and for recruitment of downstream acting subunits to the site. Although much is known about the latter function, little is known about its role in the earlier event. The N-terminal domain of Tsg101 is a structural homologue of Ub conjugases (E2 enzymes) and the protein associates with Ub ligases (E3 enzymes) that regulate several cellular processes including virus budding. A pocket in the domain recognizes a motif, PT/SAP, that permits its recruitment. PT/SAP disruption makes budding dependent on Nedd4L E3 ligases. Using HIV-1 encoding a PT/SAP mutation that makes budding Nedd4L-dependent, we identified as critical for rescue the residues in the catalytic (HECT) domain of the E3 enzyme that lie in proximity to sites in Tsg101 that bind Ub non-covalently. Mutation of these residues impaired rescue by Nedd4L but the same mutations had no apparent effect in the context of a Nedd4 isomer, Nedd4-2s, whose N-terminal (C2) domain is naturally truncated, precluding C2-HECT auto-inhibition. Surprisingly, like small molecules that disrupt Tsg101 Ub-binding, small molecules that interfered with Nedd4 substrate recognition arrested budding at an early stage, supporting the conclusion that Tsg101-Ub-Nedd4 interaction promotes enzyme activation and regulates Nedd4 signaling for viral egress. Tsg101 regulation of E3 ligases may underlie its broad ability to function as an effector in various cellular activities, including viral particle assembly and budding.
Collapse
Affiliation(s)
- Susan M. Watanabe
- Department of Microbiology & Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; (S.M.W.); (L.S.E.); (I.I.)
| | - David A. Nyenhuis
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; (D.A.N.); (N.T.)
| | - Mahfuz Khan
- Department of Microbiology and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA; (M.K.); (M.D.P.)
| | - Lorna S. Ehrlich
- Department of Microbiology & Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; (S.M.W.); (L.S.E.); (I.I.)
| | - Irene Ischenko
- Department of Microbiology & Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; (S.M.W.); (L.S.E.); (I.I.)
| | - Michael D. Powell
- Department of Microbiology and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA; (M.K.); (M.D.P.)
| | - Nico Tjandra
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; (D.A.N.); (N.T.)
| | - Carol A. Carter
- Department of Microbiology & Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; (S.M.W.); (L.S.E.); (I.I.)
| |
Collapse
|
2
|
Nyenhuis DA, Watanabe S, Bernstein R, Swenson RE, Raju N, Sabbasani VR, Mushti C, Lee D, Carter C, Tjandra N. Structural Relationships to Efficacy for Prazole-Derived Antivirals. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308312. [PMID: 38447164 PMCID: PMC11095225 DOI: 10.1002/advs.202308312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/25/2024] [Indexed: 03/08/2024]
Abstract
Here, an in vitro characterization of a family of prazole derivatives that covalently bind to the C73 site on Tsg101 and assay their ability to inhibit viral particle production is presented. Structurally, increased steric bulk on the 4-pyridyl of the prazole expands the prazole site on the UEV domain toward the β-hairpin in the Ub-binding site and is coupled to increased inhibition of virus-like particle production in HIV-1. Increased bulk also increased toxicity, which is alleviated by increasing flexibility. Further, the formation of a novel secondary Tsg101 adduct for several of the tested compounds and the commercial drug lansoprazole. The secondary adduct involved the loss of the 4-pyridyl substituent to form an irreversible species, with implications for increasing the half-life of the active species or its specificity toward Tsg101 UEV. It is also determined that sulfide derivatives display effective viral inhibition, presumably through cellular sulfoxidation, allowing for delayed conversion within the cellular environment, and identify SARS-COV-2 as a target of prazole inhibition. These results open multiple avenues for the design of prazole derivatives for antiviral applications.
Collapse
Affiliation(s)
- David A. Nyenhuis
- Biochemistry and Biophysics CenterNHLBINIH50 South Drive, Bld 50, Rm 3503BethesdaMD20892USA
| | - Susan Watanabe
- Department of Microbiology and ImmunologyRenaissance School of MedicineStonybrook UniversityLife Sciences Bldg, Rm 248StonybrookNY11790USA
| | - Rebecca Bernstein
- Biochemistry and Biophysics CenterNHLBINIH50 South Drive, Bld 50, Rm 3503BethesdaMD20892USA
| | - Rolf E. Swenson
- Chemistry and Synthesis CenterNHLBINIH9800 Medical Center Drive, Bldg B, #2034RockvilleMD20850USA
| | - Natarajan Raju
- Chemistry and Synthesis CenterNHLBINIH9800 Medical Center Drive, Bldg B, #2034RockvilleMD20850USA
| | - Venkata R. Sabbasani
- Chemistry and Synthesis CenterNHLBINIH9800 Medical Center Drive, Bldg B, #2034RockvilleMD20850USA
| | - Chandrasekhar Mushti
- Chemistry and Synthesis CenterNHLBINIH9800 Medical Center Drive, Bldg B, #2034RockvilleMD20850USA
| | - Duck‐Yeon Lee
- Biochemistry Core FacilityNHLBINIHBethesdaMD20892USA
| | - Carol Carter
- Department of Microbiology and ImmunologyRenaissance School of MedicineStonybrook UniversityLife Sciences Bldg, Rm 248StonybrookNY11790USA
| | - Nico Tjandra
- Biochemistry and Biophysics CenterNHLBINIH50 South Drive, Bld 50, Rm 3503BethesdaMD20892USA
| |
Collapse
|
3
|
Dai J, Feng Y, Liao Y, Tan L, Sun Y, Song C, Qiu X, Ding C. ESCRT machinery and virus infection. Antiviral Res 2024; 221:105786. [PMID: 38147902 DOI: 10.1016/j.antiviral.2023.105786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 12/28/2023]
Abstract
The endosomal sorting complex required for transport (ESCRT) machinery plays a significant role in the spread of human viruses. However, our understanding of how the host ESCRT machinery responds to viral infection remains limited. Emerging evidence suggests that the ESCRT machinery can be hijacked by viruses of different families to enhance their replication. Throughout their life cycle, these viruses can interfere with or exploit ESCRT-mediated physiological processes to increase their chances of infecting the host. In contrast, to counteract virus infection, the interferon-stimulated gene 15 (ISG15) or the E3 ISG15-protein ligase (HERC5) system within the infected cells is activated to degrade the ESCRT proteins. Many retroviral and RNA viral proteins have evolved "late (L) domain" motifs, which enable them to recruit host ESCRT subunit proteins to facilitate virus transport, replication, budding, mature, and even endocytosis, Therefore, the L domain motifs and ESCRT subunit proteins could serve as promising drug targets for antiviral therapy. This review investigated the composition and essential functions of the ESCRT, shedding light on the impact of ESCRT subunits and viral L domain motifs on the replication of viruses. Furthermore, the antiviral effects facilitated by the ESCRT machinery have been investigated, aiming to provide valuable insights to guide the development and utilization of antiviral drugs.
