1
|
Mu Y, Chen Z, Plummer JB, Zelazowska MA, Dong Q, Krug LT, McBride KM. UNG-RPA interaction governs the choice between high-fidelity and mutagenic uracil repair. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.30.591927. [PMID: 38746347 PMCID: PMC11092621 DOI: 10.1101/2024.04.30.591927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Mammalian Uracil DNA glycosylase (UNG) removes uracils and initiates high-fidelity base excision repair to maintain genomic stability. During B cell development, activation-induced cytidine deaminase (AID) creates uracils that UNG processes in an error-prone fashion to accomplish immunoglobulin (Ig) somatic hypermutation (SHM) or class switch recombination (CSR). The mechanism that governs high-fidelity versus mutagenic uracil repair is not understood. The B cell tropic gammaherpesvirus (GHV) encodes a functional homolog of UNG that can process AID induced genomic uracils. GHVUNG does not support hypermutation, suggesting intrinsic properties of UNG influence repair outcome. Noting the structural divergence between the UNGs, we define the RPA interacting motif as the determinant of mutation outcome. UNG or RPA mutants unable to interact with each other, only support high-fidelity repair. In B cells, transversions at the Ig variable region are abated while CSR is supported. Thus UNG-RPA governs the generation of mutations and has implications for locus specific mutagenesis in B cells and deamination associated mutational signatures in cancer.
Collapse
|
2
|
Nanbo A. Current Insights into the Maturation of Epstein-Barr Virus Particles. Microorganisms 2024; 12:806. [PMID: 38674750 PMCID: PMC11051851 DOI: 10.3390/microorganisms12040806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
The three subfamilies of herpesviruses (alphaherpesviruses, betaherpesviruses, and gammaherpesviruses) appear to share a unique mechanism for the maturation and egress of virions, mediated by several budding and fusion processes of various organelle membranes during replication, which prevents cellular membrane disruption. Newly synthesized viral DNA is packaged into capsids within the nucleus, which are subsequently released into the cytoplasm via sequential fusion (primary envelopment) and budding through the inner and outer nuclear membranes. Maturation concludes with tegumentation and the secondary envelopment of nucleocapsids, which are mediated by budding into various cell organelles. Intracellular compartments containing mature virions are transported to the plasma membrane via host vesicular trafficking machinery, where they fuse with the plasma membrane to extracellularly release mature virions. The entire process of viral maturation is orchestrated by sequential interactions between viral proteins and intracellular membranes. Compared with other herpesvirus subfamilies, the mechanisms of gammaherpesvirus maturation and egress remain poorly understood. This review summarizes the major findings, including recently updated information of the molecular mechanism underlying the maturation and egress process of the Epstein-Barr virus, a ubiquitous human gammaherpesvirus subfamily member that infects most of the population worldwide and is associated with a number of human malignancies.
Collapse
Affiliation(s)
- Asuka Nanbo
- National Research Center for the Control and Prevention of Infectious Diseases, Nagasaki University, Nagasaki 852-8523, Japan
| |
Collapse
|
3
|
Mu Y, Zelazowska MA, Chen Z, Plummer JB, Dong Q, Krug LT, McBride KM. Divergent structures of Mammalian and gammaherpesvirus uracil DNA glycosylases confer distinct DNA binding and substrate activity. DNA Repair (Amst) 2023; 128:103515. [PMID: 37315375 PMCID: PMC10441670 DOI: 10.1016/j.dnarep.2023.103515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 05/21/2023] [Accepted: 05/30/2023] [Indexed: 06/16/2023]
Abstract
Uracil DNA glycosylase (UNG) removes mutagenic uracil base from DNA to initiate base excision repair (BER). The result is an abasic site (AP site) that is further processed by the high-fidelity BER pathway to complete repair and maintain genome integrity. The gammaherpesviruses (GHVs), human Kaposi sarcoma herpesvirus (KSHV), Epstein-Barr virus (EBV), and murine gammaherpesvirus 68 (MHV68) encode functional UNGs that have a role in viral genome replication. Mammalian and GHVs UNG share overall structure and sequence similarity except for a divergent amino-terminal domain and a leucine loop motif in the DNA binding domain that varies in sequence and length. To determine if divergent domains contribute to functional differences between GHV and mammalian UNGs, we analyzed their roles in DNA interaction and catalysis. By utilizing chimeric UNGs with swapped domains we found that the leucine loop in GHV, but not mammalian UNGs facilitates interaction with AP sites and that the amino-terminal domain modulates this interaction. We also found that the leucine loop structure contributes to differential UDGase activity on uracil in single- versus double-stranded DNA. Taken together we demonstrate that the GHV UNGs evolved divergent domains from their mammalian counterparts that contribute to differential biochemical properties from their mammalian counterparts.
Collapse
Affiliation(s)
- Yunxiang Mu
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Monika A Zelazowska
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Zaowen Chen
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Joshua B Plummer
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Qiwen Dong
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY 11794, USA; Molecular and Cellular Biology Program, Stony Brook University, Stony Brook, NY 11794, USA
| | - Laurie T Krug
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY 11794, USA; HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kevin M McBride
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA.
| |
Collapse
|
4
|
Diatlova EA, Mechetin GV, Yudkina AV, Zharkov VD, Torgasheva NA, Endutkin AV, Shulenina OV, Konevega AL, Gileva IP, Shchelkunov SN, Zharkov DO. Correlated Target Search by Vaccinia Virus Uracil-DNA Glycosylase, a DNA Repair Enzyme and a Processivity Factor of Viral Replication Machinery. Int J Mol Sci 2023; 24:ijms24119113. [PMID: 37298065 DOI: 10.3390/ijms24119113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/13/2023] [Accepted: 05/21/2023] [Indexed: 06/12/2023] Open
Abstract
The protein encoded by the vaccinia virus D4R gene has base excision repair uracil-DNA N-glycosylase (vvUNG) activity and also acts as a processivity factor in the viral replication complex. The use of a protein unlike PolN/PCNA sliding clamps is a unique feature of orthopoxviral replication, providing an attractive target for drug design. However, the intrinsic processivity of vvUNG has never been estimated, leaving open the question whether it is sufficient to impart processivity to the viral polymerase. Here, we use the correlated cleavage assay to characterize the translocation of vvUNG along DNA between two uracil residues. The salt dependence of the correlated cleavage, together with the similar affinity of vvUNG for damaged and undamaged DNA, support the one-dimensional diffusion mechanism of lesion search. Unlike short gaps, covalent adducts partly block vvUNG translocation. Kinetic experiments show that once a lesion is found it is excised with a probability ~0.76. Varying the distance between two uracils, we use a random walk model to estimate the mean number of steps per association with DNA at ~4200, which is consistent with vvUNG playing a role as a processivity factor. Finally, we show that inhibitors carrying a tetrahydro-2,4,6-trioxopyrimidinylidene moiety can suppress the processivity of vvUNG.
Collapse
Affiliation(s)
- Evgeniia A Diatlova
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia
| | - Grigory V Mechetin
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia
| | - Anna V Yudkina
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia
| | - Vasily D Zharkov
- Biology Department, Tomsk State University, 634050 Tomsk, Russia
| | - Natalia A Torgasheva
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia
| | - Anton V Endutkin
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia
| | - Olga V Shulenina
- NRC "Kurchatov Institute"-B. P. Konstantinov Petersburg Nuclear Physics Institute, Leningrad Region, 188300 Gatchina, Russia
| | - Andrey L Konevega
- NRC "Kurchatov Institute"-B. P. Konstantinov Petersburg Nuclear Physics Institute, Leningrad Region, 188300 Gatchina, Russia
| | - Irina P Gileva
- State Research Center of Virology and Biotechnology Vector, Novosibirsk Region, 630559 Koltsovo, Russia
| | - Sergei N Shchelkunov
- State Research Center of Virology and Biotechnology Vector, Novosibirsk Region, 630559 Koltsovo, Russia
| | - Dmitry O Zharkov
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090 Novosibirsk, Russia
| |
Collapse
|
5
|
Mu Y, Plummer JB, Zelazowska MA, Paul S, Dong Q, Chen Z, Krug LT, McBride KM. A Recombinant Antibody For Tracking Murine Gammaherpesvirus 68 Uracil DNA Glycosylase Expression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.17.541089. [PMID: 37293087 PMCID: PMC10245680 DOI: 10.1101/2023.05.17.541089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Antibodies are powerful tools to detect expressed proteins. However off-target recognition can confound their use. Therefore, careful characterization is needed to validate specificity in distinct applications. Here we report the sequence and characterization of a mouse recombinant antibody that specifically detects ORF46 of murine gammaherpesvirus 68 (MHV68). This ORF encodes the viral uracil DNA glycosylase (vUNG). The antibody does not recognize murine uracil DNA glycosylase and is useful in detecting vUNG expressed in virally infected cells. It can detect expressed vUNG in cells via immunostaining and microscopy or flow cytometry analysis. The antibody can detect vUNG from lysates of expressing cells via immunoblot under native conditions but not denaturing conditions. This suggests it recognizes a confirmational based epitope. Altogether this manuscript describes the utility of the anti-vUNG antibody and suitability for use in studies of MHV68 infected cells.
