1
|
Wang JH, Cui M, Liu H, Guo P, McGowan J, Cheng SY, Gessler DJ, Xie J, Punzo C, Tai PW, Gao G. Cell-penetrating peptide-grafted AAV2 capsids for improved retinal delivery via intravitreal injection. Mol Ther Methods Clin Dev 2025; 33:101426. [PMID: 40027263 PMCID: PMC11872077 DOI: 10.1016/j.omtm.2025.101426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 01/30/2025] [Indexed: 03/05/2025]
Abstract
Recombinant adeno-associated virus (rAAV) is a leading vector for retinal gene therapy due to its favorable safety profile demonstrated by the FDA-approved Luxturna for Leber congenital amaurosis. However, challenges with low transduction efficiency and immunogenicity, coupled with the invasiveness of subretinal injections, have driven efforts to engineer AAV capsids for minimally invasive intravitreal delivery. Intravitreal injections face the barrier of the inner limiting membrane (ILM), particularly with AAV2-based vectors. In this study, we displayed cell-penetrating peptides (CPPs) on AAV2 capsids to enhance retinal cell transduction via intravitreal injection. Through in vivo capsid screening, we identified AAV2.CPP1, which showed significantly improved pan-retinal expression and photoreceptor transduction in mice as well as a reduced immune response compared to the AAV2.7m8 vector. We also revealed that the CPP1 insertion reduced heparan sulfate binding, improving ILM penetration. These findings highlight AAV2.CPP1 as a promising candidate for retinal gene therapy via intravitreal injection, offering enhanced efficiency and a minimized immune response.
Collapse
Affiliation(s)
- Jiang-Hui Wang
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC 3002, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, East Melbourne, VIC 3002, Australia
| | - Mengtian Cui
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Hao Liu
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Peiyi Guo
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Jackson McGowan
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Shun-Yun Cheng
- Department of Ophthalmology and Visual Sciences, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Dominic J. Gessler
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Neurological Surgery, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jun Xie
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Claudio Punzo
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA
- Department of Ophthalmology and Visual Sciences, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Phillip W.L. Tai
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, MA 01605, USA
| |
Collapse
|
2
|
Romanovsky D, Scherk H, Föhr B, Babutzka S, Bogedein J, Lu Y, Reschigna A, Michalakis S. Heparan sulfate proteoglycan affinity of adeno-associated virus vectors: Implications for retinal gene delivery. Eur J Pharm Sci 2025; 206:107012. [PMID: 39805508 DOI: 10.1016/j.ejps.2025.107012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/24/2024] [Accepted: 01/11/2025] [Indexed: 01/16/2025]
Abstract
Adeno-associated virus (AAV)-based vectors have emerged as an effective and widely used technology for somatic gene therapy approaches, including those targeting the retina. A major advantage of the AAV technology is the availability of a large number of serotypes that have either been isolated from nature or produced in the laboratory. These serotypes have different properties in terms of sensitivity to neutralizing antibodies, cellular transduction profile and efficiency. The infectivity of AAV vectors depends on the affinity to certain molecules on the cell surface, in particular to cellular glycosaminoglycans (GAGs) such as heparan sulfate proteoglycans (HSPGs). Here, we tested how altering HSPG affinity in AAV vectors affects cellular tropism and transduction efficiency. The previously developed AAV2.GL variant was used as a starting variant to alter or disrupt HSPG affinity. The HSPG-independent AAV9 serotype was used to introduce different HSPG-binding sites. As an indicator of HSPG affinity, we measured the binding strength of the vector variant on a heparin chromatography column. We show that modification of capsid-exposed residues has a strong impact on HSPG affinity, cellular tropism and transduction efficiency in HeLa cells and in vivo in mouse retina. Our study shows that key properties of AAV vectors can be tailored in different directions and used to improve tropism and efficiency.
Collapse
Affiliation(s)
- Dimitri Romanovsky
- Department of Ophthalmology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Hanna Scherk
- Department of Ophthalmology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Bastian Föhr
- Department of Ophthalmology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Sabrina Babutzka
- Department of Ophthalmology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Jacqueline Bogedein
- Department of Ophthalmology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Yi Lu
- Department of Ophthalmology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Alice Reschigna
- Department of Ophthalmology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Stylianos Michalakis
- Department of Ophthalmology, LMU University Hospital, LMU Munich, Munich, Germany.
| |
Collapse
|
3
|
Wang JH, Zhan W, Gallagher TL, Gao G. Recombinant adeno-associated virus as a delivery platform for ocular gene therapy: A comprehensive review. Mol Ther 2024; 32:4185-4207. [PMID: 39489915 PMCID: PMC11638839 DOI: 10.1016/j.ymthe.2024.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/18/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024] Open
Abstract
Adeno-associated virus (AAV) has emerged as a leading platform for in vivo gene therapy, particularly in ocular diseases. AAV-based therapies are characterized by low pathogenicity and broad tissue tropism and have demonstrated clinical success, as exemplified by voretigene neparvovec-rzyl (Luxturna) being the first gene therapy to be approved by the U.S. Food and Drug Administration to treat RPE65-associated Leber congenital amaurosis (LCA). However, several challenges remain in the development of AAV-based gene therapies, including immune responses, limited cargo capacity, and the need for enhanced transduction efficiency, especially for intravitreal delivery to photoreceptors and retinal pigment epithelium cells. This review explores the biology of AAVs in the context of gene therapy, innovations in capsid engineering, and clinical advancements in AAV-based ocular gene therapy. We highlight ongoing clinical trials targeting inherited retinal diseases and acquired conditions, discuss immune-related limitations, and examine novel strategies for enhancing AAV vector performance to address current barriers.
