1
|
Sun J, Peters M, Yu LR, Vijay V, Bidarimath M, Agrawal M, Flores-Torres AS, Green AM, Burkhart K, Oliphant J, Smallwood HS, Beger RD. Untargeted metabolomics and lipidomics in COVID-19 patient plasma reveals disease severity biomarkers. Metabolomics 2024; 21:3. [PMID: 39636373 DOI: 10.1007/s11306-024-02195-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 10/29/2024] [Indexed: 12/07/2024]
Abstract
INTRODUCTION Coronavirus disease 2019 (COVID-19) has widely varying clinical severity. Currently, no single marker or panel of markers is considered standard of care for prediction of COVID-19 disease progression. The goal of this study is to gain mechanistic insights at the molecular level and to discover predictive biomarkers of severity of infection and outcomes among COVID-19 patients. METHOD This cohort study (n = 76) included participants aged 16-78 years who tested positive for SARS-CoV-2 and enrolled in Memphis, TN between August 2020 to July 2022. Clinical outcomes were classified as Non-severe (n = 39) or Severe (n = 37). LC/HRMS-based untargeted metabolomics/lipidomics was conducted to examine the difference in plasma metabolome and lipidome between the two groups. RESULTS Metabolomics data indicated that the kynurenine pathway was activated in Severe participants. Significant increases in short chain acylcarnitines, and short and medium chain acylcarnitines containing OH-FA chain in Severe vs. Non-severe group, which indicates that (1) the energy pathway switched to FA β-oxidation to maintain the host energy homeostasis and to provide energy for virus proliferation; (2) ROS status was aggravated in Severe vs. Non-severe group. Based on PLS-DA and correlation analysis to severity score, IL-6, and creatine, a biomarker panel containing glucose (pro-inflammation), ceramide and S1P (inflammation related), 4-hydroxybutyric acid (oxidative stress related), testosterone sulfate (immune related), and creatine (kidney function), was discovered. This novel biomarker panel plus IL-6 with an AUC of 0.945 provides a better indication of COVID-19 clinical outcomes than that of IL-6 alone or the three clinical biomarker panel (IL-6, glucose and creatine) with AUCs of 0.875 or 0.892.
Collapse
Affiliation(s)
- Jinchun Sun
- Division of Systems Biology, National Center for Toxicological Research, United States Food and Drug Administration, 3900 NCTR Road, Jefferson, AR, 72079, USA.
| | - Megan Peters
- Division of Systems Biology, National Center for Toxicological Research, United States Food and Drug Administration, 3900 NCTR Road, Jefferson, AR, 72079, USA
| | - Li-Rong Yu
- Division of Systems Biology, National Center for Toxicological Research, United States Food and Drug Administration, 3900 NCTR Road, Jefferson, AR, 72079, USA
| | - Vikrant Vijay
- Division of Systems Biology, National Center for Toxicological Research, United States Food and Drug Administration, 3900 NCTR Road, Jefferson, AR, 72079, USA
| | - Mallikarjun Bidarimath
- Division of Systems Biology, National Center for Toxicological Research, United States Food and Drug Administration, 3900 NCTR Road, Jefferson, AR, 72079, USA
| | - Mona Agrawal
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, USA
| | | | - Amanda M Green
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, USA
- Department of Infectious Disease, St Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Keith Burkhart
- Office of Translational Sciences, Center for Drug Evaluation and Research, United States Food and Drug Administration, Silver Spring, MD, USA
| | - Jessica Oliphant
- Division of Systems Biology, National Center for Toxicological Research, United States Food and Drug Administration, 3900 NCTR Road, Jefferson, AR, 72079, USA
| | - Heather S Smallwood
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, USA
- Children's Foundation Research Institute, Memphis, TN, 38105, USA
| | - Richard D Beger
- Division of Systems Biology, National Center for Toxicological Research, United States Food and Drug Administration, 3900 NCTR Road, Jefferson, AR, 72079, USA
| |
Collapse
|
2
|
Lima V, Morais STB, Ferreira VG, Almeida MB, Silva MPB, de A. Lopes T, de Oliveira JM, Raimundo JRS, Furtado DZS, Fonseca FLA, Oliveira RV, Cardoso DR, Carrilho E, Assunção NA. Multiplatform Metabolomics: Enhancing the Severity Risk Prognosis of SARS-CoV-2 Infection. ACS OMEGA 2024; 9:45746-45758. [PMID: 39583673 PMCID: PMC11579725 DOI: 10.1021/acsomega.4c02557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 10/21/2024] [Accepted: 10/28/2024] [Indexed: 11/26/2024]
Abstract
Concerns about the SARS-CoV-2 outbreak (COVID-19) continue to persist even years later, with the emergence of new variants and the risk of disease severity. Common clinical symptoms, like cough, fever, and respiratory symptoms, characterize the noncritical patients, classifying them from mild to moderate. In a more severe and complex scenario, the virus infection can affect vital organs, resulting, for instance, in pneumonia and impaired kidney and heart function. However, it is well-known that subclinical symptoms at a metabolic level can be observed previously but require a proper diagnosis because viral replication on the host leaves a track with a different profile depending on the severity of the illness. Metabolomic profiles of mild, moderate, and severe COVID-19 patients were obtained by multiple platforms (LC-HRMS and MALDI-MS), increasing the chance to elucidate a prognosis for severity risk. A strong link was discovered between phenylalanine metabolism and increased COVID-19 severity symptoms, a pathway linked to cardiac and neurological consequences. Glycerophospholipids and sphingolipid metabolisms were also dysregulated linearly with the increasing symptom severity, which can be related to virus proliferation, immune system avoidance, and apoptosis escaping. Our data, endorsed by other literature, strengthens the notion that these pathways might play a vital role in a patient's prognosis.
Collapse
Affiliation(s)
- Vinicius
S. Lima
- Programa
de Pós-Graduação em Medicina Translacional, Departamento
de Medicina, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04023-062, Brazil
| | - Sinara T. B. Morais
- Instituto
de Química de São Carlos, Universidade de São Paulo, São Carlos 13566-590, Brazil
| | - Vinicius G. Ferreira
- Instituto
de Química de São Carlos, Universidade de São Paulo, São Carlos 13566-590, Brazil
- Instituto
Nacional de Ciência e Tecnologia de Bioanalítica, INCTBio, Campinas 13083-861, Brazil
| | - Mariana B. Almeida
- Instituto
de Química de São Carlos, Universidade de São Paulo, São Carlos 13566-590, Brazil
- Instituto
Nacional de Ciência e Tecnologia de Bioanalítica, INCTBio, Campinas 13083-861, Brazil
| | - Manuel Pedro Barros Silva
- Programa
de Pós-Graduação em Medicina Translacional, Departamento
de Medicina, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04023-062, Brazil
| | - Thais de A. Lopes
- Departamento
de Química, Universidade Federal
de São Carlos, São Carlos, São Paulo 13565-905, Brazil
| | - Juliana M. de Oliveira
- Departamento
de Química, Universidade Federal
de São Carlos, São Carlos, São Paulo 13565-905, Brazil
| | | | - Danielle Z. S. Furtado
- Programa
de Pós-Graduação em Medicina Translacional, Departamento
de Medicina, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04023-062, Brazil
| | - Fernando L. A. Fonseca
- Faculdade
de Medicina do ABC, Santo André, São Paulo 09060-870, Brazil
- Departamento
de Química, Universidade Federal
de São Paulo, São
Paulo 05508-070, Brazil
| | - Regina V. Oliveira
- Departamento
de Química, Universidade Federal
de São Carlos, São Carlos, São Paulo 13565-905, Brazil
| | - Daniel R. Cardoso
- Instituto
de Química de São Carlos, Universidade de São Paulo, São Carlos 13566-590, Brazil
| | - Emanuel Carrilho
- Instituto
de Química de São Carlos, Universidade de São Paulo, São Carlos 13566-590, Brazil
- Instituto
Nacional de Ciência e Tecnologia de Bioanalítica, INCTBio, Campinas 13083-861, Brazil
| | - Nilson A. Assunção
- Programa
de Pós-Graduação em Medicina Translacional, Departamento
de Medicina, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04023-062, Brazil
- Departamento
de Química, Universidade Federal
de São Paulo, São
Paulo 05508-070, Brazil
| |
Collapse
|
3
|
Grewal T, Nguyen MKL, Buechler C. Cholesterol and Cholesterol-Lowering Medications in COVID-19-An Unresolved Matter. Int J Mol Sci 2024; 25:10489. [PMID: 39408818 PMCID: PMC11477656 DOI: 10.3390/ijms251910489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 09/25/2024] [Accepted: 09/28/2024] [Indexed: 10/20/2024] Open
Abstract
Infections with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) cause coronavirus disease 2019 (COVID-19), a disease with very heterogeneous symptoms. Dyslipidaemia is prevalent in at least 20% of Europeans, and dyslipidaemia before SARS-CoV-2 infection increases the risk for severe COVID-19 and mortality by 139%. Many reports described reduced serum cholesterol levels in virus-infected patients, in particular in those with severe disease. The liver is the major organ for lipid homeostasis and hepatic dysfunction appears to occur in one in five patients infected with SARS-CoV-2. Thus, SARS-CoV-2 infection, COVID-19 disease severity and liver injury may be related to impaired cholesterol homeostasis. These observations prompted efforts to assess the therapeutic opportunities of cholesterol-lowering medications to reduce COVID-19 severity. The majority of studies implicate statins to have beneficial effects on disease severity and outcome in COVID-19. Proprotein convertase subtilisin/kexin type 9 (PCSK9) antibodies have also shown potential to protect against COVID-19. This review describes the relationship between systemic cholesterol levels, liver injury and COVID-19 disease severity. The potential effects of statins and PCSK9 in COVID-19 are summarised. Finally, the relationship between cholesterol and lung function, the first organ to be affected by SARS-CoV-2, is described.
Collapse
Affiliation(s)
- Thomas Grewal
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia; (T.G.); (M.K.L.N.)
| | - Mai Khanh Linh Nguyen
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia; (T.G.); (M.K.L.N.)
| | - Christa Buechler
- Department of Internal Medicine I, Regensburg University Hospital, 93053 Regensburg, Germany
| |
Collapse
|
4
|
Häring C, Schroeder J, Jungwirth J, Löffler B, Henke A, Engert B, Ehrhardt C. ProcCluster ® and procaine hydrochloride inhibit the replication of influenza A virus in vitro. Front Microbiol 2024; 15:1422651. [PMID: 39206370 PMCID: PMC11350405 DOI: 10.3389/fmicb.2024.1422651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/24/2024] [Indexed: 09/04/2024] Open
Abstract
Introduction Treatment of influenza A virus infections is currently limited to few direct acting antiviral substances. Repurposing other established pharmaceuticals as antivirals could aid in improving treatment options. Methods This study investigates the antiviral properties of ProcCluster® and procaine hydrochloride, two derivatives of the local anesthetic procaine, in influenza A virus infection of A549, Calu-3 and MDCK cells. Results Both substances inhibit replication in all three of these cell lines in multi-cycle experiments. However, cell line-dependent differences in the effects of the substances on viral RNA replication and subsequent protein synthesis, as well as release of progeny viruses in single-cycle experiments can be observed. Both ProcCluster® and procaine hydrochloride delay endosome fusion of the virus early in the replication cycle, possibly due to the alkaline nature of the active component procaine. In A549 and Calu-3 cells an additional effect of the substances can be observed at late stages in the first replication cycle. Interestingly, this effect is absent in MDCK cells. We demonstrate that ProcCluster® and procaine hydrochloride inhibit phospholipase A2 (PLA2) enzymes from A549 but not MDCK cells and confirm that specific inhibition of calcium independent PLA2 but not cytosolic PLA2 has antiviral effects. Discussion We show that ProcCluster® and procaine hydrochloride inhibit influenza A virus infection at several stages of the replication cycle and have potential as antiviral substances.
Collapse
Affiliation(s)
- Clio Häring
- Section of Experimental Virology, Institute of Medical Microbiology, Center for Molecular Biomedicine (CMB), Jena University Hospital, Jena, Germany
| | - Josefine Schroeder
- Section of Experimental Virology, Institute of Medical Microbiology, Center for Molecular Biomedicine (CMB), Jena University Hospital, Jena, Germany
| | - Johannes Jungwirth
- Section of Experimental Virology, Institute of Medical Microbiology, Center for Molecular Biomedicine (CMB), Jena University Hospital, Jena, Germany
| | - Bettina Löffler
- Institute of Medical Microbiology, Jena University Hospital, Jena, Germany
| | - Andreas Henke
- Section of Experimental Virology, Institute of Medical Microbiology, Center for Molecular Biomedicine (CMB), Jena University Hospital, Jena, Germany
| | | | - Christina Ehrhardt
- Section of Experimental Virology, Institute of Medical Microbiology, Center for Molecular Biomedicine (CMB), Jena University Hospital, Jena, Germany
| |
Collapse
|
5
|
Mitri C, Philippart F, Sacco E, Legriel S, Rousselet N, Dupuis G, Colsch B, Corvol H, Touqui L, Tabary O. Multicentric investigations of the role in the disease severity of accelerated phospholipid changes in COVID-19 patient airway. Microbes Infect 2024; 26:105354. [PMID: 38754811 DOI: 10.1016/j.micinf.2024.105354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 04/30/2024] [Accepted: 05/10/2024] [Indexed: 05/18/2024]
Abstract
CONTEXT The changes in host membrane phospholipids are crucial in airway infection pathogenesis. Phospholipase A2 hydrolyzes host cell membranes, producing lyso-phospholipids and free fatty acids, including arachidonic acid (AA), which contributes significantly to lung inflammation. AIM Follow these changes and their evolution from day 1, day 3 to day 7 in airway aspirates of 89 patients with COVID-19-associated acute respiratory distress syndrome and examine whether they correlate with the severity of the disease. The patients were recruited in three French intensive care units. The analysis was conducted from admission to the intensive care unit until the end of the first week of mechanical ventilation. RESULTS In the airway aspirates, we found significant increases in the levels of host cell phospholipids, including phosphatidyl-serine and phosphatidyl-ethanolamine, and their corresponding lyso-phospholipids. This was accompanied by increased levels of AA and its inflammatory metabolite prostaglandin E2 (PGE2). Additionally, enhanced levels of ceramides, sphingomyelin, and free cholesterol were observed in these aspirates. These lipids are known to be involved in cell death and/or apoptosis, whereas free cholesterol plays a role in virus entry and replication in host cells. However, there were no significant changes in the levels of dipalmitoyl-phosphatidylcholine, the major surfactant phospholipid. A correlation analysis revealed an association between mortality risk and levels of AA and PGE2, as well as host cell phospholipids. CONCLUSION Our findings indicate a correlation between heightened cellular phospholipid modifications and variations in AA and PGE2 with the severity of the disease in patients. Nevertheless, there is no indication of surfactant alteration in the initial phases of the illness.