Collapse
Affiliation(s)
- Yunxiang Mu
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Joshua B. Plummer
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Monika A. Zelazowska
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Somnath Paul
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Qiwen Dong
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY 11794, USA
- Molecular and Cellular Biology Program, Stony Brook University, Stony Brook, NY 11794, USA
| | - Zaowen Chen
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Laurie T. Krug
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY 11794, USA
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kevin M. McBride
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| |
Collapse
|
6
|
Chao TY, Cheng YY, Wang ZY, Fang TF, Chang YR, Fuh CS, Su MT, Su YW, Hsu PH, Su YC, Chang YC, Lee TY, Chou WH, Middeldorp JM, Saraste J, Chen MR. Subcellular Distribution of BALF2 and the Role of Rab1 in the Formation of Epstein-Barr Virus Cytoplasmic Assembly Compartment and Virion Release. Microbiol Spectr 2023; 11:e0436922. [PMID: 36602343 PMCID: PMC9927466 DOI: 10.1128/spectrum.04369-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 12/06/2022] [Indexed: 01/06/2023] Open
Abstract
Epstein-Barr virus (EBV) replicates its genome in the nucleus and undergoes tegumentation and envelopment in the cytoplasm. We are interested in how the single-stranded DNA binding protein BALF2, which executes its function and distributes predominantly in the nucleus, is packaged into the tegument of virions. At the mid-stage of virus replication in epithelial TW01-EBV cells, a small pool of BALF2 colocalizes with tegument protein BBLF1, BGLF4 protein kinase, and the cis-Golgi marker GM130 at the perinuclear viral assembly compartment (AC). A possible nuclear localization signal (NLS) between amino acids 1100 and 1128 (C29), which contains positive charged amino acid 1113RRKRR1117, is able to promote yellow fluorescent protein (YFP)-LacZ into the nucleus. In addition, BALF2 interacts with the nucleocapsid-associated protein BVRF1, suggesting that BALF2 may be transported into the cytoplasm with nucleocapsids in a nuclear egress complex (NEC)-dependent manner. A group of proteins involved in intracellular transport were identified to interact with BALF2 in a proteomic analysis. Among them, the small GTPase Rab1A functioning in bi-directional trafficking at the ER-Golgi interface is also a tegument component. In reactivated TW01-EBV cells, BALF2 colocalizes with Rab1A in the cytoplasmic AC. Expression of dominant-negative GFP-Rab1A(N124I) diminished the accumulation of BALF2 in the AC, coupling with attenuation of gp350/220 glycosylation. Virion release was significantly downregulated by expressing dominant-negative GFP-Rab1A(N124I). Overall, the subcellular distribution of BALF2 is regulated through its complex interaction with various proteins. Rab1 activity is required for proper gp350/220 glycosylation and the maturation of EBV. IMPORTANCE Upon EBV lytic reactivation, the virus-encoded DNA replication machinery functions in the nucleus, while the newly synthesized DNA is encapsidated and transported to the cytoplasm for final virus assembly. The single-stranded DNA binding protein BALF2 executing functions within the nucleus was also identified in the tegument layer of mature virions. Here, we studied the functional domain of BALF2 that contributes to the nuclear targeting and used a proteomic approach to identify novel BALF2-interacting cellular proteins that may contribute to virion morphogenesis. The GTPase Rab1, a master regulator of anterograde and retrograde endoplasmic reticulum (ER)-Golgi trafficking, colocalizes with BALF2 in the juxtanuclear concave region at the midstage of EBV reactivation. Rab1 activity is required for BALF2 targeting to the cytoplasmic assembly compartment (AC) and for gp350/220 targeting to cis-Golgi for proper glycosylation and virion release. Our study hints that EBV hijacks the bi-directional ER-Golgi trafficking machinery to complete virus assembly.
Collapse
Affiliation(s)
- Tsung-Yu Chao
- Graduate Institute and Department of Microbiology, College of Medicine, National Taiwan University, Tipei, Taiwan
| | - Yi-Ying Cheng
- Graduate Institute and Department of Microbiology, College of Medicine, National Taiwan University, Tipei, Taiwan
| | - Zi-Yun Wang
- Graduate Institute and Department of Microbiology, College of Medicine, National Taiwan University, Tipei, Taiwan
| | - Tien-Fang Fang
- Graduate Institute and Department of Microbiology, College of Medicine, National Taiwan University, Tipei, Taiwan
| | - Yu-Ruei Chang
- Graduate Institute and Department of Microbiology, College of Medicine, National Taiwan University, Tipei, Taiwan
| | - Chi-Shane Fuh
- Graduate Institute and Department of Microbiology, College of Medicine, National Taiwan University, Tipei, Taiwan
| | - Mei-Tzu Su
- Graduate Institute and Department of Microbiology, College of Medicine, National Taiwan University, Tipei, Taiwan
| | - Yuan-Wei Su
- Graduate Institute and Department of Microbiology, College of Medicine, National Taiwan University, Tipei, Taiwan
| | - Pang-Hung Hsu
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
| | - Yu-Chen Su
- Graduate Institute and Department of Microbiology, College of Medicine, National Taiwan University, Tipei, Taiwan
| | - Yu-Ching Chang
- Graduate Institute and Department of Microbiology, College of Medicine, National Taiwan University, Tipei, Taiwan
| | - Ting-Yau Lee
- Graduate Institute and Department of Microbiology, College of Medicine, National Taiwan University, Tipei, Taiwan
| | - Wei-Han Chou
- Graduate Institute and Department of Microbiology, College of Medicine, National Taiwan University, Tipei, Taiwan
| | - Jaap M. Middeldorp
- VU University Medical Center, Department of Pathology, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Jaakko Saraste
- Department of Biomedicine and Molecular Imaging Center, University of Bergen, Bergen, Norway
| | - Mei-Ru Chen
- Graduate Institute and Department of Microbiology, College of Medicine, National Taiwan University, Tipei, Taiwan
| |
Collapse
|
7
|
Ranger-Rogez S. EBV Genome Mutations and Malignant Proliferations. Infect Dis (Lond) 2021. [DOI: 10.5772/intechopen.93194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The Epstein-Barr virus (EBV) is a DNA virus with a relatively stable genome. Indeed, genomic variability is reported to be around 0.002%. However, some regions are more variable such as those carrying latency genes and specially EBNA1, -2, -LP, and LMP1. Tegument genes, particularly BNRF1, BPLF1, and BKRF3, are also quite mutated. For a long time, it has been considered for this ubiquitous virus, which infects a very large part of the population, that particular strains could be the cause of certain diseases. However, the mutations found, in some cases, are more geographically restricted rather than associated with proliferation. In other cases, they appear to be involved in oncogenesis. The objective of this chapter is to provide an update on changes in viral genome sequences in malignancies associated with EBV. We focused on describing the structure and function of the proteins corresponding to the genes mentioned above in order to understand how certain mutations of these proteins could increase the tumorigenic character of this virus. Mutations described in the literature for these proteins were identified by reporting viral and/or cellular functional changes as they were described.
Collapse
|
8
|
Li M, Xu Z, Zou X, Wang Y, Li Y, Ou X, Deng Y, Guo Y, Gan W, Chen D, Peng T, Xiao J, Cai M. Intracellular distribution of pseudorabies virus UL2 and detection of its nuclear import mechanism. Biol Chem 2021; 401:309-317. [PMID: 31665103 DOI: 10.1515/hsz-2019-0311] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 10/10/2019] [Indexed: 11/15/2022]
Abstract
Pseudorabies virus (PRV) UL2 (pUL2) is a multifunctional protein, which is homologous with herpes simplex virus 1 early protein UL2 (hUL2) and crucial for the viral propagation. Yet, how pUL2 executes its roles in the viral life cycle remain inadequately understood. In order to uncover its effect on the procedure of PRV infection, investigation was performed to examine the subcellular distribution of pUL2 and establish its trafficking mechanism. In the present study, enhanced yellow fluorescent protein or Myc tag fused pUL2 was transiently overexpressed in transfected cells and exhibited an absolutely nuclear accumulation without the existence of other PRV proteins. Additionally, the nuclear trafficking of pUL2 was proved to rely on Ran-, transportin-1, importin β1, importin α1, α3 and α5. Accordingly, these data will benefit the knowledge of pUL2-mediated biological effects in PRV infection cycle.