Collapse
Affiliation(s)
- Jun Dai
- Experimental Animal Center, Zunyi Medical University, Zunyi, 563099, China; Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China.
| | - Yiyi Feng
- Laboratory of Veterinary Microbiology and Animal Infectious Diseases, College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning, 530004, Guangxi, China.
| | - Ying Liao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China.
| | - Lei Tan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China.
| | - Yingjie Sun
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China.
| | - Cuiping Song
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China.
| | - Xusheng Qiu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China.
| | - Chan Ding
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
4
|
Novel Tsg101 Binding Partners Regulate Viral L Domain Trafficking. Viruses 2021; 13:v13061147. [PMID: 34203832 PMCID: PMC8232796 DOI: 10.3390/v13061147] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/07/2021] [Accepted: 06/09/2021] [Indexed: 02/06/2023] Open
Abstract
Two decades ago, Tsg101, a component of the Endosomal Sorting Complexes Required for Transport (ESCRT) complex 1, was identified as a cellular factor recruited by the human immunodeficiency virus type 1 (HIV-1) to facilitate budding of viral particles assembled at the cell periphery. A highly conserved Pro-(Thr/Ser)-Ala-Pro [P(T/S)AP] motif in the HIV-1 structural polyprotein, Gag, engages a P(T/S)AP-binding pocket in the Tsg101 N-terminal domain. Since the same domain in Tsg101 that houses the pocket was found to bind mono-ubiquitin (Ub) non-covalently, Ub binding was speculated to enhance P(T/S)AP interaction. Within the past five years, we found that the Ub-binding site also accommodates di-Ub, with Lys63-linked di-Ub exhibiting the highest affinity. We also identified small molecules capable of disrupting Ub binding and inhibiting budding. The structural similarity of these molecules, prazoles, to nucleosides prompted testing for nucleic acid binding and led to identification of tRNA as a Tsg101 binding partner. Here, we discuss these recently identified interactions and their contribution to the viral assembly process. These new partners may provide additional insight into the control and function of Tsg101 as well as identify opportunities for anti-viral drug design.
Collapse
|
5
|
Methods for Identification of Substrates/Inhibitors of FCP/SCP Type Protein Ser/Thr Phosphatases. Processes (Basel) 2020. [DOI: 10.3390/pr8121598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Protein phosphorylation is the most widespread type of post-translational modification and is properly controlled by protein kinases and phosphatases. Regarding the phosphorylation of serine (Ser) and threonine (Thr) residues, relatively few protein Ser/Thr phosphatases control the specific dephosphorylation of numerous substrates, in contrast with Ser/Thr kinases. Recently, protein Ser/Thr phosphatases were reported to have rigid substrate recognition and exert various biological functions. Therefore, identification of targeted proteins by individual protein Ser/Thr phosphatases is crucial to clarify their own biological functions. However, to date, information on the development of methods for identification of the substrates of protein Ser/Thr phosphatases remains scarce. In turn, substrate-trapping mutants are powerful tools to search the individual substrates of protein tyrosine (Tyr) phosphatases. This review focuses on the development of novel methods for the identification of Ser/Thr phosphatases, especially small C-terminal domain phosphatase 1 (Scp1), using peptide-displayed phage library with AlF4−/BeF3−, and discusses the identification of putative inhibitors.
Collapse
|
6
|
Rojas VK, Park IW. Role of the Ubiquitin Proteasome System (UPS) in the HIV-1 Life Cycle. Int J Mol Sci 2019; 20:ijms20122984. [PMID: 31248071 PMCID: PMC6628307 DOI: 10.3390/ijms20122984] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/10/2019] [Accepted: 06/11/2019] [Indexed: 01/18/2023] Open
Abstract
Given that the ubiquitin proteasome system (UPS) is the major protein degradation process in the regulation of a wide variety of cellular processes in eukaryotic cells, including alteration of cellular location, modulation of protein activity, and regulation of protein interaction, it is reasonable to suggest that the infecting HIV-1 and the invaded hosts exploit the UPS in a contest for survival and proliferation. However, to date, regulation of the HIV-1 life cycle has been mainly explained by the stage-specific expression of HIV-1 viral genes, not by elimination processes of the synthesized proteins after completion of their duties in the infected cells, which is also quintessential for understanding the molecular processes of the virus life cycle and thereby HIV-1 pathogenesis. In fact, several previous publications have indicated that the UPS plays a critical role in the regulation of the proteasomal degradation of viral and cellular counterparts at every step of the HIV-1 life cycle, from the virus entry to release of the assembled virus particles, which is integral for the regulation of survival and proliferation of the infecting HIV-1 and to replication restriction of the invading virus in the host. However, it is unknown whether and how these individual events taking place at different stages of the HIV-1 life cycle are orchestrated as an overall strategy to overcome the restrictions conferred by the host cells. Thus, in this review, we overview the interplay between HIV-1 viral and cellular proteins for restrictions/competitions for proliferation of the virus in the infected cell, which could open a new avenue for the development of therapeutics against HIV-1 via targeting a specific step of the proteasome degradation pathway during the HIV-1 life cycle.
Collapse
Affiliation(s)
- Vivian K Rojas
- Department of Microbiology, Immunology, and Genetics, University of North Texas, Health Science Center, Fort Worth, TX 76107, USA.
| | - In-Woo Park
- Department of Microbiology, Immunology, and Genetics, University of North Texas, Health Science Center, Fort Worth, TX 76107, USA.
| |
Collapse
|
7
|
Multiple Inhibitory Factors Act in the Late Phase of HIV-1 Replication: a Systematic Review of the Literature. Microbiol Mol Biol Rev 2018; 82:82/1/e00051-17. [PMID: 29321222 DOI: 10.1128/mmbr.00051-17] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The use of lentiviral vectors for therapeutic purposes has shown promising results in clinical trials. The ability to produce a clinical-grade vector at high yields remains a critical issue. One possible obstacle could be cellular factors known to inhibit human immunodeficiency virus (HIV). To date, five HIV restriction factors have been identified, although it is likely that more factors are involved in the complex HIV-cell interaction. Inhibitory factors that have an adverse effect but do not abolish virus production are much less well described. Therefore, a gap exists in the knowledge of inhibitory factors acting late in the HIV life cycle (from transcription to infection of a new cell), which are relevant to the lentiviral vector production process. The objective was to review the HIV literature to identify cellular factors previously implicated as inhibitors of the late stages of lentivirus production. A search for publications was conducted on MEDLINE via the PubMed interface, using the keyword sequence "HIV restriction factor" or "HIV restriction" or "inhibit HIV" or "repress HIV" or "restrict HIV" or "suppress HIV" or "block HIV," with a publication date up to 31 December 2016. Cited papers from the identified records were investigated, and additional database searches were performed. A total of 260 candidate inhibitory factors were identified. These factors have been identified in the literature as having a negative impact on HIV replication. This study identified hundreds of candidate inhibitory factors for which the impact of modulating their expression in lentiviral vector production could be beneficial.
Collapse
|
8
|
Chutiwitoonchai N, Siarot L, Takeda E, Shioda T, Ueda M, Aida Y. HIV-1 Vpr Abrogates the Effect of TSG101 Overexpression to Support Virus Release. PLoS One 2016; 11:e0163100. [PMID: 27648839 PMCID: PMC5029901 DOI: 10.1371/journal.pone.0163100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 09/02/2016] [Indexed: 11/18/2022] Open
Abstract
HIV-1 budding requires interaction between Gag and cellular TSG101 to initiate viral particle assembly and release via the endosomal sorting complexes required for transport (ESCRT) pathway. However, some reports show that overexpression of TSG101 inhibits virus release by disruption of Gag targeting process. Since a HIV-1 accessory protein, Vpr binds to Gag p6 domain at the position close to the binding site for TSG101, whether Vpr implicates TSG101 overexpression effect has not been investigated. Here, we found that Vpr abrogates TSG101 overexpression effect to rescue viral production. Co-transfection of TSG101 and Gag with Vpr prevented TSG101-induced Gag accumulation in endosomes and lysosomes. In addition, Vpr rescued virus-like particle (VLP) production in a similar manner as a lysosomal inhibitor, Bafilomycin A1 indicating that Vpr inhibits TSG101-induced Gag downregulation via lysosomal pathway. Vpr and Gag interaction is required to counteract TSG101 overexpression effect since Vpr A30F mutant which is unable to interact with Gag and incorporate into virions, reduced ability to prevent Gag accumulation and to rescue VLP production. In addition, GST pull-down assays and Biacore analysis revealed that Vpr competed with TSG101 for Gag binding. These results indicate that Vpr overcomes the effects of TSG101 overexpression to support viral production by competing with TSG101 to bind Gag.