Collapse
Affiliation(s)
- Christie Mitri
- Sorbonne Université, Inserm U938, Centre de Recherche Saint-Antoine (CRSA), 75012, Paris, France
| | - François Philippart
- Endotoxins, Structures and Host Response, Department of Microbiology, Institute for Integrative Biology of the Cell, UMR 9891 CNRS-CEA-Paris Saclay University, 98190 Gif-sur-Yvette, France; Medical-Surgical Intensive Care Unit, Groupe Hospitalier Paris Saint Joseph, Paris, France
| | - Emmanuelle Sacco
- Department of Clinical Research. Groupe Hospitalier Paris Saint Joseph, Paris, France
| | - Stéphane Legriel
- Medical-Surgical Intensive Care Unit, Centre Hospitalier de Versailles, Le Chesnay, France
| | - Nathalie Rousselet
- Sorbonne Université, Inserm U938, Centre de Recherche Saint-Antoine (CRSA), 75012, Paris, France
| | - Gabrielle Dupuis
- Sorbonne Université, Inserm U938, Centre de Recherche Saint-Antoine (CRSA), 75012, Paris, France
| | - Benoît Colsch
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (MTS), MetaboHUB, F-91191, Gif sur Yvette, France
| | - Harriet Corvol
- Sorbonne Université, Inserm U938, Centre de Recherche Saint-Antoine (CRSA), 75012, Paris, France; Sorbonne Université, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Trousseau, Service de Pneumologie Pédiatrique, 75012, Paris, France
| | - Lhousseine Touqui
- Sorbonne Université, Inserm U938, Centre de Recherche Saint-Antoine (CRSA), 75012, Paris, France; Inserm, Institut Pasteur, Mucoviscidose et Bronchopathies Chroniques, Département Santé Globale, Paris, France.
| | - Olivier Tabary
- Sorbonne Université, Inserm U938, Centre de Recherche Saint-Antoine (CRSA), 75012, Paris, France.
| |
Collapse
|
6
|
Wang X, Chen Y, Qi C, Li F, Zhang Y, Zhou J, Wu H, Zhang T, Qi A, Ouyang H, Xie Z, Pang D. Mechanism, structural and functional insights into nidovirus-induced double-membrane vesicles. Front Immunol 2024; 15:1340332. [PMID: 38919631 PMCID: PMC11196420 DOI: 10.3389/fimmu.2024.1340332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 05/22/2024] [Indexed: 06/27/2024] Open
Abstract
During infection, positive-stranded RNA causes a rearrangement of the host cell membrane, resulting in specialized membrane structure formation aiding viral genome replication. Double-membrane vesicles (DMVs), typical structures produced by virus-induced membrane rearrangements, are platforms for viral replication. Nidoviruses, one of the most complex positive-strand RNA viruses, have the ability to infect not only mammals and a few birds but also invertebrates. Nidoviruses possess a distinctive replication mechanism, wherein their nonstructural proteins (nsps) play a crucial role in DMV biogenesis. With the participation of host factors related to autophagy and lipid synthesis pathways, several viral nsps hijack the membrane rearrangement process of host endoplasmic reticulum (ER), Golgi apparatus, and other organelles to induce DMV formation. An understanding of the mechanisms of DMV formation and its structure and function in the infectious cycle of nidovirus may be essential for the development of new and effective antiviral strategies in the future.
Collapse
Affiliation(s)
- Xi Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Yiwu Chen
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Chunyun Qi
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Feng Li
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Yuanzhu Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Jian Zhou
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Heyong Wu
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Tianyi Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Aosi Qi
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Hongsheng Ouyang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun, Jilin, China
- Chongqing Research Institute, Jilin University, Chongqing, China
- Center for Animal Science and Technology Research, Chongqing Jitang Biotechnology Research Institute Co., Ltd, Chongqing, China
| | - Zicong Xie
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun, Jilin, China
- Chongqing Research Institute, Jilin University, Chongqing, China
| | - Daxin Pang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun, Jilin, China
- Chongqing Research Institute, Jilin University, Chongqing, China
- Center for Animal Science and Technology Research, Chongqing Jitang Biotechnology Research Institute Co., Ltd, Chongqing, China
| |
Collapse
|
7
|
Conte C, Cipponeri E, Roden M. Diabetes Mellitus, Energy Metabolism, and COVID-19. Endocr Rev 2024; 45:281-308. [PMID: 37934800 PMCID: PMC10911957 DOI: 10.1210/endrev/bnad032] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 08/30/2023] [Accepted: 11/01/2023] [Indexed: 11/09/2023]
Abstract
Obesity, diabetes mellitus (mostly type 2), and COVID-19 show mutual interactions because they are not only risk factors for both acute and chronic COVID-19 manifestations, but also because COVID-19 alters energy metabolism. Such metabolic alterations can lead to dysglycemia and long-lasting effects. Thus, the COVID-19 pandemic has the potential for a further rise of the diabetes pandemic. This review outlines how preexisting metabolic alterations spanning from excess visceral adipose tissue to hyperglycemia and overt diabetes may exacerbate COVID-19 severity. We also summarize the different effects of SARS-CoV-2 infection on the key organs and tissues orchestrating energy metabolism, including adipose tissue, liver, skeletal muscle, and pancreas. Last, we provide an integrative view of the metabolic derangements that occur during COVID-19. Altogether, this review allows for better understanding of the metabolic derangements occurring when a fire starts from a small flame, and thereby help reducing the impact of the COVID-19 pandemic.
Collapse
Affiliation(s)
- Caterina Conte
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, Rome 00166, Italy
- Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, Milan 20099, Italy
| | - Elisa Cipponeri
- Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, Milan 20099, Italy
| | - Michael Roden
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
- German Center for Diabetes Research, Partner Düsseldorf, Neuherberg 85764, Germany
| |
Collapse
|
8
|
Ding D, Zhao H, Liu Y, Li S, Wei J, Yang Y, Wang S, Xing G, Hou S, Wang X, Zhang Y. Whole-transcriptome sequencing revealed the role of noncoding RNAs in susceptibility and resistance of Pekin ducks to DHAV-3. Poult Sci 2024; 103:103416. [PMID: 38301494 PMCID: PMC10846394 DOI: 10.1016/j.psj.2023.103416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/26/2023] [Accepted: 12/27/2023] [Indexed: 02/03/2024] Open
Abstract
As the most prevalent pathogen of duck viral hepatitis (DVH), duck hepatitis A virus genotype 3 (DHAV-3) has caused huge economic losses to the duck industry in China. Herein, we obtained whole-transcriptome sequencing data of susceptible (S) and resistant (R) Pekin duckling samples at 0 h, 12 h, and 24 h after DHAV-3 infection. We found that DHAV-3 infection induces 5,396 differentially expressed genes (DEGs), 85 differentially expressed miRNAs (DEMs), and 727 differentially expressed lncRNAs (DELs) at 24 hpi in S vs. R ducks, those upregulated genes were enriched in inflammation and cell communications pathways and downregulated genes were related to metabolic processes. Upregulated genes showed high connectivity with the miR-33, miR-193, and miR-11591, and downregulated genes were mainly regulated by miR-2954, miR-125, and miR-146b. With the construction of lncRNA-miRNA-mRNA axis, we further identified a few aberrantly expressed lncRNAs (e.g., MSTRG.36194.1, MSTRG.50601.1, MSTRG.34328.7, and MSTRG.29445.1) that regulate expression of hub genes (e.g., THBD, CLIC2, IL8, ACOX2, GPHN, SMLR1, and HAO1) by sponging those highly connected miRNAs. Altogether, our findings defined a dual role of ncRNAs in immune and metabolic regulation during DHAV-3 infection, suggesting potential new targets for treating DHAV-3 infected ducks.
Collapse
Affiliation(s)
- Dingbang Ding
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Haonan Zhao
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Ying Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Shaofei Li
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jie Wei
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yuze Yang
- Beijing General Station of Animal Husbandry, Beijing 100101, China
| | - Shuaiqin Wang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Guangnan Xing
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shuisheng Hou
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xia Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Yunsheng Zhang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
9
|
Doijen J, Heo I, Temmerman K, Vermeulen P, Diels A, Jaensch S, Burcin M, Van den Broeck N, Raeymaekers V, Peremans J, Konings K, Clement M, Peeters D, Van Loock M, Koul A, Buyck C, Van Gool M, Van Damme E. A flexible, image-based, high-throughput platform encompassing in-depth cell profiling to identify broad-spectrum coronavirus antivirals with limited off-target effects. Antiviral Res 2024; 222:105789. [PMID: 38158129 DOI: 10.1016/j.antiviral.2023.105789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/14/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
The recent pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) posed a major threat to global health. Although the World Health Organization ended the public health emergency status, antiviral drugs are needed to address new variants of SARS-CoV-2 and future pandemics. To identify novel broad-spectrum coronavirus drugs, we developed a high-content imaging platform compatible with high-throughput screening. The platform is broadly applicable as it can be adapted to include various cell types, viruses, antibodies, and dyes. We demonstrated that the antiviral activity of compounds against SARS-CoV-2 variants (Omicron BA.5 and Omicron XBB.1.5), SARS-CoV, and human coronavirus 229E could easily be assessed. The inclusion of cellular dyes and immunostaining in combination with in-depth image analysis enabled us to identify compounds that induced undesirable phenotypes in host cells, such as changes in cell morphology or in lysosomal activity. With the platform, we screened ∼900K compounds and triaged hits, thereby identifying potential candidate compounds carrying broad-spectrum activity with limited off-target effects. The flexibility and early-stage identification of compounds with limited host cell effects provided by this high-content imaging platform can facilitate coronavirus drug discovery. We anticipate that its rapid deployability and fast turnaround can also be applied to combat future pandemics.
Collapse
Affiliation(s)
- Jordi Doijen
- Global Public Health R&D, Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340, Beerse, Belgium.
| | - Inha Heo
- Therapeutics Discovery R&D, Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340, Beerse, Belgium.
| | - Koen Temmerman
- Therapeutics Discovery R&D, Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340, Beerse, Belgium.
| | - Peter Vermeulen
- Therapeutics Discovery R&D, Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340, Beerse, Belgium.
| | - Annick Diels
- Therapeutics Discovery R&D, Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340, Beerse, Belgium.
| | - Steffen Jaensch
- Therapeutics Discovery R&D, Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340, Beerse, Belgium.
| | - Mark Burcin
- Therapeutics Discovery R&D, Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340, Beerse, Belgium.
| | | | | | - Joren Peremans
- Charles River Laboratories, Turnhoutseweg 30, 2340, Beerse, Belgium.
| | - Katrien Konings
- Charles River Laboratories, Turnhoutseweg 30, 2340, Beerse, Belgium.
| | - Maxime Clement
- Charles River Laboratories, Turnhoutseweg 30, 2340, Beerse, Belgium.
| | - Danielle Peeters
- Therapeutics Discovery R&D, Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340, Beerse, Belgium.
| | - Marnix Van Loock
- Global Public Health R&D, Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340, Beerse, Belgium.
| | - Anil Koul
- Global Public Health R&D, Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340, Beerse, Belgium.
| | - Christophe Buyck
- Therapeutics Discovery R&D, Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340, Beerse, Belgium.
| | - Michiel Van Gool
- Therapeutics Discovery R&D, Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340, Beerse, Belgium.
| | - Ellen Van Damme
- Global Public Health R&D, Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340, Beerse, Belgium.
| |
Collapse
|
10
|
Denker L, Dixon AM. The cell edit: Looking at and beyond non-structural proteins to understand membrane rearrangement in coronaviruses. Arch Biochem Biophys 2024; 752:109856. [PMID: 38104958 DOI: 10.1016/j.abb.2023.109856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/24/2023] [Accepted: 12/08/2023] [Indexed: 12/19/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a positive-stranded RNA virus that sits at the centre of the recent global pandemic. As a member of the coronaviridae family of viruses, it shares features such as a very large genome (>30 kb) that is replicated in a purpose-built replication organelle. Biogenesis of the replication organelle requires significant and concerted rearrangement of the endoplasmic reticulum membrane, a job that is carried out by a group of integral membrane non-structural proteins (NSP3, 4 and 6) expressed by the virus along with a host of viral replication enzymes and other factors that support transcription and replication. The primary sites for RNA replication within the replication organelle are double membrane vesicles (DMVs). The small size of DMVs requires generation of high membrane curvature, as well as stabilization of a double-membrane arrangement, but the mechanisms that underlie DMV formation remain elusive. In this review, we discuss recent breakthroughs in our understanding of the molecular basis for membrane rearrangements by coronaviruses. We incorporate established models of NSP3-4 protein-protein interactions to drive double membrane formation, and recent data highlighting the roles of lipid composition and host factor proteins (e.g. reticulons) that influence membrane curvature, to propose a revised model for DMV formation in SARS-CoV-2.
Collapse
Affiliation(s)
- Lea Denker
- Warwick Medical School, Biomedical Sciences, University of Warwick, Coventry, CV4 7AL, UK.
| | - Ann M Dixon
- Department of Chemistry, University of Warwick, Coventry, CV4 7SH, UK.
| |
Collapse
|
11
|
Radwan E, Abdelaziz A, Mandour MAM, Meki ARMA, El-Kholy MM, Mohamed MN. MBOAT7 expression is associated with disease progression in COVID-19 patients. Mol Biol Rep 2024; 51:79. [PMID: 38183501 PMCID: PMC10771377 DOI: 10.1007/s11033-023-09009-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/09/2023] [Indexed: 01/08/2024]
Abstract
BACKGROUND AND AIM The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in late 2019 caused a pandemic of acute respiratory disease, named coronavirus disease 2019 (COVID-19). COVID-19 became one of the most challenging health emergencies, hence the necessity to find different prognostic factors for disease progression, and severity. Membrane bound O-acyltransferase domain containing 7 (MBOAT7) demonstrates anti-inflammatory effects through acting as a fine-tune regulator of the amount of cellular free arachidonic acid. We aimed in this study to evaluate MBOAT7 expression in COVID-19 patients and to correlate it with disease severity and outcomes. METHODS This case-control study included 56 patients with confirmed SARS-CoV-2 diagnosis and 28 control subjects. Patients were further classified into moderate (n = 28) and severe (n = 28) cases. MBOAT7, tumor necrosis factor-α (TNF-α), and interleukin-1ß (IL-1ß) mRNA levels were evaluated in peripheral blood mononuclear cells (PBMC) samples isolated from patients and control subjects by real time quantitative polymerase chain reaction (RT-qPCR). In addition, circulating MBOAT7 protein levels were assayed by enzyme-linked immunosorbent assay (ELISA). RESULTS Significant lower levels of circulating MBOAT7 mRNA and protein were observed in COVID-19 patients compared to control subjects with severe COVID-19 cases showing significant lower levels compared to moderate cases. Moreover, severe cases showed a significant upregulation of TNF-α and IL-1ß mRNA. MBOAT7 mRNA and protein levels were significantly correlated with inflammatory markers (TNF-α, IL-1ß, C-reactive protein (CRP), and ferritin), liver enzymes, severity, and oxygen saturation levels. CONCLUSION COVID-19 is associated with downregulation of MBAOT7, which correlates with disease severity.
Collapse
Affiliation(s)
- Eman Radwan
- Department of Medical Biochemistry, Faculty of Medicine, Assiut University, Assiut, 71515, Egypt.
- Department of Biochemistry, Sphinx University, New Assiut City, Assiut 10, Egypt.
| | - Ahmed Abdelaziz
- Department of Biochemistry, Faculty of Pharmacy, Assiut University, Assiut, 71515, Egypt
| | - Manal A M Mandour
- Department of Medical Biochemistry, Faculty of Medicine, Assiut University, Assiut, 71515, Egypt
| | - Abdel-Raheim M A Meki
- Department of Medical Biochemistry, Faculty of Medicine, Assiut University, Assiut, 71515, Egypt
- Department of Biochemistry, Sphinx University, New Assiut City, Assiut 10, Egypt
| | - Maha M El-Kholy
- Department of Chest diseases and Tuberculosis, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Marwan N Mohamed
- Department of Chest diseases and Tuberculosis, Faculty of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
12
|
Ding C, Chen Y, Miao G, Qi Z. Research Advances on the Role of Lipids in the Life Cycle of Human Coronaviruses. Microorganisms 2023; 12:63. [PMID: 38257890 PMCID: PMC10820681 DOI: 10.3390/microorganisms12010063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/23/2023] [Accepted: 12/27/2023] [Indexed: 01/24/2024] Open
Abstract
Coronaviruses (CoVs) are emerging pathogens with a significant potential to cause life-threatening harm to human health. Since the beginning of the 21st century, three highly pathogenic and transmissible human CoVs have emerged, triggering epidemics and posing major threats to global public health. CoVs are enveloped viruses encased in a lipid bilayer. As fundamental components of cells, lipids can play an integral role in many physiological processes, which have been reported to play important roles in the life cycle of CoVs, including viral entry, uncoating, replication, assembly, and release. Therefore, research on the role of lipids in the CoV life cycle can provide a basis for a better understanding of the infection mechanism of CoVs and provide lipid targets for the development of new antiviral strategies. In this review, research advances on the role of lipids in different stages of viral infection and the possible targets of lipids that interfere with the viral life cycle are discussed.