Collapse
Affiliation(s)
- Meili Li
- Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, Guangdong, China.,Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, No. 250 Changgang Dong Road, Haizhu District, Guangzhou 510260, Guangdong, China
| | - Zuo Xu
- Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, Guangdong, China.,Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, No. 250 Changgang Dong Road, Haizhu District, Guangzhou 510260, Guangdong, China
| | - Xingmei Zou
- Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, Guangdong, China.,Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, No. 250 Changgang Dong Road, Haizhu District, Guangzhou 510260, Guangdong, China
| | - Yuanfang Wang
- Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, Guangdong, China.,Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, No. 250 Changgang Dong Road, Haizhu District, Guangzhou 510260, Guangdong, China
| | - Yiwen Li
- Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, Guangdong, China.,Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, No. 250 Changgang Dong Road, Haizhu District, Guangzhou 510260, Guangdong, China
| | - Xiaowen Ou
- Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, Guangdong, China.,Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, No. 250 Changgang Dong Road, Haizhu District, Guangzhou 510260, Guangdong, China
| | - Yangxi Deng
- Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, Guangdong, China.,Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, No. 250 Changgang Dong Road, Haizhu District, Guangzhou 510260, Guangdong, China
| | - Yingjie Guo
- Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, Guangdong, China.,Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, No. 250 Changgang Dong Road, Haizhu District, Guangzhou 510260, Guangdong, China
| | - Weidong Gan
- Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, Guangdong, China.,Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, No. 250 Changgang Dong Road, Haizhu District, Guangzhou 510260, Guangdong, China
| | - Daixiong Chen
- Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, Guangdong, China.,Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, No. 250 Changgang Dong Road, Haizhu District, Guangzhou 510260, Guangdong, China
| | - Tao Peng
- State Key Laboratory of Respiratory Diseases, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Xinzao Town, Panyu, Guangzhou 511436, Guangdong, China.,South China Vaccine Corporation Limited, Guangzhou Science Park, Guangzhou 510663, Guangdong, China
| | - Jing Xiao
- State Key Laboratory of Respiratory Diseases, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Xinzao Town, Panyu, Guangzhou 511436, Guangdong, China
| | - Mingsheng Cai
- Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, Guangdong, China.,Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, No. 250 Changgang Dong Road, Haizhu District, Guangzhou 510260, Guangdong, China
| |
Collapse
|
9
|
Cai M, Liao Z, Zou X, Xu Z, Wang Y, Li T, Li Y, Ou X, Deng Y, Guo Y, Peng T, Li M. Herpes Simplex Virus 1 UL2 Inhibits the TNF-α-Mediated NF-κB Activity by Interacting With p65/p50. Front Immunol 2020; 11:549. [PMID: 32477319 PMCID: PMC7237644 DOI: 10.3389/fimmu.2020.00549] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 03/10/2020] [Indexed: 12/31/2022] Open
Abstract
Herpes simplex virus 1 (HSV-1) is a large double-stranded DNA virus that encodes at least 80 viral proteins, many of which are involved in the virus-host interaction and are beneficial to the viral survival and reproduction. However, the biological functions of some HSV-1-encoded proteins are not fully understood. Nuclear factor κB (NF-κB) activation is the major antiviral innate response, which can be triggered by various signals induced by cellular receptors from different pathways. Here, we demonstrated that HSV-1 UL2 protein could antagonize the tumor necrosis factor α (TNF-α)-mediated NF-κB activation. Co-immunoprecipitation assays showed that UL2 could interact with the NF-κB subunits p65 and p50, which also revealed the region of amino acids 9 to 17 of UL2 could suppress the NF-κB activation and interact with p65 and p50, and UL2 bound to the immunoglobulin-like plexin transcription factor functional domain of p65. However, UL2 did not affect the formation of p65/p50 dimerization and their nuclear localizations. Yet, UL2 was demonstrated to inhibit the NF-κB activity by attenuating TNF-α-induced p65 phosphorylation at Ser536 and therefore decreasing the expression of downstream inflammatory chemokine interleukin 8. Taken together, the attenuation of NF-κB activation by UL2 may contribute to the escape of host's antiviral innate immunity for HSV-1 during its infection.
Collapse
Affiliation(s)
- Mingsheng Cai
- Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, The Second Affiliated Hospital of Guangzhou Medical University, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Zongmin Liao
- Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, The Second Affiliated Hospital of Guangzhou Medical University, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China.,Department of Scientific Research and Education, Yuebei People's Hospital, Shaoguan, China
| | - Xingmei Zou
- Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, The Second Affiliated Hospital of Guangzhou Medical University, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Zuo Xu
- Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, The Second Affiliated Hospital of Guangzhou Medical University, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Yuanfang Wang
- Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, The Second Affiliated Hospital of Guangzhou Medical University, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Tong Li
- Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, The Second Affiliated Hospital of Guangzhou Medical University, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Yiwen Li
- Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, The Second Affiliated Hospital of Guangzhou Medical University, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Xiaowen Ou
- Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, The Second Affiliated Hospital of Guangzhou Medical University, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Yangxi Deng
- Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, The Second Affiliated Hospital of Guangzhou Medical University, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Yingjie Guo
- Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, The Second Affiliated Hospital of Guangzhou Medical University, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Tao Peng
- State Key Laboratory of Respiratory Diseases, Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China.,South China Vaccine Corporation Limited, Guangzhou Science Park, Guangzhou, China
| | - Meili Li
- Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, The Second Affiliated Hospital of Guangzhou Medical University, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
10
|
Manska S, Octaviano R, Rossetto CC. 5-Ethynyl-2'-deoxycytidine and 5-ethynyl-2'-deoxyuridine are differentially incorporated in cells infected with HSV-1, HCMV, and KSHV viruses. J Biol Chem 2020; 295:5871-5890. [PMID: 32205447 PMCID: PMC7196651 DOI: 10.1074/jbc.ra119.012378] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/18/2020] [Indexed: 11/06/2022] Open
Abstract
Nucleoside analogues are a valuable experimental tool. Incorporation of these molecules into newly synthesized DNA (i.e. pulse-labeling) is used to monitor cell proliferation or to isolate nascent DNA. Some of the most common nucleoside analogues used for pulse-labeling of DNA in cells are the deoxypyrimidine analogues 5-ethynyl-2'-deoxyuridine (EdU) and 5-ethynyl-2'-deoxycytidine (EdC). Click chemistry enables conjugation of an azide molecule tagged with a fluorescent dye or biotin to the alkyne of the analog, which can then be used to detect incorporation of EdU and EdC into DNA. The use of EdC is often recommended because of the potential cytotoxicity associated with EdU during longer incubations. Here, by comparing the relative incorporation efficiencies of EdU and EdC during short 30-min pulses, we demonstrate significantly lower incorporation of EdC than of EdU in noninfected human fibroblast cells or in cells infected with either human cytomegalovirus or Kaposi's sarcoma-associated herpesvirus. Interestingly, cells infected with herpes simplex virus type-1 (HSV-1) incorporated EdC and EdU at similar levels during short pulses. Of note, exogenous expression of HSV-1 thymidine kinase increased the incorporation efficiency of EdC. These results highlight the limitations when using substituted pyrimidine analogues in pulse-labeling and suggest that EdU is the preferable nucleoside analogue for short pulse-labeling experiments, resulting in increased recovery and sensitivity for downstream applications. This is an important discovery that may help to better characterize the biochemical properties of different nucleoside analogues with a given kinase, ultimately leading to significant differences in labeling efficiency of nascent DNA.