Collapse
Affiliation(s)
- Jiang-Hui Wang
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA; Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA; Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC 3002, Australia; Ophthalmology, Department of Surgery, University of Melbourne, East Melbourne, VIC 3002, Australia
| | - Wei Zhan
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA; Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA; Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA; Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Thomas L Gallagher
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA; Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA; Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
4
|
Guan JX, Wang YL, Wang JL. How Advanced are Nanocarriers for Effective Subretinal Injection? Int J Nanomedicine 2024; 19:9273-9289. [PMID: 39282576 PMCID: PMC11401526 DOI: 10.2147/ijn.s479327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/28/2024] [Indexed: 09/19/2024] Open
Abstract
Subretinal injection (SR injection) is a commonly used method of ocular drug delivery and has been mainly applied for the treatment of neovascular age-associated macular degeneration (nAMD) and sub-macular hemorrhage (SMH) caused by nAMD, as well as various types of hereditary retinopathies (IRD) such as Stargardt's disease (STGD), retinitis pigmentosa (RP), and a series of fundus diseases such as Leber's congenital dark haze (LCA), choroidal defects, etc. The commonly used carriers of SR injection are mainly divided into viral and non-viral vectors. Leber's congenital amaurosis (LCA), choroidal agenesis, and a series of other fundus diseases are also commonly treated using SR injection. The commonly used vectors for SR injection are divided into two categories: viral vectors and non-viral vectors. Viral vectors are a traditional class of SR injection drug carriers that have been extensively studied in clinical treatment, but they still have many limitations that cannot be ignored, such as poor reproduction efficiency, small loading genes, and triggering of immune reactions. With the rapid development of nanotechnology in the treatment of ocular diseases, nanovectors have become a research hotspot in the field of non-viral vectors. Nanocarriers have numerous attractive properties such as low immunogenicity, robust loading capacity, stable structure, and easy modification. These valuable features imply greater safety, improved therapeutic efficacy, longer duration, and more flexible indications. In recent years, there has been a growing interest in nanocarriers, which has led to significant advancements in the treatment of ocular diseases. Nanocarriers have not only successfully addressed clinical problems that viral vectors have failed to overcome but have also introduced new therapeutic possibilities for certain classical disease types. Nanocarriers offer undeniable advantages over viral vectors. This review discusses the advantages of subretinal (SR) injection, the current status of research, and the research hotspots of gene therapy with viral vectors. It focuses on the latest progress of nanocarriers in SR injection and enumerates the limitations and future perspectives of nanocarriers in the treatment of fundus lesions. Furthermore, this review also covers the research progress of nanocarriers in the field of subretinal injection and highlights the value of nanocarrier-mediated SR injection in the treatment of fundus disorders. Overall, it provides a theoretical basis for the application of nanocarriers in SR injection.
Collapse
Affiliation(s)
- Jia-Xin Guan
- Department of Ophthalmology, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
- Institute of Ophthalmology, Capital Medical University, Beijing, People's Republic of China
| | - Yan-Ling Wang
- Department of Ophthalmology, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
- Institute of Ophthalmology, Capital Medical University, Beijing, People's Republic of China
| | - Jia-Lin Wang
- Department of Ophthalmology, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
- Institute of Ophthalmology, Capital Medical University, Beijing, People's Republic of China
| |
Collapse
|
5
|
Kumar B, Mishra M, Cashman S, Kumar-Singh R. Retinal Penetrating Adeno-Associated Virus. Invest Ophthalmol Vis Sci 2024; 65:30. [PMID: 39172462 PMCID: PMC11346080 DOI: 10.1167/iovs.65.10.30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 08/01/2024] [Indexed: 08/23/2024] Open
Abstract
Purpose The most common method of delivery of genes to the outer retina uses recombinant adeno-associated virus (AAV) injected into the subretinal space using a surgical procedure. In contrast, most drugs are delivered to the retina using an intravitreal approach in an office setting. The objective of the current study was to develop AAV vectors that can reach the outer retina via intravitreal injection. Methods Recently, we described a molecular chaperone (Nuc1) that enhanced the penetration of small and large molecules, including AAV, into the retina. The Nuc1 amino acid sequence or a truncated version of Nuc1 (IKV) was genetically incorporated into an exposed loop of AAV2/9 VP1 protein. These novel recombinant AAV vectors expressing green fluorescent protein (GFP) or nuclear factor erythroid 2 p45-related factor 2 (Nrf2) were injected into the vitreous of C57Bl/6J or Nrf2 knockout mice, respectively. The amount of GFP expression or oxidative stress as measured by 8-Hydroxy-2'-deoxyguanosine staining in C57Bl/6J or Nrf2 knockout mice, respectively, was quantified. Results Incorporation of Nuc1 into AAV2/9 did not lead to significant expression of GFP in the murine retina. However, incorporation of IKV into AAV2/9 led to robust expression of GFP in photoreceptors and retinal pigment epithelium (RPE) via the intravitreal and subretinal routes of delivery. Furthermore, expression of Nrf2 using an IKV vector led to a reduction in oxidative stress in the retina of C57Bl/6J and Nrf2 knockout mice. Conclusions We have developed a novel AAV vector that enables delivery of transgenes to the outer retina of mice, including photoreceptors and RPE following intravitreal injection.
