1
|
Suzuki T, Uchida H. Induction of necroptosis in multinucleated giant cells induced by conditionally replicating syncytial oHSV in co-cultures of cancer cells and non-cancerous cells. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200803. [PMID: 38706990 PMCID: PMC11067338 DOI: 10.1016/j.omton.2024.200803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 04/11/2024] [Indexed: 05/07/2024]
Abstract
Viral modifications enabling syncytium formation in infected cells can augment lysis by oncolytic herpes simplex viruses (oHSVs) which selectively kill cancer cells. In the case of receptor-retargeted oHSVs (RR-oHSVs) that exclusively enter and spread to cancer cells, anti-tumor effects can be enhanced in a magnitude of >100,000-fold by modifying the virus to a syncytial type (RRsyn-oHSV). However, when syncytia containing non-cancerous cells are induced by conditionally replicating syncytial oHSV (CRsyn-oHSV), syncytial death occurs at an early stage. This results in limited anti-tumor effects of the CRsyn-oHSV. Here, we investigated whether necroptosis is involved in death of the syncytia formed by the fusion of cancer cells and non-cancerous cells. Mixed-lineage kinase domain-like (MLKL), a molecule executing necroptosis, was expressed in all murine cancer cell lines examined, while receptor-interacting protein kinase 3 (RIPK3), which phosphorylates MLKL, was absent from most cell lines. In contrast, RIPK3 was expressed in non-cancerous murine fibroblast cell lines. When a CRsyn-oHSV-infected RIPK3-deficient cancer cell line was co-cultured with the fibroblast cell line, but not with the cancer cells themselves, MLKL was phosphorylated and syncytial death was induced. These results indicate that early necroptosis is induced in multinucleated giant cells formed by CRsyn-oHSV when they also contain non-cancerous cells.
Collapse
Affiliation(s)
- Takuma Suzuki
- Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan
- Project Division of Cancer Biomolecular Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Hiroaki Uchida
- Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan
- Project Division of Cancer Biomolecular Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| |
Collapse
|
2
|
Marzulli M, Hall BL, Zhang M, Goins WF, Cohen JB, Glorioso JC. Novel mutations in U L24 and gH rescue efficient infection of an HSV vector retargeted to TrkA. Mol Ther Methods Clin Dev 2023; 30:208-220. [PMID: 37519407 PMCID: PMC10384243 DOI: 10.1016/j.omtm.2023.06.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/28/2023] [Indexed: 08/01/2023]
Abstract
Transductional targeting of herpes simplex virus (HSV)-based gene therapy vectors offers the potential for improved tissue-specific delivery and can be achieved by modification of the viral entry machinery to incorporate ligands that bind the desired cell surface proteins. The interaction of nerve growth factor (NGF) with tropomyosin receptor kinase A (TrkA) is essential for survival of sensory neurons during development and is involved in chronic pain signaling. We targeted HSV infection to TrkA-bearing cells by replacing the signal peptide and HVEM binding domain of glycoprotein D (gD) with pre-pro-NGF. This TrkA-targeted virus (KNGF) infected cells via both nectin-1 and TrkA. However, infection through TrkA was inefficient, prompting a genetic search for KNGF mutants showing enhanced infection following repeat passage on TrkA-expressing cells. These studies revealed unique point mutations in envelope glycoprotein gH and in UL24, a factor absent from mature particles. Together these mutations rescued efficient infection of TrkA-expressing cells, including neurons, and facilitated the production of a completely retargeted KNGF derivative. These studies provide insight into HSV vector improvements that will allow production of replication-defective TrkA-targeted HSV for delivery to the peripheral nervous system and may be applied to other retargeted vector studies in the central nervous system.