Collapse
Affiliation(s)
- Salomé Manska
- Department of Microbiology and Immunology, University of Nevada, Reno, School of Medicine, Reno, Nevada 89557
| | - Rionna Octaviano
- Department of Microbiology and Immunology, University of Nevada, Reno, School of Medicine, Reno, Nevada 89557
| | - Cyprian C Rossetto
- Department of Microbiology and Immunology, University of Nevada, Reno, School of Medicine, Reno, Nevada 89557.
| |
Collapse
|
11
|
Savva R. The Essential Co-Option of Uracil-DNA Glycosylases by Herpesviruses Invites Novel Antiviral Design. Microorganisms 2020; 8:microorganisms8030461. [PMID: 32214054 PMCID: PMC7143999 DOI: 10.3390/microorganisms8030461] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/20/2020] [Accepted: 03/21/2020] [Indexed: 01/10/2023] Open
Abstract
Vast evolutionary distances separate the known herpesviruses, adapted to colonise specialised cells in predominantly vertebrate hosts. Nevertheless, the distinct herpesvirus families share recognisably related genomic attributes. The taxonomic Family Herpesviridae includes many important human and animal pathogens. Successful antiviral drugs targeting Herpesviridae are available, but the need for reduced toxicity and improved efficacy in critical healthcare interventions invites novel solutions: immunocompromised patients presenting particular challenges. A conserved enzyme required for viral fitness is Ung, a uracil-DNA glycosylase, which is encoded ubiquitously in Herpesviridae genomes and also host cells. Research investigating Ung in Herpesviridae dynamics has uncovered an unexpected combination of viral co-option of host Ung, along with remarkable Subfamily-specific exaptation of the virus-encoded Ung. These enzymes apparently play essential roles, both in the maintenance of viral latency and during initiation of lytic replication. The ubiquitously conserved Ung active site has previously been explored as a therapeutic target. However, exquisite selectivity and better drug-like characteristics might instead be obtained via targeting structural variations within another motif of catalytic importance in Ung. The motif structure is unique within each Subfamily and essential for viral survival. This unique signature in highly conserved Ung constitutes an attractive exploratory target for the development of novel beneficial therapeutics.
Collapse
Affiliation(s)
- Renos Savva
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK
| |
Collapse
|
12
|
Li M, Zou X, Wang Y, Xu Z, Ou X, Li Y, Liu D, Guo Y, Deng Y, Jiang S, Li T, Shi S, Bao Y, Peng T, Cai M. The nuclear localization signal-mediated nuclear targeting of herpes simplex virus 1 early protein UL2 is important for efficient viral production. Aging (Albany NY) 2020; 12:2921-2938. [PMID: 32035424 PMCID: PMC7041738 DOI: 10.18632/aging.102786] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 01/19/2020] [Indexed: 12/18/2022]
Abstract
Herpes simplex virus 1 (HSV-1) is a representative alphaherpesvirus that can provoke a series of severe diseases to human being, but its exact pathogenesis is not perfectly understood. UL2, a uracil-DNA glycosylase involved in the process of HSV-1 DNA replication, has been shown to be predominantly targeted to the nuclei in our previous study, yet little is established regarding the subcellular localization signal or its related function of UL2 during HSV-1 propagation. Here, by creating a number of UL2 variants merged with enhanced yellow fluorescent protein, an authentic nuclear localization signal (NLS) of UL2 was, for the first time, identified and profiled to amino acids (aa) 1 to 17 (MKRACSRSPSPRRRPSS), and 12RRR14 was indispensable for its nuclear accumulation. Besides, the predicted nuclear export signal (aa 225 to 240) of UL2 was determined to be nonfunctional. Based on the HSV-1 bacterial artificial chromosome and homologous recombination technique, three recombinant viruses with mutations of the identified NLS, deletion and revertant of UL2 were constructed to assess the effect of UL2 nuclear targeting on HSV-1 replication. Compared to the wild type HSV-1, UL2 deletion remarkably restrained viral production, and mutation of NLS targeting UL2 to cytoplasm (pan-cellular distribution) in recombinant virus-infected cells showed a certain degree of deficiency in HSV-1 proliferation. Moreover, recombinant virus with UL2 deletion exhibited serious damages of viral DNA synthesis and mRNA expression, and these processes were partially disrupted in the recombinant virus with UL2 NLS mutation. Collectively, we had established a functional NLS in UL2 and showed that the NLS-mediated nuclear translocation of UL2 was important for efficient production of HSV-1. These data were of significance for further clarifying the biological function of UL2 during HSV-1 infection.
Collapse
Affiliation(s)
- Meili Li
- Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, Second Affiliated Hospital of Guangzhou Medical University, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou 510260, Guangdong, China
| | - Xingmei Zou
- Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, Second Affiliated Hospital of Guangzhou Medical University, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou 510260, Guangdong, China
| | - Yuanfang Wang
- Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, Second Affiliated Hospital of Guangzhou Medical University, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou 510260, Guangdong, China
| | - Zuo Xu
- Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, Second Affiliated Hospital of Guangzhou Medical University, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou 510260, Guangdong, China
| | - Xiaowen Ou
- Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, Second Affiliated Hospital of Guangzhou Medical University, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou 510260, Guangdong, China
| | - Yiwen Li
- Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, Second Affiliated Hospital of Guangzhou Medical University, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou 510260, Guangdong, China
| | - Delong Liu
- Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, Second Affiliated Hospital of Guangzhou Medical University, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou 510260, Guangdong, China
| | - Yingjie Guo
- Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, Second Affiliated Hospital of Guangzhou Medical University, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou 510260, Guangdong, China
| | - Yangxi Deng
- Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, Second Affiliated Hospital of Guangzhou Medical University, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou 510260, Guangdong, China
| | - Si Jiang
- Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, Second Affiliated Hospital of Guangzhou Medical University, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou 510260, Guangdong, China
| | - Tong Li
- Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, Second Affiliated Hospital of Guangzhou Medical University, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou 510260, Guangdong, China
| | - Shaoxuan Shi
- Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, Second Affiliated Hospital of Guangzhou Medical University, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou 510260, Guangdong, China
| | - Yilong Bao
- Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, Second Affiliated Hospital of Guangzhou Medical University, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou 510260, Guangdong, China
| | - Tao Peng
- State Key Laboratory of Respiratory Diseases, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Panyu, Guangzhou 511436, Guangdong, China.,South China Vaccine Corporation Limited, Guangzhou Science Park, Guangzhou 510663, Guangdong, China
| | - Mingsheng Cai
- Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, Second Affiliated Hospital of Guangzhou Medical University, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou 510260, Guangdong, China
| |
Collapse
|
13
|
Earl C, Bagnéris C, Zeman K, Cole A, Barrett T, Savva R. A structurally conserved motif in γ-herpesvirus uracil-DNA glycosylases elicits duplex nucleotide-flipping. Nucleic Acids Res 2019; 46:4286-4300. [PMID: 29596604 PMCID: PMC5934625 DOI: 10.1093/nar/gky217] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 03/19/2018] [Indexed: 11/13/2022] Open
Abstract
Efficient γ-herpesvirus lytic phase replication requires a virally encoded UNG-type uracil-DNA glycosylase as a structural element of the viral replisome. Uniquely, γ-herpesvirus UNGs carry a seven or eight residue insertion of variable sequence in the otherwise highly conserved minor-groove DNA binding loop. In Epstein-Barr Virus [HHV-4] UNG, this motif forms a disc-shaped loop structure of unclear significance. To ascertain the biological role of the loop insertion, we determined the crystal structure of Kaposi's sarcoma-associated herpesvirus [HHV-8] UNG (kUNG) in its product complex with a uracil-containing dsDNA, as well as two structures of kUNG in its apo state. We find the disc-like conformation is conserved, but only when the kUNG DNA-binding cleft is occupied. Surprisingly, kUNG uses this structure to flip the orphaned partner base of the substrate deoxyuridine out of the DNA duplex while retaining canonical UNG deoxyuridine-flipping and catalysis. The orphan base is stably posed in the DNA major groove which, due to DNA backbone manipulation by kUNG, is more open than in other UNG-dsDNA structures. Mutagenesis suggests a model in which the kUNG loop is pinned outside the DNA-binding cleft until DNA docking promotes rigid structuring of the loop and duplex nucleotide flipping, a novel observation for UNGs.
Collapse
Affiliation(s)
- Christopher Earl
- Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck College, University of London, Malet Street, London WC1E 7HX, UK
| | - Claire Bagnéris
- Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck College, University of London, Malet Street, London WC1E 7HX, UK
| | - Kara Zeman
- Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck College, University of London, Malet Street, London WC1E 7HX, UK
| | - Ambrose Cole
- Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck College, University of London, Malet Street, London WC1E 7HX, UK
| | - Tracey Barrett
- Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck College, University of London, Malet Street, London WC1E 7HX, UK
| | - Renos Savva
- Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck College, University of London, Malet Street, London WC1E 7HX, UK
| |
Collapse
|
14
|
Targeting uracil-DNA glycosylases for therapeutic outcomes using insights from virus evolution. Future Med Chem 2019; 11:1323-1344. [PMID: 31161802 DOI: 10.4155/fmc-2018-0319] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Ung-type uracil-DNA glycosylases are frontline defenders of DNA sequence fidelity in bacteria, plants and animals; Ungs also directly assist both innate and humoral immunity. Critically important in viral pathogenesis, whether acting for or against viral DNA persistence, Ungs also have therapeutic relevance to cancer, microbial and parasitic diseases. Ung catalytic specificity is uniquely conserved, yet selective antiviral drugging of the Ung catalytic pocket is tractable. However, more promising precision therapy approaches present themselves via insights from viral strategies, including sequestration or adaptation of Ung for noncanonical roles. A universal Ung inhibition mechanism, converged upon by unrelated viruses, could also inform design of compounds to inhibit specific distinct Ungs. Extrapolating current developments, the character of such novel chemical entities is proposed.
