1
|
Lamp B, Barth S, Reuscher C, Affeldt S, Cechini A, Netsch A, Lobedank I, Rümenapf T. Essential role of cis-encoded mature NS3 in the genome packaging of classical swine fever virus. J Virol 2025; 99:e0120924. [PMID: 39723819 PMCID: PMC11852850 DOI: 10.1128/jvi.01209-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 12/02/2024] [Indexed: 12/28/2024] Open
Abstract
Classical swine fever virus (CSFV) is a member of the genus Pestivirus within the family Flaviviridae. The enveloped particles contain a plus-stranded RNA genome encoding a single large polyprotein. The processing of this polyprotein undergoes dynamic changes throughout the infection cycle. The release of mature NS3 from the polyprotein is mediated and regulated by the NS2 autoprotease and a cellular co-factor, restricting efficient cleavage to the early phases of infection. NS3 is a multifunctional viral enzyme exhibiting helicase, NTPase, and protease activities pivotal for viral replication. Hence, the release of mature NS3 fuels replication, whereas unprocessed NS2-3 precursors are vital for progeny virus production in later phases of infection. Thus far, no packaging signals have been identified for pestivirus RNA. To explore the prerequisites for particle assembly, trans-packaging experiments were conducted using CSFV subgenomes and coreless CSFV strains. Intriguingly, we discovered a significant role of mature NS3 in genome packaging, effective only when the protein is encoded by the RNA molecule itself. This finding was reinforced by employing artificially engineered CSFV strains with duplicated NS3 genes, separating uncleavable NS2-3 precursors from mature NS3 molecules. The model for NS2-3/NS3 functions in genome packaging of pestiviruses appears to be much more complicated than anticipated, involving distinct functions of the mature NS3 and its precursor molecule NS2-3. Moreover, the reliance of genome packaging on cis-encoded NS3 may act as a downstream quality control mechanism, averting the packaging of defective genomes and coordinating the encapsidation of RNA molecules before membrane acquisition. IMPORTANCE Pestiviruses are economically significant pathogens in livestock. Although genome organization and non-structural protein functions resemble those of other Flaviviridae genera, distinct differences can be observed. Previous studies showed that coreless CSFV strains can produce coreless virions mediated by single compensatory mutations in NS3. In this study, we could show that only RNA molecules encoding these mutations in the mature NS3 are packaged in the absence of the core protein. Unlike this selectivity, a pool of structural proteins in the host cell was readily available for packaging all CSFV genomes. Similarly, the NS2-3-4A precursor molecules required for packaging could also be provided in trans. Consequently, genome packaging in pestiviruses is governed by cis-encoded mature NS3. Reliance on cis-acting proteins restricts the acceptance of defective genomes and establishes packaging specificity regardless of RNA sequence-specific packaging signals. Understanding the role of NS3 in pestiviral genome packaging might uncover new targets for antiviral therapies.
Collapse
Affiliation(s)
- Benjamin Lamp
- Institute of Virology, Justus-Liebig-Universität Gießen, Giessen, Hesse, Germany
| | - Sandra Barth
- Institute of Virology, Justus-Liebig-Universität Gießen, Giessen, Hesse, Germany
| | - Carina Reuscher
- Institute of Virology, Justus-Liebig-Universität Gießen, Giessen, Hesse, Germany
| | - Sebastian Affeldt
- Institute of Virology, Justus-Liebig-Universität Gießen, Giessen, Hesse, Germany
| | - Angelika Cechini
- Institute of Virology, Justus-Liebig-Universität Gießen, Giessen, Hesse, Germany
| | - Anette Netsch
- Institute of Virology, Justus-Liebig-Universität Gießen, Giessen, Hesse, Germany
| | - Irmin Lobedank
- Institute of Virology, Justus-Liebig-Universität Gießen, Giessen, Hesse, Germany
| | - Till Rümenapf
- Institute of Virology, Department for Pathobiology, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
2
|
Jonniya NA, Kar P. Functional Loop Dynamics and Characterization of the Inactive State of the NS2B-NS3 Dengue Protease due to Allosteric Inhibitor Binding. J Chem Inf Model 2022; 62:3800-3813. [PMID: 35950997 DOI: 10.1021/acs.jcim.2c00461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Dengue virus, a flavivirus that causes dengue shock syndrome and dengue hemorrhagic fever, is currently prevalent worldwide. A two-component protease (NS2B-NS3) is essential for maturation, representing an important target for designing anti-flavivirus drugs. Previously, consideration has been centered on developing active-site inhibitors of NS2B-NS3pro. However, the flat and charged nature of its active site renders difficulties in developing inhibitors, suggesting an alternative strategy for identifying allosteric inhibitors. The allosterically sensitive site of the dengue protease is located near Ala125, between the 120s loop and 150s loop. Using atomistic molecular dynamics simulations, we have explored the protease's conformational dynamics upon binding of an allosteric inhibitor. Furthermore, characterization of the inherent flexible loops (71-75s loop, 120s loop, and 150s loop) is carried out for allosteric-inhibitor-bound wild-type and mutant A125C variants and a comparison is performed with its unbound state to extract the structural changes describing the inactive state of the protease. Our study reveals that compared to the unliganded system, the inhibitor-bound system shows large structural changes in the 120s loop and 150s loop in contrast to the rigid 71-75s loop. The unliganded system shows a closed-state pocket in contrast to the open state for the wild-type complex that locks the protease into the open and inactive-state conformations. However, the mutant complex fluctuates between open and closed states. Also, we tried to see how mutation and binding of an allosteric inhibitor perturb the connectivity in a protein structure network (PSN) at contact levels. Altogether, our study reveals the mechanism of conformational rearrangements of loops at the molecular level, locking the protein in an inactive conformation, which may be useful for developing allosteric inhibitors.
Collapse
Affiliation(s)
- Nisha Amarnath Jonniya
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Indore, Madhya Pradesh 453552, India
| | - Parimal Kar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Indore, Madhya Pradesh 453552, India
| |
Collapse
|
3
|
Kronenberger T, Sá Magalhães Serafim M, Kumar Tonduru A, Gonçalves Maltarollo V, Poso A. Ligand Accessibility Insights to the Dengue Virus NS3-NS2B Protease Assessed by Long-Timescale Molecular Dynamics Simulations. ChemMedChem 2021; 16:2524-2534. [PMID: 33899341 PMCID: PMC8453957 DOI: 10.1002/cmdc.202100246] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Indexed: 11/12/2022]
Abstract
Dengue is a tropical disease caused by the dengue virus (DENV), with an estimate of 300 million new cases every year. Due to the limited vaccine efficiency and absence of effective antiviral treatment, new drug candidates are urgently needed. DENV NS3-NS2B protease complex is essential for viral post-translational processing and maturation, and this enzyme has been extensively studied as a relevant drug target. Crystal structures often underestimate NS3-NS2B flexibility, whereas they can adopt different conformational states depending on the bound substrate. We conducted molecular dynamics simulations (∼30 μs) with a non- and covalently bound inhibitor to understand the conformational changes in the DENV-3 NS3-NS2B complex. Our results show that the open-closing movement of the protease exposes multiple druggable subpockets that can be investigated in later drug discovery efforts.