Collapse
Affiliation(s)
- Nopporn Chutiwitoonchai
- Viral Infectious Diseases Unit, RIKEN, Wako, Saitama, Japan
- Japan Foundation for AIDS Prevention, Chiyoda-ku, Tokyo, Japan
| | - Lowela Siarot
- Viral Infectious Diseases Unit, RIKEN, Wako, Saitama, Japan
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Eri Takeda
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Tatsuo Shioda
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Motoki Ueda
- Nano Medical Engineering Laboratory, RIKEN, Wako, Saitama, Japan
| | - Yoko Aida
- Viral Infectious Diseases Unit, RIKEN, Wako, Saitama, Japan
- * E-mail:
| |
Collapse
|
9
|
The Dual Role of an ESCRT-0 Component HGS in HBV Transcription and Naked Capsid Secretion. PLoS Pathog 2015; 11:e1005123. [PMID: 26431433 PMCID: PMC4592276 DOI: 10.1371/journal.ppat.1005123] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Accepted: 08/03/2015] [Indexed: 12/15/2022] Open
Abstract
The Endosomal Sorting Complex Required for Transport (ESCRT) is an important cellular machinery for the sorting and trafficking of ubiquitinated cargos. It is also known that ESCRT is required for the egress of a number of viruses. To investigate the relationship between ESCRT and hepatitis B virus (HBV), we conducted an siRNA screening of ESCRT components for their potential effect on HBV replication and virion release. We identified a number of ESCRT factors required for HBV replication, and focused our study here on HGS (HRS, hepatocyte growth factor-regulated tyrosine kinase substrate) in the ESCRT-0 complex. Aberrant levels of HGS suppressed HBV transcription, replication and virion secretion. Hydrodynamic delivery of HGS in a mouse model significantly suppressed viral replication in the liver and virion secretion in the serum. Surprisingly, overexpression of HGS stimulated the release of HBV naked capsids, irrespective of their viral RNA, DNA, or empty contents. Mutant core protein (HBc 1-147) containing no arginine-rich domain (ARD) failed to secrete empty virions with or without HGS. In contrast, empty naked capsids of HBc 1-147 could still be promoted for secretion by HGS. HGS exerted a strong positive effect on the secretion of naked capsids, at the expense of a reduced level of virions. The association between HGS and HBc appears to be ubiquitin-independent. Furthermore, HBc is preferentially co-localized with HGS near the cell periphery, instead of near the punctate endosomes in the cytoplasm. In summary, our work demonstrated the importance of an optimum level of HGS in HBV propagation. In addition to an effect on HBV transcription, HGS can diminish the pool size of intracellular nucleocapsids with ongoing genome maturation, probably in part by promoting the secretion of naked capsids. The secretion routes of HBV virions and naked capsids can be clearly distinguished based on the pleiotropic effect of HGS involved in the ESCRT-0 complex.
Collapse
|
10
|
Gliadin peptides as triggers of the proliferative and stress/innate immune response of the celiac small intestinal mucosa. Int J Mol Sci 2014. [PMID: 25387079 DOI: 10.3390/ijms151120518.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Celiac disease (CD) is a frequent inflammatory intestinal disease, with a genetic background, caused by gliadin-containing food. Undigested gliadin peptides induce innate and adaptive T cell-mediated immune responses. The major mediator of the stress and innate immune response to gliadin peptides (i.e., peptide 31-43, P31-43) is the cytokine interleukin-15 (IL-15). The role of epithelial growth factor (EGF) as a mediator of enterocyte proliferation and the innate immune response has been described. In this paper, we review the most recent literature on the mechanisms responsible for triggering the up-regulation of these mediators in CD by gliadin peptides. We will discuss the role of P31-43 in enterocyte proliferation, structural changes and the innate immune response in CD mucosa in cooperation with EGF and IL-15, and the mechanism of up-regulation of these mediators related to vesicular trafficking. We will also review the literature that focuses on constitutive alterations of the structure, signalling/proliferation and stress/innate immunity pathways of CD cells. Finally, we will discuss how these pathways can be triggered by gliadin peptide P31-43 in controls, mimicking the celiac cellular phenotype.
Collapse
|
11
|
Barone MV, Troncone R, Auricchio S. Gliadin peptides as triggers of the proliferative and stress/innate immune response of the celiac small intestinal mucosa. Int J Mol Sci 2014; 15:20518-37. [PMID: 25387079 PMCID: PMC4264181 DOI: 10.3390/ijms151120518] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 10/27/2014] [Accepted: 10/27/2014] [Indexed: 02/06/2023] Open
Abstract
Celiac disease (CD) is a frequent inflammatory intestinal disease, with a genetic background, caused by gliadin-containing food. Undigested gliadin peptides induce innate and adaptive T cell-mediated immune responses. The major mediator of the stress and innate immune response to gliadin peptides (i.e., peptide 31–43, P31–43) is the cytokine interleukin-15 (IL-15). The role of epithelial growth factor (EGF) as a mediator of enterocyte proliferation and the innate immune response has been described. In this paper, we review the most recent literature on the mechanisms responsible for triggering the up-regulation of these mediators in CD by gliadin peptides. We will discuss the role of P31–43 in enterocyte proliferation, structural changes and the innate immune response in CD mucosa in cooperation with EGF and IL-15, and the mechanism of up-regulation of these mediators related to vesicular trafficking. We will also review the literature that focuses on constitutive alterations of the structure, signalling/proliferation and stress/innate immunity pathways of CD cells. Finally, we will discuss how these pathways can be triggered by gliadin peptide P31–43 in controls, mimicking the celiac cellular phenotype.
Collapse
Affiliation(s)
- Maria Vittoria Barone
- Department of Translational Medical Science (Section of Pediatrics), University of Naples Federico II, Via S. Pansini 5, Naples 80131, Italy.
| | - Riccardo Troncone
- Department of Translational Medical Science (Section of Pediatrics), University of Naples Federico II, Via S. Pansini 5, Naples 80131, Italy.
| | - Salvatore Auricchio
- European Laboratory for the Investigation of Food Induced Diseases (ELFID), University of Naples Federico II, Via S. Pansini 5, Naples 80131, Italy.