Collapse
|
15
|
Combinatorial Loss of the Enzymatic Activities of Viral Uracil-DNA Glycosylase and Viral dUTPase Impairs Murine Gammaherpesvirus Pathogenesis and Leads to Increased Recombination-Based Deletion in the Viral Genome. mBio 2018; 9:mBio.01831-18. [PMID: 30377280 PMCID: PMC6212821 DOI: 10.1128/mbio.01831-18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Unrepaired uracils in DNA can lead to mutations and compromise genomic stability. Herpesviruses have hijacked host processes of DNA repair and nucleotide metabolism by encoding a viral UNG that excises uracils and a viral dUTPase that initiates conversion of dUTP to dTTP. To better understand the impact of these processes on gammaherpesvirus pathogenesis, we examined the separate and collaborative roles of vUNG and vDUT upon MHV68 infection of mice. Simultaneous disruption of the enzymatic activities of both vUNG and vDUT led to a severe defect in acute replication and establishment of latency, while also revealing a novel, combinatorial function in promoting viral genomic stability. We propose that herpesviruses require these enzymatic processes to protect the viral genome from damage, possibly triggered by misincorporated uracil. This reveals a novel point of therapeutic intervention to potentially block viral replication and reduce the fitness of multiple herpesviruses. Misincorporation of uracil or spontaneous cytidine deamination is a common mutagenic insult to DNA. Herpesviruses encode a viral uracil-DNA glycosylase (vUNG) and a viral dUTPase (vDUT), each with enzymatic and nonenzymatic functions. However, the coordinated roles of these enzymatic activities in gammaherpesvirus pathogenesis and viral genomic stability have not been defined. In addition, potential compensation by the host UNG has not been examined in vivo. The genetic tractability of the murine gammaherpesvirus 68 (MHV68) system enabled us to delineate the contribution of host and viral factors that prevent uracilated DNA. Recombinant MHV68 lacking vUNG (ORF46.stop) was not further impaired for acute replication in the lungs of UNG−/− mice compared to wild-type (WT) mice, indicating host UNG does not compensate for the absence of vUNG. Next, we investigated the separate and combinatorial consequences of mutating the catalytic residues of the vUNG (ORF46.CM) and vDUT (ORF54.CM). ORF46.CM was not impaired for replication, while ORF54.CM had a slight transient defect in replication in the lungs. However, disabling both vUNG and vDUT led to a significant defect in acute expansion in the lungs, followed by impaired establishment of latency in the splenic reservoir. Upon serial passage of the ORF46.CM/ORF54.CM mutant in either fibroblasts or the lungs of mice, we noted rapid loss of the nonessential yellow fluorescent protein (YFP) reporter gene from the viral genome, due to recombination at repetitive elements. Taken together, our data indicate that the vUNG and vDUT coordinate to promote viral genomic stability and enable viral expansion prior to colonization of latent reservoirs.
Collapse
|
16
|
Chen LW, Hung CH, Wang SS, Yen JB, Liu AC, Hung YH, Chang PJ. Expression and regulation of the BKRF2, BKRF3 and BKRF4 genes of Epstein-Barr virus. Virus Res 2018; 256:76-89. [PMID: 30096410 DOI: 10.1016/j.virusres.2018.08.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 08/02/2018] [Accepted: 08/04/2018] [Indexed: 12/24/2022]
Abstract
The BKRF2, BKRF3 and BKRF4 genes of Epstein-Barr virus (EBV) are located close together in the viral genome, which encode glycoprotein L, uracil-DNA glycosylase and a tegument protein, respectively. Here, we demonstrate that the BKRF2 gene behaves as a true-late lytic gene, whereas the BKRF3 and BKRF4 genes belong to the early lytic gene family. Our results further reveal that both BKRF3 and BKRF4 promoters are new synergistic targets of Zta and Rta, two EBV latent-to-lytic switch transactivators. Multiple Rta- and Zta-responsive elements within the BKRF3 and BKRF4 promoters were identified and characterized experimentally. Importantly, we show that DNA methylation is absolutely required for activation of the BKRF4 promoter by Zta alone or in combination with Rta. Moreover, we find that sodium butyrate, an inducing agent of EBV reactivation, is capable of activating the BKRF4 promoter through a mechanism independent of Zta and Rta. Overall, our studies highlight the complexity of transcriptional regulation of lytic genes within the BKRF2-BKRF3-BKRF4 gene locus.
Collapse
Affiliation(s)
- Lee-Wen Chen
- Department of Respiratory Care, Chang-Gung University of Science and Technology, Chiayi 61363, Taiwan; Department of Pediatric Surgery, Chang-Gung Memorial Hospital, Chiayi 61363, Taiwan
| | - Chien-Hui Hung
- Graduate Institute of Clinical Medical Sciences, Chang-Gung University, Taoyuan 33302, Taiwan
| | - Shie-Shan Wang
- Department of Pediatric Surgery, Chang-Gung Memorial Hospital, Chiayi 61363, Taiwan; School of Traditional Chinese Medicine, College of Medicine, Chang-Gung University, Taoyuan 33302, Taiwan
| | - Ju-Bei Yen
- Graduate Institute of Clinical Medical Sciences, Chang-Gung University, Taoyuan 33302, Taiwan; Department of Pediatrics, Chang-Gung Memorial Hospital, Chiayi 61363, Taiwan
| | - Ann-Chi Liu
- Department of Respiratory Care, Chang-Gung University of Science and Technology, Chiayi 61363, Taiwan
| | - Ya-Hui Hung
- Department of Respiratory Care, Chang-Gung University of Science and Technology, Chiayi 61363, Taiwan
| | - Pey-Jium Chang
- Graduate Institute of Clinical Medical Sciences, Chang-Gung University, Taoyuan 33302, Taiwan; Department of Nephrology, Chang-Gung Memorial Hospital, Chiayi 61363, Taiwan.
| |
Collapse
|
17
|
Liao YH, Ren JT, Zhang W, Zhang ZZ, Lin Y, Su FX, Jia WH, Tang LY, Ren ZF. Polymorphisms in homologous recombination repair genes and the risk and survival of breast cancer. J Gene Med 2017; 19. [PMID: 28940489 DOI: 10.1002/jgm.2988] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 08/23/2017] [Accepted: 09/13/2017] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Immunoglobulin (Ig)A antibody of Epstein-Barr virus (EBV) was found to associate with breast cancer (BC), whereas IgA positivity was related to a series of genetic markers in the genes of homologous recombination repair system (HRRs). We assessed the associations of the polymorphisms in HRR genes with the risk and survival of BC. METHODS A case-control study was conducted with 1551 bc cases and 1605 age-matched healthy controls between October 2008 and March 2012 in the Guangzhou Breast Cancer Study (GZBCS), China, and the case population were followed up until 31 January 2016. Five single nucleotide polymorphisms of candidate genes in HRR system were genotyped. Odds ratios (ORs) and hazards ratios (HRs) were calculated using multivariate logistic regression and Cox proportional hazards regression to estimate the risk and prognostic effect, respectively. RESULTS RFC1 rs6829064 (AA) was associated with an increased BC risk [OR = 1.35; 95% confidence interval (CI) = 1.06-1.73] compared to the wild genotype (GG). NRM rs1075496 (GT/TT versus GG) was associated with a worse progression-free survival (PFS) and the HR was 1.34 (95% CI = 1.01-1.78), particularly among advanced patients. LIG3 rs1052536 (CT/TT versus CC) was associated with a better PFS and the HR was 0.70 (95% CI = 0.53-0.93). However, RAD54L rs1710286 and RPA1 rs11078676 were not observed to be associated with either the risk or survival of BC. CONCLUSIONS The findings of the present study suggest that the polymorphisms in HRR genes were associated with BC risk (RFC1 rs6829064) and prognosis (NRM rs1075496 and LIG3 rs1052536), whereas RAD54L rs1710286 and RPA1 rs11078676 had null associations with BC.