Collapse
Affiliation(s)
- Cuiling Ding
- Department of Microbiology, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China; (C.D.); (Y.C.)
| | - Yibo Chen
- Department of Microbiology, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China; (C.D.); (Y.C.)
| | - Gen Miao
- Department of Nutrition and Food Hygiene, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China;
| | - Zhongtian Qi
- Department of Microbiology, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China; (C.D.); (Y.C.)
| |
Collapse
|
13
|
Dasgupta A, Gangai S, Narayan R, Kapoor S. Mapping the Lipid Signatures in COVID-19 Infection: Diagnostic and Therapeutic Solutions. J Med Chem 2023; 66:14411-14433. [PMID: 37899546 DOI: 10.1021/acs.jmedchem.3c01238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
The COVID-19 pandemic ignited research centered around the identification of robust biomarkers and therapeutic targets. SARS-CoV-2, the virus responsible, hijacks the metabolic machinery of the host cells. It relies on lipids and lipoproteins of host cells for entry, trafficking, immune evasion, viral replication, and exocytosis. The infection causes host cell lipid metabolic remodelling. Targeting lipid-based processes is thus a promising strategy for countering COVID-19. Here, we review the role of lipids in the different steps of the SARS-CoV-2 pathogenesis and identify lipid-centric targetable avenues. We discuss lipidome changes in infected patients and their relevance as potential clinical diagnostic or prognostic biomarkers. We summarize the emerging direct and indirect therapeutic approaches for targeting COVID-19 using lipid-inspired approaches. Given that viral protein-targeted therapies may become less effective due to mutations in emerging SARS-CoV-2 variants, lipid-inspired interventions may provide additional and perhaps better means of combating this and future pandemics.
Collapse
Affiliation(s)
- Aishi Dasgupta
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
- IIT-Bombay Monash Academy, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Shon Gangai
- School of Chemical and Materials Sciences (SCMS), Institute of Technology Goa, Farmagudi, Ponda, Goa 403401, India
| | - Rishikesh Narayan
- School of Chemical and Materials Sciences (SCMS), Institute of Technology Goa, Farmagudi, Ponda, Goa 403401, India
- School of Interdisciplinary Life Sciences (SILS), Institute of Technology Goa, Farmagudi, Ponda, Goa 403401, India
| | - Shobhna Kapoor
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
- IIT-Bombay Monash Academy, Indian Institute of Technology Bombay, Mumbai 400076, India
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima 739-8528, Japan
| |
Collapse
|
14
|
Abdel-Megied AM, Monreal IA, Zhao L, Apffel A, Aguilar HC, Jones JW. Characterization of the cellular lipid composition during SARS-CoV-2 infection. Anal Bioanal Chem 2023; 415:5269-5279. [PMID: 37438564 PMCID: PMC10981079 DOI: 10.1007/s00216-023-04825-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 07/14/2023]
Abstract
Emerging and re-emerging zoonotic viral diseases continue to significantly impact public health. Of particular interest are enveloped viruses (e.g., SARS-CoV-2, the causative pathogen of COVID-19), which include emerging pathogens of highest concern. Enveloped viruses contain a viral envelope that encapsulates the genetic material and nucleocapsid, providing structural protection and functional bioactivity. The viral envelope is composed of a coordinated network of glycoproteins and lipids. The lipid composition of the envelope consists of lipids preferentially appropriated from host cell membranes. Subsequently, changes to the host cell lipid metabolism and an accounting of what lipids are changed during viral infection provide an opportunity to fingerprint the host cell's response to the infecting virus. To address this issue, we comprehensively characterized the lipid composition of VeroE6-TMPRSS2 cells infected with SARS-CoV-2. Our approach involved using an innovative solid-phase extraction technique to efficiently extract cellular lipids combined with liquid chromatography coupled to high-resolution tandem mass spectrometry. We identified lipid changes in cells exposed to SARS-CoV-2, of which the ceramide to sphingomyelin ratio was most prominent. The identification of a lipid profile (i.e., lipid fingerprint) that is characteristic of cellular SARS-CoV-2 infection lays the foundation for targeting lipid metabolism pathways to further understand how enveloped viruses infect cells, identifying opportunities to aid antiviral and vaccine development.
Collapse
Affiliation(s)
- Ahmed M Abdel-Megied
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N. Pine Street, Room N721, Baltimore, MD, 21201, USA
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Kafr El-Sheikh University, Kafr El-Sheikh City, Egypt
| | - Isaac A Monreal
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | | | | | - Hector C Aguilar
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Jace W Jones
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N. Pine Street, Room N721, Baltimore, MD, 21201, USA.
| |
Collapse
|
15
|
Lekshmi VS, Asha K, Sanicas M, Asi A, Arya UM, Kumar B. PI3K/Akt/Nrf2 mediated cellular signaling and virus-host interactions: latest updates on the potential therapeutic management of SARS-CoV-2 infection. Front Mol Biosci 2023; 10:1158133. [PMID: 37325475 PMCID: PMC10267462 DOI: 10.3389/fmolb.2023.1158133] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/22/2023] [Indexed: 06/17/2023] Open
Abstract
The emergence and re-emergence of viral diseases, which cause significant global mortality and morbidity, are the major concerns of this decade. Of these, current research is focused majorly on the etiological agent of the COVID-19 pandemic, SARS-CoV-2. Understanding the host response and metabolic changes during viral infection may provide better therapeutic targets for the proper management of pathophysiological conditions associated with SARS-CoV-2 infection. We have achieved control over most emerging viral diseases; however, a lack of understanding of the underlying molecular events prevents us from exploring novel therapeutic targets, leaving us forced to witness re-emerging viral infections. SARS-CoV-2 infection is usually accompanied by oxidative stress, which leads to an overactive immune response, the release of inflammatory cytokines, increasing lipid production, and also alterations in the endothelial and mitochondrial functions. PI3K/Akt signaling pathway confers protection against oxidative injury by various cell survival mechanisms including Nrf2-ARE mediated antioxidant transcriptional response. SARS-CoV-2 is also reported to hijack this pathway for its survival within host and few studies have suggested the role of antioxidants in modulating the Nrf2 pathway to manage disease severity. This review highlights the interrelated pathophysiological conditions associated with SARS-CoV-2 infection and the host survival mechanisms mediated by PI3K/Akt/Nrf2 signaling pathways that can help ameliorate the severity of the disease and provide effective antiviral targets against SARS-CoV-2.
Collapse
Affiliation(s)
- V. S. Lekshmi
- Department of Antiviral Research, Institute of Advanced Virology, Thiruvananthapuram, Kerala, India
| | - Kumari Asha
- Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | | | - Abhila Asi
- Department of Antiviral Research, Institute of Advanced Virology, Thiruvananthapuram, Kerala, India
| | - U. M. Arya
- Department of Antiviral Research, Institute of Advanced Virology, Thiruvananthapuram, Kerala, India
| | - Binod Kumar
- Department of Antiviral Research, Institute of Advanced Virology, Thiruvananthapuram, Kerala, India
| |
Collapse
|
16
|
den Hartog I, Karu N, Zwep LB, Voorn GP, van de Garde EM, Hankemeier T, van Hasselt JC. Differential metabolic host response to pathogens associated with community-acquired pneumonia. Metabol Open 2023; 18:100239. [PMID: 37025095 PMCID: PMC10070890 DOI: 10.1016/j.metop.2023.100239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Background Metabolic changes induced by the host immune response to pathogens found in patients with community-acquired pneumonia (CAP) may provide insight into its pathogenesis. In this study, we characterized differences in the host metabolic response to common CAP-associated pathogens. Method Targeted metabolomic profiling was performed on serum samples obtained from hospitalized CAP patients (n = 119) at admission. We quantified 347 unique metabolites across multiple biochemical classes, including amines, acylcarnitines, and signaling lipids. We evaluated if unique associations between metabolite levels and specific CAP-associated pathogens could be identified. Results Several acylcarnitines were found to be elevated in C. burnetii and herpes simplex virus and lowered in M. pneumoniae as compared to other pathogens. Phenylalanine and kynurenine were found elevated in L. pneumophila as compared to other pathogens. S-methylcysteine was elevated in patients with M. pneumoniae, and these patients also showed lowered cortisol levels in comparison to almost all other pathogens. For the herpes simplex virus, we observed a unique elevation of eicosanoids and several amines. Many lysophosphatidylcholines showed an altered profile in C. burnetii versus S. pneumoniae, L. pneumophila, and respiratory syncytial virus. Finally, phosphatidylcholines were negatively affected by the influenza virus in comparison to S. pneumoniae. Conclusions In this exploratory analysis, metabolites from different biochemical classes were found to be altered in serum samples from patients with different CAP-associated pathogens, which may be used for hypothesis generation in studies on differences in pathogen host response and pathogenesis of CAP.
Collapse
Affiliation(s)
- Ilona den Hartog
- Division of Systems Pharmacology & Pharmacy, Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands
- Metabolomics and Analytics Centre, Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands
| | - Naama Karu
- Metabolomics and Analytics Centre, Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands
| | - Laura B. Zwep
- Division of Systems Pharmacology & Pharmacy, Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands
| | - G. Paul Voorn
- Department of Medical Microbiology and Immunology, St. Antonius Hospital, Nieuwegein, the Netherlands
| | - Ewoudt M.W. van de Garde
- Division of Pharmacoepidemiology and Clinical Pharmacology, Department of Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands
- Department of Clinical Pharmacy, St. Antonius Hospital, Nieuwegein, the Netherlands
| | - Thomas Hankemeier
- Metabolomics and Analytics Centre, Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands
| | - J.G. Coen van Hasselt
- Division of Systems Pharmacology & Pharmacy, Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands
- Corresponding author.
| |
Collapse
|
17
|
Doijen J, Temmerman K, Van den Eynde C, Diels A, Van den Broeck N, Van Gool M, Heo I, Jaensch S, Zwaagstra M, Diosa Toro M, Chiu W, De Jonghe S, Leyssen P, Bojkova D, Ciesek S, Cinatl J, Verschueren L, Buyck C, Van Kuppeveld F, Neyts J, Van Loock M, Van Damme E. Identification of Z-Tyr-Ala-CHN 2, a Cathepsin L Inhibitor with Broad-Spectrum Cell-Specific Activity against Coronaviruses, including SARS-CoV-2. Microorganisms 2023; 11:717. [PMID: 36985290 PMCID: PMC10055926 DOI: 10.3390/microorganisms11030717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/17/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
The ongoing COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is partly under control by vaccination. However, highly potent and safe antiviral drugs for SARS-CoV-2 are still needed to avoid development of severe COVID-19. We report the discovery of a small molecule, Z-Tyr-Ala-CHN2, which was identified in a cell-based antiviral screen. The molecule exerts sub-micromolar antiviral activity against SARS-CoV-2, SARS-CoV-1, and human coronavirus 229E. Time-of-addition studies reveal that Z-Tyr-Ala-CHN2 acts at the early phase of the infection cycle, which is in line with the observation that the molecule inhibits cathepsin L. This results in antiviral activity against SARS-CoV-2 in VeroE6, A549-hACE2, and HeLa-hACE2 cells, but not in Caco-2 cells or primary human nasal epithelial cells since the latter two cell types also permit entry via transmembrane protease serine subtype 2 (TMPRSS2). Given their cell-specific activity, cathepsin L inhibitors still need to prove their value in the clinic; nevertheless, the activity profile of Z-Tyr-Ala-CHN2 makes it an interesting tool compound for studying the biology of coronavirus entry and replication.
Collapse
Affiliation(s)
- Jordi Doijen
- Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Koen Temmerman
- Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340 Beerse, Belgium
| | | | - Annick Diels
- Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340 Beerse, Belgium
| | | | | | - Inha Heo
- Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Steffen Jaensch
- Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Marleen Zwaagstra
- Faculty of Veterinary Medicine, Yalelaan 1, Virology Division, Department of Biomolecular Health Sciences, Infectious Diseases and Immunology, Utrecht University, 3584 Utrecht, The Netherlands
| | - Mayra Diosa Toro
- Faculty of Veterinary Medicine, Yalelaan 1, Virology Division, Department of Biomolecular Health Sciences, Infectious Diseases and Immunology, Utrecht University, 3584 Utrecht, The Netherlands
| | - Winston Chiu
- Laboratory of Virology and Chemotherapy, Herestraat 49, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
| | - Steven De Jonghe
- Laboratory of Virology and Chemotherapy, Herestraat 49, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
| | - Pieter Leyssen
- Laboratory of Virology and Chemotherapy, Herestraat 49, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
| | - Denisa Bojkova
- Institute for Medical Virology, University Hospital, Paul-Ehrlich-Str. 40, Frankfurt University, 60596 Frankfurt am Main, Germany
| | - Sandra Ciesek
- Institute for Medical Virology, University Hospital, Paul-Ehrlich-Str. 40, Frankfurt University, 60596 Frankfurt am Main, Germany
| | - Jindrich Cinatl
- Institute for Medical Virology, University Hospital, Paul-Ehrlich-Str. 40, Frankfurt University, 60596 Frankfurt am Main, Germany
| | - Lore Verschueren
- Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Christophe Buyck
- Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Frank Van Kuppeveld
- Faculty of Veterinary Medicine, Yalelaan 1, Virology Division, Department of Biomolecular Health Sciences, Infectious Diseases and Immunology, Utrecht University, 3584 Utrecht, The Netherlands
| | - Johan Neyts
- Laboratory of Virology and Chemotherapy, Herestraat 49, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
| | - Marnix Van Loock
- Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Ellen Van Damme
- Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340 Beerse, Belgium
| |
Collapse
|
18
|
Martínez-Colón GJ, Ratnasiri K, Chen H, Jiang S, Zanley E, Rustagi A, Verma R, Chen H, Andrews JR, Mertz KD, Tzankov A, Azagury D, Boyd J, Nolan GP, Schürch CM, Matter MS, Blish CA, McLaughlin TL. SARS-CoV-2 infection drives an inflammatory response in human adipose tissue through infection of adipocytes and macrophages. Sci Transl Med 2022; 14:eabm9151. [PMID: 36137009 PMCID: PMC9529056 DOI: 10.1126/scitranslmed.abm9151] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 09/09/2022] [Indexed: 01/11/2023]
Abstract
Obesity, characterized by chronic low-grade inflammation of the adipose tissue, is associated with adverse coronavirus disease 2019 (COVID-19) outcomes, yet the underlying mechanism is unknown. To explore whether severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection of adipose tissue contributes to pathogenesis, we evaluated COVID-19 autopsy cases and deeply profiled the response of adipose tissue to SARS-CoV-2 infection in vitro. In COVID-19 autopsy cases, we identified SARS-CoV-2 RNA in adipocytes with an associated inflammatory infiltrate. We identified two distinct cellular targets of infection: adipocytes and a subset of inflammatory adipose tissue-resident macrophages. Mature adipocytes were permissive to SARS-CoV-2 infection; although macrophages were abortively infected, SARS-CoV-2 initiated inflammatory responses within both the infected macrophages and bystander preadipocytes. These data suggest that SARS-CoV-2 infection of adipose tissue could contribute to COVID-19 severity through replication of virus within adipocytes and through induction of local and systemic inflammation driven by infection of adipose tissue-resident macrophages.
Collapse
Affiliation(s)
| | - Kalani Ratnasiri
- Program in Immunology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Heping Chen
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Sizun Jiang
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA
| | - Elizabeth Zanley
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Arjun Rustagi
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Renu Verma
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Han Chen
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Jason R. Andrews
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Kirsten D. Mertz
- Institute of Pathology, Cantonal Hospital Baselland, 4410, Liestal, Switzerland
| | - Alexandar Tzankov
- Institute of Medical Genetics and Pathology, University Hospital of Basel, University of Basel, 4056, Basel, Switzerland
| | - Dan Azagury
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Jack Boyd
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Garry P. Nolan
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Christian M. Schürch
- Department of Pathology and Neuropathology, University Hospital and Comprehensive Cancer Center Tübingen, 72070, Tübingen, Germany
| | - Matthias S. Matter
- Institute of Medical Genetics and Pathology, University Hospital of Basel, University of Basel, 4056, Basel, Switzerland
| | - Catherine A. Blish
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Program in Immunology, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA
| | - Tracey L. McLaughlin
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| |
Collapse
|
19
|
Toelzer C, Gupta K, Yadav SKN, Hodgson L, Williamson MK, Buzas D, Borucu U, Powers K, Stenner R, Vasileiou K, Garzoni F, Fitzgerald D, Payré C, Gautam G, Lambeau G, Davidson AD, Verkade P, Frank M, Berger I, Schaffitzel C. The free fatty acid-binding pocket is a conserved hallmark in pathogenic β-coronavirus spike proteins from SARS-CoV to Omicron. SCIENCE ADVANCES 2022; 8:eadc9179. [PMID: 36417532 PMCID: PMC9683698 DOI: 10.1126/sciadv.adc9179] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 10/19/2022] [Indexed: 06/01/2023]
Abstract
As coronavirus disease 2019 (COVID-19) persists, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOCs) emerge, accumulating spike (S) glycoprotein mutations. S receptor binding domain (RBD) comprises a free fatty acid (FFA)-binding pocket. FFA binding stabilizes a locked S conformation, interfering with virus infectivity. We provide evidence that the pocket is conserved in pathogenic β-coronaviruses (β-CoVs) infecting humans. SARS-CoV, MERS-CoV, SARS-CoV-2, and VOCs bind the essential FFA linoleic acid (LA), while binding is abolished by one mutation in common cold-causing HCoV-HKU1. In the SARS-CoV S structure, LA stabilizes the locked conformation, while the open, infectious conformation is devoid of LA. Electron tomography of SARS-CoV-2-infected cells reveals that LA treatment inhibits viral replication, resulting in fewer deformed virions. Our results establish FFA binding as a hallmark of pathogenic β-CoV infection and replication, setting the stage for FFA-based antiviral strategies to overcome COVID-19.