Collapse
Affiliation(s)
- Thales Kronenberger
- Department of Medical Oncology and PneumologyUniversity Hospital of TübingenOtfried-Müller-Strasse 1472076TübingenGermany
- School of PharmacyUniversity of Eastern FinlandKuopio70211Finland
| | - Mateus Sá Magalhães Serafim
- Departamento de MicrobiologiaUniversidade Federal de Minas Gerais (UFMG)Av. Antônio Carlos, 6627PampulhaCEP 31270-901Belo HorizonteBrazil
| | | | - Vinícius Gonçalves Maltarollo
- Departamento de Produtos FarmacêuticosUniversidade Federal de Minas Gerais (UFMG)Av. Antônio Carlos, 6627PampulhaCEP 31270-901Belo HorizonteBrazil
| | - Antti Poso
- Department of Medical Oncology and PneumologyUniversity Hospital of TübingenOtfried-Müller-Strasse 1472076TübingenGermany
- School of PharmacyUniversity of Eastern FinlandKuopio70211Finland
| |
Collapse
|
4
|
Diosa-Toro M, Prasanth KR, Bradrick SS, Garcia Blanco MA. Role of RNA-binding proteins during the late stages of Flavivirus replication cycle. Virol J 2020; 17:60. [PMID: 32334603 PMCID: PMC7183730 DOI: 10.1186/s12985-020-01329-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 04/11/2020] [Indexed: 12/21/2022] Open
Abstract
The genus Flavivirus encompasses several worldwide-distributed arthropod-borne viruses including, dengue virus, Japanese encephalitis virus, West Nile virus, yellow fever virus, Zika virus, and tick-borne encephalitis virus. Infection with these viruses manifest with symptoms ranging from febrile illness to life- threatening hypotensive shock and encephalitis. Therefore, flaviviruses pose a great risk to public health. Currently, preventive measures are falling short to control epidemics and there are no antivirals against any Flavivirus.Flaviviruses carry a single stranded positive-sense RNA genome that plays multiple roles in infected cells: it is translated into viral proteins, used as template for genome replication, it is the precursor of the subgenomic flaviviral RNA and it is assembled into new virions. Furthermore, viral RNA genomes are also packaged into extracellular vesicles, e.g. exosomes, which represent an alternate mode of virus dissemination.Because RNA molecules are at the center of Flavivirus replication cycle, viral and host RNA-binding proteins (RBPs) are critical determinants of infection. Numerous studies have revealed the function of RBPs during Flavivirus infection, particularly at the level of RNA translation and replication. These proteins, however, are also critical participants at the late stages of the replication cycle. Here we revise the function of host RBPs and the viral proteins capsid, NS2A and NS3, during the packaging of viral RNA and the assembly of new virus particles. Furthermore, we go through the evidence pointing towards the importance of host RBPs in mediating cellular RNA export with the idea that the biogenesis of exosomes harboring Flavivirus RNA would follow an analogous pathway.
Collapse
Affiliation(s)
- Mayra Diosa-Toro
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore.
| | - K Reddisiva Prasanth
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Shelton S Bradrick
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
- Global Health, Surveillance & Diagnostics Group, MRIGlobal, Kansas City, MO, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - Mariano A Garcia Blanco
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore.
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA.
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
5
|
Pulkkinen LIA, Butcher SJ, Anastasina M. Tick-Borne Encephalitis Virus: A Structural View. Viruses 2018; 10:v10070350. [PMID: 29958443 PMCID: PMC6071267 DOI: 10.3390/v10070350] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 06/25/2018] [Accepted: 06/27/2018] [Indexed: 12/11/2022] Open
Abstract
Tick-borne encephalitis virus (TBEV) is a growing health concern. It causes a severe disease that can lead to permanent neurological complications or death and the incidence of TBEV infections is constantly rising. Our understanding of TBEV’s structure lags behind that of other flaviviruses, but has advanced recently with the publication of a high-resolution structure of the TBEV virion. The gaps in our knowledge include: aspects of receptor binding, replication and virus assembly. Furthermore, TBEV has mostly been studied in mammalian systems, even though the virus’ interaction with its tick hosts is a central part of its life cycle. Elucidating these aspects of TBEV biology are crucial for the development of TBEV antivirals, as well as the improvement of diagnostics. In this review, we summarise the current structural knowledge on TBEV, bringing attention to the current gaps in our understanding, and propose further research that is needed to truly understand the structural-functional relationship of the virus and its hosts.
Collapse
Affiliation(s)
- Lauri I A Pulkkinen
- HiLIFE-Institute of Biotechnology, University of Helsinki, 00790 Helsinki, Finland.
- Faculty of Biological and Environmental Sciences, University of Helsinki, 00790 Helsinki, Finland.
| | - Sarah J Butcher
- HiLIFE-Institute of Biotechnology, University of Helsinki, 00790 Helsinki, Finland.
- Faculty of Biological and Environmental Sciences, University of Helsinki, 00790 Helsinki, Finland.
| | - Maria Anastasina
- HiLIFE-Institute of Biotechnology, University of Helsinki, 00790 Helsinki, Finland.
- Faculty of Biological and Environmental Sciences, University of Helsinki, 00790 Helsinki, Finland.
| |
Collapse
|
6
|
Barrows NJ, Campos RK, Liao KC, Prasanth KR, Soto-Acosta R, Yeh SC, Schott-Lerner G, Pompon J, Sessions OM, Bradrick SS, Garcia-Blanco MA. Biochemistry and Molecular Biology of Flaviviruses. Chem Rev 2018; 118:4448-4482. [PMID: 29652486 DOI: 10.1021/acs.chemrev.7b00719] [Citation(s) in RCA: 228] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Flaviviruses, such as dengue, Japanese encephalitis, tick-borne encephalitis, West Nile, yellow fever, and Zika viruses, are critically important human pathogens that sicken a staggeringly high number of humans every year. Most of these pathogens are transmitted by mosquitos, and not surprisingly, as the earth warms and human populations grow and move, their geographic reach is increasing. Flaviviruses are simple RNA-protein machines that carry out protein synthesis, genome replication, and virion packaging in close association with cellular lipid membranes. In this review, we examine the molecular biology of flaviviruses touching on the structure and function of viral components and how these interact with host factors. The latter are functionally divided into pro-viral and antiviral factors, both of which, not surprisingly, include many RNA binding proteins. In the interface between the virus and the hosts we highlight the role of a noncoding RNA produced by flaviviruses to impair antiviral host immune responses. Throughout the review, we highlight areas of intense investigation, or a need for it, and potential targets and tools to consider in the important battle against pathogenic flaviviruses.
Collapse
Affiliation(s)
- Nicholas J Barrows
- Department of Biochemistry and Molecular Biology , University of Texas Medical Branch , Galveston , Texas 77555 , United States.,Department of Molecular Genetics and Microbiology , Duke University , Durham , North Carolina 27710 , United States
| | - Rafael K Campos
- Department of Biochemistry and Molecular Biology , University of Texas Medical Branch , Galveston , Texas 77555 , United States.,Department of Molecular Genetics and Microbiology , Duke University , Durham , North Carolina 27710 , United States
| | - Kuo-Chieh Liao
- Programme in Emerging Infectious Diseases , Duke-NUS Medical School , Singapore 169857 , Singapore
| | - K Reddisiva Prasanth
- Department of Biochemistry and Molecular Biology , University of Texas Medical Branch , Galveston , Texas 77555 , United States
| | - Ruben Soto-Acosta
- Department of Biochemistry and Molecular Biology , University of Texas Medical Branch , Galveston , Texas 77555 , United States
| | - Shih-Chia Yeh
- Programme in Emerging Infectious Diseases , Duke-NUS Medical School , Singapore 169857 , Singapore
| | - Geraldine Schott-Lerner
- Department of Biochemistry and Molecular Biology , University of Texas Medical Branch , Galveston , Texas 77555 , United States
| | - Julien Pompon
- Programme in Emerging Infectious Diseases , Duke-NUS Medical School , Singapore 169857 , Singapore.,MIVEGEC, IRD, CNRS, Université de Montpellier , Montpellier 34090 , France
| | - October M Sessions
- Programme in Emerging Infectious Diseases , Duke-NUS Medical School , Singapore 169857 , Singapore
| | - Shelton S Bradrick
- Department of Biochemistry and Molecular Biology , University of Texas Medical Branch , Galveston , Texas 77555 , United States
| | - Mariano A Garcia-Blanco
- Department of Biochemistry and Molecular Biology , University of Texas Medical Branch , Galveston , Texas 77555 , United States.,Programme in Emerging Infectious Diseases , Duke-NUS Medical School , Singapore 169857 , Singapore
| |
Collapse
|
7
|
Helicase Domain of West Nile Virus NS3 Protein Plays a Role in Inhibition of Type I Interferon Signalling. Viruses 2017; 9:v9110326. [PMID: 29099073 PMCID: PMC5707533 DOI: 10.3390/v9110326] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 10/27/2017] [Accepted: 10/31/2017] [Indexed: 11/17/2022] Open
Abstract
West Nile virus (WNV) is a neurotropic flavivirus that can cause encephalitis in mammalian and avian hosts. In America, the virulent WNV strain (NY99) is causing yearly outbreaks of encephalitis in humans and horses, while in Australia the less virulent Kunjin strain of WNV strain has not been associated with significant disease outbreaks until a recent 2011 large outbreak in horses (but not in humans) caused by NSW2011 strain. Using chimeric viruses between NY99 and NSW2011 strains we previously identified a role for the non-structural proteins of NY99 strain and especially the NS3 protein, in enhanced virus replication in type I interferon response-competent cells and increased virulence in mice. To further define the role of NY99 NS3 protein in inhibition of type I interferon response, we have generated and characterised additional chimeric viruses containing the protease or the helicase domains of NY99 NS3 on the background of the NSW2011 strain. The results identified the role for the helicase but not the protease domain of NS3 protein in the inhibition of type I interferon signalling and showed that helicase domain of the more virulent NY99 strain performs this function more efficiently than helicase domain of the less virulent NSW2011 strain. Further analysis with individual amino acid mutants identified two amino acid residues in the helicase domain primarily responsible for this difference. Using chimeric replicons, we also showed that the inhibition of type I interferon (IFN) signalling was independent of other known functions of NS3 in RNA replication and assembly of virus particles.