| |
Collapse
|
12
|
Mehra A, Zahra A, Thompson V, Sirisaengtaksin N, Wells A, Porto M, Köster S, Penberthy K, Kubota Y, Dricot A, Rogan D, Vidal M, Hill DE, Bean AJ, Philips JA. Mycobacterium tuberculosis type VII secreted effector EsxH targets host ESCRT to impair trafficking. PLoS Pathog 2013; 9:e1003734. [PMID: 24204276 PMCID: PMC3814348 DOI: 10.1371/journal.ppat.1003734] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 09/12/2013] [Indexed: 11/19/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) disrupts anti-microbial pathways of macrophages, cells that normally kill bacteria. Over 40 years ago, D'Arcy Hart showed that Mtb avoids delivery to lysosomes, but the molecular mechanisms that allow Mtb to elude lysosomal degradation are poorly understood. Specialized secretion systems are often used by bacterial pathogens to translocate effectors that target the host, and Mtb encodes type VII secretion systems (TSSSs) that enable mycobacteria to secrete proteins across their complex cell envelope; however, their cellular targets are unknown. Here, we describe a systematic strategy to identify bacterial virulence factors by looking for interactions between the Mtb secretome and host proteins using a high throughput, high stringency, yeast two-hybrid (Y2H) platform. Using this approach we identified an interaction between EsxH, which is secreted by the Esx-3 TSSS, and human hepatocyte growth factor-regulated tyrosine kinase substrate (Hgs/Hrs), a component of the endosomal sorting complex required for transport (ESCRT). ESCRT has a well-described role in directing proteins destined for lysosomal degradation into intraluminal vesicles (ILVs) of multivesicular bodies (MVBs), ensuring degradation of the sorted cargo upon MVB-lysosome fusion. Here, we show that ESCRT is required to deliver Mtb to the lysosome and to restrict intracellular bacterial growth. Further, EsxH, in complex with EsxG, disrupts ESCRT function and impairs phagosome maturation. Thus, we demonstrate a role for a TSSS and the host ESCRT machinery in one of the central features of tuberculosis pathogenesis. Mycobacterium tuberculosis (Mtb) causes the disease tuberculosis, one of the world's most deadly infections. The host immune system can't eradicate Mtb because it grows within macrophages, cells that normally kill bacteria. One of the intracellular survival strategies of Mtb is to avoid delivery to lysosomes, a phenomenon described over 40 years ago, but for which the mechanism and molecular details remain incomplete. Mtb possess specialized secretion systems (Type VII secretion systems; TSSS) that transfer particular proteins out of the bacteria, but how these proteins promote infection is not well understood. In this study, we used a high stringency yeast two-hybrid system to identify interactions between secreted effectors from Mtb and human host factors. We identified ninety-nine such interactions and focused our attention on the interaction between EsxH, secreted by Esx-3, a TSSS of Mtb, and Hrs, a component of the host ESCRT machinery. We provide evidence that Mtb EsxH directly targets host Hrs to disrupt delivery of bacteria to lysosomes. Thus, this study demonstrates the role of a TSSS effector and the ESCRT machinery in what is one of the central features of tuberculosis pathogenesis, thereby providing molecular insight into why humans can't clear Mtb infection.
Collapse
Affiliation(s)
- Alka Mehra
- Division of Infectious Diseases, Department of Medicine, Department of Pathology and Department of Microbiology, New York University School of Medicine, New York, New York, United States of America
| | - Aleena Zahra
- Division of Infectious Diseases, Department of Medicine, Department of Pathology and Department of Microbiology, New York University School of Medicine, New York, New York, United States of America
| | - Victor Thompson
- Division of Infectious Diseases, Department of Medicine, Department of Pathology and Department of Microbiology, New York University School of Medicine, New York, New York, United States of America
| | - Natalie Sirisaengtaksin
- Department of Neurobiology and Anatomy, and Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Ashley Wells
- Division of Infectious Diseases, Department of Medicine, Department of Pathology and Department of Microbiology, New York University School of Medicine, New York, New York, United States of America
| | - Maura Porto
- Division of Infectious Diseases, Department of Medicine, Department of Pathology and Department of Microbiology, New York University School of Medicine, New York, New York, United States of America
| | - Stefan Köster
- Division of Infectious Diseases, Department of Medicine, Department of Pathology and Department of Microbiology, New York University School of Medicine, New York, New York, United States of America
| | - Kristen Penberthy
- Division of Infectious Diseases, Department of Medicine, Department of Pathology and Department of Microbiology, New York University School of Medicine, New York, New York, United States of America
| | - Yoshihisha Kubota
- Department of Neurobiology and Anatomy, and Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Amelie Dricot
- Center for Cancer Systems Biology (CCSB) and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Daniel Rogan
- Division of Infectious Diseases, Department of Medicine, Department of Pathology and Department of Microbiology, New York University School of Medicine, New York, New York, United States of America
| | - Marc Vidal
- Center for Cancer Systems Biology (CCSB) and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - David E. Hill
- Center for Cancer Systems Biology (CCSB) and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Andrew J. Bean
- Department of Neurobiology and Anatomy, and Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
- Division of Pediatrics, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Jennifer A. Philips
- Division of Infectious Diseases, Department of Medicine, Department of Pathology and Department of Microbiology, New York University School of Medicine, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
13
|
Abstract
Multivesicular bodies (MVBs) deliver cargo destined for degradation to the vacuole or lysosome. The ESCRT (endosomal sorting complex required for transport) pathway is a key mediator of MVB biogenesis, but it also plays critical roles in retroviral budding and cytokinetic abscission. Despite these diverse roles, the ESCRT pathway can be simply seen as a cargo-recognition and membrane-sculpting machine viewable from three distinct perspectives: (1) the ESCRT proteins themselves, (2) the cargo they sort, and (3) the membrane they deform. Here, we review ESCRT function from these perspectives and discuss how ESCRTs may drive vesicle budding.
Collapse
|
14
|
Abstract
The endosomal-sorting complex required for transport (ESCRT) apparatus has multiple ubiquitin (Ub)-binding domains and participates in a wide variety of cellular processes. Many of these ESCRT-dependent processes are keenly regulated by Ub, which serves as a lysosomal-sorting signal for membrane proteins targeted into multivesicular bodies (MVBs) and which may serve as a mediator of viral budding from the cell surface. Hints that both ESCRTs and Ub work together in the processes such as cytokinesis, transcription and autophagy are beginning to emerge. Here, we explore the relationship between ESCRTs and Ub in MVB sorting and viral budding.
Collapse
Affiliation(s)
- S Brookhart Shields
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA 52246, USA
| | | |
Collapse
|
15
|
Distal leucines are key functional determinants of Alix-binding simian immunodeficiency virus SIV(smE543) and SIV(mac239) type 3 L domains. J Virol 2011; 85:11532-7. [PMID: 21849430 DOI: 10.1128/jvi.05284-11] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In addition to PTAP L domains, primate lentiviruses carry Alix-binding motifs that include the recently described type 3 SREKPYKEVTEDLLHLNSLF sequence. We examined the requirements for the type 3 sequence motif in simian immunodeficiency virus SIV(smE543) and identified the (499)LNSLF(503) sequence as a key functional determinant. Mutation of distal leucines (499)L and (502)L (LL mutant) caused an inhibitory effect on Alix-dependent SIV(smE543) release that was quantitatively similar to that observed following disruption of the type 3 L domain or RNA interference (RNAi) depletion of Alix. Similar results were obtained with the SIV(mac239) LL mutant. Thus, distal leucines are key determinants of SIV(smE543) and SIV(mac239) type 3 L domains.