Collapse
Affiliation(s)
- Binit Kumar
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, United States
| | - Manish Mishra
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, United States
| | - Siobhan Cashman
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, United States
| | - Rajendra Kumar-Singh
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, United States
| |
Collapse
|
6
|
Wang JH, Gessler DJ, Zhan W, Gallagher TL, Gao G. Adeno-associated virus as a delivery vector for gene therapy of human diseases. Signal Transduct Target Ther 2024; 9:78. [PMID: 38565561 PMCID: PMC10987683 DOI: 10.1038/s41392-024-01780-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 02/08/2024] [Accepted: 02/19/2024] [Indexed: 04/04/2024] Open
Abstract
Adeno-associated virus (AAV) has emerged as a pivotal delivery tool in clinical gene therapy owing to its minimal pathogenicity and ability to establish long-term gene expression in different tissues. Recombinant AAV (rAAV) has been engineered for enhanced specificity and developed as a tool for treating various diseases. However, as rAAV is being more widely used as a therapy, the increased demand has created challenges for the existing manufacturing methods. Seven rAAV-based gene therapy products have received regulatory approval, but there continue to be concerns about safely using high-dose viral therapies in humans, including immune responses and adverse effects such as genotoxicity, hepatotoxicity, thrombotic microangiopathy, and neurotoxicity. In this review, we explore AAV biology with an emphasis on current vector engineering strategies and manufacturing technologies. We discuss how rAAVs are being employed in ongoing clinical trials for ocular, neurological, metabolic, hematological, neuromuscular, and cardiovascular diseases as well as cancers. We outline immune responses triggered by rAAV, address associated side effects, and discuss strategies to mitigate these reactions. We hope that discussing recent advancements and current challenges in the field will be a helpful guide for researchers and clinicians navigating the ever-evolving landscape of rAAV-based gene therapy.
Collapse
Affiliation(s)
- Jiang-Hui Wang
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, 3002, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, East Melbourne, VIC, 3002, Australia
| | - Dominic J Gessler
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Department of Neurological Surgery, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Wei Zhan
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Thomas L Gallagher
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA.
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA.
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA.
| |
Collapse
|
7
|
Kellish PC, Marsic D, Crosson SM, Choudhury S, Scalabrino ML, Strang CE, Hill J, McCullough KT, Peterson JJ, Fajardo D, Gupte S, Makal V, Kondratov O, Kondratova L, Iyer S, Witherspoon CD, Gamlin PD, Zolotukhin S, Boye SL, Boye SE. Intravitreal injection of a rationally designed AAV capsid library in non-human primate identifies variants with enhanced retinal transduction and neutralizing antibody evasion. Mol Ther 2023; 31:3441-3456. [PMID: 37814449 PMCID: PMC10727955 DOI: 10.1016/j.ymthe.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/25/2023] [Accepted: 10/04/2023] [Indexed: 10/11/2023] Open
Abstract
Adeno-associated virus (AAV) continues to be the gold standard vector for therapeutic gene delivery and has proven especially useful for treating ocular disease. Intravitreal injection (IVtI) is a promising delivery route because it increases accessibility of gene therapies to larger patient populations. However, data from clinical and non-human primate (NHP) studies utilizing currently available capsids indicate that anatomical barriers to AAV and pre-existing neutralizing antibodies can restrict gene expression to levels that are "sub-therapeutic" in a substantial proportion of patients. Here, we performed a combination of directed evolution in NHPs of an AAV2-based capsid library with simultaneous mutations across six surface-exposed variable regions and rational design to identify novel capsid variants with improved retinal transduction following IVtI. Following two rounds of screening in NHP, enriched variants were characterized in intravitreally injected mice and NHPs and shown to have increased transduction relative to AAV2. Lead capsid variant, P2-V1, demonstrated an increased ability to evade neutralizing antibodies in human vitreous samples relative to AAV2 and AAV2.7m8. Taken together, this study further contributed to our understanding of the selective pressures associated with retinal transduction via the vitreous and identified promising novel AAV capsid variants for clinical consideration.
Collapse
Affiliation(s)
- Patrick C Kellish
- Division of Cellular and Molecular Therapy, Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, FL 32610, USA
| | - Damien Marsic
- Division of Cellular and Molecular Therapy, Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, FL 32610, USA
| | - Sean M Crosson
- Division of Cellular and Molecular Therapy, Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, FL 32610, USA
| | - Shreyasi Choudhury
- Division of Cellular and Molecular Therapy, Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, FL 32610, USA
| | - Miranda L Scalabrino
- Division of Cellular and Molecular Therapy, Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, FL 32610, USA
| | - Christianne E Strang
- Department of Ophthalmology, University of Alabama at Birmingham, Birmingham AL 35294, USA
| | - Julie Hill
- Department of Ophthalmology, University of Alabama at Birmingham, Birmingham AL 35294, USA
| | - K Tyler McCullough
- Division of Cellular and Molecular Therapy, Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, FL 32610, USA
| | - James J Peterson
- Division of Cellular and Molecular Therapy, Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, FL 32610, USA
| | - Diego Fajardo
- Division of Cellular and Molecular Therapy, Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, FL 32610, USA
| | - Siddhant Gupte
- Division of Cellular and Molecular Therapy, Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, FL 32610, USA
| | - Victoria Makal
- Division of Cellular and Molecular Therapy, Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, FL 32610, USA
| | - Oleksandr Kondratov
- Division of Cellular and Molecular Therapy, Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, FL 32610, USA
| | - Liudmyla Kondratova
- Division of Cellular and Molecular Therapy, Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, FL 32610, USA
| | - Siva Iyer
- Department of Ophthalmology, University of Florida, Gainesville, FL 32610, USA
| | - C Douglas Witherspoon