Collapse
Affiliation(s)
- Christine Toelzer
- School of Biochemistry, University of Bristol, 1 Tankard’s Close, Bristol BS8 1TD, UK
- Bristol Synthetic Biology Centre BrisSynBio, 24 Tyndall Ave, Bristol BS8 1TQ, UK
| | - Kapil Gupta
- School of Biochemistry, University of Bristol, 1 Tankard’s Close, Bristol BS8 1TD, UK
- Bristol Synthetic Biology Centre BrisSynBio, 24 Tyndall Ave, Bristol BS8 1TQ, UK
- Imophoron Ltd., St. Philips Central, Albert Rd, Bristol BS2 0XJ, UK
| | - Sathish K. N. Yadav
- School of Biochemistry, University of Bristol, 1 Tankard’s Close, Bristol BS8 1TD, UK
- Bristol Synthetic Biology Centre BrisSynBio, 24 Tyndall Ave, Bristol BS8 1TQ, UK
| | - Lorna Hodgson
- School of Biochemistry, University of Bristol, 1 Tankard’s Close, Bristol BS8 1TD, UK
- Bristol Synthetic Biology Centre BrisSynBio, 24 Tyndall Ave, Bristol BS8 1TQ, UK
| | | | - Dora Buzas
- School of Biochemistry, University of Bristol, 1 Tankard’s Close, Bristol BS8 1TD, UK
- Bristol Synthetic Biology Centre BrisSynBio, 24 Tyndall Ave, Bristol BS8 1TQ, UK
- Max Planck Bristol Centre for Minimal Biology, Cantock’s Close, Bristol BS8 1TS, UK
| | - Ufuk Borucu
- School of Biochemistry, University of Bristol, 1 Tankard’s Close, Bristol BS8 1TD, UK
- Bristol Synthetic Biology Centre BrisSynBio, 24 Tyndall Ave, Bristol BS8 1TQ, UK
| | - Kyle Powers
- School of Biochemistry, University of Bristol, 1 Tankard’s Close, Bristol BS8 1TD, UK
- Bristol Synthetic Biology Centre BrisSynBio, 24 Tyndall Ave, Bristol BS8 1TQ, UK
| | - Richard Stenner
- School of Biochemistry, University of Bristol, 1 Tankard’s Close, Bristol BS8 1TD, UK
- Bristol Synthetic Biology Centre BrisSynBio, 24 Tyndall Ave, Bristol BS8 1TQ, UK
| | - Kate Vasileiou
- School of Biochemistry, University of Bristol, 1 Tankard’s Close, Bristol BS8 1TD, UK
- Bristol Synthetic Biology Centre BrisSynBio, 24 Tyndall Ave, Bristol BS8 1TQ, UK
| | - Frederic Garzoni
- Imophoron Ltd., St. Philips Central, Albert Rd, Bristol BS2 0XJ, UK
| | - Daniel Fitzgerald
- Halo Therapeutics Ltd., St. Philips Central, Albert Rd, Bristol BS2 0XJ, UK
| | - Christine Payré
- Université Côte d’Azur, Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne Sophia Antipolis, France
| | - Gunjan Gautam
- School of Biochemistry, University of Bristol, 1 Tankard’s Close, Bristol BS8 1TD, UK
- Bristol Synthetic Biology Centre BrisSynBio, 24 Tyndall Ave, Bristol BS8 1TQ, UK
| | - Gérard Lambeau
- Université Côte d’Azur, Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne Sophia Antipolis, France
| | - Andrew D. Davidson
- Cellular and Molecular Medicine, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Paul Verkade
- School of Biochemistry, University of Bristol, 1 Tankard’s Close, Bristol BS8 1TD, UK
- Bristol Synthetic Biology Centre BrisSynBio, 24 Tyndall Ave, Bristol BS8 1TQ, UK
| | | | - Imre Berger
- School of Biochemistry, University of Bristol, 1 Tankard’s Close, Bristol BS8 1TD, UK
- Bristol Synthetic Biology Centre BrisSynBio, 24 Tyndall Ave, Bristol BS8 1TQ, UK
- Max Planck Bristol Centre for Minimal Biology, Cantock’s Close, Bristol BS8 1TS, UK
- Halo Therapeutics Ltd., St. Philips Central, Albert Rd, Bristol BS2 0XJ, UK
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, UK
| | - Christiane Schaffitzel
- School of Biochemistry, University of Bristol, 1 Tankard’s Close, Bristol BS8 1TD, UK
- Bristol Synthetic Biology Centre BrisSynBio, 24 Tyndall Ave, Bristol BS8 1TQ, UK
- Halo Therapeutics Ltd., St. Philips Central, Albert Rd, Bristol BS2 0XJ, UK
| |
Collapse
|
20
|
Guntur VP, Nemkov T, de Boer E, Mohning MP, Baraghoshi D, Cendali FI, San-Millán I, Petrache I, D’Alessandro A. Signatures of Mitochondrial Dysfunction and Impaired Fatty Acid Metabolism in Plasma of Patients with Post-Acute Sequelae of COVID-19 (PASC). Metabolites 2022; 12:1026. [PMID: 36355108 PMCID: PMC9699059 DOI: 10.3390/metabo12111026] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 07/30/2023] Open
Abstract
Exercise intolerance is a major manifestation of post-acute sequelae of severe acute respiratory syndrome coronavirus infection (PASC, or "long-COVID"). Exercise intolerance in PASC is associated with higher arterial blood lactate accumulation and lower fatty acid oxidation rates during graded exercise tests to volitional exertion, suggesting altered metabolism and mitochondrial dysfunction. It remains unclear whether the profound disturbances in metabolism that have been identified in plasma from patients suffering from acute coronavirus disease 2019 (COVID-19) are also present in PASC. To bridge this gap, individuals with a history of previous acute COVID-19 infection that did not require hospitalization were enrolled at National Jewish Health (Denver, CO, USA) and were grouped into those that developed PASC (n = 29) and those that fully recovered (n = 16). Plasma samples from the two groups were analyzed via mass spectrometry-based untargeted metabolomics and compared against plasma metabolic profiles of healthy control individuals (n = 30). Observational demographic and clinical data were retrospectively abstracted from the medical record. Compared to plasma of healthy controls or individuals who recovered from COVID-19, PASC plasma exhibited significantly higher free- and carnitine-conjugated mono-, poly-, and highly unsaturated fatty acids, accompanied by markedly lower levels of mono-, di- and tricarboxylates (pyruvate, lactate, citrate, succinate, and malate), polyamines (spermine) and taurine. Plasma from individuals who fully recovered from COVID-19 exhibited an intermediary metabolic phenotype, with milder disturbances in fatty acid metabolism and higher levels of spermine and taurine. Of note, depletion of tryptophan-a hallmark of disease severity in COVID-19-is not normalized in PASC patients, despite normalization of kynurenine levels-a tryptophan metabolite that predicts mortality in hospitalized COVID-19 patients. In conclusion, PASC plasma metabolites are indicative of altered fatty acid metabolism and dysfunctional mitochondria-dependent lipid catabolism. These metabolic profiles obtained at rest are consistent with previously reported mitochondrial dysfunction during exercise, and may pave the way for therapeutic intervention focused on restoring mitochondrial fat-burning capacity.
Collapse
Affiliation(s)
- Vamsi P. Guntur
- Division of Pulmonary and Critical Care and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, CO 80206, USA
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Travis Nemkov
- Department of Biochemical and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Esther de Boer
- Division of Pulmonary and Critical Care and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, CO 80206, USA
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Michael P. Mohning
- Division of Pulmonary and Critical Care and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, CO 80206, USA
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - David Baraghoshi
- Department of Biostatistics, National Jewish Health, Denver, CO 80206, USA
| | - Francesca I. Cendali
- Department of Biochemical and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Inigo San-Millán
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Human Physiology and Nutrition, University of Colorado, Colorado Springs, CO 80918, USA
| | - Irina Petrache
- Division of Pulmonary and Critical Care and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, CO 80206, USA
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Angelo D’Alessandro
- Department of Biochemical and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
21
|
Baek YB, Kwon HJ, Sharif M, Lim J, Lee IC, Ryu YB, Lee JI, Kim JS, Lee YS, Kim DH, Park SI, Kim DK, Kim JS, Choy HE, Lee S, Choi HS, Osborne TF, Jeon TI, Cho KO. Therapeutic strategy targeting host lipolysis limits infection by SARS-CoV-2 and influenza A virus. Signal Transduct Target Ther 2022; 7:367. [PMID: 36253361 PMCID: PMC9575645 DOI: 10.1038/s41392-022-01223-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 09/21/2022] [Accepted: 10/09/2022] [Indexed: 11/08/2022] Open
Abstract
The biosynthesis of host lipids and/or lipid droplets (LDs) has been studied extensively as a putative therapeutic target in diverse viral infections. However, directly targeting the LD lipolytic catabolism in virus-infected cells has not been widely investigated. Here, we show the linkage of the LD-associated lipase activation to the breakdown of LDs for the generation of free fatty acids (FFAs) at the late stage of diverse RNA viral infections, which represents a broad-spectrum antiviral target. Dysfunction of membrane transporter systems due to virus-induced cell injury results in intracellular malnutrition at the late stage of infection, thereby making the virus more dependent on the FFAs generated from LD storage for viral morphogenesis and as a source of energy. The replication of SARS-CoV-2 and influenza A virus (IAV), which is suppressed by the treatment with LD-associated lipases inhibitors, is rescued by supplementation with FFAs. The administration of lipase inhibitors, either individually or in a combination with virus-targeting drugs, protects mice from lethal IAV infection and mitigates severe lung lesions in SARS-CoV-2-infected hamsters. Moreover, the lipase inhibitors significantly reduce proinflammatory cytokine levels in the lungs of SARS-CoV-2- and IAV-challenged animals, a cause of a cytokine storm important for the critical infection or mortality of COVID-19 and IAV patients. In conclusion, the results reveal that lipase-mediated intracellular LD lipolysis is commonly exploited to facilitate RNA virus replication and furthermore suggest that pharmacological inhibitors of LD-associated lipases could be used to curb current COVID-19- and future pandemic outbreaks of potentially troublesome RNA virus infection in humans.
Collapse
Affiliation(s)
- Yeong-Bin Baek
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Hyung-Jun Kwon
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience & Biotechnology, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea
| | - Muhammad Sharif
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Jeongah Lim
- Department of Chemistry, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - In-Chul Lee
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience & Biotechnology, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea
| | - Young Bae Ryu
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience & Biotechnology, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea
| | - Jae-In Lee
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience & Biotechnology, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea
| | - Ji-Sun Kim
- Korean Collection for Type Cultures, Korea Research Institute of Bioscience & Biotechnology, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea
| | - Young-Seung Lee
- Department of Animal Science, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Dong-Hoon Kim
- Department of Pharmacology, Korea University College of Medicine, Seoul, 02841, Republic of Korea
| | - Sang-Ik Park
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Don-Kyu Kim
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Jeong-Sun Kim
- Department of Chemistry, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Hyon E Choy
- Department of Microbiology, Chonnam National University Medical School, Gwangju, 61486, Republic of Korea
| | - Sunwoo Lee
- Department of Chemistry, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Hueng-Sik Choi
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Timothy F Osborne
- Institute for Fundamental Biomedical Research, Department of Medicine and Biological Chemistry, Johns Hopkins University School of Medicine, St. Petersburg, FL, 33701, USA
| | - Tae-Il Jeon
- Department of Animal Science, Chonnam National University, Gwangju, 61186, Republic of Korea.
| | - Kyoung-Oh Cho
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Chonnam National University, Gwangju, 61186, Republic of Korea.
| |
Collapse
|
22
|
Himbert S, Rheinstädter MC. Structural and mechanical properties of the red blood cell's cytoplasmic membrane seen through the lens of biophysics. Front Physiol 2022; 13:953257. [PMID: 36171967 PMCID: PMC9510598 DOI: 10.3389/fphys.2022.953257] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/15/2022] [Indexed: 11/27/2022] Open
Abstract
Red blood cells (RBCs) are the most abundant cell type in the human body and critical suppliers of oxygen. The cells are characterized by a simple structure with no internal organelles. Their two-layered outer shell is composed of a cytoplasmic membrane (RBC cm ) tethered to a spectrin cytoskeleton allowing the cell to be both flexible yet resistant against shear stress. These mechanical properties are intrinsically linked to the molecular composition and organization of their shell. The cytoplasmic membrane is expected to dominate the elastic behavior on small, nanometer length scales, which are most relevant for cellular processes that take place between the fibrils of the cytoskeleton. Several pathologies have been linked to structural and compositional changes within the RBC cm and the cell's mechanical properties. We review current findings in terms of RBC lipidomics, lipid organization and elastic properties with a focus on biophysical techniques, such as X-ray and neutron scattering, and Molecular Dynamics simulations, and their biological relevance. In our current understanding, the RBC cm 's structure is patchy, with nanometer sized liquid ordered and disordered lipid, and peptide domains. At the same time, it is surprisingly soft, with bending rigidities κ of 2-4 kBT. This is in strong contrast to the current belief that a high concentration of cholesterol results in stiff membranes. This extreme softness is likely the result of an interaction between polyunsaturated lipids and cholesterol, which may also occur in other biological membranes. There is strong evidence in the literature that there is no length scale dependence of κ of whole RBCs.
Collapse
Affiliation(s)
- Sebastian Himbert
- Department of Physics and Astronomy, McMaster University, Hamilton, ON, Canada
- Origins Institute, McMaster University, Hamilton, ON, Canada
| | - Maikel C. Rheinstädter
- Department of Physics and Astronomy, McMaster University, Hamilton, ON, Canada
- Origins Institute, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
23
|
Sbarigia C, Vardanyan D, Buccini L, Tacconi S, Dini L. SARS-CoV-2 and extracellular vesicles: An intricate interplay in pathogenesis, diagnosis and treatment. FRONTIERS IN NANOTECHNOLOGY 2022. [DOI: 10.3389/fnano.2022.987034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Extracellular vesicles (EVs) are widely recognized as intercellular communication mediators. Among the different biological processes, EVs play a role in viral infections, supporting virus entrance and spread into host cells and immune response evasion. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection became an urgent public health issue with significant morbidity and mortality worldwide, being responsible for the current COVID-19 pandemic. Since EVs are implicated in SARS-CoV-2 infection in a morphological and functional level, they have gained growing interest for a better understanding of SARS-CoV-2 pathogenesis and represent possible diagnostic tools to track the disease progression. Furthermore, thanks to their biocompatibility and efficient immune activation, the use of EVs may also represent a promising strategy for the development of new therapeutic strategies against COVID-19. In this review, we explore the role of EVs in viral infections with a focus on SARS-CoV-2 biology and pathogenesis, considering recent morphometric studies. The common biogenesis aspects and structural similarities between EVs and SARS-CoV-2 will be examined, offering a panoramic of their multifaceted interplay and presenting EVs as a machinery supporting the viral cycle. On the other hand, EVs may be exploited as early diagnostic biomarkers and efficient carriers for drug delivery and vaccination, and ongoing studies will be reviewed to highlight EVs as potential alternative therapeutic strategies against SARS-CoV-2 infection.