Collapse
Affiliation(s)
- Marco Marzulli
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Bonnie L. Hall
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mingdi Zhang
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - William F. Goins
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Justus B. Cohen
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Joseph C. Glorioso
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
3
|
Tang J, Frascaroli G, Zhou X, Knickmann J, Brune W. Cell Fusion and Syncytium Formation in Betaherpesvirus Infection. Viruses 2021; 13:v13101973. [PMID: 34696402 PMCID: PMC8537622 DOI: 10.3390/v13101973] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/22/2021] [Accepted: 09/28/2021] [Indexed: 12/14/2022] Open
Abstract
Cell–cell fusion is a fundamental and complex process that occurs during reproduction, organ and tissue growth, cancer metastasis, immune response, and infection. All enveloped viruses express one or more proteins that drive the fusion of the viral envelope with cellular membranes. The same proteins can mediate the fusion of the plasma membranes of adjacent cells, leading to the formation of multinucleated syncytia. While cell–cell fusion triggered by alpha- and gammaherpesviruses is well-studied, much less is known about the fusogenic potential of betaherpesviruses such as human cytomegalovirus (HCMV) and human herpesviruses 6 and 7 (HHV-6 and HHV-7). These are slow-growing viruses that are highly prevalent in the human population and associated with several diseases, particularly in individuals with an immature or impaired immune system such as fetuses and transplant recipients. While HHV-6 and HHV-7 are strictly lymphotropic, HCMV infects a very broad range of cell types including epithelial, endothelial, mesenchymal, and myeloid cells. Syncytia have been observed occasionally for all three betaherpesviruses, both during in vitro and in vivo infection. Since cell–cell fusion may allow efficient spread to neighboring cells without exposure to neutralizing antibodies and other host immune factors, viral-induced syncytia may be important for viral dissemination, long-term persistence, and pathogenicity. In this review, we provide an overview of the viral and cellular factors and mechanisms identified so far in the process of cell–cell fusion induced by betaherpesviruses and discuss the possible consequences for cellular dysfunction and pathogenesis.
Collapse
Affiliation(s)
- Jiajia Tang
- Leibniz Institute for Experimental Virology (HPI), 20251 Hamburg, Germany; (J.T.); (G.F.); (X.Z.); (J.K.)
- Center for Single-Cell Omics, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Giada Frascaroli
- Leibniz Institute for Experimental Virology (HPI), 20251 Hamburg, Germany; (J.T.); (G.F.); (X.Z.); (J.K.)
| | - Xuan Zhou
- Leibniz Institute for Experimental Virology (HPI), 20251 Hamburg, Germany; (J.T.); (G.F.); (X.Z.); (J.K.)
| | - Jan Knickmann
- Leibniz Institute for Experimental Virology (HPI), 20251 Hamburg, Germany; (J.T.); (G.F.); (X.Z.); (J.K.)
| | - Wolfram Brune
- Leibniz Institute for Experimental Virology (HPI), 20251 Hamburg, Germany; (J.T.); (G.F.); (X.Z.); (J.K.)
- Correspondence:
| |
Collapse
|
4
|
Suzuki T, Uchida H, Shibata T, Sasaki Y, Ikeda H, Hamada-Uematsu M, Hamasaki R, Okuda K, Yanagi S, Tahara H. Potent anti-tumor effects of receptor-retargeted syncytial oncolytic herpes simplex virus. MOLECULAR THERAPY-ONCOLYTICS 2021; 22:265-276. [PMID: 34553018 PMCID: PMC8426171 DOI: 10.1016/j.omto.2021.08.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 08/12/2021] [Indexed: 11/27/2022]
Abstract
Most oncolytic virotherapy has thus far employed viruses deficient in genes essential for replication in normal cells but not in cancer cells. Intra-tumoral injection of such viruses has resulted in clinically significant anti-tumor effects on the lesions in the vicinity of the injection sites but not on distant visceral metastases. To overcome this limitation, we have developed a receptor-retargeted oncolytic herpes simplex virus employing a single-chain antibody for targeting tumor-associated antigens (RR-oHSV) and its modified version with additional mutations conferring syncytium formation (RRsyn-oHSV). We previously showed that RRsyn-oHSV exhibits preserved antigen specificity and an ∼20-fold higher tumoricidal potency in vitro relative to RR-oHSV. Here, we investigated the in vivo anti-tumor effects of RRsyn-oHSV using human cancer xenografts in immunodeficient mice. With only a single intra-tumoral injection of RRsyn-oHSV at very low doses, all treated tumors regressed completely. Furthermore, intra-venous administration of RRsyn-oHSV resulted in robust anti-tumor effects even against large tumors. We found that these potent anti-tumor effects of RRsyn-oHSV may be associated with the formation of long-lasting tumor cell syncytia not containing non-cancerous cells that appear to trigger death of the syncytia. These results strongly suggest that cancer patients with distant metastases could be effectively treated with our RRsyn-oHSV.