Collapse
|
8
|
Abstract
Zika virus (ZIKV) is a previously little-known flavivirus closely related to Japanese encephalitis, West Nile, dengue, and yellow fever viruses, all of which are primarily transmitted by blood-sucking mosquitoes. Since its discovery in Uganda in 1947, ZIKV has continued to expand its geographic range, from equatorial Africa and Asia to the Pacific Islands, then further afield to South and Central America and the Caribbean. Currently, ZIKV is actively circulating not only in much of Latin America and its neighbors but also in parts of the Pacific Islands and Southeast Asia. Although ZIKV infection generally causes only mild symptoms in some infected individuals, it is associated with a range of neuroimmunological disorders, including Guillain-Barré syndrome, meningoencephalitis, and myelitis. Recently, maternal ZIKV infection during pregnancy has been linked to neonatal malformations, resulting in various degrees of congenital abnormalities, microcephaly, and even abortion. Despite its emergence as an important public health problem, however, little is known about ZIKV biology, and neither vaccine nor drug is available to control ZIKV infection. This article provides a brief introduction to ZIKV with a major emphasis on its molecular virology, in order to help facilitate the development of diagnostics, therapeutics, and vaccines.
Collapse
Affiliation(s)
- Sang-Im Yun
- Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, UT, 84322-4815, USA
| | - Young-Min Lee
- Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, UT, 84322-4815, USA.
- Utah Science Technology and Research, College of Agriculture and Applied Sciences, Utah State University, Logan, UT, 84322-4815, USA.
| |
Collapse
|
9
|
Abstract
Dengue virus affects hundreds of millions of people each year around the world, causing a tremendous social and economic impact on affected countries. The aim of this review is to summarize our current knowledge of the functions, structure, and interactions of the viral capsid protein. The primary role of capsid is to package the viral genome. There are two processes linked to this function: the recruitment of the viral RNA during assembly and the release of the genome during infection. Although particle assembly takes place on endoplasmic reticulum membranes, capsid localizes in nucleoli and lipid droplets. Why capsid accumulates in these locations during infection remains unknown. In this review, we describe available data and discuss new ideas on dengue virus capsid functions and interactions. We believe that a deeper understanding of how the capsid protein works during infection will create opportunities for novel antiviral strategies, which are urgently needed to control dengue virus infections.
Collapse
Affiliation(s)
- Laura A Byk
- Fundación Instituto Leloir-National Research Council for Science and Technology (CONICET), Buenos Aires 1405, Argentina;
| | - Andrea V Gamarnik
- Fundación Instituto Leloir-National Research Council for Science and Technology (CONICET), Buenos Aires 1405, Argentina;
| |
Collapse
|
10
|
A Proline-Rich N-Terminal Region of the Dengue Virus NS3 Is Crucial for Infectious Particle Production. J Virol 2016; 90:5451-61. [PMID: 27009958 DOI: 10.1128/jvi.00206-16] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 03/17/2016] [Indexed: 12/30/2022] Open
Abstract
UNLABELLED Dengue virus is currently the most important insect-borne viral human pathogen. Viral nonstructural protein 3 (NS3) is a key component of the viral replication machinery that performs multiple functions during viral replication and participates in antiviral evasion. Using dengue virus infectious clones and reporter systems to dissect each step of the viral life cycle, we examined the requirements of different domains of NS3 on viral particle assembly. A thorough site-directed mutagenesis study based on solvent-accessible surface areas of NS3 revealed that, in addition to being essential for RNA replication, different domains of dengue virus NS3 are critically required for production of infectious viral particles. Unexpectedly, point mutations in the protease, interdomain linker, or helicase domain were sufficient to abolish infectious particle formation without affecting translation, polyprotein processing, or RNA replication. In particular, we identified a novel proline-rich N-terminal unstructured region of NS3 that contains several amino acid residues involved in infectious particle formation. We also showed a new role for the interdomain linker of NS3 in virion assembly. In conclusion, we present a comprehensive genetic map of novel NS3 determinants for viral particle assembly. Importantly, our results provide evidence of a central role of NS3 in the coordination of both dengue virus RNA replication and particle formation. IMPORTANCE Dengue virus is an important human pathogen, and its prominence is expanding globally; however, basic aspects of its biology are still unclear, hindering the development of effective therapeutic and prophylactic treatments. Little is known about the initial steps of dengue and other flavivirus particle assembly. This process involves a complex interplay between viral and cellular components, making it an attractive antiviral target. Unpredictably, we identified spatially separated regions of the large NS3 viral protein as determinants for dengue virus particle assembly. NS3 is a multifunctional enzyme that participates in different steps of the viral life cycle. Using reporter systems to dissect different viral processes, we identified a novel N-terminal unstructured region of the NS3 protein as crucial for production of viral particles. Based on our findings, we propose new ideas that include NS3 as a possible scaffold for the viral assembly process.
Collapse
|
11
|
Chaperone-Assisted Protein Folding Is Critical for Yellow Fever Virus NS3/4A Cleavage and Replication. J Virol 2016; 90:3212-28. [PMID: 26739057 DOI: 10.1128/jvi.03077-15] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 01/04/2016] [Indexed: 12/13/2022] Open
Abstract
UNLABELLED DNAJC14, a heat shock protein 40 (Hsp40) cochaperone, assists with Hsp70-mediated protein folding. Overexpressed DNAJC14 is targeted to sites of yellow fever virus (YFV) replication complex (RC) formation, where it interacts with viral nonstructural (NS) proteins and inhibits viral RNA replication. How RCs are assembled and the roles of chaperones in this coordinated process are largely unknown. We hypothesized that chaperones are diverted from their normal cellular protein quality control function to play similar roles during viral infection. Here, we show that DNAJC14 overexpression affects YFV polyprotein processing and alters RC assembly. We monitored YFV NS2A-5 polyprotein processing by the viral NS2B-3 protease in DNAJC14-overexpressing cells. Notably, DNAJC14 mutants that did not inhibit YFV replication had minimal effects on polyprotein processing, while overexpressed wild-type DNAJC14 affected the NS3/4A and NS4A/2K cleavage sites, resulting in altered NS3-to-NS3-4A ratios. This suggests that DNAJC14's folding activity normally modulates NS3/4A/2K cleavage events to liberate appropriate levels of NS3 and NS4A and promote RC formation. We introduced amino acid substitutions at the NS3/4A site to alter the levels of the NS3 and NS4A products and examined their effects on YFV replication. Residues with reduced cleavage efficiency did not support viral RNA replication, and only revertant viruses with a restored wild-type arginine or lysine residue at the NS3/4A site were obtained. We conclude that DNAJC14 inhibition of RC formation upon DNAJC14 overexpression is likely due to chaperone dysregulation and that YFV probably utilizes DNAJC14's cochaperone function to modulate processing at the NS3/4A site as a mechanism ensuring virus replication. IMPORTANCE Flaviviruses are single-stranded RNA viruses that cause a wide range of illnesses. Upon host cell entry, the viral genome is translated on endoplasmic reticulum (ER) membranes to produce a single polyprotein, which is cleaved by host and viral proteases to generate viral proteins required for genome replication and virion production. Several studies suggest a role for molecular chaperones during these processes. While the details of chaperone roles have been elusive, in this report we show that overexpression of the ER-resident cochaperone DNAJC14 affects YFV polyprotein processing at the NS3/4A site. This work reveals that DNAJC14 modulation of NS3/4A site processing is an important mechanism to ensure virus replication. Our work highlights the importance of finely regulating flavivirus polyprotein processing. In addition, it suggests future studies to address similarities and/or differences among flaviviruses and to interrogate the precise mechanisms employed for polyprotein processing, a critical step that can ultimately be targeted for novel drug development.