Collapse
|
16
|
Manohar S, Harlow M, Nguyen H, Li J, Hankins GR, Park M. Chromatin modifying protein 1A (Chmp1A) of the endosomal sorting complex required for transport (ESCRT)-III family activates ataxia telangiectasia mutated (ATM) for PanC-1 cell growth inhibition. Cell Cycle 2011; 10:2529-39. [PMID: 21705858 DOI: 10.4161/cc.10.15.15926] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Chromatin modifying protein 1A (Chmp1A) is a member of the Endosormal sorting complex required for transport (ESCRT)-III family whose over-expression induces growth inhibition, chromatin condensation, and p53 phosphorylation. p53 is a substrate for Ataxia telangiectasia mutated (ATM), which can be activated upon chromatin condensation. Thus, we propose that Chmp1A regulates ATM, and the nuclear localization signal (NLS) is required for ATM activation. Our data demonstrated that over-expression of full-length Chmp1A induced an increase in active, phosphorylated ATM in the nucleus, where they co-localized. It also induced an increase in phospho-p53 in the nucleus, and in vitro ATM kinase and p53 reporter activities. The intensity of phospho-p53 closely followed that of ectopically induced full-length Chmp1A, suggesting a tight correlation between Chmp1A over-expression and p53 phosphorylation. On the other hand, Chmp1A depletion (reported to promote cell growth) had minor effects on phospho-ATM and p53 expression compared to control, which had very little expression of these proteins. NLS-deleted cells showed uniform cytoplasmic-Chmp1A expression and acted like shRNA-expressing cells (cell growth promotion and minimal effect on ATM), demonstrating the significance of NLS on ATM activation and growth inhibition. C-deleted Chmp1A, detected in the cytoplasm at the enlarged vesicles, increased phospho-ATM and p53, and inhibited growth; yet it had no effect on in vitro ATM kinase or p53 reporter activities, suggesting that the C-domain is not required for ATM activation. Finally, ATM inactivation considerably reduced Chmp1A mediated growth inhibition and phosphorylation of p53, showing that Chmp1A regulates tumor growth partly through ATM signaling.
Collapse
Affiliation(s)
- Sumanth Manohar
- Department of Biology, West Virginia State University, Institute, WV, USA
| | | | | | | | | | | |
Collapse
|
17
|
Weiss ER, Göttlinger H. The role of cellular factors in promoting HIV budding. J Mol Biol 2011; 410:525-33. [PMID: 21762798 PMCID: PMC3139153 DOI: 10.1016/j.jmb.2011.04.055] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 04/16/2011] [Accepted: 04/21/2011] [Indexed: 12/20/2022]
Abstract
Human immunodeficiency virus type 1 (HIV-1) becomes enveloped while budding through the plasma membrane, and the release of nascent virions requires a membrane fission event that separates the viral envelope from the cell surface. To facilitate this crucial step in its life cycle, HIV-1 exploits a complex cellular membrane remodeling and fission machinery known as the endosomal sorting complex required for transport (ESCRT) pathway. HIV-1 Gag directly interacts with early-acting components of this pathway, which ultimately triggers the assembly of the ESCRT-III membrane fission complex at viral budding sites. Surprisingly, HIV-1 requires only a subset of ESCRT-III components, indicating that the membrane fission reaction that occurs during HIV-1 budding differs in crucial aspects from topologically related cellular abscission events.
Collapse
Affiliation(s)
- Eric R. Weiss
- Program in Gene Function and Expression, Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Heinrich Göttlinger
- Program in Gene Function and Expression, Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| |
Collapse
|
18
|
Ding J, Su L, Gao G. Hrs inhibits citron kinase-mediated HIV-1 budding via its FYVE domain. Protein Cell 2011; 2:470-6. [PMID: 21748597 DOI: 10.1007/s13238-011-1053-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Accepted: 05/12/2011] [Indexed: 02/03/2023] Open
Abstract
Hepatocyte growth factor-regulated tyrosine kinase substrate (Hrs) is a key component of the endosomal sorting complexes required for transport and has been demonstrated to play a regulatory role in endocytosis/exocytosis and the accumulation of internal vesicles in multivesicular bodies. Citron kinase is a Ser/The kinase that we previously reported to enhance human immunodeficiency virus type 1 (HIV-1) virion production. However, the relationship between Hrs and citron kinase in HIV-1 production remains elusive. Here, we report that Hrs interacts with citron kinase via its FYVE domain. Overexpression of Hrs or the FYVE domain resulted in a significant decrease in HIV-1 virion production. Depletion of Hrs by RNA interference in HEK293T cells increased HIV-1 virion production and enhanced the activity of citron kinase. These data suggest that Hrs inhibits HIV-1 production by inhibiting citron kinase-mediated exocytosis.
Collapse
Affiliation(s)
- Jiwei Ding
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing
| | | | | |
Collapse
|
19
|
Janvier K, Pelchen–Matthews A, Renaud JB, Caillet M, Marsh M, Berlioz-Torrent C. The ESCRT-0 component HRS is required for HIV-1 Vpu-mediated BST-2/tetherin down-regulation. PLoS Pathog 2011; 7:e1001265. [PMID: 21304933 PMCID: PMC3033365 DOI: 10.1371/journal.ppat.1001265] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Accepted: 12/30/2010] [Indexed: 01/09/2023] Open
Abstract
The Endosomal Sorting Complexes Required for Transport (ESCRT) machinery, a highly conserved set of four hetero-oligomeric protein complexes, is required for multivesicular body formation, sorting ubiquitinylated membrane proteins for lysosomal degradation, cytokinesis and the final stages of assembly of a number of enveloped viruses, including the human immunodeficiency viruses. Here, we show an additional role for the ESCRT machinery in HIV-1 release. BST-2/tetherin is a restriction factor that impedes HIV release by tethering mature virus particles to the plasma membrane. We found that HRS, a key component of the ESCRT-0 complex, promotes efficient release of HIV-1 and that siRNA-mediated HRS depletion induces a BST-2/tetherin phenotype. This activity is related to the ability of the HIV-1 Vpu protein to down-regulate BST-2/tetherin. We found that BST-2/tetherin undergoes constitutive ESCRT-dependent sorting for lysosomal degradation and that this degradation is enhanced by Vpu expression. We demonstrate that Vpu-mediated BST-2/tetherin down-modulation and degradation require HRS (ESCRT-0) function and that knock down of HRS increases cellular levels of BST-2/tetherin and restricts virus release. Furthermore, HRS co-precipitates with Vpu and BST-2. Our results provide further insight into the mechanism by which Vpu counteracts BST-2/tetherin and promotes HIV-1 dissemination, and they highlight an additional role for the ESCRT machinery in virus release.
Collapse
Affiliation(s)
- Katy Janvier
- Institut Cochin, Université Paris Descartes, CNRS (UMR 8104), Paris, France
- INSERM, U1016, Paris, France
| | - Annegret Pelchen–Matthews
- Cell Biology Unit, MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | - Jean-Baptiste Renaud
- Institut Cochin, Université Paris Descartes, CNRS (UMR 8104), Paris, France
- INSERM, U1016, Paris, France
| | - Marina Caillet
- Institut Cochin, Université Paris Descartes, CNRS (UMR 8104), Paris, France
- INSERM, U1016, Paris, France
| | - Mark Marsh
- Cell Biology Unit, MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | - Clarisse Berlioz-Torrent
- Institut Cochin, Université Paris Descartes, CNRS (UMR 8104), Paris, France
- INSERM, U1016, Paris, France
| |
Collapse
|
20
|
Im YJ, Kuo L, Ren X, Burgos PV, Zhao XZ, Liu F, Burke TR, Bonifacino JS, Freed EO, Hurley JH. Crystallographic and functional analysis of the ESCRT-I /HIV-1 Gag PTAP interaction. Structure 2010; 18:1536-47. [PMID: 21070952 PMCID: PMC3124085 DOI: 10.1016/j.str.2010.08.010] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Revised: 07/14/2010] [Accepted: 08/06/2010] [Indexed: 11/17/2022]
Abstract
Budding of HIV-1 requires the binding of the PTAP late domain of the Gag p6 protein to the UEV domain of the TSG101 subunit of ESCRT-I. The normal function of this motif in cells is in receptor downregulation. Here, we report the 1.4-1.6 Å structures of the human TSG101 UEV domain alone and with wild-type and mutant HIV-1 PTAP and Hrs PSAP nonapeptides. The hydroxyl of the Thr or Ser residue in the P(S/T)AP motif hydrogen bonds with the main chain of Asn69. Mutation of the Asn to Pro, blocking the main-chain amide, abrogates PTAP motif binding in vitro and blocks budding of HIV-1 from cells. N69P and other PTAP binding-deficient alleles of TSG101 did not rescue HIV-1 budding. However, the mutant alleles did rescue downregulation of endogenous EGF receptor. This demonstrates that the PSAP motif is not rate determining in EGF receptor downregulation under normal conditions.