Collapse
Affiliation(s)
- Takuma Suzuki
- Project Division of Cancer Biomolecular Therapy, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.,Laboratory of Molecular Biochemistry, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Hiroaki Uchida
- Project Division of Cancer Biomolecular Therapy, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Tomoko Shibata
- Project Division of Cancer Biomolecular Therapy, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Yasuhiko Sasaki
- Project Division of Cancer Biomolecular Therapy, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Hitomi Ikeda
- Project Division of Cancer Biomolecular Therapy, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Mika Hamada-Uematsu
- Project Division of Cancer Biomolecular Therapy, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Ryota Hamasaki
- Project Division of Cancer Biomolecular Therapy, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.,Ono Pharmaceutical Co., Ltd., Osaka, Japan
| | - Kosaku Okuda
- Project Division of Cancer Biomolecular Therapy, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.,Ono Pharmaceutical Co., Ltd., Osaka, Japan
| | - Shigeru Yanagi
- Laboratory of Molecular Biochemistry, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Hideaki Tahara
- Project Division of Cancer Biomolecular Therapy, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.,Department of Cancer Drug Discovery and Development, Osaka International Cancer Institute, Osaka, Japan
| |
Collapse
|
5
|
Antibody Screening System Using a Herpes Simplex Virus (HSV)-Based Probe To Identify a Novel Target for Receptor-Retargeted Oncolytic HSVs. J Virol 2021; 95:JVI.01766-20. [PMID: 33627393 DOI: 10.1128/jvi.01766-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 02/07/2021] [Indexed: 12/13/2022] Open
Abstract
Herpes simplex virus (HSV) is a promising tool for developing oncolytic virotherapy. We recently reported a platform for receptor-retargeted oncolytic HSVs that incorporates single-chain antibodies (scFvs) into envelope glycoprotein D (gD) to mediate virus entry via tumor-associated antigens. Therefore, it would be useful to develop an efficient system that can screen antibodies that might mediate HSV entry when they are incorporated as scFvs into gD. We created an HSV-based screening probe by the genetic fusion of a gD mutant with ablated binding capability to the authentic HSV entry receptors and the antibody-binding C domain of streptococcal protein G. This engineered virus failed to enter cells through authentic receptors. In contrast, when this virus was conjugated with an antibody specific to an antigen on the cell membrane, it specifically entered cells expressing the cognate antigen. This virus was used as a probe to identify antibodies that mediate virus entry via recognition of certain molecules on the cell membrane other than authentic receptors. Using this method, we identified an antibody specific to epiregulin (EREG), which has been investigated mainly as a secreted growth factor and not necessarily for its precursor that is expressed in a transmembrane form. We constructed an scFv from the anti-EREG antibody for insertion into the retargeted HSV platform and found that the recombinant virus entered cells specifically through EREG expressed by the cells. This novel antibody-screening system may contribute to the discovery of unique and unexpected molecules that might be used for the entry of receptor-retargeted oncolytic HSVs.IMPORTANCE The tropism of the cellular entry of HSV is dependent on the binding of the envelope gD to one of its authentic receptors. This can be fully retargeted to other receptors by inserting scFvs into gD with appropriate modifications. In theory, upon binding to the engineered gD, receptors other than authentic receptors should induce a conformational change in the gD, which activates downstream mechanisms required for viral entry. However, prerequisite factors for receptors to be used as targets of a retargeted virus remain poorly understood, and it is difficult to predict which molecules might be suitable for our retargeted HSV construct. Our HSV-based probe will allow unbiased screening of antibody-antigen pairs that mediate virus entry and might be a useful tool to identify suitable pairs for our construct and to enhance our understanding of virus-cell interactions during infection by HSV and possibly other viruses.
Collapse
|
6
|
Abstract
Alphaherpesviruses are enveloped viruses that enter cells by fusing the viral membrane with a host cell membrane, either within an endocytic vesicle or at the plasma membrane. This entry event is mediated by a set of essential entry glycoproteins, including glycoprotein D (gD), gHgL, and gB. gHgL and gB are conserved among herpesviruses, but gD is unique to the alphaherpesviruses and is not encoded by all alphaherpesviruses. gD is a receptor-binding protein, the heterodimer gHgL serves as a fusion regulator, and gB is a class III viral fusion protein. Sequential interactions among these glycoproteins are thought to trigger the virus to fuse at the right place and time. Structural studies of these glycoproteins from multiple alphaherpesviruses has enabled the design and interpretation of functional studies. The structures of gD in a receptor- bound and in an unliganded form reveal a conformational change in the C terminus of the gD ectodomain upon receptor binding that may serve as a signal for fusion. By mapping neutralizing antibodies to the gHgL structures and constructing interspecies chimeric forms of gHgL, interaction sites for both gD and gB on gHgL have been proposed. A comparison of the post fusion structure of gB and an alternative conformation of gB visualized using cryo- electron tomography suggests that gB undergoes substantial refolding to execute membrane fusion. Although these structures have provided excellent insights into the entry mechanism, many questions remain about how these viruses coordinate the interactions and conformational changes required for entry.