Collapse
|
12
|
Yun SI, Song BH, Kim JK, Lee YM. Bacterial Artificial Chromosomes: A Functional Genomics Tool for the Study of Positive-strand RNA Viruses. J Vis Exp 2015:e53164. [PMID: 26780115 PMCID: PMC4780872 DOI: 10.3791/53164] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Reverse genetics, an approach to rescue infectious virus entirely from a cloned cDNA, has revolutionized the field of positive-strand RNA viruses, whose genomes have the same polarity as cellular mRNA. The cDNA-based reverse genetics system is a seminal method that enables direct manipulation of the viral genomic RNA, thereby generating recombinant viruses for molecular and genetic studies of both viral RNA elements and gene products in viral replication and pathogenesis. It also provides a valuable platform that allows the development of genetically defined vaccines and viral vectors for the delivery of foreign genes. For many positive-strand RNA viruses such as Japanese encephalitis virus (JEV), however, the cloned cDNAs are unstable, posing a major obstacle to the construction and propagation of the functional cDNA. Here, the present report describes the strategic considerations in creating and amplifying a genetically stable full-length infectious JEV cDNA as a bacterial artificial chromosome (BAC) using the following general experimental procedures: viral RNA isolation, cDNA synthesis, cDNA subcloning and modification, assembly of a full-length cDNA, cDNA linearization, in vitro RNA synthesis, and virus recovery. This protocol provides a general methodology applicable to cloning full-length cDNA for a range of positive-strand RNA viruses, particularly those with a genome of >10 kb in length, into a BAC vector, from which infectious RNAs can be transcribed in vitro with a bacteriophage RNA polymerase.
Collapse
Affiliation(s)
- Sang-Im Yun
- Department of Animal, Dairy, and Veterinary Sciences, Utah Science Technology and Research, College of Agriculture and Applied Sciences, Utah State University
| | - Byung-Hak Song
- Department of Animal, Dairy, and Veterinary Sciences, Utah Science Technology and Research, College of Agriculture and Applied Sciences, Utah State University
| | - Jin-Kyoung Kim
- Department of Animal, Dairy, and Veterinary Sciences, Utah Science Technology and Research, College of Agriculture and Applied Sciences, Utah State University
| | - Young-Min Lee
- Department of Animal, Dairy, and Veterinary Sciences, Utah Science Technology and Research, College of Agriculture and Applied Sciences, Utah State University;
| |
Collapse
|
13
|
Kim JK, Kim JM, Song BH, Yun SI, Yun GN, Byun SJ, Lee YM. Profiling of viral proteins expressed from the genomic RNA of Japanese encephalitis virus using a panel of 15 region-specific polyclonal rabbit antisera: implications for viral gene expression. PLoS One 2015; 10:e0124318. [PMID: 25915765 PMCID: PMC4410938 DOI: 10.1371/journal.pone.0124318] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Accepted: 02/27/2015] [Indexed: 12/16/2022] Open
Abstract
Japanese encephalitis virus (JEV), a mosquito-borne flavivirus, is closely related to West Nile (WN), yellow fever (YF), and dengue (DEN) viruses. Its plus-strand genomic RNA carries a single open reading frame encoding a polyprotein that is cleaved into three structural (C, prM/M, and E) and at least seven nonstructural (NS1/NS1', NS2A, NS2B, NS3, NS4A, NS4B, and NS5) proteins, based on previous work with WNV, YFV, and DENV. Here, we aimed to profile experimentally all the viral proteins found in JEV-infected cells. We generated a collection of 15 JEV-specific polyclonal antisera covering all parts of the viral protein-coding regions, by immunizing rabbits with 14 bacterially expressed glutathione-S-transferase fusion proteins (for all nine viral proteins except NS2B) or with a chemically synthesized oligopeptide (for NS2B). In total lysates of JEV-infected BHK-21 cells, immunoblotting with these antisera revealed: (i) three mature structural proteins (~12-kDa C, ~8-kDa M, and ~53-kDa E), a precursor of M (~24-kDa prM) and three other M-related proteins (~10-14 kDa); (ii) the predicted ~45-kDa NS1 and its frameshift product, ~58-kDa NS1', with no evidence of the predicted ~25-kDa NS2A; (iii) the predicted but hardly detectable ~14-kDa NS2B and an unexpected but predominant ~12-kDa NS2B-related protein; (iv) the predicted ~69-kDa NS3 plus two major cleavage products (~34-kDa NS3N-term and ~35-kDa NS3C-term), together with at least nine minor proteins of ~16-52 kDa; (v) the predicted ~14-kDa NS4A; (vi) two NS4B-related proteins (~27-kDa NS4B and ~25-kDa NS4B'); and (vii) the predicted ~103-kDa NS5 plus at least three other NS5-related proteins (~15 kDa, ~27 kDa, and ~90 kDa). Combining these data with confocal microscopic imaging of the proteins' intracellular localization, our study is the first to provide a solid foundation for the study of JEV gene expression, which is crucial for elucidating the regulatory mechanisms of JEV genome replication and pathobiology.
Collapse
Affiliation(s)
- Jin-Kyoung Kim
- Department of Animal, Dairy, and Veterinary Sciences; Utah Science Technology and Research, College of Agriculture and Applied Sciences, Utah State University, Logan, Utah, United States of America
| | - Jeong-Min Kim
- Department of Microbiology, College of Medicine, Chungbuk National University, Cheongju, South Korea
| | - Byung-Hak Song
- Department of Animal, Dairy, and Veterinary Sciences; Utah Science Technology and Research, College of Agriculture and Applied Sciences, Utah State University, Logan, Utah, United States of America
| | - Sang-Im Yun
- Department of Animal, Dairy, and Veterinary Sciences; Utah Science Technology and Research, College of Agriculture and Applied Sciences, Utah State University, Logan, Utah, United States of America
| | - Gil-Nam Yun
- Department of Microbiology, College of Medicine, Chungbuk National University, Cheongju, South Korea
| | - Sung-June Byun
- Animal Biotechnology Division, Korea National Institute of Animal Science, Suwon, South Korea
| | - Young-Min Lee
- Department of Animal, Dairy, and Veterinary Sciences; Utah Science Technology and Research, College of Agriculture and Applied Sciences, Utah State University, Logan, Utah, United States of America
- * E-mail:
| |
Collapse
|
14
|
Chujo T, Ishibashi K, Miyashita S, Ishikawa M. Functions of the 5'- and 3'-untranslated regions of tobamovirus RNA. Virus Res 2015; 206:82-9. [PMID: 25683511 DOI: 10.1016/j.virusres.2015.01.028] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 01/23/2015] [Accepted: 01/30/2015] [Indexed: 12/17/2022]
Abstract
The tobamovirus genome is a 5'-m(7)G-capped RNA that carries a tRNA-like structure at its 3'-terminus. The genomic RNA serves as the template for both translation and negative-strand RNA synthesis. The 5'- and 3'-untranslated regions (UTRs) of the genomic RNA contain elements that enhance translation, and the 3'-UTR also contains the elements necessary for the initiation of negative-strand RNA synthesis. Recent studies using a cell-free viral RNA translation-replication system revealed that a 70-nucleotide region containing a part of the 5'-UTR is bound cotranslationally by tobacco mosaic virus (TMV) replication proteins translated from the genomic RNA and that the binding leads the genomic RNA to RNA replication pathway. This mechanism explains the cis-preferential replication of TMV by the replication proteins. The binding also inhibits further translation to avoid a fatal ribosome-RNA polymerase collision, which might arise if translation and negative-strand synthesis occur simultaneously on a single genomic RNA molecule. Therefore, the 5'- and 3'-UTRs play multiple important roles in the life cycle of tobamovirus.