Collapse
|
24
|
Lai M, De Carli A, Filipponi C, Iacono E, La Rocca V, Lottini G, Piazza CR, Quaranta P, Sidoti M, Pistello M, Freer G. Lipid balance remodelling by human positive-strand RNA viruses and the contribution of lysosomes. Antiviral Res 2022; 206:105398. [PMID: 35985406 DOI: 10.1016/j.antiviral.2022.105398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/03/2022] [Accepted: 08/10/2022] [Indexed: 11/27/2022]
Abstract
A marked reorganization of internal membranes occurs in the cytoplasm of cells infected by single stranded positive-sense RNA viruses. Most cell compartments change their asset to provide lipids for membrane rearrangement into replication organelles, where to concentrate viral proteins and enzymes while hiding from pathogen pattern recognition molecules. Because the endoplasmic reticulum is a central hub for lipid metabolism, when viruses hijack the organelle to form their replication organelles, a cascade of events change the intracellular environment. This results in a marked increase in lipid consumption, both by lipolysis and lipophagy of lipid droplets. In addition, lipids are used to produce energy for viral replication. At the same time, inflammation is started by signalling lipids, where lysosomal processing plays a relevant role. This review is aimed at providing an overview on what takes place after human class IV viruses have released their genome into the host cell and the consequences on lipid metabolism, including lysosomes.
Collapse
Affiliation(s)
- Michele Lai
- Centro Retrovirus, Dipartimento di Ricerca Traslazionale, Strada Statale del Brennero 2, University of Pisa, Pisa, 56127, Italy.
| | - Alessandro De Carli
- Centro Retrovirus, Dipartimento di Ricerca Traslazionale, Strada Statale del Brennero 2, University of Pisa, Pisa, 56127, Italy; Department of Medical Biotechnologies, University of Siena, Italy.
| | - Carolina Filipponi
- Centro Retrovirus, Dipartimento di Ricerca Traslazionale, Strada Statale del Brennero 2, University of Pisa, Pisa, 56127, Italy.
| | - Elena Iacono
- Centro Retrovirus, Dipartimento di Ricerca Traslazionale, Strada Statale del Brennero 2, University of Pisa, Pisa, 56127, Italy.
| | - Veronica La Rocca
- Centro Retrovirus, Dipartimento di Ricerca Traslazionale, Strada Statale del Brennero 2, University of Pisa, Pisa, 56127, Italy; Institute of Life Sciences, Sant'Anna School of Advanced Studies, Pisa, Italy.
| | - Giulia Lottini
- Centro Retrovirus, Dipartimento di Ricerca Traslazionale, Strada Statale del Brennero 2, University of Pisa, Pisa, 56127, Italy; Department of Medical Biotechnologies, University of Siena, Italy.
| | - Carmen Rita Piazza
- Centro Retrovirus, Dipartimento di Ricerca Traslazionale, Strada Statale del Brennero 2, University of Pisa, Pisa, 56127, Italy; Department of Medical Biotechnologies, University of Siena, Italy.
| | - Paola Quaranta
- Centro Retrovirus, Dipartimento di Ricerca Traslazionale, Strada Statale del Brennero 2, University of Pisa, Pisa, 56127, Italy.
| | - Maria Sidoti
- Centro Retrovirus, Dipartimento di Ricerca Traslazionale, Strada Statale del Brennero 2, University of Pisa, Pisa, 56127, Italy.
| | - Mauro Pistello
- Centro Retrovirus, Dipartimento di Ricerca Traslazionale, Strada Statale del Brennero 2, University of Pisa, Pisa, 56127, Italy.
| | - Giulia Freer
- Centro Retrovirus, Dipartimento di Ricerca Traslazionale, Strada Statale del Brennero 2, University of Pisa, Pisa, 56127, Italy.
| |
Collapse
|
25
|
Transcriptome Analysis Revealed Inhibition of Lipid Metabolism in 2-D Porcine Enteroids by Infection with Porcine Epidemic Diarrhea Virus. Vet Microbiol 2022; 273:109525. [DOI: 10.1016/j.vetmic.2022.109525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 07/20/2022] [Accepted: 07/31/2022] [Indexed: 11/16/2022]
|
26
|
Yan B, Yuan S, Cao J, Fung K, Lai PM, Yin F, Sze KH, Qin Z, Xie Y, Ye ZW, Yuen TTT, Chik KKH, Tsang JOL, Zou Z, Chan CCY, Luo C, Cai JP, Chan KH, Chung TWH, Tam AR, Chu H, Jin DY, Hung IFN, Yuen KY, Kao RYT, Chan JFW. Phosphatidic acid phosphatase 1 impairs SARS-CoV-2 replication by affecting the glycerophospholipid metabolism pathway. Int J Biol Sci 2022; 18:4744-4755. [PMID: 35874954 PMCID: PMC9305268 DOI: 10.7150/ijbs.73057] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 05/27/2022] [Indexed: 11/08/2022] Open
Abstract
Viruses exploit the host lipid metabolism machinery to achieve efficient replication. We herein characterize the lipids profile reprogramming in vitro and in vivo using liquid chromatography-mass spectrometry-based untargeted lipidomics. The lipidome of SARS-CoV-2-infected Caco-2 cells was markedly different from that of mock-infected samples, with most of the changes involving downregulation of ceramides. In COVID-19 patients' plasma samples, a total of 54 lipids belonging to 12 lipid classes that were significantly perturbed compared to non-infected control subjects' plasma samples were identified. Among these 12 lipid classes, ether-linked phosphatidylcholines, ether-linked phosphatidylethanolamines, phosphatidylcholines, and ceramides were the four most perturbed. Pathway analysis revealed that the glycerophospholipid, sphingolipid, and ether lipid metabolisms pathway were the most significantly perturbed host pathways. Phosphatidic acid phosphatases (PAP) were involved in all three pathways and PAP-1 deficiency significantly suppressed SARS-CoV-2 replication. siRNA knockdown of LPIN2 and LPIN3 resulted in significant reduction of SARS-CoV-2 load. In summary, these findings characterized the host lipidomic changes upon SARS-CoV-2 infection and identified PAP-1 as a potential target for intervention for COVID-19.
Collapse
Affiliation(s)
- Bingpeng Yan
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Shuofeng Yuan
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Jianli Cao
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Kingchun Fung
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Pok-Man Lai
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Feifei Yin
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, Hainan, China.,Academician Workstation of Hainan Province, Hainan Medical University, Haikou, Hainan, China.,Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China.,Department of Pathogen Biology, Hainan Medical University, Haikou, Hainan, China
| | - Kong-Hung Sze
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China.,Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China
| | - Zhenzhi Qin
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Yubin Xie
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Zi-Wei Ye
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Terrence Tsz-Tai Yuen
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Kenn Ka-Heng Chik
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China.,Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China
| | - Jessica Oi-Ling Tsang
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China.,Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China
| | - Zijiao Zou
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Chris Chun-Yiu Chan
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Cuiting Luo
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Jian-Piao Cai
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Kwok-Hung Chan
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China.,Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China
| | - Tom Wai-Hing Chung
- Department of Microbiology, Queen Mary Hospital, Pokfulam, Hong Kong Special Administrative Region, China
| | - Anthony Raymond Tam
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Hin Chu
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China.,Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China.,Department of Infectious Disease and Microbiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Dong-Yan Jin
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China.,School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China.,Guangzhou Laboratory, Guangdong Province, China
| | - Ivan Fan-Ngai Hung
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China.,Department of Infectious Disease and Microbiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Kwok-Yung Yuen
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China.,Academician Workstation of Hainan Province, Hainan Medical University, Haikou, Hainan, China.,Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China.,Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China.,Department of Microbiology, Queen Mary Hospital, Pokfulam, Hong Kong Special Administrative Region, China.,Department of Infectious Disease and Microbiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China.,Guangzhou Laboratory, Guangdong Province, China
| | - Richard Yi-Tsun Kao
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China.,Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China
| | - Jasper Fuk-Woo Chan
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China.,Academician Workstation of Hainan Province, Hainan Medical University, Haikou, Hainan, China.,Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China.,Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China.,Department of Microbiology, Queen Mary Hospital, Pokfulam, Hong Kong Special Administrative Region, China.,Department of Infectious Disease and Microbiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China.,Guangzhou Laboratory, Guangdong Province, China
| |
Collapse
|
27
|
Plasma Oxylipins and Their Precursors Are Strongly Associated with COVID-19 Severity and with Immune Response Markers. Metabolites 2022; 12:metabo12070619. [PMID: 35888743 PMCID: PMC9319897 DOI: 10.3390/metabo12070619] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/25/2022] [Accepted: 06/27/2022] [Indexed: 12/13/2022] Open
Abstract
COVID-19 is characterised by a dysregulated immune response, that involves signalling lipids acting as mediators of the inflammatory process along the innate and adaptive phases. To promote understanding of the disease biochemistry and provide targets for intervention, we applied a range of LC-MS platforms to analyse over 100 plasma samples from patients with varying COVID-19 severity and with detailed clinical information on inflammatory responses (>30 immune markers). The second publication in a series reports the results of quantitative LC-MS/MS profiling of 63 small lipids including oxylipins, free fatty acids, and endocannabinoids. Compared to samples taken from ward patients, intensive care unit (ICU) patients had 2−4-fold lower levels of arachidonic acid (AA) and its cyclooxygenase-derived prostanoids, as well as lipoxygenase derivatives, exhibiting negative correlations with inflammation markers. The same derivatives showed 2−5-fold increases in recovering ward patients, in paired comparison to early hospitalisation. In contrast, ICU patients showed elevated levels of oxylipins derived from poly-unsaturated fatty acids (PUFA) by non-enzymatic peroxidation or activity of soluble epoxide hydrolase (sEH), and these oxylipins positively correlated with markers of macrophage activation. The deficiency in AA enzymatic products and the lack of elevated intermediates of pro-resolving mediating lipids may result from the preference of alternative metabolic conversions rather than diminished stores of PUFA precursors. Supporting this, ICU patients showed 2-to-11-fold higher levels of linoleic acid (LA) and the corresponding fatty acyl glycerols of AA and LA, all strongly correlated with multiple markers of excessive immune response. Our results suggest that the altered oxylipin metabolism disrupts the expected shift from innate immune response to resolution of inflammation.
Collapse
|
28
|
Kumar P, Mathayan M, Smieszek SP, Przychodzen BP, Koprivica V, Birznieks G, Polymeropoulos MH, Prabhakar BS. Identification of potential COVID-19 treatment compounds which inhibit SARS Cov2 prototypic, Delta and Omicron variant infection. Virology 2022; 572:64-71. [PMID: 35598394 PMCID: PMC9108900 DOI: 10.1016/j.virol.2022.05.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 05/10/2022] [Accepted: 05/10/2022] [Indexed: 01/17/2023]
Abstract
Recurrent waves of COVID19 remain a major global health concern. Repurposing either FDA-approved or clinically advanced drug candidates can save time and effort required for validating the safety profile and FDA approval. However, the selection of appropriate screening approaches is key to identifying novel candidate drugs with a higher probability of clinical success. Here, we report a rapid, stratified two-step screening approach using pseudovirus entry inhibition assay followed by an infectious prototypic SARS CoV2 cytotoxic effect inhibition assay in multiple cell lines. Using this approach, we screened a library of FDA-approved and clinical-stage drugs and identified four compounds, apilimod, berbamine, cepharanthine and (S)-crizotinib which potently inhibited SARS CoV2-induced cell death. Importantly, these drugs exerted similar inhibitory effect on the delta and omicron variants although they replicated less efficiently than the prototypic strain. Apilimod is currently under clinical trial (NCT04446377) for COVID19 supporting the validity and robustness of our screening approach.
Collapse
Affiliation(s)
- Prabhakaran Kumar
- Department of Microbiology and Immunology, University of Illinois-College of Medicine, Chicago, IL, USA
| | - Manikannan Mathayan
- Department of Microbiology and Immunology, University of Illinois-College of Medicine, Chicago, IL, USA
| | | | | | - Vuk Koprivica
- Vanda Pharmaceuticals Inc., Washington, DC, 20037, USA
| | | | | | - Bellur S. Prabhakar
- Department of Microbiology and Immunology, University of Illinois-College of Medicine, Chicago, IL, USA,Corresponding author. Department of Microbiology and Immunology University of Illinois College of Medicine Room E-705, (M/C 790) 835 S. Wolcott Ave, Chicago, IL, 60612, USA
| |
Collapse
|
29
|
Bennet S, Kaufmann M, Takami K, Sjaarda C, Douchant K, Moslinger E, Wong H, Reed DE, Ellis AK, Vanner S, Colautti RI, Sheth PM. Small-molecule metabolome identifies potential therapeutic targets against COVID-19. Sci Rep 2022; 12:10029. [PMID: 35705626 PMCID: PMC9200216 DOI: 10.1038/s41598-022-14050-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 05/31/2022] [Indexed: 11/09/2022] Open
Abstract
Respiratory viruses are transmitted and acquired via the nasal mucosa, and thereby may influence the nasal metabolome composed of biochemical products produced by both host cells and microbes. Studies of the nasal metabolome demonstrate virus-specific changes that sometimes correlate with viral load and disease severity. Here, we evaluate the nasopharyngeal metabolome of COVID-19 infected individuals and report several small molecules that may be used as potential therapeutic targets. Specimens were tested by qRT-PCR with target primers for three viruses: Influenza A (INFA), respiratory syncytial virus (RSV), and SARS-CoV-2, along with unaffected controls. The nasopharyngeal metabolome was characterized using an LC–MS/MS-based screening kit capable of quantifying 141 analytes. A machine learning model identified 28 discriminating analytes and correctly categorized patients with a viral infection with an accuracy of 96% (R2 = 0.771, Q2 = 0.72). A second model identified 5 analytes to differentiate COVID19-infected patients from those with INFA or RSV with an accuracy of 85% (R2 = 0.442, Q2 = 0.301). Specifically, Lysophosphatidylcholines-a-C18:2 (LysoPCaC18:2) concentration was significantly increased in COVID19 patients (P < 0.0001), whereas beta-hydroxybutyric acid, Methionine sulfoxide, succinic acid, and carnosine concentrations were significantly decreased (P < 0.0001). This study demonstrates that COVID19 infection results in a unique nasopharyngeal metabolomic signature with carnosine and LysoPCaC18:2 as potential therapeutic targets.
Collapse
Affiliation(s)
- Sean Bennet
- Gastrointestinal Diseases Research Unit (GIDRU), Kingston Health Sciences Centre, 76 Stuart St., Kingston, ON, K7L 2V7, Canada
| | - Martin Kaufmann
- Gastrointestinal Diseases Research Unit (GIDRU), Kingston Health Sciences Centre, 76 Stuart St., Kingston, ON, K7L 2V7, Canada
| | - Kaede Takami
- Gastrointestinal Diseases Research Unit (GIDRU), Kingston Health Sciences Centre, 76 Stuart St., Kingston, ON, K7L 2V7, Canada
| | - Calvin Sjaarda
- Department of Psychiatry, Queen's University, Kingston, ON, Canada
| | - Katya Douchant
- Gastrointestinal Diseases Research Unit (GIDRU), Kingston Health Sciences Centre, 76 Stuart St., Kingston, ON, K7L 2V7, Canada
| | - Emily Moslinger
- Gastrointestinal Diseases Research Unit (GIDRU), Kingston Health Sciences Centre, 76 Stuart St., Kingston, ON, K7L 2V7, Canada.,Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON, Canada
| | - Henry Wong
- Division of Microbiology, Kingston Health Sciences Centre, Kingston, ON, Canada
| | - David E Reed
- Gastrointestinal Diseases Research Unit (GIDRU), Kingston Health Sciences Centre, 76 Stuart St., Kingston, ON, K7L 2V7, Canada
| | - Anne K Ellis
- Division of Allergy and Immunology, Department of Medicine, Queen's University, Kingston, ON, Canada
| | - Stephen Vanner
- Gastrointestinal Diseases Research Unit (GIDRU), Kingston Health Sciences Centre, 76 Stuart St., Kingston, ON, K7L 2V7, Canada
| | | | - Prameet M Sheth
- Gastrointestinal Diseases Research Unit (GIDRU), Kingston Health Sciences Centre, 76 Stuart St., Kingston, ON, K7L 2V7, Canada. .,Division of Microbiology, Kingston Health Sciences Centre, Kingston, ON, Canada. .,Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON, Canada.
| |
Collapse
|
30
|
Dua P, Mishra A, Reeta KH. Lp-PLA2 as a biomarker and its possible associations with SARS-CoV-2 infection. Biomark Med 2022; 16:821-832. [PMID: 35694871 PMCID: PMC9196258 DOI: 10.2217/bmm-2021-1129] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Lp-PLA2 is an enzyme encoded by the PLA2G7 gene located at chromosome 6p12-21, which is included in different signal transduction pathways. The potential of serum levels of Lp-PLA2 as a marker of inflammation quantifying cardio-metabolic risk, renal impairment and oxidative stress has been explored in earlier studies. It has also been used in chronic obstructive pulmonary disease, hepatic disease, metabolic conditions and exercise tolerance. Additionally, it shows promising evidence for the assessment of risk for certain cardiovascular conditions in otherwise seemingly healthy individuals. COVID-19 has affected life and the economy globally. The identification of biomarkers to assess the sickness and treatment plan is the need of the hour. This review summarizes the pathophysiological inter-relationship between serum levels of Lp-PLA2 and COVID-19. The authors hypothesize that the estimation of Lp-PLA2 levels may help in the early identification of risk and thus may play a beneficial role in the proactive management of COVID-19.