Collapse
Affiliation(s)
- Young Jun Im
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0580, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Barone MV, Nanayakkara M, Paolella G, Maglio M, Vitale V, Troiano R, Ribecco MTS, Lania G, Zanzi D, Santagata S, Auricchio R, Troncone R, Auricchio S. Gliadin peptide P31-43 localises to endocytic vesicles and interferes with their maturation. PLoS One 2010; 5:e12246. [PMID: 20805894 PMCID: PMC2923621 DOI: 10.1371/journal.pone.0012246] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Accepted: 07/22/2010] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Celiac Disease (CD) is both a frequent disease (1:100) and an interesting model of a disease induced by food. It consists in an immunogenic reaction to wheat gluten and glutenins that has been found to arise in a specific genetic background; however, this reaction is still only partially understood. Activation of innate immunity by gliadin peptides is an important component of the early events of the disease. In particular the so-called "toxic" A-gliadin peptide P31-43 induces several pleiotropic effects including Epidermal Growth Factor Receptor (EGFR)-dependent actin remodelling and proliferation in cultured cell lines and in enterocytes from CD patients. These effects are mediated by delayed EGFR degradation and prolonged EGFR activation in endocytic vesicles. In the present study we investigated the effects of gliadin peptides on the trafficking and maturation of endocytic vesicles. METHODS/PRINCIPAL FINDINGS Both P31-43 and the control P57-68 peptide labelled with fluorochromes were found to enter CaCo-2 cells and interact with the endocytic compartment in pulse and chase, time-lapse, experiments. P31-43 was localised to vesicles carrying early endocytic markers at time points when P57-68-carrying vesicles mature into late endosomes. In time-lapse experiments the trafficking of P31-43-labelled vesicles was delayed, regardless of the cargo they were carrying. Furthermore in celiac enterocytes, from cultured duodenal biopsies, P31-43 trafficking is delayed in early endocytic vesicles. A sequence similarity search revealed that P31-43 is strikingly similar to Hrs, a key molecule regulating endocytic maturation. A-gliadin peptide P31-43 interfered with Hrs correct localisation to early endosomes as revealed by western blot and immunofluorescence microscopy. CONCLUSIONS P31-43 and P57-68 enter cells by endocytosis. Only P31-43 localises at the endocytic membranes and delays vesicle trafficking by interfering with Hrs-mediated maturation to late endosomes in cells and intestinal biopsies. Consequently, in P31-43-treated cells, Receptor Tyrosine Kinase (RTK) activation is extended. This finding may explain the role played by gliadin peptides in inducing proliferation and other effects in enterocytes from CD biopsies.
Collapse
Affiliation(s)
- Maria Vittoria Barone
- Pediatric Department and European Laboratory for the Investigation of Food-Induced Disease (ELFID), University of Naples Federico II, Naples, Italy
| | - Merlin Nanayakkara
- Pediatric Department and European Laboratory for the Investigation of Food-Induced Disease (ELFID), University of Naples Federico II, Naples, Italy
| | - Giovanni Paolella
- CEINGE–Biotecnologie Avanzate, Naples, Italy
- Biochemistry Department, University of Naples, Federico II, Naples, Italy
| | - Mariantonia Maglio
- Pediatric Department and European Laboratory for the Investigation of Food-Induced Disease (ELFID), University of Naples Federico II, Naples, Italy
| | - Virginia Vitale
- Pediatric Department and European Laboratory for the Investigation of Food-Induced Disease (ELFID), University of Naples Federico II, Naples, Italy
| | - Raffaele Troiano
- Pediatric Department and European Laboratory for the Investigation of Food-Induced Disease (ELFID), University of Naples Federico II, Naples, Italy
| | - Maria Teresa Silvia Ribecco
- Pediatric Department and European Laboratory for the Investigation of Food-Induced Disease (ELFID), University of Naples Federico II, Naples, Italy
- CEINGE–Biotecnologie Avanzate, Naples, Italy
| | - Giuliana Lania
- Pediatric Department and European Laboratory for the Investigation of Food-Induced Disease (ELFID), University of Naples Federico II, Naples, Italy
| | - Delia Zanzi
- Pediatric Department and European Laboratory for the Investigation of Food-Induced Disease (ELFID), University of Naples Federico II, Naples, Italy
| | - Sara Santagata
- Pediatric Department and European Laboratory for the Investigation of Food-Induced Disease (ELFID), University of Naples Federico II, Naples, Italy
| | - Renata Auricchio
- Pediatric Department and European Laboratory for the Investigation of Food-Induced Disease (ELFID), University of Naples Federico II, Naples, Italy
| | - Riccardo Troncone
- Pediatric Department and European Laboratory for the Investigation of Food-Induced Disease (ELFID), University of Naples Federico II, Naples, Italy
| | - Salvatore Auricchio
- Pediatric Department and European Laboratory for the Investigation of Food-Induced Disease (ELFID), University of Naples Federico II, Naples, Italy
| |
Collapse
|
22
|
Gupta RK, Mlcochova P, Pelchen-Matthews A, Petit SJ, Mattiuzzo G, Pillay D, Takeuchi Y, Marsh M, Towers GJ. Simian immunodeficiency virus envelope glycoprotein counteracts tetherin/BST-2/CD317 by intracellular sequestration. Proc Natl Acad Sci U S A 2009; 106:20889-94. [PMID: 19864625 PMCID: PMC2791628 DOI: 10.1073/pnas.0907075106] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2009] [Indexed: 01/11/2023] Open
Abstract
Tetherin is an IFN-inducible restriction factor that inhibits HIV-1 particle release in the absence of the HIV-1 countermeasure, viral protein U (Vpu). Although ubiquitous in HIV-1 and simian immunodeficiency viruses from chimpanzees, greater spot nosed monkeys, mustached monkeys, and Mona monkeys, other primate lentiviruses do not encode a Vpu protein. Here we demonstrate that SIV from Tantalus monkeys (SIVtan) encodes an envelope glycoprotein (SIVtan Env) able to counteract tetherin from Tantalus monkeys, rhesus monkeys, sooty mangabeys, and humans, but not from pigs. We show that sensitivity to Vpu but not SIVtan Env can be transferred with the human tetherin transmembrane region. We also identify a mutation in the tetherin extracellular domain, which almost completely abolishes sensitivity of human tetherin to SIVtan Env without compromising antiviral activity or sensitivity to Vpu. SIVtan Env expression results in a reduction of surface tetherin, as well as reduction in tetherin co-localization with mature surface-associated virus. Immuno-electron microscopy reveals co-localization of SIVtan Env with tetherin in intracellular tubulo-vesicular structures, suggesting that tetherin is sequestered away from budding virions at the cell surface. Along with HIV-1 Vpu and SIV Nef, envelope glycoprotein is the third and most broadly active lentiviral-encoded tetherin countermeasure to be described. Our observations emphasize the importance of tetherin in protecting mammals against viral infection and suggest that HIV-1 Vpu inhibitors may select active envelope mutants.