Collapse
Affiliation(s)
- Tetsuya Chujo
- Plant-Microbe Interactions Research Unit, Division of Plant Sciences, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | - Kazuhiro Ishibashi
- Plant-Microbe Interactions Research Unit, Division of Plant Sciences, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | - Shuhei Miyashita
- Plant-Microbe Interactions Research Unit, Division of Plant Sciences, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | - Masayuki Ishikawa
- Plant-Microbe Interactions Research Unit, Division of Plant Sciences, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan.
| |
Collapse
|
15
|
Apte-Sengupta S, Sirohi D, Kuhn RJ. Coupling of replication and assembly in flaviviruses. Curr Opin Virol 2014; 9:134-42. [PMID: 25462445 DOI: 10.1016/j.coviro.2014.09.020] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 09/09/2014] [Indexed: 02/06/2023]
Abstract
Flaviviruses affect hundreds of millions of people each year causing tremendous morbidity and mortality worldwide. This genus includes significant human pathogens such as dengue, West Nile, yellow fever, tick-borne encephalitis and Japanese encephalitis virus among many others. The disease caused by these viruses can range from febrile illness to hemorrhagic fever and encephalitis. A deeper understanding of the virus life cycle is required to foster development of antivirals and vaccines, which are an urgent need for many flaviviruses, especially dengue. The focus of this review is to summarize our current knowledge of flaviviral replication and assembly, the proteins and lipids involved therein, and how these processes are coordinated for efficient virus production.
Collapse
Affiliation(s)
- Swapna Apte-Sengupta
- Markey Center for Structural Biology, Department of Biological Sciences and Bindley Bioscience Center, Purdue University, West Lafayette, IN, USA
| | - Devika Sirohi
- Markey Center for Structural Biology, Department of Biological Sciences and Bindley Bioscience Center, Purdue University, West Lafayette, IN, USA
| | - Richard J Kuhn
- Markey Center for Structural Biology, Department of Biological Sciences and Bindley Bioscience Center, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
16
|
Yun SI, Lee YM. Japanese encephalitis: the virus and vaccines. Hum Vaccin Immunother 2013; 10:263-79. [PMID: 24161909 PMCID: PMC4185882 DOI: 10.4161/hv.26902] [Citation(s) in RCA: 196] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 10/14/2013] [Accepted: 10/22/2013] [Indexed: 12/11/2022] Open
Abstract
Japanese encephalitis (JE) is an infectious disease of the central nervous system caused by Japanese encephalitis virus (JEV), a zoonotic mosquito-borne flavivirus. JEV is prevalent in much of Asia and the Western Pacific, with over 4 billion people living at risk of infection. In the absence of antiviral intervention, vaccination is the only strategy to develop long-term sustainable protection against JEV infection. Over the past half-century, a mouse brain-derived inactivated vaccine has been used internationally for active immunization. To date, however, JEV is still a clinically important, emerging, and re-emerging human pathogen of global significance. In recent years, production of the mouse brain-derived vaccine has been discontinued, but 3 new cell culture-derived vaccines are available in various parts of the world. Here we review current aspects of JEV biology, summarize the 4 types of JEV vaccine, and discuss the potential of an infectious JEV cDNA technology for future vaccine development.
Collapse
Affiliation(s)
- Sang-Im Yun
- Department of Animal, Dairy, and Veterinary Sciences; Utah Science Technology and Research; College of Agriculture and Applied Sciences; Utah State University; Logan, UT USA
| | - Young-Min Lee
- Department of Animal, Dairy, and Veterinary Sciences; Utah Science Technology and Research; College of Agriculture and Applied Sciences; Utah State University; Logan, UT USA
| |
Collapse
|
17
|
Noncoding flavivirus RNA displays RNA interference suppressor activity in insect and Mammalian cells. J Virol 2012; 86:13486-500. [PMID: 23035235 DOI: 10.1128/jvi.01104-12] [Citation(s) in RCA: 231] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
West Nile virus (WNV) and dengue virus (DENV) are highly pathogenic, mosquito-borne flaviviruses (family Flaviviridae) that cause severe disease and death in humans. WNV and DENV actively replicate in mosquitoes and human hosts and thus encounter different host immune responses. RNA interference (RNAi) is the predominant antiviral response against invading RNA viruses in insects and plants. As a countermeasure, plant and insect RNA viruses encode RNA silencing suppressor (RSS) proteins to block the generation/activity of small interfering RNA (siRNA). Enhanced flavivirus replication in mosquitoes depleted for RNAi factors suggests an important biological role for RNAi in restricting virus replication, but it has remained unclear whether or not flaviviruses counteract RNAi via expression of an RSS. First, we established that flaviviral RNA replication suppressed siRNA-induced gene silencing in WNV and DENV replicon-expressing cells. Next, we showed that none of the WNV encoded proteins displayed RSS activity in mammalian and insect cells and in plants by using robust RNAi suppressor assays. In contrast, we found that the 3'-untranslated region-derived RNA molecule known as subgenomic flavivirus RNA (sfRNA) efficiently suppressed siRNA- and miRNA-induced RNAi pathways in both mammalian and insect cells. We also showed that WNV sfRNA inhibits in vitro cleavage of double-stranded RNA by Dicer. The results of the present study suggest a novel role for sfRNA, i.e., as a nucleic acid-based regulator of RNAi pathways, a strategy that may be conserved among flaviviruses.
Collapse
|
18
|
Song BH, Yun GN, Kim JK, Yun SI, Lee YM. Biological and genetic properties of SA₁₄-14-2, a live-attenuated Japanese encephalitis vaccine that is currently available for humans. J Microbiol 2012; 50:698-706. [PMID: 22923123 DOI: 10.1007/s12275-012-2336-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 07/13/2012] [Indexed: 11/29/2022]
Abstract
Japanese encephalitis virus (JEV), a mosquito-borne flavivirus, is a major cause of acute encephalitis, a disease of significance for global public health. In the absence of antiviral therapy to treat JEV infection, vaccination is the most effective method of preventing the disease. In JE-endemic areas, the most widely used vaccine to date is SA(14)-14-2, a live-attenuated virus derived from its virulent parent SA(14). In this study, we describe the biological properties of SA(14)-14-2, both in vitro and in vivo, and report the genetic characteristics of its genomic RNA. In BHK-21 (hamster kidney) cells, SA(14)-14-2 displayed a slight delay in plaque formation and growth kinetics when compared to a virulent JEV strain, CNU/LP2, with no decrease in maximum virus production. The delay in viral growth was also observed in two other cell lines, SH-SY5Y (human neuroblastoma) and C6/36 (mosquito larva), which are potentially relevant to JEV pathogenesis and transmission. In 3-week-old ICR mice, SA(14)-14-2 did not cause any symptoms or death after either intracerebral or peripheral inoculation with a maximum dose of up to 1.5×10(3) plaque-forming units (PFU) per mouse. The SA(14)-14-2 genome consisted of 10977 nucleotides, one nucleotide longer than all the previously reported genomes of SA(14)-14-2, SA(14) and two other SA(14)-derived attenuated viruses. This difference was due to an insertion of one G nucleotide at position 10701 in the 3 noncoding region. Also, we noted a significant number of nucleotide and/or amino acid substitutions throughout the genome of SA(14)-14-2, except for the prM protein-coding region, that differed from SA(14) and/or the other two attenuated viruses. Our results, together with others', provide a foundation not only for the study of JEV virulence but also for the development of new and improved vaccines for JEV.