Collapse
Affiliation(s)
- Pamila Dua
- Department of Pharmacology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Archana Mishra
- Department of Pharmacology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - K H Reeta
- Department of Pharmacology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| |
Collapse
|
31
|
Ahmed N, Ahmed N, Pezacki JP. miR-383 Regulates Hepatic Lipid Homeostasis and Response to Dengue Virus Infection. ACS Infect Dis 2022; 8:928-941. [PMID: 35254825 DOI: 10.1021/acsinfecdis.1c00470] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Recently, microRNAs (miRNAs), as endogenous noncoding RNAs that inhibit mRNA translation, have been identified to broadly possess functional roles in regulating cellular signaling and metabolic processes due to their chemical and biological properties. In addition, they have emerged to be of critical importance in modulating host-virus interactions, especially for RNA viruses. Herein, we discovered that miR-383-5p targets certain lipid and cholesterol biosynthetic pathways and restricts Dengue virus (DENV) infection in hepatic cells. Global transcriptomics analysis of Huh7 human hepatoma cells overexpressing miR-383-5p revealed enrichment of lipid and cholesterol metabolic processes. Bioinformatics analysis of genes repressed in miR-383-5p overexpressing cells divulged the repression of a key target PLA2G4A, a pro-viral host factor essential for the production of infectious DENV particles. Our study demonstrated the effectiveness of miRNA mimics as tools to study cellular signaling pathways that contribute to viral pathogenesis. Overall, our study identifies miR-383-5p as an interesting host factor during DENV propagation and highlights a potential therapeutic role in the regulation of hepatic lipid metabolism and an antiviral response to DENV.
Collapse
Affiliation(s)
- Nadine Ahmed
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Noreen Ahmed
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - John Paul Pezacki
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
32
|
Cortes GM, Marcialis MA, Bardanzellu F, Corrias A, Fanos V, Mussap M. Inflammatory Bowel Disease and COVID-19: How Microbiomics and Metabolomics Depict Two Sides of the Same Coin. Front Microbiol 2022; 13:856165. [PMID: 35391730 PMCID: PMC8981987 DOI: 10.3389/fmicb.2022.856165] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 02/21/2022] [Indexed: 12/11/2022] Open
Abstract
The integrity of the gastrointestinal tract structure and function is seriously compromised by two pathological conditions sharing, at least in part, several pathogenetic mechanisms: inflammatory bowel diseases (IBD) and coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. IBD and COVID-19 are marked by gut inflammation, intestinal barrier breakdown, resulting in mucosal hyperpermeability, gut bacterial overgrowth, and dysbiosis together with perturbations in microbial and human metabolic pathways originating changes in the blood and fecal metabolome. This review compared the most relevant metabolic and microbial alterations reported from the literature in patients with IBD with those in patients with COVID-19. In both diseases, gut dysbiosis is marked by the prevalence of pro-inflammatory bacterial species and the shortfall of anti-inflammatory species; most studies reported the decrease in Firmicutes, with a specific decrease in obligately anaerobic producers short-chain fatty acids (SCFAs), such as Faecalibacterium prausnitzii. In addition, Escherichia coli overgrowth has been observed in IBD and COVID-19, while Akkermansia muciniphila is depleted in IBD and overexpressed in COVID-19. In patients with COVID-19, gut dysbiosis continues after the clearance of the viral RNA from the upper respiratory tract and the resolution of clinical symptoms. Finally, we presented and discussed the impact of gut dysbiosis, inflammation, oxidative stress, and increased energy demand on metabolic pathways involving key metabolites, such as tryptophan, phenylalanine, histidine, glutamine, succinate, citrate, and lipids.
Collapse
Affiliation(s)
- Gian Mario Cortes
- Neonatal Intensive Care Unit, Department of Surgical Sciences, University of Cagliari, Monserrato, Italy
| | - Maria Antonietta Marcialis
- Neonatal Intensive Care Unit, Department of Surgical Sciences, University of Cagliari, Monserrato, Italy
| | - Flaminia Bardanzellu
- Neonatal Intensive Care Unit, Department of Surgical Sciences, University of Cagliari, Monserrato, Italy
| | - Angelica Corrias
- Neonatal Intensive Care Unit, Department of Surgical Sciences, University of Cagliari, Monserrato, Italy
| | - Vassilios Fanos
- Neonatal Intensive Care Unit, Department of Surgical Sciences, University of Cagliari, Monserrato, Italy
| | - Michele Mussap
- Laboratory Medicine, Department of Surgical Sciences, School of Medicine, University of Cagliari, Monserrato, Italy
| |
Collapse
|
33
|
Bardelčíková A, Miroššay A, Šoltýs J, Mojžiš J. Therapeutic and prophylactic effect of flavonoids in post-COVID-19 therapy. Phytother Res 2022; 36:2042-2060. [PMID: 35302260 PMCID: PMC9111001 DOI: 10.1002/ptr.7436] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/16/2022] [Accepted: 02/21/2022] [Indexed: 12/17/2022]
Abstract
The high incidence of post-covid symptoms in humans confirms the need for effective treatment. Due to long-term complications across several disciplines, special treatment programs emerge for affected patients, emphasizing multidisciplinary care. For these reasons, we decided to look at current knowledge about possible long-term complications of COVID-19 disease and then present the effect of flavonoids, which could help alleviate or eliminate complications in humans after overcoming the COVID-19 infection. Based on articles published from 2003 to 2021, we summarize the flavonoids-based molecular mechanisms associated with the post-COVID-19 syndrome and simultaneously provide a complex view regarding their prophylactic and therapeutic potential. Review clearly sorts out the outcome of post-COVID-19 syndrome according particular body systems. The conclusion is that flavonoids play an important role in prevention of many diseases. We suggest that flavonoids as critical nutritional supplements, are suitable for the alleviation and shortening of the period associated with the post-COVID-19 syndrome. The most promising flavonoid with noteworthy therapeutic and prophylactic effect appears to be quercetin.
Collapse
Affiliation(s)
- Annamária Bardelčíková
- Department of Pharmacology, Medical Faculty of University of Pavol Jozef Šafárik in Košice, Košice, Slovak Republic
| | - Andrej Miroššay
- Department of Pharmacology, Medical Faculty of University of Pavol Jozef Šafárik in Košice, Košice, Slovak Republic
| | - Jindřich Šoltýs
- Institute of Parasitology, Slovak Academy of Science, Košice, Slovak Republic
| | - Ján Mojžiš
- Department of Pharmacology, Medical Faculty of University of Pavol Jozef Šafárik in Košice, Košice, Slovak Republic
| |
Collapse
|
34
|
Rezaei A, Neshat S, Heshmat-Ghahdarijani K. Alterations of Lipid Profile in COVID-19: A Narrative Review. Curr Probl Cardiol 2022; 47:100907. [PMID: 34272088 PMCID: PMC8161768 DOI: 10.1016/j.cpcardiol.2021.100907] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 05/20/2021] [Indexed: 02/08/2023]
Abstract
The COVID-19 pandemic has led to over 100 million infections and over 3 million deaths worldwide. Understanding its pathogenesis is crucial to guide prognostic and therapeutic implications. Viral infections are known to alter the lipid profile and metabolism of their host cells, similar to the case with MERS and SARS-CoV-2002. Since lipids play various metabolic roles, studying lipid profile alterations in COVID-19 is an inevitable step as an attempt to achieve better therapeutic strategies, as well as a potential prognostic factor in the course of this disease. Several studies have reported changes in lipid profile associated with COVID-19. The most frequently reported changes are a decline in serum cholesterol and ApoA1 levels and elevated triglycerides. The hyper-inflammatory state mediated by the Cytokine storm disturbs several fundamental lipid biosynthesis pathways. Virus replication is a process that drastically changes the host cell's lipid metabolism program and overuses cell lipid resources. Lower HDL-C and ApoA1 levels are associated with higher severity and mortality rates and with higher levels of inflammatory markers. Studies suggest that arachidonic acid omega-3 derivatives might help modulate hyper-inflammation and cytokine storm resulting from pulmonary involvement. Also, statins have been shown to be beneficial when administered after COVID-19 diagnosis via unclear mechanisms probably associated with anti-inflammatory effects and HDL-C rising effects.
Collapse
Affiliation(s)
- Abbas Rezaei
- Department of Internal Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Sina Neshat
- Department of Internal Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Kiyan Heshmat-Ghahdarijani
- Heart Failure Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran,Corresponding author: Kiyan Heshmat-Ghahdarijani,MD, Heart Failure Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran Tel: + 98 (31)36680048 Fax: +98 (31)3912862
| |
Collapse
|
35
|
Valdés A, Moreno LO, Rello SR, Orduña A, Bernardo D, Cifuentes A. Metabolomics study of COVID-19 patients in four different clinical stages. Sci Rep 2022; 12:1650. [PMID: 35102215 PMCID: PMC8803913 DOI: 10.1038/s41598-022-05667-0] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 12/13/2021] [Indexed: 12/22/2022] Open
Abstract
SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) is the coronavirus strain causing the respiratory pandemic COVID-19 (coronavirus disease 2019). To understand the pathobiology of SARS-CoV-2 in humans it is necessary to unravel the metabolic changes that are produced in the individuals once the infection has taken place. The goal of this work is to provide new information about the altered biomolecule profile and with that the altered biological pathways of patients in different clinical situations due to SARS-CoV-2 infection. This is done via metabolomics using HPLC-QTOF-MS analysis of plasma samples at COVID-diagnose from a total of 145 adult patients, divided into different clinical stages based on their subsequent clinical outcome (25 negative controls (non-COVID); 28 positive patients with asymptomatic disease not requiring hospitalization; 27 positive patients with mild disease defined by a total time in hospital lower than 10 days; 36 positive patients with severe disease defined by a total time in hospital over 20 days and/or admission at the ICU; and 29 positive patients with fatal outcome or deceased). Moreover, follow up samples between 2 and 3 months after hospital discharge were also obtained from the hospitalized patients with mild prognosis. The final goal of this work is to provide biomarkers that can help to better understand how the COVID-19 illness evolves and to predict how a patient could progress based on the metabolites profile of plasma obtained at an early stage of the infection. In the present work, several metabolites were found as potential biomarkers to distinguish between the end-stage and the early-stage (or non-COVID) disease groups. These metabolites are mainly involved in the metabolism of carnitines, ketone bodies, fatty acids, lysophosphatidylcholines/phosphatidylcholines, tryptophan, bile acids and purines, but also omeprazole. In addition, the levels of several of these metabolites decreased to "normal" values at hospital discharge, suggesting some of them as early prognosis biomarkers in COVID-19 at diagnose.
Collapse
Affiliation(s)
- Alberto Valdés
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, CSIC, Nicolás Cabrera 9, 28049, Madrid, Spain
| | - Lorena Ortega Moreno
- Dpt. Medicina, Universidad Autónoma de Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria Hospital Universitario de La Princesa, Madrid, Spain
- Centro de Investigación Biomédica en Red (CIBERehd), Barcelona, Spain
| | - Silvia Rojo Rello
- Servicio de Microbiología, Hospital Clínico Universitario de Valladolid, 47004, Valladolid, Spain
| | - Antonio Orduña
- Servicio de Microbiología, Hospital Clínico Universitario de Valladolid, 47004, Valladolid, Spain
- Departamento de Microbiología, Universidad de Valladolid, Valladolid, Spain
| | - David Bernardo
- Centro de Investigación Biomédica en Red (CIBERehd), Barcelona, Spain
- Unidad de Excelencia Instituto de Biomedicina y Genética Molecular (IBGM), Universidad de Valladolid-CSIC, Valladolid, Spain
| | - Alejandro Cifuentes
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, CSIC, Nicolás Cabrera 9, 28049, Madrid, Spain.
| |
Collapse
|
36
|
Kalamvoki M, Norris V. A Defective Viral Particle Approach to COVID-19. Cells 2022; 11:302. [PMID: 35053418 PMCID: PMC8774189 DOI: 10.3390/cells11020302] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/03/2021] [Accepted: 01/13/2022] [Indexed: 12/10/2022] Open
Abstract
The novel coronavirus SARS-CoV-2 has caused a pandemic resulting in millions of deaths worldwide. While multiple vaccines have been developed, insufficient vaccination combined with adaptive mutations create uncertainty for the future. Here, we discuss novel strategies to control COVID-19 relying on Defective Interfering Particles (DIPs) and related particles that arise naturally during an infection. Our intention is to encourage and to provide the basis for the implementation of such strategies by multi-disciplinary teams. We therefore provide an overview of SARS-CoV-2 for a multi-disciplinary readership that is specifically tailored to these strategies, we identify potential targets based on the current knowledge of the properties and functions of coronaviruses, and we propose specific strategies to engineer DIPs and other interfering or therapeutic nanoparticles.
Collapse
Affiliation(s)
- Maria Kalamvoki
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS 66160, USA
| | - Vic Norris
- Laboratory of Microbiology Signals and Microenvironment, University of Rouen, 76821 Mont Saint Aignan, France;
| |
Collapse
|
37
|
Farooq S, Shaheen G, Asif HM, Aslam MR, Zahid R, Rajpoot SR, Jabbar S, Zafar F. Preliminary Phytochemical Analysis: In-Vitro Comparative Evaluation of Anti-arthritic and Anti-inflammatory Potential of Some Traditionally Used Medicinal Plants. Dose Response 2022; 20:15593258211069720. [PMID: 35069052 PMCID: PMC8753080 DOI: 10.1177/15593258211069720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 12/03/2021] [Indexed: 11/23/2022] Open
Abstract
Background: Colchicum autumnale, Strychnous nux-vomica and Aloe barbadensis are the medicinal plants clinically utilized for the management of rhuematic disorders. Purpose: The present work was focused to evaluate the in-vitro anti-arthritic and anti-inflammatory activities of Colchicum (Colchicum autumnale), Nux-vomica (Strychnous nux-vomica), and Aloe-vera (Aloe barbadensis). Research Design: Primarily, the aqueous-ethanolic extracts of these medicinal plants were phytochemically screened followed by Fourier Transform Infrared (FTIR) analysis. Anti-arthritic activity by protein denaturation method and anti-inflammatory activity by human red blood cell (HRBC) membrane stabilization method at the concentration of 125, 250, and 500 µg/mL along with standard were performed. Results: Phytochemical screening revealed that alkaloids, saponins, terpenoids, phenols, and anthraquinones were found in all the extracts, and organic acids, amine group, aromatic or aliphatic compounds, esters and halogens, and phenolics were identified by FTIR. Protein denaturation method revealed that colchicum, nux-vomica, and aloe-vera showed maximum 98.5%, 99.6%, and 72.3% of inhibition at 500 µg/mL compared with that of standard drug, that is, Diclofenac sodium. Membrane stabilization method showed that colchicum, nux-vomica, and aloe-vera showed maximum 40.20%, 35.67%, and 40.1% protection at 500 µg/mL when compared with standard drug. Conclusion: It is concluded from the current study that extracts of colchicum, nux-vomica, and aloe-vera showed more potent effect and thus can be used as alternative options for the management of inflammatory and arthritic ailments.