- Department of Ophthalmology, University of Alabama at Birmingham, Birmingham AL 35294, USA
| | - Paul D Gamlin
- Department of Ophthalmology, University of Alabama at Birmingham, Birmingham AL 35294, USA
| | - Sergei Zolotukhin
- Division of Cellular and Molecular Therapy, Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, FL 32610, USA
| | - Sanford L Boye
- Powell Gene Therapy Center, Department of Pediatrics, University of Florida, Gainesville, FL 32610, USA
| | - Shannon E Boye
- Division of Cellular and Molecular Therapy, Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
8
|
Hammadi S, Tzoumas N, Ferrara M, Meschede IP, Lo K, Harris C, Lako M, Steel DH. Bruch's Membrane: A Key Consideration with Complement-Based Therapies for Age-Related Macular Degeneration. J Clin Med 2023; 12:2870. [PMID: 37109207 PMCID: PMC10145879 DOI: 10.3390/jcm12082870] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/29/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023] Open
Abstract
The complement system is crucial for immune surveillance, providing the body's first line of defence against pathogens. However, an imbalance in its regulators can lead to inappropriate overactivation, resulting in diseases such as age-related macular degeneration (AMD), a leading cause of irreversible blindness globally affecting around 200 million people. Complement activation in AMD is believed to begin in the choriocapillaris, but it also plays a critical role in the subretinal and retinal pigment epithelium (RPE) spaces. Bruch's membrane (BrM) acts as a barrier between the retina/RPE and choroid, hindering complement protein diffusion. This impediment increases with age and AMD, leading to compartmentalisation of complement activation. In this review, we comprehensively examine the structure and function of BrM, including its age-related changes visible through in vivo imaging, and the consequences of complement dysfunction on AMD pathogenesis. We also explore the potential and limitations of various delivery routes (systemic, intravitreal, subretinal, and suprachoroidal) for safe and effective delivery of conventional and gene therapy-based complement inhibitors to treat AMD. Further research is needed to understand the diffusion of complement proteins across BrM and optimise therapeutic delivery to the retina.
Collapse
Affiliation(s)
- Sarah Hammadi
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Nikolaos Tzoumas
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- Sunderland Eye Infirmary, Queen Alexandra Rd., Sunderland SR2 9H, UK
| | | | - Ingrid Porpino Meschede
- Gyroscope Therapeutics Limited, a Novartis Company, Rolling Stock Yard, 6th Floor, 188 York Way, London N7 9AS, UK
| | - Katharina Lo
- Gyroscope Therapeutics Limited, a Novartis Company, Rolling Stock Yard, 6th Floor, 188 York Way, London N7 9AS, UK
| | - Claire Harris
- Gyroscope Therapeutics Limited, a Novartis Company, Rolling Stock Yard, 6th Floor, 188 York Way, London N7 9AS, UK
- Clinical and Translational Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Majlinda Lako
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - David H. Steel
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- Sunderland Eye Infirmary, Queen Alexandra Rd., Sunderland SR2 9H, UK
| |
Collapse
|
9
|
Zin EA, Ozturk BE, Dalkara D, Byrne LC. Developing New Vectors for Retinal Gene Therapy. Cold Spring Harb Perspect Med 2023; 13:a041291. [PMID: 36987583 PMCID: PMC10691475 DOI: 10.1101/cshperspect.a041291] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Since their discovery over 55 years ago, adeno-associated virus (AAV) vectors have become powerful tools for experimental and therapeutic in vivo gene delivery, particularly in the retina. Increasing knowledge of AAV structure and biology has propelled forward the development of engineered AAV vectors with improved abilities for gene delivery. However, major obstacles to safe and efficient therapeutic gene delivery remain, including tropism, inefficient and untargeted gene delivery, and limited carrying capacity. Additional improvements to AAV vectors will be required to achieve therapeutic benefit while avoiding safety issues. In this review, we provide an overview of recent methods for engineering-enhanced AAV capsids, as well as remaining challenges that must be overcome to achieve optimized therapeutic gene delivery in the eye.
Collapse
Affiliation(s)
- Emilia A Zin
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012 Paris, France
| | - Bilge E Ozturk
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Deniz Dalkara
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012 Paris, France
| | - Leah C Byrne
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| |
Collapse
|
10
|
Nieuwenhuis B, Laperrousaz E, Tribble JR, Verhaagen J, Fawcett JW, Martin KR, Williams PA, Osborne A. Improving adeno-associated viral (AAV) vector-mediated transgene expression in retinal ganglion cells: comparison of five promoters. Gene Ther 2023:10.1038/s41434-022-00380-z. [PMID: 36635457 DOI: 10.1038/s41434-022-00380-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 12/02/2022] [Accepted: 12/21/2022] [Indexed: 01/14/2023]
Abstract
Recombinant adeno-associated viral vectors (AAVs) are an effective system for gene transfer. AAV serotype 2 (AAV2) is commonly used to deliver transgenes to retinal ganglion cells (RGCs) via intravitreal injection. The AAV serotype however is not the only factor contributing to the effectiveness of gene therapies. Promoters influence the strength and cell-selectivity of transgene expression. This study compares five promoters designed to maximise AAV2 cargo space for gene delivery: chicken β-actin (CBA), cytomegalovirus (CMV), short CMV early enhancer/chicken β-actin/short β-globulin intron (sCAG), mouse phosphoglycerate kinase (PGK), and human synapsin (SYN). The promoters driving enhanced green fluorescent protein (eGFP) were examined in adult C57BL/6J mice eyes and tissues of the visual system. eGFP expression was strongest in the retina, optic nerves and brain when driven by the sCAG and SYN promoters. CBA, CMV, and PGK had moderate expression by comparison. The SYN promoter had almost exclusive transgene expression in RGCs. The PGK promoter had predominant expression in both RGCs and AII amacrine cells. The ubiquitous CBA, CMV, and sCAG promoters expressed eGFP in a variety of cell types across multiple retinal layers including Müller glia and astrocytes. We also found that these promoters could transduce human retina ex vivo, although expression was predominantly in glial cells due to low RGC viability. Taken together, this promoter comparison study contributes to optimising AAV-mediated transduction in the retina, and could be valuable for research in ocular disorders, particularly those with large or complex genetic cargos.