Collapse
Affiliation(s)
- Yu-Huang Liao
- The School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Jun-Ting Ren
- The School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Wei Zhang
- The School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Zheng-Zheng Zhang
- The School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Ying Lin
- The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Feng-Xi Su
- The Second Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wei-Hua Jia
- The Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Lu-Ying Tang
- The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ze-Fang Ren
- The School of Public Health, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
18
|
Cai M, Huang Z, Liao Z, Chen T, Wang P, Jiang S, Chen D, Peng T, Bian Y, Hong G, Yang H, Zeng Z, Li X, Li M. Characterization of the subcellular localization and nuclear import molecular mechanisms of herpes simplex virus 1 UL2. Biol Chem 2017; 398:509-517. [PMID: 27865090 DOI: 10.1515/hsz-2016-0268] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Accepted: 11/16/2016] [Indexed: 11/15/2022]
Abstract
As a crucial protein, the herpes simplex virus 1 (HSV-1) UL2 protein has been shown to take part in various stages of viral infection, nonetheless, its exact subcellular localization and transport molecular determinants are not well known thus far. In the present study, by using live cells fluorescent microscopy assay, UL2 tagged with enhanced yellow fluorescent protein was transiently expressed in live cells and showed a completely nuclear accumulation without the presence of other HSV-1 proteins. Moreover, the nuclear transport of UL2 was characterized to be assisted by multiple transport pathways through Ran-, importin α1-, α5-, α7-, β1- and transportin-1 cellular transport receptors. Consequently, these results will improve understanding of UL2-mediated biological functions in HSV-1 infection cycles.
Collapse
|
19
|
Kwon E, Pathak D, Chang HW, Kim DY. Crystal structure of mimivirus uracil-DNA glycosylase. PLoS One 2017; 12:e0182382. [PMID: 28763516 PMCID: PMC5538708 DOI: 10.1371/journal.pone.0182382] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 07/17/2017] [Indexed: 01/28/2023] Open
Abstract
Cytosine deamination induced by stresses or enzymatic catalysis converts deoxycytidine into deoxyuridine, thereby introducing a G to A mutation after DNA replication. Base-excision repair to correct uracil to cytosine is initiated by uracil-DNA glycosylase (UDG), which recognizes and eliminates uracil from DNA. Mimivirus, one of the largest known viruses, also encodes a distinctive UDG gene containing a long N-terminal domain (N-domain; residues 1–130) and a motif-I (residues 327–343), in addition to the canonical catalytic domain of family I UDGs (also called UNGs). To understand the structural and functional features of the additional segments, we have determined the crystal structure of UNG from Acanthamoeba polyphaga mimivirus (mvUNG). In the crystal structure of mvUNG, residues 95–130 in the N-domain bind to a hydrophobic groove in the catalytic domain, and motif-I forms a short β-sheet with a positively charged surface near the active site. Circular dichroism spectra showed that residues 1–94 are in a random coil conformation. Deletion of the three additional fragments reduced the activity and thermal stability, compared to full-length mvUNG. The results suggested that the mvUNG N-domain and motif-I are required for its structural and functional integrity.
Collapse
Affiliation(s)
- Eunju Kwon
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk, South Korea
| | - Deepak Pathak
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk, South Korea
| | - Hyeun Wook Chang
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk, South Korea
| | - Dong Young Kim
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk, South Korea
- * E-mail:
| |
Collapse
|
20
|
Characterization of the subcellular localization of Epstein-Barr virus encoded proteins in live cells. Oncotarget 2017; 8:70006-70034. [PMID: 29050259 PMCID: PMC5642534 DOI: 10.18632/oncotarget.19549] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 06/29/2017] [Indexed: 12/27/2022] Open
Abstract
Epstein-Barr virus (EBV) is the pathogenic factor of numerous human tumors, yet certain of its encoded proteins have not been studied. As a first step for functional identification, we presented the construction of a library of expression constructs for most of the EBV encoded proteins and an explicit subcellular localization map of 81 proteins encoded by EBV in mammalian cells. Viral open reading frames were fused with enhanced yellow fluorescent protein (EYFP) tag in eukaryotic expression plasmid then expressed in COS-7 live cells, and protein localizations were observed by fluorescence microscopy. As results, 34.57% (28 proteins) of all proteins showed pan-nuclear or subnuclear localization, 39.51% (32 proteins) exhibitted pan-cytoplasmic or subcytoplasmic localization, and 25.93% (21 proteins) were found in both the nucleus and cytoplasm. Interestingly, most envelope proteins presented pan-cytoplasmic or membranous localization, and most capsid proteins displayed enriched or complete localization in the nucleus, indicating that the subcellular localization of specific proteins are associated with their roles during viral replication. Taken together, the subcellular localization map of EBV proteins in live cells may lay the foundation for further illustrating the functions of EBV-encoded genes in human diseases especially in its relevant tumors.
Collapse
|
21
|
Absence of the uracil DNA glycosylase of murine gammaherpesvirus 68 impairs replication and delays the establishment of latency in vivo. J Virol 2015; 89:3366-79. [PMID: 25589640 DOI: 10.1128/jvi.03111-14] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
UNLABELLED Uracil DNA glycosylases (UNG) are highly conserved proteins that preserve DNA fidelity by catalyzing the removal of mutagenic uracils. All herpesviruses encode a viral UNG (vUNG), and yet the role of the vUNG in a pathogenic course of gammaherpesvirus infection is not known. First, we demonstrated that the vUNG of murine gammaherpesvirus 68 (MHV68) retains the enzymatic function of host UNG in an in vitro class switch recombination assay. Next, we generated a recombinant MHV68 with a stop codon in ORF46/UNG (ΔUNG) that led to loss of UNG activity in infected cells and a replication defect in primary fibroblasts. Acute replication of MHV68ΔUNG in the lungs of infected mice was reduced 100-fold and was accompanied by a substantial delay in the establishment of splenic latency. Latency was largely, yet not fully, restored by an increase in virus inoculum or by altering the route of infection. MHV68 reactivation from latent splenocytes was not altered in the absence of the vUNG. A survey of host UNG activity in cells and tissues targeted by MHV68 indicated that the lung tissue has a lower level of enzymatic UNG activity than the spleen. Taken together, these results indicate that the vUNG plays a critical role in the replication of MHV68 in tissues with limited host UNG activity and this vUNG-dependent expansion, in turn, influences the kinetics of latency establishment in distal reservoirs. IMPORTANCE Herpesviruses establish chronic lifelong infections using a strategy of replicative expansion, dissemination to latent reservoirs, and subsequent reactivation for transmission and spread. We examined the role of the viral uracil DNA glycosylase, a protein conserved among all herpesviruses, in replication and latency of murine gammaherpesvirus 68. We report that the viral UNG of this murine pathogen retains catalytic activity and influences replication in culture. The viral UNG was impaired for productive replication in the lung. This defect in expansion at the initial site of acute replication was associated with a substantial delay of latency establishment in the spleen. The levels of host UNG were substantially lower in the lung compared to the spleen, suggesting that herpesviruses encode a viral UNG to compensate for reduced host enzyme levels in some cell types and tissues. These data suggest that intervention at the site of initial replicative expansion can delay the establishment of latency, a hallmark of chronic herpesvirus infection.
Collapse
|
22
|
Schormann N, Ricciardi R, Chattopadhyay D. Uracil-DNA glycosylases-structural and functional perspectives on an essential family of DNA repair enzymes. Protein Sci 2014; 23:1667-85. [PMID: 25252105 DOI: 10.1002/pro.2554] [Citation(s) in RCA: 149] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 09/16/2014] [Indexed: 12/26/2022]
Abstract
Uracil-DNA glycosylases (UDGs) are evolutionarily conserved DNA repair enzymes that initiate the base excision repair pathway and remove uracil from DNA. The UDG superfamily is classified into six families based on their substrate specificity. This review focuses on the family I enzymes since these are the most extensively studied members of the superfamily. The structural basis for substrate specificity and base recognition as well as for DNA binding, nucleotide flipping and catalytic mechanism is discussed in detail. Other topics include the mechanism of lesion search and molecular mimicry through interaction with uracil-DNA glycosylase inhibitors. The latest studies and findings detailing structure and function in the UDG superfamily are presented.