Collapse
Affiliation(s)
- Sundas Farooq
- University College of Conventional Medicine, Faculty of Medicine and Allied Health Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Ghazala Shaheen
- University College of Conventional Medicine, Faculty of Medicine and Allied Health Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Hafiz Muhammad Asif
- University College of Conventional Medicine, Faculty of Medicine and Allied Health Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Muhammad Rahil Aslam
- University College of Conventional Medicine, Faculty of Medicine and Allied Health Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Rabia Zahid
- University College of Conventional Medicine, Faculty of Medicine and Allied Health Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Sehrish R. Rajpoot
- University College of Conventional Medicine, Faculty of Medicine and Allied Health Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Sana Jabbar
- University College of Conventional Medicine, Faculty of Medicine and Allied Health Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Farah Zafar
- University College of Conventional Medicine, Faculty of Medicine and Allied Health Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| |
Collapse
|
38
|
Citicoline and COVID-19-Related Cognitive and Other Neurologic Complications. Brain Sci 2021; 12:brainsci12010059. [PMID: 35053804 PMCID: PMC8782421 DOI: 10.3390/brainsci12010059] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/29/2021] [Accepted: 12/30/2021] [Indexed: 02/07/2023] Open
Abstract
With growing concerns about COVID-19’s hyperinflammatory condition and its potentially damaging impact on the neurovascular system, there is a need to consider potential treatment options for managing short- and long-term effects on neurological complications, especially cognitive function. While maintaining adequate structure and function of phospholipid in brain cells, citicoline, identical to the natural metabolite phospholipid phosphatidylcholine precursor, can contribute to a variety of neurological diseases and hypothetically toward post-COVID-19 cognitive effects. In this review, we comprehensively describe in detail the potential citicoline mechanisms as adjunctive therapy and prevention of COVID-19-related cognitive decline and other neurologic complications through citicoline properties of anti-inflammation, anti-viral, neuroprotection, neurorestorative, and acetylcholine neurotransmitter synthesis, and provide a recommendation for future clinical trials.
Collapse
|
39
|
Tabata K, Prasad V, Paul D, Lee JY, Pham MT, Twu WI, Neufeldt CJ, Cortese M, Cerikan B, Stahl Y, Joecks S, Tran CS, Lüchtenborg C, V'kovski P, Hörmann K, Müller AC, Zitzmann C, Haselmann U, Beneke J, Kaderali L, Erfle H, Thiel V, Lohmann V, Superti-Furga G, Brügger B, Bartenschlager R. Convergent use of phosphatidic acid for hepatitis C virus and SARS-CoV-2 replication organelle formation. Nat Commun 2021; 12:7276. [PMID: 34907161 PMCID: PMC8671429 DOI: 10.1038/s41467-021-27511-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 11/22/2021] [Indexed: 11/09/2022] Open
Abstract
Double membrane vesicles (DMVs) serve as replication organelles of plus-strand RNA viruses such as hepatitis C virus (HCV) and SARS-CoV-2. Viral DMVs are morphologically analogous to DMVs formed during autophagy, but lipids driving their biogenesis are largely unknown. Here we show that production of the lipid phosphatidic acid (PA) by acylglycerolphosphate acyltransferase (AGPAT) 1 and 2 in the ER is important for DMV biogenesis in viral replication and autophagy. Using DMVs in HCV-replicating cells as model, we found that AGPATs are recruited to and critically contribute to HCV and SARS-CoV-2 replication and proper DMV formation. An intracellular PA sensor accumulated at viral DMV formation sites, consistent with elevated levels of PA in fractions of purified DMVs analyzed by lipidomics. Apart from AGPATs, PA is generated by alternative pathways and their pharmacological inhibition also impaired HCV and SARS-CoV-2 replication as well as formation of autophagosome-like DMVs. These data identify PA as host cell lipid involved in proper replication organelle formation by HCV and SARS-CoV-2, two phylogenetically disparate viruses causing very different diseases, i.e. chronic liver disease and COVID-19, respectively. Host-targeting therapy aiming at PA synthesis pathways might be suitable to attenuate replication of these viruses.
Collapse
Affiliation(s)
- Keisuke Tabata
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
- Department of Genetics, Graduate School of Medicine, Osaka University, Osaka, Japan
- Laboratory of Intracellular Membrane Dynamics, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Vibhu Prasad
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
| | - David Paul
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Ji-Young Lee
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
| | - Minh-Tu Pham
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
| | - Woan-Ing Twu
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
| | - Christopher J Neufeldt
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
| | - Mirko Cortese
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
| | - Berati Cerikan
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
| | - Yannick Stahl
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
| | - Sebastian Joecks
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
- LI-COR Biosciences GmbH, Siemensstrasse 25A, Bad Homburg, Germany
| | - Cong Si Tran
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
| | | | - Philip V'kovski
- Institute of Virology and Immunology IVI, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Katrin Hörmann
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - André C Müller
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Carolin Zitzmann
- Institute of Bioinformatics and Center for Functional Genomics of Microbes, University Medicine Greifswald, Greifswald, Germany
- Los Alamos National Laboratory, Theoretical Biology and Biophysics, Los Alamos, NM, USA
| | - Uta Haselmann
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
| | - Jürgen Beneke
- BioQuant, Heidelberg University, Heidelberg, Germany
| | - Lars Kaderali
- Institute of Bioinformatics and Center for Functional Genomics of Microbes, University Medicine Greifswald, Greifswald, Germany
| | - Holger Erfle
- BioQuant, Heidelberg University, Heidelberg, Germany
| | - Volker Thiel
- Institute of Virology and Immunology IVI, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Volker Lohmann
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
| | - Giulio Superti-Furga
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Britta Brügger
- Biochemistry Center Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany.
- Division Virus-Associated Carcinogenesis, German Cancer Research Center, Heidelberg, Germany.
- German Center for Infection Research, Heidelberg Partner Site, Heidelberg, Germany.
| |
Collapse
|
40
|
Montaldo C, Messina F, Abbate I, Antonioli M, Bordoni V, Aiello A, Ciccosanti F, Colavita F, Farroni C, Najafi Fard S, Giombini E, Goletti D, Matusali G, Rozera G, Rueca M, Sacchi A, Piacentini M, Agrati C, Fimia GM, Capobianchi MR, Lauria FN, Ippolito G. Multi-omics approach to COVID-19: a domain-based literature review. J Transl Med 2021; 19:501. [PMID: 34876157 PMCID: PMC8649311 DOI: 10.1186/s12967-021-03168-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 11/23/2021] [Indexed: 12/15/2022] Open
Abstract
Background Omics data, driven by rapid advances in laboratory techniques, have been generated very quickly during the COVID-19 pandemic. Our aim is to use omics data to highlight the involvement of specific pathways, as well as that of cell types and organs, in the pathophysiology of COVID-19, and to highlight their links with clinical phenotypes of SARS-CoV-2 infection. Methods The analysis was based on the domain model, where for domain it is intended a conceptual repository, useful to summarize multiple biological pathways involved at different levels. The relevant domains considered in the analysis were: virus, pathways and phenotypes. An interdisciplinary expert working group was defined for each domain, to carry out an independent literature scoping review. Results The analysis revealed that dysregulated pathways of innate immune responses, (i.e., complement activation, inflammatory responses, neutrophil activation and degranulation, platelet degranulation) can affect COVID-19 progression and outcomes. These results are consistent with several clinical studies. Conclusions Multi-omics approach may help to further investigate unknown aspects of the disease. However, the disease mechanisms are too complex to be explained by a single molecular signature and it is necessary to consider an integrated approach to identify hallmarks of severity. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-021-03168-8.
Collapse
Affiliation(s)
- Chiara Montaldo
- National Institute for Infectious Diseases, "Lazzaro Spallanzani" - IRCCS, Via Portuense, 292, 00149, Rome, Italy
| | - Francesco Messina
- National Institute for Infectious Diseases, "Lazzaro Spallanzani" - IRCCS, Via Portuense, 292, 00149, Rome, Italy
| | - Isabella Abbate
- National Institute for Infectious Diseases, "Lazzaro Spallanzani" - IRCCS, Via Portuense, 292, 00149, Rome, Italy
| | - Manuela Antonioli
- National Institute for Infectious Diseases, "Lazzaro Spallanzani" - IRCCS, Via Portuense, 292, 00149, Rome, Italy
| | - Veronica Bordoni
- National Institute for Infectious Diseases, "Lazzaro Spallanzani" - IRCCS, Via Portuense, 292, 00149, Rome, Italy
| | - Alessandra Aiello
- National Institute for Infectious Diseases, "Lazzaro Spallanzani" - IRCCS, Via Portuense, 292, 00149, Rome, Italy
| | - Fabiola Ciccosanti
- National Institute for Infectious Diseases, "Lazzaro Spallanzani" - IRCCS, Via Portuense, 292, 00149, Rome, Italy
| | - Francesca Colavita
- National Institute for Infectious Diseases, "Lazzaro Spallanzani" - IRCCS, Via Portuense, 292, 00149, Rome, Italy
| | - Chiara Farroni
- National Institute for Infectious Diseases, "Lazzaro Spallanzani" - IRCCS, Via Portuense, 292, 00149, Rome, Italy
| | - Saeid Najafi Fard
- National Institute for Infectious Diseases, "Lazzaro Spallanzani" - IRCCS, Via Portuense, 292, 00149, Rome, Italy
| | - Emanuela Giombini
- National Institute for Infectious Diseases, "Lazzaro Spallanzani" - IRCCS, Via Portuense, 292, 00149, Rome, Italy
| | - Delia Goletti
- National Institute for Infectious Diseases, "Lazzaro Spallanzani" - IRCCS, Via Portuense, 292, 00149, Rome, Italy
| | - Giulia Matusali
- National Institute for Infectious Diseases, "Lazzaro Spallanzani" - IRCCS, Via Portuense, 292, 00149, Rome, Italy
| | - Gabriella Rozera
- National Institute for Infectious Diseases, "Lazzaro Spallanzani" - IRCCS, Via Portuense, 292, 00149, Rome, Italy
| | - Martina Rueca
- National Institute for Infectious Diseases, "Lazzaro Spallanzani" - IRCCS, Via Portuense, 292, 00149, Rome, Italy
| | - Alessandra Sacchi
- National Institute for Infectious Diseases, "Lazzaro Spallanzani" - IRCCS, Via Portuense, 292, 00149, Rome, Italy
| | - Mauro Piacentini
- National Institute for Infectious Diseases, "Lazzaro Spallanzani" - IRCCS, Via Portuense, 292, 00149, Rome, Italy.,Dept. Biology, University of Rome Tor Vergata, Via della Ricerca scientifica 1, Rome, Italy
| | - Chiara Agrati
- National Institute for Infectious Diseases, "Lazzaro Spallanzani" - IRCCS, Via Portuense, 292, 00149, Rome, Italy
| | - Gian Maria Fimia
- National Institute for Infectious Diseases, "Lazzaro Spallanzani" - IRCCS, Via Portuense, 292, 00149, Rome, Italy.,Dept. Molecular Medicine, Sapienza University of Rome, 00185, Rome, Italy
| | - Maria Rosaria Capobianchi
- National Institute for Infectious Diseases, "Lazzaro Spallanzani" - IRCCS, Via Portuense, 292, 00149, Rome, Italy.
| | - Francesco Nicola Lauria
- National Institute for Infectious Diseases, "Lazzaro Spallanzani" - IRCCS, Via Portuense, 292, 00149, Rome, Italy
| | - Giuseppe Ippolito
- National Institute for Infectious Diseases, "Lazzaro Spallanzani" - IRCCS, Via Portuense, 292, 00149, Rome, Italy
| |
Collapse
|
41
|
Aslani M, Mortazavi-Jahromi SS, Mirshafiey A. Cytokine storm in the pathophysiology of COVID-19: Possible functional disturbances of miRNAs. Int Immunopharmacol 2021; 101:108172. [PMID: 34601331 PMCID: PMC8452524 DOI: 10.1016/j.intimp.2021.108172] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 02/07/2023]
Abstract
SARS-CoV-2, as the causative agent of COVID-19, is an enveloped positives-sense single-stranded RNA virus that belongs to the Beta-CoVs sub-family. A sophisticated hyper-inflammatory reaction named cytokine storm is occurred in patients with severe/critical COVID-19, following an imbalance in immune-inflammatory processes and inhibition of antiviral responses by SARS-CoV-2, which leads to pulmonary failure, ARDS, and death. The miRNAs are small non-coding RNAs with an average length of 22 nucleotides which play various roles as one of the main modulators of genes expression and maintenance of immune system homeostasis. Recent evidence has shown that Homo sapiens (hsa)-miRNAs have the potential to work in three pivotal areas including targeting the virus genome, regulating the inflammatory signaling pathways, and reinforcing the production/signaling of IFNs-I. However, it seems that several SARS-CoV-2-induced interfering agents such as viral (v)-miRNAs, cytokine content, competing endogenous RNAs (ceRNAs), etc. preclude efficient function of hsa-miRNAs in severe/critical COVID-19. This subsequently leads to increased virus replication, intense inflammatory processes, and secondary complications development. In this review article, we provide an overview of hsa-miRNAs roles in viral genome targeting, inflammatory pathways modulation, and IFNs responses amplification in severe/critical COVID-19 accompanied by probable interventional factors and their function. Identification and monitoring of these interventional elements can help us in designing the miRNAs-based therapy for the reduction of complications/mortality rate in patients with severe/critical forms of the disease.
Collapse
Affiliation(s)
- Mona Aslani
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Abbas Mirshafiey
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
42
|
Theodoros K, Sharma M, Anton P, Hugo C, Ellen O, Hultgren NW, Ritou E, Williams DS, Orian S S, Srinivasa T R. The ApoA-I mimetic peptide 4F attenuates in vitro replication of SARS-CoV-2, associated apoptosis, oxidative stress and inflammation in epithelial cells. Virulence 2021; 12:2214-2227. [PMID: 34494942 PMCID: PMC8437485 DOI: 10.1080/21505594.2021.1964329] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/12/2021] [Accepted: 07/30/2021] [Indexed: 02/06/2023] Open
Abstract
An oral antiviral against SARS-CoV-2 that also attenuates inflammatory instigators of severe COVID-19 is not available to date. Herein, we show that the apoA-I mimetic peptide 4 F inhibits Spike mediated viral entry and has antiviral activity against SARS-CoV-2 in human lung epithelial Calu3 and Vero-E6 cells. In SARS-CoV-2 infected Calu3 cells, 4 F upregulated inducers of the interferon pathway such as MX-1 and Heme oxygenase 1 (HO-1) and downregulated mitochondrial reactive oxygen species (mito-ROS) and CD147, a host protein that mediates viral entry. 4 F also reduced associated cellular apoptosis and secretion of IL-6 in both SARS-CoV-2 infected Vero-E6 and Calu3 cells. Thus, 4 F attenuates in vitro SARS-CoV-2 replication, associated apoptosis in epithelial cells and secretion of IL-6, a major cytokine related to COVID-19 morbidity. Given established safety of 4 F in humans, clinical studies are warranted to establish 4 F as therapy for COVID-19.
Collapse
Affiliation(s)
- Kelesidis Theodoros
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Madhav Sharma
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Petcherski Anton
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Cristelle Hugo
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - O’Connor Ellen
- Molecular Toxicology Interdepartmental Degree Program, University of California Los Angeles, United States
| | - Nan W Hultgren
- Department of Ophthalmology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Eleni Ritou
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - David S Williams
- Department of Ophthalmology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Shirihai Orian S
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Reddy Srinivasa T
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
- Molecular Toxicology Interdepartmental Degree Program, University of California Los Angeles, United States
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| |
Collapse
|
43
|
Singapore Grouper Iridovirus Disturbed Glycerophospholipids Homeostasis: Cytosolic Phospholipase A2 Was Essential for Virus Replication. Int J Mol Sci 2021; 22:ijms222212597. [PMID: 34830477 PMCID: PMC8618910 DOI: 10.3390/ijms222212597] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/18/2021] [Accepted: 11/20/2021] [Indexed: 12/31/2022] Open
Abstract
Singapore grouper iridovirus (SGIV), belonging to genus Ranavirus, family Iridoviridae, causes great economic losses in the aquaculture industry. Previous studies demonstrated the lipid composition of intracellular unenveloped viruses, but the changes in host-cell glyceophospholipids components and the roles of key enzymes during SGIV infection still remain largely unknown. Here, the whole cell lipidomic profiling during SGIV infection was analyzed using UPLC-Q-TOF-MS/MS. The lipidomic data showed that glycerophospholipids (GPs), including phosphatidylcholine (PC), phosphatidylserine (PS), glycerophosphoinositols (PI) and fatty acids (FAs) were significantly elevated in SGIV-infected cells, indicating that SGIV infection disturbed GPs homeostasis, and then affected the metabolism of FAs, especially arachidonic acid (AA). The roles of key enzymes, such as cytosolic phospholipase A2 (cPLA2), 5-Lipoxygenase (5-LOX), and cyclooxygenase (COX) in SGIV infection were further investigated using the corresponding specific inhibitors. The inhibition of cPLA2 by AACOCF3 decreased SGIV replication, suggesting that cPLA2 might play important roles in the process of SGIV infection. Consistent with this result, the ectopic expression of EccPLA2α or knockdown significantly enhanced or suppressed viral replication in vitro, respectively. In addition, the inhibition of both 5-LOX and COX significantly suppressed SGIV replication, indicating that AA metabolism was essential for SGIV infection. Taken together, our results demonstrated for the first time that SGIV infection in vitro disturbed GPs homeostasis and cPLA2 exerted crucial roles in SGIV replication.