Collapse
MESH Headings
- 3' Untranslated Regions
- Animals
- Cell Line
- Cricetinae
- Culicidae
- Disease Models, Animal
- Encephalitis Virus, Japanese/genetics
- Encephalitis Virus, Japanese/immunology
- Encephalitis Virus, Japanese/pathogenicity
- Encephalitis, Japanese/pathology
- Encephalitis, Japanese/prevention & control
- Encephalitis, Japanese/virology
- Female
- Genome, Viral
- Humans
- Japanese Encephalitis Vaccines/administration & dosage
- Japanese Encephalitis Vaccines/genetics
- Japanese Encephalitis Vaccines/immunology
- Mesocricetus
- Mice
- Mice, Inbred ICR
- Mutagenesis, Insertional
- Mutation, Missense
- RNA, Viral/genetics
- Time Factors
- Vaccines, Attenuated/administration & dosage
- Vaccines, Attenuated/genetics
- Vaccines, Attenuated/immunology
- Viral Plaque Assay
- Viral Proteins/genetics
- Virulence
Collapse
Affiliation(s)
- Byung-Hak Song
- Department of Microbiology, College of Medicine, Chungbuk National University, Cheongju 361-763, Republic of Korea
| | | | | | | | | |
Collapse
|
19
|
Riedel C, Lamp B, Heimann M, König M, Blome S, Moennig V, Schüttler C, Thiel HJ, Rümenapf T. The core protein of classical Swine Fever virus is dispensable for virus propagation in vitro. PLoS Pathog 2012; 8:e1002598. [PMID: 22457622 PMCID: PMC3310793 DOI: 10.1371/journal.ppat.1002598] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Accepted: 02/07/2012] [Indexed: 01/12/2023] Open
Abstract
Core protein of Flaviviridae is regarded as essential factor for nucleocapsid formation. Yet, core protein is not encoded by all isolates (GBV- A and GBV- C). Pestiviruses are a genus within the family Flaviviridae that affect cloven-hoofed animals, causing economically important diseases like classical swine fever (CSF) and bovine viral diarrhea (BVD). Recent findings describe the ability of NS3 of classical swine fever virus (CSFV) to compensate for disabling size increase of core protein (Riedel et al., 2010). NS3 is a nonstructural protein possessing protease, helicase and NTPase activity and a key player in virus replication. A role of NS3 in particle morphogenesis has also been described for other members of the Flaviviridae (Patkar et al., 2008; Ma et al., 2008). These findings raise questions about the necessity and function of core protein and the role of NS3 in particle assembly. A reverse genetic system for CSFV was employed to generate poorly growing CSFVs by modification of the core gene. After passaging, rescued viruses had acquired single amino acid substitutions (SAAS) within NS3 helicase subdomain 3. Upon introduction of these SAAS in a nonviable CSFV with deletion of almost the entire core gene (Vp447Δc), virus could be rescued. Further characterization of this virus with regard to its physical properties, morphology and behavior in cell culture did not reveal major differences between wildtype (Vp447) and Vp447Δc. Upon infection of the natural host, Vp447Δc was attenuated. Hence we conclude that core protein is not essential for particle assembly of a core-encoding member of the Flaviviridae, but important for its virulence. This raises questions about capsid structure and necessity, the role of NS3 in particle assembly and the function of core protein in general. Virus particles of members of the Flaviviridae consist of an inner complex of viral RNA genome and core protein that together form the nucleocapsid, and an outer lipid layer containing the viral glycoproteins. Functional analyses of core protein of the classical swine fever virus (CSFV), a pestivirus related to hepatitis C virus (HCV), led to the observation that crippling mutations or even complete deletion of the core gene were compensated by single amino acid substitutions in the helicase domain of non-structural protein 3 (NS3). NS3 is well conserved among the Flaviviridae and acts as protease and helicase. In addition to its essential role in RNA replication, NS3 apparently organizes the incorporation of RNA into budding virus particles. Characterization of core deficient CSFV particles (Vp447Δc) revealed that the lack of core had no effect with regard to thermostability, size, density, and morphology. Vp447Δc was fully attenuated in the natural host. Our results provide evidence that core protein is not essential for virus assembly. Hence, Vp447Δc might help to explain the enigmatic existence of GB viruses -A and -C, close relatives of HCV that do not encode an apparent core protein.
Collapse
Affiliation(s)
- Christiane Riedel
- Institute of Virology, Faculty of Veterinary Medicine, Justus-Liebig Universität, Giessen, Germany
| | - Benjamin Lamp
- Institute of Virology, Faculty of Veterinary Medicine, Justus-Liebig Universität, Giessen, Germany
| | - Manuela Heimann
- Institute of Virology, Faculty of Veterinary Medicine, Justus-Liebig Universität, Giessen, Germany
| | - Matthias König
- Institute of Virology, Faculty of Veterinary Medicine, Justus-Liebig Universität, Giessen, Germany
| | - Sandra Blome
- Institute of Virology, Stiftung Tierärztliche Hochschule Hannover, Hannover, Germany
| | - Volker Moennig
- Institute of Virology, Stiftung Tierärztliche Hochschule Hannover, Hannover, Germany
| | - Christian Schüttler
- Institute of Virology, Faculty of Medicine, Justus-Liebig Universität, Giessen, Germany
| | - Heinz-Jürgen Thiel
- Institute of Virology, Faculty of Veterinary Medicine, Justus-Liebig Universität, Giessen, Germany
| | - Tillmann Rümenapf
- Institute of Virology, Faculty of Veterinary Medicine, Justus-Liebig Universität, Giessen, Germany
- * E-mail:
| |
Collapse
|
20
|
A genetic interaction between the core and NS3 proteins of hepatitis C virus is essential for production of infectious virus. J Virol 2011; 85:12351-61. [PMID: 21957313 DOI: 10.1128/jvi.05313-11] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
By analogy to other members of the Flaviviridae family, the hepatitis C virus (HCV) core protein is presumed to oligomerize to form the viral nucleocapsid, which encloses the single-stranded RNA genome. Core protein is directed to lipid droplets (LDs) by domain 2 (D2) of the protein, and this process is critical for virus production. Domain 1 (D1) of core is also important for infectious particle morphogenesis, although its precise contribution to this process is poorly understood. In this study, we mutated amino acids 64 to 75 within D1 of core and examined the ability of these mutants to produce infectious virus. We found that residues 64 to 66 are critical for generation of infectious progeny, whereas 67 to 75 were dispensable for this process. Further investigation of the defective 64 to 66 mutant (termed JFH1(T)-64-66) revealed it to be incapable of producing infectious intracellular virions, suggesting a fault during HCV assembly. Furthermore, isopycnic gradient analyses revealed that JFH1(T)-64-66 assembled dense intracellular species of core, presumably representing nucleocapsids. Thus, amino acids 64 to 66 are seemingly not involved in core oligomerization/nucleocapsid assembly. Passaging of JFH1(T)-64-66 led to the emergence of a single compensatory mutation (K1302R) within the helicase domain of NS3 that completely rescued its ability to produce infectious virus. Importantly, the same NS3 mutation abrogated virus production in the context of wild-type core protein. Together, our results suggest that residues 64 to 66 of core D1 form a highly specific interaction with the NS3 helicase that is essential for the generation of infectious HCV particles at a stage downstream of nucleocapsid assembly.