Collapse
Affiliation(s)
- N Schormann
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, 35294
| | | | | |
Collapse
|
23
|
Uracil DNA glycosylase BKRF3 contributes to Epstein-Barr virus DNA replication through physical interactions with proteins in viral DNA replication complex. J Virol 2014; 88:8883-99. [PMID: 24872582 DOI: 10.1128/jvi.00950-14] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Epstein-Barr virus (EBV) BKRF3 shares sequence homology with members of the uracil-N-glycosylase (UNG) protein family and has DNA glycosylase activity. Here, we explored how BKRF3 participates in the DNA replication complex and contributes to viral DNA replication. Exogenously expressed Flag-BKRF3 was distributed mostly in the cytoplasm, whereas BKRF3 was translocated into the nucleus and colocalized with the EBV DNA polymerase BALF5 in the replication compartment during EBV lytic replication. The expression level of BKRF3 increased gradually during viral replication, coupled with a decrease of cellular UNG2, suggesting BKRF3 enzyme activity compensates for UNG2 and ensures the fidelity of viral DNA replication. In immunoprecipitation-Western blotting, BKRF3 was coimmuno-precipitated with BALF5, the polymerase processivity factor BMRF1, and the immediate-early transactivator Rta. Coexpression of BMRF1 appeared to facilitate the nuclear targeting of BKRF3 in immunofluorescence staining. Residues 164 to 255 of BKRF3 were required for interaction with Rta and BALF5, whereas residues 81 to 166 of BKRF3 were critical for BMRF1 interaction in glutathione S-transferase (GST) pulldown experiments. Viral DNA replication was defective in cells harboring BKRF3 knockout EBV bacmids. In complementation assays, the catalytic mutant BKRF3(Q90L,D91N) restored viral DNA replication, whereas the leucine loop mutant BKRF3(H213L) only partially rescued viral DNA replication, coupled with a reduced ability to interact with the viral DNA polymerase and Rta. Our data suggest that BKRF3 plays a critical role in viral DNA synthesis predominantly through its interactions with viral proteins in the DNA replication compartment, while its enzymatic activity may be supplementary for uracil DNA glycosylase (UDG) function during virus replication. IMPORTANCE Catalytic activities of both cellular UDG UNG2 and viral UDGs contribute to herpesviral DNA replication. To ensure that the enzyme activity executes at the right time and the right place in DNA replication forks, complex formation with other components in the DNA replication machinery provides an important regulation for UDG function. In this study, we provide the mechanism for EBV UDG BKRF3 nuclear targeting and the interacting domains of BKRF3 with viral DNA replication proteins. Through knockout and complementation approaches, we further demonstrate that in addition to UDG activity, the interaction of BKRF3 with viral proteins in the replication compartment is crucial for efficient viral DNA replication.
Collapse
|
24
|
Molecular characterization of Plasmodium falciparum uracil-DNA glycosylase and its potential as a new anti-malarial drug target. Malar J 2014; 13:149. [PMID: 24742318 PMCID: PMC3997752 DOI: 10.1186/1475-2875-13-149] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 04/01/2014] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Based on resistance of currently used anti-malarials, a new anti-malarial drug target against Plasmodium falciparum is urgently needed. Damaged DNA cannot be transcribed without prior DNA repair; therefore, uracil-DNA glycosylase, playing an important role in base excision repair, may act as a candidate for a new anti-malarial drug target. METHODS Initially, the native PfUDG from parasite crude extract was partially purified using two columns, and the glycosylase activity was monitored. The existence of malarial UDG activity prompted the recombinant expression of PfUDG for further characterization. The PfUDG from chloroquine and pyrimethamine resistant P. falciparum strain K1 was amplified, cloned into the expression vector, and expressed in Escherichia coli. The recombinant PfUDG was analysed by SDS-PAGE and identified by LC-MS/MS. The three dimensional structure was modelled. Biochemical properties were characterized. Inhibitory effects of 12 uracil-derivatives on PfUDG activity were investigated. Inhibition of parasite growth was determined in vitro using SYBR Green I and compared with results from human cytotoxicity tests. RESULTS The native PfUDG was partially purified with a specific activity of 1,811.7 units/mg (113.2 fold purification). After cloning of 966-bp PCR product, the 40-kDa hexa-histidine tagged PfUDG was expressed and identified. The amino acid sequence of PfUDG showed only 24.8% similarity compared with the human enzyme. The biochemical characteristics of PfUDGs were quite similar. They were inhibited by uracil glycosylase inhibitor protein as found in other organisms. Interestingly, recombinant PfUDG was inhibited by two uracil-derived compounds; 1-methoxyethyl-6-(p-n-octylanilino)uracil (IC50 of 16.75 μM) and 6-(phenylhydrazino)uracil (IC50 of 77.5 μM). Both compounds also inhibited parasite growth with IC50s of 15.6 and 12.8 μM, respectively. Moreover, 1-methoxyethyl-6-(p-n-octylanilino)uracil was not toxic to HepG2 cells, with IC50 of > 160 μM while 6-(phenylhydrazino)uracil exhibited cytoxicity, with IC50 of 27.5 μM. CONCLUSIONS The recombinant PfUDG was expressed, characterized and compared to partially purified native PfUDG. Their characteristics were not significantly different. PfUDG differs from human enzyme in its size and predicted amino acid sequence. Two uracil derivatives inhibited PfUDG and parasite growth; however, only one non-cytotoxic compound was found. Therefore, this selective compound can act as a lead compound for anti-malarial development in the future.
Collapse
|
25
|
Shen GP, Pan QH, Hong MH, Qin HD, Xu YF, Chen LZ, Feng QS, Jorgensen TJ, Shugart YY, Zeng YX, Jia WH. Human genetic variants of homologous recombination repair genes first found to be associated with Epstein-Barr virus antibody titers in healthy Cantonese. Int J Cancer 2011; 129:1459-66. [PMID: 21792882 DOI: 10.1002/ijc.25759] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Accepted: 10/13/2010] [Indexed: 11/12/2022]
Abstract
Epstein-Barr virus (EBV) infection is a major risk factor for nasopharyngeal carcinoma (NPC). Despite high prevalence of infection among the general population worldwide, only a small proportion of infected individuals presents with seropositivity for EBV-specific IgA antibodies. This seropositive subgroup of EBV carriers has an elevated cumulative risk for NPC during their lifetime. Previous studies reported that the host homologous recombination repair (HRR) system participates in EBV lytic replication, suggesting a potential mechanism to influence EBV reactivation status and thus seropositivity. To investigate whether genetic variants of HRR genes are associated with the serostatus in a healthy population, we investigated the association between seropositivity for anti-VCA-IgA and 156 tagging SNPs in 35 genes connected with HRR in an observational study among 755 healthy Cantonese speakers in southern China. Six variant alleles of MDC1, RAD54L, TP53BP1, RPA1, LIG3 and RFC1 exhibited associations with seropositivity (p(trend) from 0.0085 to 0.00027). Our study provides evidence that genetic variation within the HRR might affect an individual's propensity for EBV seropositive status of anti-VCA IgA antibody.
Collapse
Affiliation(s)
- Guo-Ping Shen
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Vaccinia virus D4 mutants defective in processive DNA synthesis retain binding to A20 and DNA. J Virol 2010; 84:12325-35. [PMID: 20861259 DOI: 10.1128/jvi.01435-10] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Genome replication is inefficient without processivity factors, which tether DNA polymerases to their templates. The vaccinia virus DNA polymerase E9 requires two viral proteins, A20 and D4, for processive DNA synthesis, yet the mechanism of how this tricomplex functions is unknown. This study confirms that these three proteins are necessary and sufficient for processivity, and it focuses on the role of D4, which also functions as a uracil DNA glycosylase (UDG) repair enzyme. A series of D4 mutants was generated to discover which sites are important for processivity. Three point mutants (K126V, K160V, and R187V) which did not function in processive DNA synthesis, though they retained UDG catalytic activity, were identified. The mutants were able to compete with wild-type D4 in processivity assays and retained binding to both A20 and DNA. The crystal structure of R187V was resolved and revealed that the local charge distribution around the substituted residue is altered. However, the mutant protein was shown to have no major structural distortions. This suggests that the positive charges of residues 126, 160, and 187 are required for D4 to function in processive DNA synthesis. Consistent with this is the ability of the conserved mutant K126R to function in processivity. These mutants may help unlock the mechanism by which D4 contributes to processive DNA synthesis.