Collapse
Affiliation(s)
- Bart Nieuwenhuis
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK. .,Cambridge Institute for Medical Research, University of Cambridge, Cambridge, CB2 0XY, UK.
| | - Elise Laperrousaz
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - James R Tribble
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Joost Verhaagen
- Laboratory for Regeneration of Sensorimotor Systems, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, The Netherlands.,Centre for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - James W Fawcett
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.,Centre of Reconstructive Neuroscience, Institute of Experimental Medicine, Prague, Czech Republic
| | - Keith R Martin
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.,Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, VIC, Australia.,Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, VIC, Australia
| | - Pete A Williams
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Andrew Osborne
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK. .,Ikarovec Ltd, The Norwich Research Park Innovation Centre, Norwich, UK.
| |
Collapse
|
11
|
Pupo A, Fernández A, Low SH, François A, Suárez-Amarán L, Samulski RJ. AAV vectors: The Rubik's cube of human gene therapy. Mol Ther 2022; 30:3515-3541. [PMID: 36203359 PMCID: PMC9734031 DOI: 10.1016/j.ymthe.2022.09.015] [Citation(s) in RCA: 164] [Impact Index Per Article: 54.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 12/12/2022] Open
Abstract
Defective genes account for ∼80% of the total of more than 7,000 diseases known to date. Gene therapy brings the promise of a one-time treatment option that will fix the errors in patient genetic coding. Recombinant viruses are highly efficient vehicles for in vivo gene delivery. Adeno-associated virus (AAV) vectors offer unique advantages, such as tissue tropism, specificity in transduction, eliciting of a relatively low immune responses, no incorporation into the host chromosome, and long-lasting delivered gene expression, making them the most popular viral gene delivery system in clinical trials, with three AAV-based gene therapy drugs already approved by the US Food and Drug Administration (FDA) or European Medicines Agency (EMA). Despite the success of AAV vectors, their usage in particular scenarios is still limited due to remaining challenges, such as poor transduction efficiency in certain tissues, low organ specificity, pre-existing humoral immunity to AAV capsids, and vector dose-dependent toxicity in patients. In the present review, we address the different approaches to improve AAV vectors for gene therapy with a focus on AAV capsid selection and engineering, strategies to overcome anti-AAV immune response, and vector genome design, ending with a glimpse at vector production methods and the current state of recombinant AAV (rAAV) at the clinical level.
Collapse
Affiliation(s)
- Amaury Pupo
- R&D Department, Asklepios BioPharmaceutical, Inc. (AskBio), 20 T.W. Alexander, Suite 110 RTP, Durham, NC 27709, USA
| | - Audry Fernández
- R&D Department, Asklepios BioPharmaceutical, Inc. (AskBio), 20 T.W. Alexander, Suite 110 RTP, Durham, NC 27709, USA
| | - Siew Hui Low
- R&D Department, Asklepios BioPharmaceutical, Inc. (AskBio), 20 T.W. Alexander, Suite 110 RTP, Durham, NC 27709, USA
| | - Achille François
- Viralgen. Parque Tecnológico de Guipuzkoa, Edificio Kuatro, Paseo Mikeletegui, 83, 20009 San Sebastián, Spain
| | - Lester Suárez-Amarán
- R&D Department, Asklepios BioPharmaceutical, Inc. (AskBio), 20 T.W. Alexander, Suite 110 RTP, Durham, NC 27709, USA
| | - Richard Jude Samulski
- R&D Department, Asklepios BioPharmaceutical, Inc. (AskBio), 20 T.W. Alexander, Suite 110 RTP, Durham, NC 27709, USA,Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA,Corresponding author: Richard Jude Samulski, R&D Department, Asklepios BioPharmaceutical, Inc. (AskBio), 20 T.W. Alexander, Suite 110 RTP, NC 27709, USA.
| |
Collapse
|
12
|
Kovacs KD, Ciulla TA, Kiss S. Advancements in ocular gene therapy delivery: vectors and subretinal, intravitreal, and suprachoroidal techniques. Expert Opin Biol Ther 2022; 22:1193-1208. [PMID: 36062410 DOI: 10.1080/14712598.2022.2121646] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION : Ocular gene therapy represents fertile ground for rapid innovation, with ever-expanding therapeutic strategies, molecular targets, and indications. AREAS COVERED : Potential indications for ocular gene therapy have classically focused on inherited retinal disease (IRD), but more recently include acquired retinal diseases, such as neovascular age-related macular degeneration, geographic atrophy and diabetic retinopathy. Ocular gene therapy strategies have proliferated recently, and include gene augmentation, gene inactivation, gene editing, RNA modulation, and gene-independent gene augmentation. Viral vector therapeutic constructs include adeno-associated virus and lentivirus and continue to evolve through directed evolution and rationale design. Ocular gene therapy administration techniques have expanded beyond pars plana vitrectomy with subretinal injection to intravitreal injection and suprachoroidal injection. EXPERT OPINION : The success of treatment for IRD, paired with the promise of clinical research in acquired retinal diseases and in administration techniques, has raised the possibility of in-office gene therapy for common retinal disorders within the next five to ten years.