Collapse
|
21
|
A flavivirus signal peptide balances the catalytic activity of two proteases and thereby facilitates virus morphogenesis. Virology 2010; 401:80-9. [DOI: 10.1016/j.virol.2010.02.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Revised: 12/30/2009] [Accepted: 02/05/2010] [Indexed: 11/20/2022]
|
22
|
Dengue virus capsid protein usurps lipid droplets for viral particle formation. PLoS Pathog 2009; 5:e1000632. [PMID: 19851456 PMCID: PMC2760139 DOI: 10.1371/journal.ppat.1000632] [Citation(s) in RCA: 450] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Accepted: 09/25/2009] [Indexed: 12/19/2022] Open
Abstract
Dengue virus is responsible for the highest rates of disease and mortality among the members of the Flavivirus genus. Dengue epidemics are still occurring around the world, indicating an urgent need of prophylactic vaccines and antivirals. In recent years, a great deal has been learned about the mechanisms of dengue virus genome amplification. However, little is known about the process by which the capsid protein recruits the viral genome during encapsidation. Here, we found that the mature capsid protein in the cytoplasm of dengue virus infected cells accumulates on the surface of ER-derived organelles named lipid droplets. Mutagenesis analysis using infectious dengue virus clones has identified specific hydrophobic amino acids, located in the center of the capsid protein, as key elements for lipid droplet association. Substitutions of amino acid L50 or L54 in the capsid protein disrupted lipid droplet targeting and impaired viral particle formation. We also report that dengue virus infection increases the number of lipid droplets per cell, suggesting a link between lipid droplet metabolism and viral replication. In this regard, we found that pharmacological manipulation of the amount of lipid droplets in the cell can be a means to control dengue virus replication. In addition, we developed a novel genetic system to dissociate cis-acting RNA replication elements from the capsid coding sequence. Using this system, we found that mislocalization of a mutated capsid protein decreased viral RNA amplification. We propose that lipid droplets play multiple roles during the viral life cycle; they could sequester the viral capsid protein early during infection and provide a scaffold for genome encapsidation. Dengue virus is the single most significant arthropod-borne virus pathogen in humans. In spite of the urgent medical need to control dengue infections, vaccines are still unavailable, and many aspects of dengue virus biology and pathogenesis remain elusive. We discovered a link between dengue virus replication and ER-derived organelles known as lipid droplets (LDs). Dengue infection increases the amount of LDs per cell and pharmacological inhibition of LD formation greatly reduces dengue virus replication. In addition, we have found that the viral capsid protein in infected cells accumulates on the surface of LDs. Manipulation of infectious clones and generation of new reporter dengue viruses allowed us to define the molecular basis of capsid protein association to LDs. Specific amino acids on the α2 helix, located in the center of the capsid protein, were found to be crucial for both accumulation of capsid protein on LDs and dengue virus infectious particle formation. We propose that LDs facilitate viral replication providing a platform for nucleocapsid formation during encapsidation. Our findings begin to unravel the complex mechanism by which dengue virus usurps cellular organelles to coordinate different steps of the viral life cycle.
Collapse
|
23
|
Bhattacharya D, Ansari IH, Striker R. The flaviviral methyltransferase is a substrate of Casein Kinase 1. Virus Res 2009; 141:101-4. [PMID: 19185594 PMCID: PMC2796122 DOI: 10.1016/j.virusres.2009.01.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2008] [Revised: 01/05/2009] [Accepted: 01/07/2009] [Indexed: 10/21/2022]
Abstract
Serine/Threonine phosphorylation of the nonstructural protein 5 (NS5) is a conserved feature of flaviviruses, but the identity and function(s) of the responsible kinase(s) remain unknown. Serine 56 in the methyltransferase domain of NS5 can be phosphorylated intracellularly, is conserved in all flaviviruses, and is a critical residue in the catalytic mechanism. A negative charge at this residue inactivates the 2'-0 methyltransferase activity necessary to form a 5' cap structure of the viral RNA. Here we show pharmacologic inhibition of Casein Kinase 1 (CK1) suppresses yellow fever virus (YFV) production. We also demonstrate the alpha isoform of Casein Kinase 1 (CK1alpha), a kinase previously identified as phosphorylating Hepatitis C Virus NS5A protein, also phosphorylates serine 56 of YFV methyltransferase. Overall these results suggest CK1 activity can influence flaviviral replication.
Collapse
Affiliation(s)
- Dipankar Bhattacharya
- Department of Medicine, University of Wisconsin-Madison, 1550 Linden Drive, Madison, WI 53706, United States
| | | | | |
Collapse
|
24
|
Murray CL, Jones CT, Rice CM. Architects of assembly: roles of Flaviviridae non-structural proteins in virion morphogenesis. Nat Rev Microbiol 2008; 6:699-708. [PMID: 18587411 PMCID: PMC2764292 DOI: 10.1038/nrmicro1928] [Citation(s) in RCA: 177] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Viruses of the Flaviviridae family, including hepatitis C, dengue and bovine viral diarrhoea, are responsible for considerable morbidity and mortality worldwide. Recent advances in our understanding of virion assembly have uncovered commonalities among distantly related members of this family. We discuss the emerging hypothesis that physical virion components are not alone in forming the infectious particle, but that non-structural proteins are intimately involved in orchestrating morphogenesis. Pinpointing the roles of Flaviviridae proteins in virion production could reveal new avenues for antiviral therapeutics.
Collapse
|
25
|
Ma Y, Yates J, Liang Y, Lemon SM, Yi M. NS3 helicase domains involved in infectious intracellular hepatitis C virus particle assembly. J Virol 2008; 82:7624-39. [PMID: 18508894 PMCID: PMC2493332 DOI: 10.1128/jvi.00724-08] [Citation(s) in RCA: 167] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Accepted: 05/19/2008] [Indexed: 02/06/2023] Open
Abstract
A mutation within subdomain 1 of the hepatitis C virus (HCV) NS3 helicase (NS3-Q221L) (M. Yi, Y. Ma, J. Yates, and S. M. Lemon, J. Virol. 81:629-638, 2007) rescues a defect in production of infectious virus by an intergenotypic chimeric RNA (HJ3). Although NS3-Gln-221 is highly conserved across HCV genotypes, the Leu-221 substitution had no effect on RNA replication or NS3-associated enzymatic activities. However, while transfection of unmodified HJ3 RNA failed to produce either extracellular or intracellular infectious virus, transfection of HJ3 RNA containing the Q221L substitution (HJ3/QL) resulted in rapid accumulation of intracellular infectious particles with release into extracellular fluids. In the absence of the Q221L mutation, both NS5A and NS3 were recruited to core protein on the surface of lipid droplets, but there was no assembly of core into high-density, rapidly sedimenting particles. Further analysis demonstrated that a Q221N mutation minimally rescued virus production and led to a second-site I399V mutation in subdomain 2 of the helicase. Similarly, I399V alone allowed only low-level virus production and led to selection of an I286V mutation in subdomain 1 of the helicase which fully restored virus production, confirming the involvement of both major helicase subdomains in the assembly process. Thus, multiple mutations in the helicase rescue a defect in an early-intermediate step in virus assembly that follows the recruitment of NS5A to lipid droplets and precedes the formation of dense intracellular viral particles. These data reveal a previously unsuspected role for the NS3 helicase in early virion morphogenesis and provide a new perspective on HCV assembly.
Collapse
Affiliation(s)
- Yinghong Ma
- Center for Hepatitis Research, The University of Texas Medical Branch at Galveston, 301 University Boulevard, Galveston, TX 77555-1073, USA
| | | | | | | | | |
Collapse
|
26
|
Abstract
Flavivirus nonstructural (NS) proteins are involved in RNA replication and modulation of the host antiviral response; however, evidence is mounting that some NS proteins also have essential roles in virus assembly. Kunjin virus (KUN) NS2A is a small, hydrophobic, transmembrane protein that is part of the replication complex and inhibits interferon induction. Previously, we have shown that an isoleucine (I)-to-asparagine (N) substitution at position 59 of the NS2A protein blocked the production of secreted virus particles in cells electroporated with viral RNA carrying this mutation. We now show that prolonged incubation of mutant KUN NS2A-I59N replicon RNA, in an inducible BHK-derived packaging cell line (expressing KUN structural proteins C, prM, and E), generated escape mutants that rescued the secretion of infectious virus-like particles. Sequencing identified three groups of revertants that included (i) reversions to wild-type, hydrophobic Ile, (ii) pseudorevertants to more hydrophobic residues (Ser, Thr, and Tyr) at codon 59, and (iii) pseudorevertants retaining Asn at NS2A codon 59 but containing a compensatory mutation (Thr-to-Pro) at NS2A codon 149. Engineering hydrophobic residues at NS2A position 59 or the compensatory T149P mutation into NS2A-I59N replicon RNA restored the assembly of secreted virus-like particles in packaging cells. T149P mutation also rescued virus production when introduced into the full-length KUN RNA containing an NS2A-I59N mutation. Immunofluorescence and electron microscopy analyses of NS2A-I59N replicon-expressing cells showed a distinct lack of virus-induced membranes normally present in cells expressing wild-type replicon RNA. The compensatory mutation NS2A-T149P restored the induction of membrane structures to a level similar to those observed during wild-type replication. The results further confirm the role of NS2A in virus assembly, demonstrate the importance of hydrophobic residues at codon 59 in this process, implicate the involvement of NS2A in the biogenesis of virus-induced membranes, and suggest a vital role for the virus-induced membranes in virus assembly.