Collapse
Affiliation(s)
- Tina M Cairns
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sarah A Connolly
- Departments of Health Sciences and Biological Sciences, College of Science and Health, DePaul University, Chicago, Illinois, USA
| |
Collapse
|
7
|
Ye ZQ, Zou CL, Chen HB, Lv QY, Wu RQ, Gu DN. Folate-conjugated herpes simplex virus for retargeting to tumor cells. J Gene Med 2020; 22:e3177. [PMID: 32096291 DOI: 10.1002/jgm.3177] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 02/13/2020] [Accepted: 02/19/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Herpes simplex virus type 1 (HSV-1)-mediated oncolytic therapy is a promising cancer treatment modality. However, viral tropism is considered to be one of the major stumbling blocks to the development of HSV-1 as an anticancer agent. METHODS The surface of oncolytic HSV-1 G207 was covalently modified with folate-poly (ethylene glycol) conjugate (FA-PEG). The specificities and tumor targeting efficiencies of modified or unmodified G207 particles were analyzed by a real-time polymerase chain reaction at the level of cell attachment and entry. Immune responses were assessed by an interleukin-6 release assay from RAW264.7 macrophages. Biodistribution and in vivo antitumoral activity after intravenous delivery was evaluated in BALB/c nude mice bearing subcutaneous KB xenograft tumors. RESULTS FA-PEG-HSV exhibited enhanced targeting specificity for folate receptor over-expressing tumor cells and had lower immunogenicity than the unmodified HSV. In vivo, the FA-PEG-HSV group revealed an increased anti-tumor efficiency and tumor targeting specificity compared to the naked HSV. CONCLUSIONS These results indicate that folate-conjugated HSV G207 presents a folate receptor-targeted oncolytic virus with a potential therapeutic value via retargeting to tumor cells.
Collapse
Affiliation(s)
- Zhi-Qiang Ye
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| | - Chang-Lin Zou
- Department of Chemoradiotherapy, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| | - Han-Bin Chen
- Department of Chemoradiotherapy, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| | - Qi-Yuan Lv
- Department of Chemoradiotherapy, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| | - Ruo-Qi Wu
- Department of Chemoradiotherapy, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| | - Dian-Na Gu
- Department of Chemoradiotherapy, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| |
Collapse
|
8
|
Cetina-Corona A, López-Sánchez U, Salinas-Trujano J, Méndez-Tenorio A, Barrón BL, Torres-Flores J. Peptides Derived from Glycoproteins H and B of Herpes Simplex Virus Type 1 and Herpes Simplex Virus Type 2 Are Capable of Blocking Herpetic Infection in vitro. Intervirology 2017; 59:235-242. [PMID: 28329739 DOI: 10.1159/000464134] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 02/08/2017] [Indexed: 11/19/2022] Open
Abstract
AIMS The aim of this study was to design peptides derived from glycoproteins H (gH) and B (gB) of herpes simplex viruses type 1 (HSV-1) and type 2 (HSV-2) with the potential to block herpetic infection and to evaluate their ability to inhibit HSV-1 and HSV-2 infection in vitro. METHODS A library of continuous 15-25 residue stretches (CRSs) located at the surface of gH and gB from HSV-1 and HSV-2 was created. These CRSs were analyzed, and only those that were highly flexible and rich in charged residues were selected for the design of the antiviral peptides (AVPs). The toxicity of the AVPs was evaluated by MTT reduction assays. Virucidal activity of the AVPs was determined by a plaque reduction assay, and their antiviral effect was measured by cell viability assays. RESULTS AND CONCLUSION Four AVPs (CB-1, CB-2, U-1, and U-2) derived from gB and gH were designed and synthetized, none of which showed high levels of toxicity in Vero cells. The U-1 and U-2 gB-derived AVPs showed high virucidal and antiviral activities against both HSV-1 and HSV-2. The gH-derived peptide CB-1 showed high virucidal and antiviral activities against HSV-2, while CB-2 showed similar results against HSV-1. The peptides CB-1 and CB-2 showed higher IC50 values than the U-1 and U-2 peptides.
Collapse
Affiliation(s)
- Abraham Cetina-Corona
- Laboratorio de Virología, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | | | | | | | | | | |
Collapse
|