Collapse
Affiliation(s)
- Kyle D Kovacs
- Department of Ophthalmology, Retina Service, Weill Cornell Medical College, New York, NY, USA
| | | | - Szilárd Kiss
- Department of Ophthalmology, Retina Service, Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
13
|
Patel DD, Marsic D, Periasamy R, Zolotukhin S, Lipinski DM. Identification of Novel Retinal Pericyte-Targeting rAAV Vectors Through Directed Evolution. Transl Vis Sci Technol 2022; 11:28. [PMID: 36018583 PMCID: PMC9428359 DOI: 10.1167/tvst.11.8.28] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Retinal pericytes play a vital role in maintaining retinal homeostasis, and their dysfunction underlies pathogenesis in such vascular eye diseases as diabetic retinopathy and wet age-related macular degeneration. Consequently, retinal pericytes are attractive therapeutic targets for gene therapy, but effectively targeting pericytes with recombinant adeno-associated virus (rAAV) vectors remains a challenge. Methods We introduced genetic modifications into the surface-exposed variable regions of the rAAV2/2 capsid to generate a complex library (>1 × 107) of capsid mutants that were then screened for preferential tropism toward retinal pericytes. Using the Tg(Cspg4-DsRed.T1)1Akik/J reporter mouse model, which has red fluorescent pericytes that can be isolated via flow cytometry in order to recover vector genomes, we performed three rounds of screening and identified seven putative mutants capable of transducing retinal pericytes. Results Following intravitreal administration of mutant vectors packaging ubiquitously expressing green fluorescent protein reporters and postmortem flow cytometry of enzymatically digested retinae, two mutants in particular, Peri-E and Peri-G, demonstrated significantly greater transduction of retinal pericytes than unmodified rAAV2/2 (1.4-fold and 2.8-fold, respectively). Conclusions Although difficult to characterize the effect of each point mutation in the context of multiple amino acid variations from the wild-type AAV2 sequence, we identified several point mutations that may play critical roles in limiting HSPG binding, evading neutralization by murine A20 monoclonal antibodies, modulating antigenicity, and evading ubiquitination to ultimately improve transduction efficiency of retinal pericytes. Translational Relevance Identification of novel retinal pericyte targeting rAAV vectors enables the development of new, long-lasting gene therapies for retinal diseases such as diabetic retinopathy and wet age-related macular degeneration.
Collapse
Affiliation(s)
- Dwani D Patel
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA.,Department of Ophthalmology and Visual Science, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Damien Marsic
- Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL, USA.,Porton Advanced Solutions, Suzhou, Jiangsu, China
| | - Ramesh Periasamy
- Department of Ophthalmology and Visual Science, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Sergei Zolotukhin
- Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL, USA
| | - Daniel M Lipinski
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA.,Department of Ophthalmology and Visual Science, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
14
|
Extracellular Vesicles as Novel Drug-Delivery Systems through Intracellular Communications. MEMBRANES 2022; 12:membranes12060550. [PMID: 35736256 PMCID: PMC9230693 DOI: 10.3390/membranes12060550] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/17/2022] [Accepted: 05/20/2022] [Indexed: 02/07/2023]
Abstract
Since it has been reported that extracellular vesicles (EVs) carry cargo using cell-to-cell comminication according to various in vivo situations, they are exprected to be applied as new drug-delivery systems (DDSs). In addition, non-coding RNAs, such as microRNAs (miRNAs), have attracted much attention as potential biomarkers in the encapsulated extracellular-vesicle (EV) form. EVs are bilayer-based lipids with heterogeneous populations of varying sizes and compositions. The EV-mediated transport of contents, which includes proteins, lipids, and nucleic acids, has attracted attention as a DDS through intracellular communication. Many reports have been made on the development of methods for introducing molecules into EVs and efficient methods for introducing them into target vesicles. In this review, we outline the possible molecular mechanisms by which miRNAs in exosomes participate in the post-transcriptional regulation of signaling pathways via cell–cell communication as novel DDSs, especially small EVs.
Collapse
|
15
|
Maes ME, Wögenstein GM, Colombo G, Casado-Polanco R, Siegert S. Optimizing AAV2/6 microglial targeting identified enhanced efficiency in the photoreceptor degenerative environment. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2021; 23:210-224. [PMID: 34703843 PMCID: PMC8516996 DOI: 10.1016/j.omtm.2021.09.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 09/07/2021] [Indexed: 12/13/2022]
Abstract
Adeno-associated viruses (AAVs) are widely used to deliver genetic material in vivo to distinct cell types such as neurons or glial cells, allowing for targeted manipulation. Transduction of microglia is mostly excluded from this strategy, likely due to the cells’ heterogeneous state upon environmental changes, which makes AAV design challenging. Here, we established the retina as a model system for microglial AAV validation and optimization. First, we show that AAV2/6 transduced microglia in both synaptic layers, where layer preference corresponds to the intravitreal or subretinal delivery method. Surprisingly, we observed significantly enhanced microglial transduction during photoreceptor degeneration. Thus, we modified the AAV6 capsid to reduce heparin binding by introducing four point mutations (K531E, R576Q, K493S, and K459S), resulting in increased microglial transduction in the outer plexiform layer. Finally, to improve microglial-specific transduction, we validated a Cre-dependent transgene delivery cassette for use in combination with the Cx3cr1CreERT2 mouse line. Together, our results provide a foundation for future studies optimizing AAV-mediated microglia transduction and highlight that environmental conditions influence microglial transduction efficiency.