Collapse
|
27
|
Rennekamp AJ, Lieberman PM. Initiation of lytic DNA replication in Epstein-Barr virus: search for a common family mechanism. Future Virol 2010; 5:65-83. [PMID: 22468146 PMCID: PMC3314400 DOI: 10.2217/fvl.09.69] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Herpesviruses are a complex family of dsDNA viruses that are a major cause of human disease. All family members share highly related viral replication proteins, such as DNA polymerase, ssDNA-binding proteins and processivity factors. Consequently, it is generally thought that lytic replication occurs through a common and conserved mechanism. However, considerable evidence indicates that proteins controlling initiation of DNA replication vary greatly among the herepesvirus subfamilies. In this article, we focus on some of the known mechanisms that regulate Epstein-Barr virus lytic-cycle replication, and compare this to other herpesvirus family members. Our reading of the literature leads us to conclude that diverse viral mechanisms generate a common nucleoprotein prereplication structure that can be recognized by a highly conserved family of viral replication enzymes.
Collapse
Affiliation(s)
- Andrew J Rennekamp
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA and The University of Pennsylvania, Biomedical Graduate Program in Cell & Molecular Biology, The School of Medicine, Philadelphia, PA 19104, USA, Tel.: +1 215 898 9523, Fax: +1 251 898 0663,
| | - Paul M Lieberman
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA, Tel.: +1 215 898 9491, Fax: +1 215 898 0663,
| |
Collapse
|
28
|
Sire J, Quérat G, Esnault C, Priet S. Uracil within DNA: an actor of antiviral immunity. Retrovirology 2008; 5:45. [PMID: 18533995 PMCID: PMC2427051 DOI: 10.1186/1742-4690-5-45] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2008] [Accepted: 06/05/2008] [Indexed: 12/18/2022] Open
Abstract
Uracil is a natural base of RNA but may appear in DNA through two different pathways including cytosine deamination or misincorporation of deoxyuridine 5'-triphosphate nucleotide (dUTP) during DNA replication and constitutes one of the most frequent DNA lesions. In cellular organisms, such lesions are faithfully cleared out through several universal DNA repair mechanisms, thus preventing genome injury. However, several recent studies have brought some pieces of evidence that introduction of uracil bases in viral genomic DNA intermediates during genome replication might be a way of innate immune defence against some viruses. As part of countermeasures, numerous viruses have developed powerful strategies to prevent emergence of uracilated viral genomes and/or to eliminate uracils already incorporated into DNA. This review will present the current knowledge about the cellular and viral countermeasures against uracils in DNA and the implications of these uracils as weapons against viruses.
Collapse
Affiliation(s)
- Joséphine Sire
- UMR IRD-190, Emergence des Pathologies Virales, Faculté de Médecine, 27 Bd Jean Moulin, 13005 Marseille, France.
| | | | | | | |
Collapse
|
29
|
Ranneberg-Nilsen T, Dale HA, Luna L, Slettebakk R, Sundheim O, Rollag H, Bjørås M. Characterization of human cytomegalovirus uracil DNA glycosylase (UL114) and its interaction with polymerase processivity factor (UL44). J Mol Biol 2008; 381:276-88. [PMID: 18599070 DOI: 10.1016/j.jmb.2008.05.028] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2008] [Revised: 05/09/2008] [Accepted: 05/10/2008] [Indexed: 10/22/2022]
Abstract
Here, we report the molecular characterization of the human cytomegalovirus uracil DNA glycosylase (UNG) UL114. Purified UL114 was shown to be a DNA glycosylase, which removes uracil from double-stranded and single-stranded DNA. However, kinetic analysis has shown that viral UNG removed uracil more slowly compared with the core form of human UNG (Delta84hUNG), which has a catalytic efficiency (k(cat)/K(M)) 350- to 650-fold higher than that of UL114. Furthermore, UL114 showed a maximum level of DNA glycosylase activity at equimolar concentrations of the viral polymerase processivity factor UL44. Next, UL114 was coprecipitated with DNA immobilized to magnetic beads only in the presence of UL44, suggesting that UL44 facilitated the loading of UL114 on DNA. Moreover, mutant analysis demonstrated that the C-terminal part of UL44 (residues 291-433) is important for the interplay with UL114. Immunofluorescence microscopy revealed that UL44 and UL114 colocalized in numerous small punctuate foci at the immediate-early (5 and 8 hpi) phases of infection and that these foci grew in size throughout the infection. Furthermore, coimmunoprecipitation assays with cellular extracts of infected cells confirmed that UL44 associated with UL114. Finally, the nuclear concentration of UL114 was estimated to be 5- to 10-fold higher than that of UL44 in infected cells, which indicated a UL44-independent role of UL114. In summary, our data have demonstrated a catalytically inefficient viral UNG that was highly enriched in viral replication foci, thus supporting an important role of UL114 in replication rather than repair of the viral genome.
Collapse
|
30
|
Lu CC, Chen YC, Wang JT, Yang PW, Chen MR. Xeroderma pigmentosum C is involved in Epstein Barr virus DNA replication. J Gen Virol 2008; 88:3234-3243. [PMID: 18024891 DOI: 10.1099/vir.0.83212-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cellular mismatch and base-excision repair machineries have been shown to be involved in Epstein-Barr Virus (EBV) lytic DNA replication. We report here that nucleotide-excision repair (NER) may also play an important role in EBV lytic DNA replication. Firstly, the EBV BGLF4 kinase interacts with xeroderma pigmentosum C (XPC), the critical DNA damage-recognition factor of NER, in yeast and in vitro, as demonstrated by yeast two-hybrid and glutathione S-transferase pull-down assays. Simultaneously, XPC was shown, by indirect immunofluorescence and co-immunoprecipitation assays, to interact and colocalize with BGLF4 in EBV-positive NA cells undergoing lytic viral replication. In addition, the efficiency of EBV DNA replication was reduced about 30-40 % by an XPC small interfering RNA. Expression of BGLF4 enhances cellular DNA-repair activity in p53-defective H1299/bcl2 cells in a host-cell reactivation assay. This enhancement was not observed in the XPC-mutant cell line XP4PA-SV unless complemented by ectopic XPC, suggesting that BGLF4 may stimulate DNA repair in an XPC-dependent manner. Overall, we suggest that the interaction of BGLF4 and XPC may be involved in DNA replication and repair and thereby enhance the efficiency of viral DNA replication.
Collapse
Affiliation(s)
- Chih-Chung Lu
- Graduate Institute and Department of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan 100, PR China
| | - Yi-Chun Chen
- Graduate Institute and Department of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan 100, PR China
| | - Jiin-Tarng Wang
- Graduate Institute and Department of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan 100, PR China
| | - Pei-Wen Yang
- Graduate Institute and Department of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan 100, PR China
| | - Mei-Ru Chen
- Graduate Institute and Department of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan 100, PR China
| |
Collapse
|
31
|
Sousa MML, Krokan HE, Slupphaug G. DNA-uracil and human pathology. Mol Aspects Med 2007; 28:276-306. [PMID: 17590428 DOI: 10.1016/j.mam.2007.04.006] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2007] [Accepted: 04/26/2007] [Indexed: 01/08/2023]
Abstract
Uracil is usually an inappropriate base in DNA, but it is also a normal intermediate during somatic hypermutation (SHM) and class switch recombination (CSR) in adaptive immunity. In addition, uracil is introduced into retroviral DNA by the host as part of a defence mechanism. The sources of uracil in DNA are spontaneous or enzymatic deamination of cytosine (U:G mispairs) and incorporation of dUTP (U:A pairs). Uracil in DNA is removed by a uracil-DNA glycosylase. The major ones are nuclear UNG2 and mitochondrial UNG1 encoded by the UNG-gene, and SMUG1 that also removes oxidized pyrimidines, e.g. 5-hydroxymethyluracil. The other ones are TDG that removes U and T from mismatches, and MBD4 that removes U from CpG contexts. UNG2 is found in replication foci during the S-phase and has a distinct role in repair of U:A pairs, but it is also important in U:G repair, a function shared with SMUG1. SHM is initiated by activation-induced cytosine deaminase (AID), followed by removal of U by UNG2. Humans lacking UNG2 suffer from recurrent infections and lymphoid hyperplasia, and have skewed SHM and defective CSR, resulting in elevated IgM and strongly reduced IgG, IgA and IgE. UNG-defective mice also develop B-cell lymphoma late in life. In the defence against retrovirus, e.g. HIV-1, high concentrations of dUTP in the target cells promotes misincorporation of dUMP-, and host cell APOBEC proteins may promote deamination of cytosine in the viral DNA. This facilitates degradation of viral DNA by UNG2 and AP-endonuclease. However, viral proteins Vif and Vpr counteract this defense by mechanisms that are now being revealed. In conclusion, uracil in DNA is both a mutagenic burden and a tool to modify DNA for diversity or degradation.
Collapse
Affiliation(s)
- Mirta M L Sousa
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, N-7006 Trondheim, Norway
| | | | | |
Collapse
|