Collapse
Affiliation(s)
- Ravindra K. Gupta
- Medical Research Council Centre for Medical Molecular Virology, Division of Infection and Immunity, University College London, 46 Cleveland Street, London W1T 4JF, United Kingdom
| | - Petra Mlcochova
- Cell Biology Unit, Medical Research Council Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, United Kingdom; and
| | - Annegret Pelchen-Matthews
- Cell Biology Unit, Medical Research Council Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, United Kingdom; and
| | - Sarah J. Petit
- Medical Research Council Centre for Medical Molecular Virology, Division of Infection and Immunity, University College London, 46 Cleveland Street, London W1T 4JF, United Kingdom
| | - Giada Mattiuzzo
- Medical Research Council Centre for Medical Molecular Virology, Division of Infection and Immunity, University College London, 46 Cleveland Street, London W1T 4JF, United Kingdom
| | - Deenan Pillay
- Medical Research Council Centre for Medical Molecular Virology, Division of Infection and Immunity, University College London, 46 Cleveland Street, London W1T 4JF, United Kingdom
- Centre for Infections, Health Protection Agency, 61 Colindale Ave, London NW9 2QT, United Kingdom
| | - Yasuhiro Takeuchi
- Medical Research Council Centre for Medical Molecular Virology, Division of Infection and Immunity, University College London, 46 Cleveland Street, London W1T 4JF, United Kingdom
| | - Mark Marsh
- Cell Biology Unit, Medical Research Council Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, United Kingdom; and
| | - Greg J. Towers
- Medical Research Council Centre for Medical Molecular Virology, Division of Infection and Immunity, University College London, 46 Cleveland Street, London W1T 4JF, United Kingdom
| |
Collapse
|
23
|
Gupta RK, Hué S, Schaller T, Verschoor E, Pillay D, Towers GJ. Mutation of a single residue renders human tetherin resistant to HIV-1 Vpu-mediated depletion. PLoS Pathog 2009; 5:e1000443. [PMID: 19461879 PMCID: PMC2678251 DOI: 10.1371/journal.ppat.1000443] [Citation(s) in RCA: 161] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2009] [Accepted: 04/24/2009] [Indexed: 11/24/2022] Open
Abstract
The recently identified restriction factor tetherin/BST-2/CD317 is an interferon-inducible trans-membrane protein that restricts HIV-1 particle release in the absence of the HIV-1 countermeasure viral protein U (Vpu). It is known that Tantalus monkey CV1 cells can be rendered non-permissive to HIV-1 release upon stimulation with type 1 interferon, despite the presence of Vpu, suggesting species-specific sensitivity of tetherin proteins to viral countermeasures such as Vpu. Here we demonstrate that Tantalus monkey tetherin restricts HIV-1 by nearly two orders of magnitude, but in contrast to human tetherin the Tantalus protein is insensitive to HIV-1 Vpu. We have investigated tetherin's sensitivity to Vpu using positive selection analyses, seeking evidence for evolutionary conflict between tetherin and viral countermeasures. We provide evidence that tetherin has undergone positive selection during primate evolution. Mutation of a single amino acid (showing evidence of positive selection) in the trans-membrane cap of human tetherin to that in Tantalus monkey (T45I) substantially impacts on sensitivity to HIV-1 Vpu, but not on antiviral activity. Finally, we provide evidence that cellular steady state levels of tetherin are substantially reduced by Vpu, and that the T45I mutation abrogates this effect. This study provides evidence that tetherin is important in protecting mammals against viral infection, and that the HIV-1 Vpu-mediated countermeasure is specifically adapted to act against human tetherin. It also emphasizes the power of selection analyses to illuminate the molecular details of host-virus interactions. This work suggests that tetherin binding agents might protect it from viral encoded countermeasures and thus make powerful antivirals.
Collapse
Affiliation(s)
- Ravindra K. Gupta
- Medical Research Council Centre for Medical Molecular Virology, Division of Infection and Immunity, University College London, London, United Kingdom
| | - Stéphane Hué
- Medical Research Council Centre for Medical Molecular Virology, Division of Infection and Immunity, University College London, London, United Kingdom
| | - Torsten Schaller
- Medical Research Council Centre for Medical Molecular Virology, Division of Infection and Immunity, University College London, London, United Kingdom
| | - Ernst Verschoor
- Department of Virology, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - Deenan Pillay
- Medical Research Council Centre for Medical Molecular Virology, Division of Infection and Immunity, University College London, London, United Kingdom
| | - Greg J. Towers
- Medical Research Council Centre for Medical Molecular Virology, Division of Infection and Immunity, University College London, London, United Kingdom
| |
Collapse
|
24
|
Votteler J, Iavnilovitch E, Fingrut O, Shemesh V, Taglicht D, Erez O, Sörgel S, Walther T, Bannert N, Schubert U, Reiss Y. Exploring the functional interaction between POSH and ALIX and the relevance to HIV-1 release. BMC BIOCHEMISTRY 2009; 10:12. [PMID: 19393081 PMCID: PMC2680910 DOI: 10.1186/1471-2091-10-12] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Accepted: 04/24/2009] [Indexed: 12/21/2022]
Abstract
BACKGROUND The ALG2-interacting protein X (ALIX)/AIP1 is an adaptor protein with multiple functions in intracellular protein trafficking that plays a central role in the biogenesis of enveloped viruses. The ubiquitin E3-ligase POSH (plenty of SH3) augments HIV-1 egress by facilitating the transport of Gag to the cell membrane. Recently, it was reported, that POSH interacts with ALIX and thereby enhances ALIX mediated phenotypes in Drosophila. RESULTS In this study we identified ALIX as a POSH ubiquitination substrate in human cells: POSH induces the ubiquitination of ALIX that is modified on several lysine residues in vivo and in vitro. This ubiquitination does not destabilize ALIX, suggesting a regulatory function. As it is well established that ALIX rescues virus release of L-domain mutant HIV-1, HIV-1DeltaPTAP, we demonstrated that wild type POSH, but not an ubiquitination inactive RING finger mutant (POSHV14A), substantially enhances ALIX-mediated release of infectious virions derived from HIV-1DeltaPTAP L-domain mutant (YPXnL-dependent HIV-1). In further agreement with the idea of a cooperative function of POSH and ALIX, mutating the YPXnL-ALIX binding site in Gag completely abrogated augmentation of virus release by overexpression of POSH. However, the effect of the POSH-mediated ubiquitination appears to be auxiliary, but not necessary, as silencing of POSH by RNAi does not disturb ALIX-augmentation of virus release. CONCLUSION Thus, the cumulative results identified ALIX as an ubiquitination substrate of POSH and indicate that POSH and ALIX cooperate to facilitate efficient virus release. However, while ALIX is obligatory for the release of YPXnL-dependent HIV-1, POSH, albeit rate-limiting, may be functionally interchangeable.