Collapse
Affiliation(s)
- Margaret E Maes
- Institute of Science and Technology (IST) Austria, 3400 Klosterneuburg, Austria
| | | | - Gloria Colombo
- Institute of Science and Technology (IST) Austria, 3400 Klosterneuburg, Austria
| | | | - Sandra Siegert
- Institute of Science and Technology (IST) Austria, 3400 Klosterneuburg, Austria
| |
Collapse
|
16
|
Ross M, Ofri R. The future of retinal gene therapy: evolving from subretinal to intravitreal vector delivery. Neural Regen Res 2021; 16:1751-1759. [PMID: 33510064 PMCID: PMC8328774 DOI: 10.4103/1673-5374.306063] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/26/2020] [Accepted: 12/09/2020] [Indexed: 12/18/2022] Open
Abstract
Inherited retinal degenerations are a leading and untreatbale cause of blindness, and as such they are targets for gene therapy. Numerous gene therapy treatments have progressed from laboratory research to clinical trails, and a pioneering gene therapy received the first ever FDA approval for treating patients. However, currently retinal gene therapy mostly involves subretinal injection of the therapeutic agent, which treats a limited area, entails retinal detachment and other potential complications, and requires general anesthesia with consequent risks, costs and prolonged recovery. Therefore there is great impetus to develop safer, less invasive and cheapter methods of gene delivery. A promising method is intravitreal injection, that does not cause retinal detachment, can lead to pan-retinal transduction and can be performed under local anesthesia in out-patient clinics. Intravitreally-injected vectors face several obstacles. First, the vector is diluted by the vitreous and has to overcome a long diffusion distance to the target cells. Second, the vector is exposed to the host's immune response, risking neutralization by pre-existing antibodies and triggering a stronger immune response to the injection. Third, the vector has to cross the inner limiting membrane which is both a physical and a biological barrier as it contains binding sites that could cause the vector's sequestration. Finally, in the target cell the vector is prone to proteasome degradation before delivering the transgene to the nucleus. Strategies to overcome these obstacles include modifications of the viral capsid, through rational design or directed evolution, which allow resistance to the immune system, enhancement of penetration through the inner limiting membrane or reduced degradation by intracellular proteasomes. Furthermore, physical and chemical manipulations of the inner limiting membrane and vitreous aim to improve vector penetration. Finally, compact non-viral vectors that can overcome the immunological, physical and anatomical and barriers have been developed. This paper reviews ongoing efforts to develop novel, safe and efficacious methods for intravitreal delivery of therapeutic genes for inherited retinal degenerations. To date, the most promising results are achieved in rodents with robust, pan-retinal transduction following intravitreal delivery. Trials in larger animal models demonstrate transduction mostly of inner retinal layers. Despite ongoing efforts, currently no intravitreally-injected vector has demonstrated outer retinal transduction efficacy comparable to that of subretinal delivery. Further work is warranted to test promising new viral and non-viral vectors on large animal models of inherited retinal degenerations. Positive results will pave the way to development of the next generation of treatments for inherited retinal degeneration.
Collapse
Affiliation(s)
- Maya Ross
- Koret School of Veterinary Medicine, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Ron Ofri
- Koret School of Veterinary Medicine, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
17
|
Large EE, Silveria MA, Zane GM, Weerakoon O, Chapman MS. Adeno-Associated Virus (AAV) Gene Delivery: Dissecting Molecular Interactions upon Cell Entry. Viruses 2021; 13:1336. [PMID: 34372542 PMCID: PMC8310307 DOI: 10.3390/v13071336] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/08/2021] [Accepted: 07/08/2021] [Indexed: 12/13/2022] Open
Abstract
Human gene therapy has advanced from twentieth-century conception to twenty-first-century reality. The recombinant Adeno-Associated Virus (rAAV) is a major gene therapy vector. Research continues to improve rAAV safety and efficacy using a variety of AAV capsid modification strategies. Significant factors influencing rAAV transduction efficiency include neutralizing antibodies, attachment factor interactions and receptor binding. Advances in understanding the molecular interactions during rAAV cell entry combined with improved capsid modulation strategies will help guide the design and engineering of safer and more efficient rAAV gene therapy vectors.
Collapse
Affiliation(s)
| | | | | | | | - Michael S. Chapman
- Department of Biochemistry, University of Missouri, Columbia, MO 65201, USA; (E.E.L.); (M.A.S.); (G.M.Z.); (O.W.)
| |
Collapse
|
18
|
Abstract
Adeno-associated viruses utilize different glycans and the AAV receptor (AAVR) for cellular attachment and entry. Directed evolution has yielded new AAV variants; however, structure-function correlates underlying their improved transduction are generally overlooked. Here, we report that infectious cycling of structurally diverse AAV surface loop libraries yields functionally distinct variants. Newly evolved variants show enhanced cellular binding, uptake, and transduction, but through distinct mechanisms. Using glycan-based and genome-wide CRISPR knockout screens, we discover that one AAV variant acquires the ability to recognize sulfated glycosaminoglycans, while another displays receptor switching from AAVR to integrin β1 (ITGB1). A previously evolved variant, AAVhum.8, preferentially utilizes the ITGB1 receptor over AAVR. Visualization of the AAVhum.8 capsid by cryoelectron microscopy at 2.49-Å resolution localizes the newly acquired integrin recognition motif adjacent to the AAVR footprint. These observations underscore the new finding that distinct AAV surface epitopes can be evolved to exploit different cellular receptors for enhanced transduction. IMPORTANCE Understanding how viruses interact with host cells through cell surface receptors is central to discovery and development of antiviral therapeutics, vaccines, and gene transfer vectors. Here, we demonstrate that distinct epitopes on the surface of adeno-associated viruses can be evolved by infectious cycling to recognize different cell surface carbohydrates and glycoprotein receptors and solve the three-dimensional structure of one such newly evolved AAV capsid, which provides a roadmap for designing viruses with improved attributes for gene therapy applications.