Collapse
|
44
|
Hussein MA, Ismail NEM, Mohamed AH, Borik RM, Ali AA, Mosaad YO. Plasma Phospholipids: A Promising Simple Biochemical Parameter to Evaluate COVID-19 Infection Severity. Bioinform Biol Insights 2021; 15:11779322211055891. [PMID: 34840499 PMCID: PMC8619733 DOI: 10.1177/11779322211055891] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 10/10/2021] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Coronavirus-19 (COVID-19) pandemic is a worldwide public health problem that has been known in China since December 25, 2019. Phospholipids are structural components of the mammalian cytoskeleton and cell membranes. They suppress viral attachment to the plasma membrane and subsequent replication in lung cells. In the virus-infected lung, phospholipids are highly prone to oxidation by reactive oxygen species, leading to the production of oxidized phospholipids (OxPLs). OBJECTIVE This study was carried out to explain the correlation between the level of plasma phospholipids in patients with COVID-19 infection and the levels of cytokine storms to assess the severity of the disease. METHODS Plasma samples from 34 enrolled patients with mild, moderate, and severe COVID-19 infection were collected. Complete blood count (CBC), plasma levels of D-dimer, ferritin, C-reactive protein (CRP), cholesterol, high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), phospholipids, secretory phospholipase A2 (sPLA2)α2, and cytokine storms were estimated, and lung computed tomography (CT) imaging was detected. RESULTS The CBC picture showed the presence of leukopenia, lymphopenia, and eosinopenia in patients with COVID-19 infection. Furthermore, a significant increase was found in plasma levels of D-dimer, CRP, ferritin, tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, and IL-13 as well as sPLA2α2 activity compared to normal persons. However, plasma levels of phospholipids decreased in patients with moderate and severe COVID-19 infection, as well as significantly decreased in levels of triacylglycerols and HDL-C in plasma from patients with severe infection only, compared to normal persons. Furthermore, a lung CT scan showed the presence of inflammation in a patient with mild, moderate, and severe COVID-19 infection. CONCLUSIONS This study shows that there is a correlation between plasma phospholipid depletion and elevated cytokine storm in patients with COVID-19 infection. Depletion of plasma phospholipid levels in patients with COVID-19 infection is due to oxidative stress, induction of cytokine storm, and systemic inflammatory response after endothelial cell damage promote coagulation. According to current knowledge, patients with COVID-19 infection may need to administer surfactant replacement therapy and sPLA2 inhibitors to treat respiratory distress syndrome, which helps them to maintain the interconnected surfactant structures.
Collapse
Affiliation(s)
- Mohammed Abdalla Hussein
- Department of Biochemistry, Faculty of Applied Medical Science, October 6 University, 6th of October City, Egypt
| | | | - Ahmed H Mohamed
- Department of Radiology and Medical Imaging, Faculty of Applied Medical Science, October 6 University, 6th of October City, Egypt
| | - Rita M Borik
- Chemistry Department, Faculty of Science (Female Section), Jazan University, Jazan, Saudi Arabia
| | | | - Yasser O Mosaad
- Faculty of Pharmacy, Department of Pharmacology, Toxicology, and Biochemistry, Future University, New Cairo, Egypt
| |
Collapse
|
45
|
Zandi M, Hosseini P, Soltani S, Rasooli A, Moghadami M, Nasimzadeh S, Behnezhad F. The role of lipids in the pathophysiology of coronavirus infections. Osong Public Health Res Perspect 2021; 12:278-285. [PMID: 34719219 PMCID: PMC8561023 DOI: 10.24171/j.phrp.2021.0153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 10/06/2021] [Indexed: 11/23/2022] Open
Abstract
Coronaviruses, which have been known to cause diseases in animals since the 1930s, utilize cellular components during their replication cycle. Lipids play important roles in viral infection, as coronaviruses target cellular lipids and lipid metabolism to modify their host cells to become an optimal environment for viral replication. Therefore, lipids can be considered as potential targets for the development of antiviral agents. This review provides an overview of the roles of cellular lipids in different stages of the life cycle of coronaviruses.
Collapse
Affiliation(s)
- Milad Zandi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.,Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran
| | - Parastoo Hosseini
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.,Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran
| | - Saber Soltani
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.,Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran
| | - Azadeh Rasooli
- Department of Biochemistry, Faculty of Sciences, Payame Noor University, Tehran, Iran
| | - Mona Moghadami
- Department of Medical Biotechnology, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Sepideh Nasimzadeh
- Department of Virology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Farzane Behnezhad
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
46
|
Kleinehr J, Wilden JJ, Boergeling Y, Ludwig S, Hrincius ER. Metabolic Modifications by Common Respiratory Viruses and Their Potential as New Antiviral Targets. Viruses 2021; 13:2068. [PMID: 34696497 PMCID: PMC8540840 DOI: 10.3390/v13102068] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/22/2021] [Accepted: 10/09/2021] [Indexed: 12/11/2022] Open
Abstract
Respiratory viruses are known to be the most frequent causative mediators of lung infections in humans, bearing significant impact on the host cell signaling machinery due to their host-dependency for efficient replication. Certain cellular functions are actively induced by respiratory viruses for their own benefit. This includes metabolic pathways such as glycolysis, fatty acid synthesis (FAS) and the tricarboxylic acid (TCA) cycle, among others, which are modified during viral infections. Here, we summarize the current knowledge of metabolic pathway modifications mediated by the acute respiratory viruses respiratory syncytial virus (RSV), rhinovirus (RV), influenza virus (IV), parainfluenza virus (PIV), coronavirus (CoV) and adenovirus (AdV), and highlight potential targets and compounds for therapeutic approaches.
Collapse
Affiliation(s)
- Jens Kleinehr
- Institute of Virology Muenster (IVM), Westfaelische Wilhelms-University Muenster, Von-Esmarch-Str. 56, D-48149 Muenster, Germany; (J.K.); (J.J.W.); (Y.B.); (S.L.)
| | - Janine J. Wilden
- Institute of Virology Muenster (IVM), Westfaelische Wilhelms-University Muenster, Von-Esmarch-Str. 56, D-48149 Muenster, Germany; (J.K.); (J.J.W.); (Y.B.); (S.L.)
| | - Yvonne Boergeling
- Institute of Virology Muenster (IVM), Westfaelische Wilhelms-University Muenster, Von-Esmarch-Str. 56, D-48149 Muenster, Germany; (J.K.); (J.J.W.); (Y.B.); (S.L.)
| | - Stephan Ludwig
- Institute of Virology Muenster (IVM), Westfaelische Wilhelms-University Muenster, Von-Esmarch-Str. 56, D-48149 Muenster, Germany; (J.K.); (J.J.W.); (Y.B.); (S.L.)
- Cells in Motion Interfaculty Centre (CiMIC), Westfaelische Wilhelms-University Muenster, Von-Esmarch-Str. 56, D-48149 Muenster, Germany
| | - Eike R. Hrincius
- Institute of Virology Muenster (IVM), Westfaelische Wilhelms-University Muenster, Von-Esmarch-Str. 56, D-48149 Muenster, Germany; (J.K.); (J.J.W.); (Y.B.); (S.L.)
| |
Collapse
|
47
|
Bannerman BP, Júlvez J, Oarga A, Blundell TL, Moreno P, Floto RA. Integrated human/SARS-CoV-2 metabolic models present novel treatment strategies against COVID-19. Life Sci Alliance 2021; 4:e202000954. [PMID: 34353886 PMCID: PMC8343166 DOI: 10.26508/lsa.202000954] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 01/20/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic caused by the new coronavirus (SARS-CoV-2) is currently responsible for more than 3 million deaths in 219 countries across the world and with more than 140 million cases. The absence of FDA-approved drugs against SARS-CoV-2 has highlighted an urgent need to design new drugs. We developed an integrated model of the human cell and SARS-CoV-2 to provide insight into the virus' pathogenic mechanism and support current therapeutic strategies. We show the biochemical reactions required for the growth and general maintenance of the human cell, first, in its healthy state. We then demonstrate how the entry of SARS-CoV-2 into the human cell causes biochemical and structural changes, leading to a change of cell functions or cell death. A new computational method that predicts 20 unique reactions as drug targets from our models and provides a platform for future studies on viral entry inhibition, immune regulation, and drug optimisation strategies. The model is available in BioModels (https://www.ebi.ac.uk/biomodels/MODEL2007210001) and the software tool, findCPcli, that implements the computational method is available at https://github.com/findCP/findCPcli.
Collapse
Affiliation(s)
- Bridget P Bannerman
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, Cambridge, UK
- The Center for Research and Interdisciplinarity, Paris, France
| | - Jorge Júlvez
- Department of Computer Science and Systems Engineering, University of Zaragoza, Zaragoza, Spain
| | - Alexandru Oarga
- Department of Computer Science and Systems Engineering, University of Zaragoza, Zaragoza, Spain
| | - Tom L Blundell
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Pablo Moreno
- EMBL-EBI, European Bioinformatics Institute, Hinxton, UK
| | - R Andres Floto
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, Cambridge, UK
| |
Collapse
|
48
|
Theken KN, Tang SY, Sengupta S, FitzGerald GA. The roles of lipids in SARS-CoV-2 viral replication and the host immune response. J Lipid Res 2021; 62:100129. [PMID: 34599996 PMCID: PMC8480132 DOI: 10.1016/j.jlr.2021.100129] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 02/06/2023] Open
Abstract
The significant morbidity and mortality associated with severe acute respiratory syndrome coronavirus 2 infection has underscored the need for novel antiviral strategies. Lipids play essential roles in the viral life cycle. The lipid composition of cell membranes can influence viral entry by mediating fusion or affecting receptor conformation. Upon infection, viruses can reprogram cellular metabolism to remodel lipid membranes and fuel the production of new virions. Furthermore, several classes of lipid mediators, including eicosanoids and sphingolipids, can regulate the host immune response to viral infection. Here, we summarize the existing literature on the mechanisms through which these lipid mediators may regulate viral burden in COVID-19. Furthermore, we define the gaps in knowledge and identify the core areas in which lipids offer therapeutic promise for severe acute respiratory syndrome coronavirus 2.
Collapse
Affiliation(s)
- Katherine N Theken
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Institute for Translational Medicine and Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Department of Oral Surgery and Pharmacology, University of Pennsylvania School of Dental Medicine, Philadelphia, PA, USA
| | - Soon Yew Tang
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Institute for Translational Medicine and Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Shaon Sengupta
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Garret A FitzGerald
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Institute for Translational Medicine and Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
49
|
Myocardial Damage by SARS-CoV-2: Emerging Mechanisms and Therapies. Viruses 2021; 13:v13091880. [PMID: 34578462 PMCID: PMC8473126 DOI: 10.3390/v13091880] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/06/2021] [Accepted: 09/18/2021] [Indexed: 01/01/2023] Open
Abstract
Evidence is emerging that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can infect various organs of the body, including cardiomyocytes and cardiac endothelial cells in the heart. This review focuses on the effects of SARS-CoV-2 in the heart after direct infection that can lead to myocarditis and an outline of potential treatment options. The main points are: (1) Viral entry: SARS-CoV-2 uses specific receptors and proteases for docking and priming in cardiac cells. Thus, different receptors or protease inhibitors might be effective in SARS-CoV-2-infected cardiac cells. (2) Viral replication: SARS-CoV-2 uses RNA-dependent RNA polymerase for replication. Drugs acting against ssRNA(+) viral replication for cardiac cells can be effective. (3) Autophagy and double-membrane vesicles: SARS-CoV-2 manipulates autophagy to inhibit viral clearance and promote SARS-CoV-2 replication by creating double-membrane vesicles as replication sites. (4) Immune response: Host immune response is manipulated to evade host cell attacks against SARS-CoV-2 and increased inflammation by dysregulating immune cells. Efficiency of immunosuppressive therapy must be elucidated. (5) Programmed cell death: SARS-CoV-2 inhibits programmed cell death in early stages and induces apoptosis, necroptosis, and pyroptosis in later stages. (6) Energy metabolism: SARS-CoV-2 infection leads to disturbed energy metabolism that in turn leads to a decrease in ATP production and ROS production. (7) Viroporins: SARS-CoV-2 creates viroporins that lead to an imbalance of ion homeostasis. This causes apoptosis, altered action potential, and arrhythmia.
Collapse
|
50
|
Alketbi EH, Hamdy R, El‐Kabalawy A, Juric V, Pignitter M, A. Mosa K, Almehdi AM, El‐Keblawy AA, Soliman SSM. Lipid-based therapies against SARS-CoV-2 infection. Rev Med Virol 2021; 31:1-13. [PMID: 34546604 PMCID: PMC8013851 DOI: 10.1002/rmv.2214] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/20/2020] [Accepted: 12/21/2020] [Indexed: 12/12/2022]
Abstract
Viruses have evolved to manipulate host lipid metabolism to benefit their replication cycle. Enveloped viruses, including coronaviruses, use host lipids in various stages of the viral life cycle, particularly in the formation of replication compartments and envelopes. Host lipids are utilised by the virus in receptor binding, viral fusion and entry, as well as viral replication. Association of dyslipidaemia with the pathological development of Covid-19 raises the possibility that exploitation of host lipid metabolism might have therapeutic benefit against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In this review, promising host lipid targets are discussed along with potential inhibitors. In addition, specific host lipids are involved in the inflammatory responses due to viral infection, so lipid supplementation represents another potential strategy to counteract the severity of viral infection. Furthermore, switching the lipid metabolism through a ketogenic diet is another potential way of limiting the effects of viral infection. Taken together, restricting the access of host lipids to the virus, either by using lipid inhibitors or supplementation with exogenous lipids, might significantly limit SARS-CoV-2 infection and/or severity.
Collapse
Affiliation(s)
- Eman Humaid Alketbi
- Department of Applied BiologyCollege of SciencesUniversity of SharjahSharjahUnited Arab Emirates
| | - Rania Hamdy
- Research Institute for Medical and Health SciencesUniversity of SharjahSharjahUnited Arab Emirates
- Faculty of PharmacyZagazig UniversityZagazigEgypt
| | | | - Viktorija Juric
- Department of Physiological ChemistryFaculty of ChemistryUniversity of ViennaViennaAustria
| | - Marc Pignitter
- Department of Physiological ChemistryFaculty of ChemistryUniversity of ViennaViennaAustria
| | - Kareem A. Mosa
- Department of Applied BiologyCollege of SciencesUniversity of SharjahSharjahUnited Arab Emirates
- Research Institute of Science and EngineeringUniversity of SharjahSharjahUnited Arab Emirates
- Department of BiotechnologyFaculty of AgricultureAl‐Azhar UniversityCairoEgypt
| | - Ahmed M. Almehdi
- Department of ChemistryCollege of SciencesUniversity of SharjahSharjahUnited Arab Emirates
| | - Ali A. El‐Keblawy
- Department of Applied BiologyCollege of SciencesUniversity of SharjahSharjahUnited Arab Emirates
- Research Institute of Science and EngineeringUniversity of SharjahSharjahUnited Arab Emirates
| | - Sameh S. M. Soliman
- Research Institute for Medical and Health SciencesUniversity of SharjahSharjahUnited Arab Emirates
- Faculty of PharmacyZagazig UniversityZagazigEgypt
- Department of Medicinal ChemistryCollege of PharmacyUniversity of SharjahSharjahUnited Arab Emirates
| |
Collapse
|