Collapse
|
27
|
Yellow Fever virus NS3 plays an essential role in virus assembly independent of its known enzymatic functions. J Virol 2008; 82:3342-52. [PMID: 18199634 DOI: 10.1128/jvi.02447-07] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
In flaviviruses it has been proposed that there is a coupling between genome replication and virion assembly and that nonstructural proteins are involved in this process. It was previously reported that mutations in yellow fever virus (YFV) nonstructural protein NS2A blocked production of infectious virus and that this block could be released by a suppressor mutation in NS3. Here, based on studies using a YFV replicon-based trans-packaging system as well as full-length YFV cDNA, we report that mutation of a conserved tryptophan at position 349 in the helicase domain of NS3 blocks production of infectious virus particles, revealing an as-yet-unknown role for NS3 in virus assembly. Mutation of tryptophan 349 to alanine (W349A) had no effect on viral replication, as demonstrated by wild-type levels of viral RNA amplification and protein expression in W349A-transfected cells. Although release of infectious virus was not detected, release of capsidless subviral particles was not blocked. The assembly defect in W349A could be trans-complemented inefficiently using BHK-REP cells (a cell line containing persistently replicating YFV replicon RNA). trans-complementation was also demonstrated by supplying wild-type NS2B-3 or NS3 protein alone as well as by supplying inactive NS2B-3 protein, indicating that this function of NS3 in virus assembly was independent of its known enzymatic functions.
Collapse
|
28
|
cis- and trans-acting functions of brome mosaic virus protein 1a in genomic RNA1 replication. J Virol 2007; 82:3045-53. [PMID: 18160434 DOI: 10.1128/jvi.02390-07] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
RNA viruses employ a combination of mechanisms to regulate their gene expression and replication. Brome mosaic virus (BMV) is a tripartite positive-strand RNA virus used to study the requirements for virus infection. BMV genomic RNA1 encodes protein 1a, which contains a methyltransferase (MT) domain and a helicase domain that are required for replication. 1a forms a complex with the 2a RNA-dependent RNA polymerase for the replication and transcription of all BMV RNAs. RNA1 expressed with 2a from Agrobacterium-based vectors can result in RNA1 replication in Nicotiana benthamiana. A mutation in the 1a translation initiation codon significantly decreased RNA1 accumulation even when wild-type (WT) 1a and 2a were provided in trans. Therefore, efficient RNA1 replication requires 1a translation from RNA1 in cis, indicating a linkage between replication and translation. Mutation analyses showed that the full-length 1a protein was required for efficient RNA1 replication, not just the process of translation. Three RNA1s with mutations in the 1a MT domain could be partially rescued by WT 1a expressed in trans, indicating that the cis-acting function of 1a was retained. Furthermore, an RNA motif in the 5'-untranslated region of RNA1, named the B box, was required for 1a to function in cis and in trans for BMV RNA accumulation. The B box is required for the formation of the replication factory (M. Schwartz, J. Chen, M. Janda, M. Sullivan, J. den Boon, and P. Ahlquist, Mol. Cell 9:505-514, 2002). Results in this work demonstrate a linkage between BMV RNA1 translation and replication.
Collapse
|
29
|
Bernardin F, Stramer SL, Rehermann B, Page-Shafer K, Cooper S, Bangsberg DR, Hahn J, Tobler L, Busch M, Delwart E. High levels of subgenomic HCV plasma RNA in immunosilent infections. Virology 2007; 365:446-56. [PMID: 17493654 PMCID: PMC2001282 DOI: 10.1016/j.virol.2007.04.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2007] [Revised: 03/14/2007] [Accepted: 04/04/2007] [Indexed: 02/09/2023]
Abstract
A genetic analysis of hepatitis C virus (HCV) in rare blood donors who remained HCV seronegative despite long-term high-level viremia revealed the chronic presence of HCV genomes with large in frame deletions in their structural genes. Full-length HCV genomes were only detected as minority variants. In one immunodeficiency virus (HIV) co-infected donor the truncated HCV genome transiently decreased in frequency concomitant with delayed seroconversion and re-emerged following partial seroreversion. The long-term production of heavily truncated HCV genomes in vivo suggests that these viruses retained the necessary elements for RNA replication while the deleted structural functions necessary for their spread in vivo was provided in trans by wild-type helper virus in co-infected cells. The absence of immunological pressure and a high viral load may therefore promote the emergence of truncated HCV subgenomic replicons in vivo.
Collapse
|
30
|
Reimann I, Semmler I, Beer M. Packaged replicons of bovine viral diarrhea virus are capable of inducing a protective immune response. Virology 2007; 366:377-86. [PMID: 17544049 DOI: 10.1016/j.virol.2007.05.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2007] [Revised: 04/12/2007] [Accepted: 05/04/2007] [Indexed: 12/17/2022]
Abstract
Bovine viral diarrhea virus (BVDV) replicons with deletions within the capsid, E(RNS) or E1 encoding region were constructed and efficiently packaged with a helper cell line. High titres of packaged replicons were observed as early as 24 h after transfection, whereas no virus progeny could be detected after transfection of non-complementing cells. Infection of bovine cell cultures with rescued viruses resulted in one cycle of replication without release of infectious virus particles, and no genetic reversion of the generated viruses was detected. Packaged replicons with a deletion within the capsid-coding region were characterized in vivo in immunization and challenge trials. Following immunization of calves with the replication-deficient virus, neither virus shedding nor viremia was detected. After challenge infection with virulent BVDV, all vaccinates were completely protected from disease as measured by the absence of viremia and shedding of challenge virus, which indicated that a 'sterilizing immunity' could be induced with the generated replication-deficient packaged replicons.
Collapse
Affiliation(s)
- Ilona Reimann
- Institute of Molecular Biology, Friedrich-Loeffler-Institut, Boddenblick 5a, 17493 Greifswald-Insel Riems, Germany
| | | | | |
Collapse
|
31
|
Moulin HR, Seuberlich T, Bauhofer O, Bennett LC, Tratschin JD, Hofmann MA, Ruggli N. Nonstructural proteins NS2-3 and NS4A of classical swine fever virus: essential features for infectious particle formation. Virology 2007; 365:376-89. [PMID: 17482232 DOI: 10.1016/j.virol.2007.03.056] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2007] [Revised: 02/13/2007] [Accepted: 03/29/2007] [Indexed: 11/17/2022]
Abstract
The nonstructural protein NS2-3 of pestiviruses undergoes tightly regulated processing. For bovine viral diarrhea virus it was shown that uncleaved NS2-3 is required for infectious particle formation while cleaved NS3 is essential for genome replication. To further investigate the functions of NS2-3 and NS4A in the pestivirus life cycle, we established T7 RNA polymerase-dependent trans-complementation for p7-NS2-3-4A of classical swine fever virus (CSFV). Expression of NS2-3 and NS4A in trans restored the production of infectious particles from genomes lacking NS2-3 expression. Co-expression of cleaved NS4A was essential. None of the enzymatic activities harbored by NS2-3 were required for infectious particle formation. Importantly, expression of uncleavable NS2-3 together with NS4A rescued infectious particles from a genome lacking NS2, demonstrating that cleaved NS2 per se has no additional essential function. These data indicate that NS2-3 and NS3, each in association with NS4A, have independent functions in the CSFV life cycle.
Collapse
Affiliation(s)
- Hervé R Moulin
- Institute of Virology and Immunoprophylaxis, Sensemattstrasse 293, CH-3147 Mittelhäusern, Switzerland.
| | | | | | | | | | | | | |
Collapse
|