Collapse
Affiliation(s)
- Jörg Votteler
- Institute of Virology, Friedrich-Alexander University, Erlangen, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Dussupt V, Javid MP, Abou-Jaoudé G, Jadwin JA, de La Cruz J, Nagashima K, Bouamr F. The nucleocapsid region of HIV-1 Gag cooperates with the PTAP and LYPXnL late domains to recruit the cellular machinery necessary for viral budding. PLoS Pathog 2009; 5:e1000339. [PMID: 19282983 PMCID: PMC2651531 DOI: 10.1371/journal.ppat.1000339] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2008] [Accepted: 02/12/2009] [Indexed: 12/21/2022] Open
Abstract
HIV-1 release is mediated through two motifs in the p6 region of Gag, PTAP and LYPX(n)L, which recruit cellular proteins Tsg101 and Alix, respectively. The Nucleocapsid region of Gag (NC), which binds the Bro1 domain of Alix, also plays an important role in HIV-1 release, but the underlying mechanism remains unclear. Here we show that the first 202 residues of the Bro1 domain (Bro(i)) are sufficient to bind Gag. Bro(i) interferes with HIV-1 release in an NC-dependent manner and arrests viral budding at the plasma membrane. Similar interrupted budding structures are seen following over-expression of a fragment containing Bro1 with the adjacent V domain (Bro1-V). Although only Bro1-V contains binding determinants for CHMP4, both Bro(i) and Bro1-V inhibited release via both the PTAP/Tsg101 and the LYPX(n)L/Alix pathways, suggesting that they interfere with a key step in HIV-1 release. Remarkably, we found that over-expression of Bro1 rescued the release of HIV-1 lacking both L domains. This rescue required the N-terminal region of the NC domain in Gag and the CHMP4 binding site in Bro1. Interestingly, release defects due to mutations in NC that prevented Bro1 mediated rescue of virus egress were rescued by providing a link to the ESCRT machinery via Nedd4.2s over-expression. Our data support a model in which NC cooperates with PTAP in the recruitment of cellular proteins necessary for its L domain activity and binds the Bro1-CHMP4 complex required for LYPX(n)L-mediated budding.
Collapse
Affiliation(s)
- Vincent Dussupt
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Melodi P. Javid
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Georges Abou-Jaoudé
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Joshua A. Jadwin
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jason de La Cruz
- SAIC at NCI-Frederick, Frederick, Maryland, United States of America
| | - Kunio Nagashima
- SAIC at NCI-Frederick, Frederick, Maryland, United States of America
| | - Fadila Bouamr
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
26
|
Whatley BR, Li L, Chin LS. The ubiquitin-proteasome system in spongiform degenerative disorders. BIOCHIMICA ET BIOPHYSICA ACTA 2008; 1782:700-12. [PMID: 18790052 PMCID: PMC2612938 DOI: 10.1016/j.bbadis.2008.08.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Revised: 08/13/2008] [Accepted: 08/15/2008] [Indexed: 12/20/2022]
Abstract
Spongiform degeneration is characterized by vacuolation in nervous tissue accompanied by neuronal death and gliosis. Although spongiform degeneration is a hallmark of prion diseases, this pathology is also present in the brains of patients suffering from Alzheimer's disease, diffuse Lewy body disease, human immunodeficiency virus (HIV) infection, and Canavan's spongiform leukodystrophy. The shared outcome of spongiform degeneration in these diverse diseases suggests that common cellular mechanisms must underlie the processes of spongiform change and neurodegeneration in the central nervous system. Immunohistochemical analysis of brain tissues reveals increased ubiquitin immunoreactivity in and around areas of spongiform change, suggesting the involvement of ubiquitin-proteasome system dysfunction in the pathogenesis of spongiform neurodegeneration. The link between aberrant ubiquitination and spongiform neurodegeneration has been strengthened by the discovery that a null mutation in the E3 ubiquitin-protein ligase mahogunin ring finger-1 (Mgrn1) causes an autosomal recessively inherited form of spongiform neurodegeneration in animals. Recent studies have begun to suggest that abnormal ubiquitination may alter intracellular signaling and cell functions via proteasome-dependent and proteasome-independent mechanisms, leading to spongiform degeneration and neuronal cell death. Further elucidation of the pathogenic pathways involved in spongiform neurodegeneration should facilitate the development of novel rational therapies for treating prion diseases, HIV infection, and other spongiform degenerative disorders.
Collapse
Affiliation(s)
| | - Lian Li
- Department of Pharmacology and Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | |
Collapse
|
27
|
Kaushik-Basu N, Basu A, Harris D. Peptide inhibition of HIV-1: current status and future potential. BioDrugs 2008; 22:161-75. [PMID: 18481899 DOI: 10.2165/00063030-200822030-00003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
More than 2 decades of intensive research has focused on defining replication mechanisms of HIV type 1 (HIV-1), the etiologic agent of AIDS. The delineation of strategies for combating this viral infection has yielded many innovative approaches toward this end. HIV-1 is a lentivirus in the family retroviridae that is relatively small with regard to both structure and genome size, having a diploid RNA genome of approximately 9 kb, with only three major genes and several gene products resulting from alternate splicing and translational frameshifting. Most marketed drugs for treating AIDS are inhibitors of HIV-1 reverse transcriptase or protease enzymes, but new targets include the integrase enzyme, cell surface interactions that facilitate viral entry, and also virus particle maturation and assembly. The emergence of drug-resistant variants of HIV-1 has been the main impediment to successful treatment of AIDS. Thus, there is a pressing need to develop novel treatment strategies targeting multiple stages of the virus life-cycle. Research efforts aimed at developing successful means for combating HIV-1 infection have included development of peptide inhibitors of HIV-1. This article summarizes past and current endeavors in the development of peptides that inhibit replication of HIV-1 and the role of peptide inhibitors in the search for new anti-HIV drugs.
Collapse
Affiliation(s)
- Neerja Kaushik-Basu
- Department of Biochemistry and Molecular Biology, UMDNJ-New Jersey Medical School, Newark, NJ 07103, USA.
| | | | | |
Collapse
|
28
|
Valiathan RR, Resh MD. Differential control of CXCR4 and CD4 downregulation by HIV-1 Gag. Virol J 2008; 5:23. [PMID: 18267010 PMCID: PMC2262066 DOI: 10.1186/1743-422x-5-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2008] [Accepted: 02/11/2008] [Indexed: 11/10/2022] Open
Abstract
Background The ESCRT (endosomal sorting complex required for transport) machinery functions to sort cellular receptors into the lumen of the multivesicular body (MVB) prior to lysosomal degradation. ESCRT components can also be recruited by enveloped viruses to sites of viral assembly where they have been proposed to mediate viral egress. For example, HIV-1 budding is dependent on Gag-mediated recruitment of the cellular ESCRTs-I, -III, AIP1/Alix and Vps4 proteins. Viral recruitment of ESCRT proteins could therefore impact on host cell processes such as receptor downregulation. Results Here we show that downregulation of the HIV-1 co-receptor, CXCR4, by its ligand SDF-1, is ESCRT-I dependent. Expression of HIV-1 Gag attenuated downregulation of CXCR4, resulting in accumulation of undegraded receptors within intracellular compartments. The effect of Gag was dependent on an ESCRT-I interacting motif within the C-terminal p6 region of Gag. In contrast, PMA-induced downregulation of the HIV-1 receptor CD4 was independent of ESCRT-I and Vps4; HIV-1 Gag had no effect on this process. Conclusion These results establish that the HIV-1 receptor, CD4, and co-receptor, CXCR4 are differentially regulated by ESCRT proteins. HIV-1 Gag selectively modulates protein sorting at the MVB, interfering with ESCRT-I dependent but not ESCRT-I independent processes.
Collapse
|