Collapse
|
19
|
Effects of Altering HSPG Binding and Capsid Hydrophilicity on Retinal Transduction by AAV. J Virol 2021; 95:JVI.02440-20. [PMID: 33658343 PMCID: PMC8139652 DOI: 10.1128/jvi.02440-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Adeno-associated viruses (AAVs) have recently emerged as the leading vector for retinal gene therapy. However, AAV vectors which are capable of achieving clinically relevant levels of transgene expression and widespread retinal transduction are still an unmet need. Using rationally designed AAV2-based capsid variants, we investigate the role of capsid hydrophilicity and hydrophobicity as it relates to retinal transduction. We show that hydrophilic, single amino acid (aa) mutations (V387R, W502H, E530K, L583R) in AAV2 negatively impact retinal transduction when heparan sulfate proteoglycan (HSPG) binding remains intact. Conversely, addition of hydrophobic point mutations to an HSPG binding deficient capsid (AAV2ΔHS) lead to increased retinal transduction in both mouse and macaque. Our top performing vector, AAV2(4pMut)ΔHS, achieved robust rod and cone photoreceptor (PR) transduction in macaque, especially in the fovea, and demonstrates the ability to spread laterally beyond the borders of the subretinal injection (SRI) bleb. This study both evaluates biophysical properties of AAV capsids that influence retinal transduction, and assesses the transduction and tropism of a novel capsid variant in a clinically relevant animal model.ImportanceRationally guided engineering of AAV capsids aims to create new generations of vectors with enhanced potential for human gene therapy. By applying rational design principles to AAV2-based capsids, we evaluated the influence of hydrophilic and hydrophobic amino acid (aa) mutations on retinal transduction as it relates to vector administration route. Through this approach we identified a largely deleterious relationship between hydrophilic aa mutations and canonical HSPG binding by AAV2-based capsids. Conversely, the inclusion of hydrophobic aa substitutions on a HSPG binding deficient capsid (AAV2ΔHS), generated a vector capable of robust rod and cone photoreceptor (PR) transduction. This vector AAV2(4pMut)ΔHS also demonstrates a remarkable ability to spread laterally beyond the initial subretinal injection (SRI) bleb, making it an ideal candidate for the treatment of retinal diseases which require a large area of transduction.
Collapse
|
20
|
Pavlou M, Schön C, Occelli LM, Rossi A, Meumann N, Boyd RF, Bartoe JT, Siedlecki J, Gerhardt MJ, Babutzka S, Bogedein J, Wagner JE, Priglinger SG, Biel M, Petersen‐Jones SM, Büning H, Michalakis S. Novel AAV capsids for intravitreal gene therapy of photoreceptor disorders. EMBO Mol Med 2021; 13:e13392. [PMID: 33616280 PMCID: PMC8033523 DOI: 10.15252/emmm.202013392] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 12/12/2022] Open
Abstract
Gene therapy using recombinant adeno-associated virus (rAAV) vectors to treat blinding retinal dystrophies has become clinical reality. Therapeutically impactful targeting of photoreceptors still relies on subretinal vector delivery, which detaches the retina and harbours substantial risks of collateral damage, often without achieving widespread photoreceptor transduction. Herein, we report the development of novel engineered rAAV vectors that enable efficient targeting of photoreceptors via less invasive intravitreal administration. A unique in vivo selection procedure was performed, where an AAV2-based peptide-display library was intravenously administered in mice, followed by isolation of vector DNA from target cells after only 24 h. This stringent selection yielded novel vectors, termed AAV2.GL and AAV2.NN, which mediate widespread and high-level retinal transduction after intravitreal injection in mice, dogs and non-human primates. Importantly, both vectors efficiently transduce photoreceptors in human retinal explant cultures. As proof-of-concept, intravitreal Cnga3 delivery using AAV2.GL lead to cone-specific expression of Cnga3 protein and rescued photopic cone responses in the Cnga3-/- mouse model of achromatopsia. These novel rAAV vectors expand the clinical applicability of gene therapy for blinding human retinal dystrophies.
Collapse
Affiliation(s)
- Marina Pavlou
- Department of OphthalmologyLudwig‐Maximilians‐UniversityMunichGermany
- Centre for Integrated Protein Science Munich (CIPSM) at the Department of PharmacyLudwig‐Maximilians‐UniversityMunichGermany
| | - Christian Schön
- Centre for Integrated Protein Science Munich (CIPSM) at the Department of PharmacyLudwig‐Maximilians‐UniversityMunichGermany
| | - Laurence M Occelli
- Department of Small Animal Clinical SciencesMichigan State UniversityEast LansingMIUSA
| | - Axel Rossi
- Laboratory for Infection Biology and Gene TransferInstitute of Experimental HaematologyHannover Medical SchoolHannoverGermany
| | - Nadja Meumann
- Laboratory for Infection Biology and Gene TransferInstitute of Experimental HaematologyHannover Medical SchoolHannoverGermany
- REBIRTH Research Centre for Translational Regenerative MedicineHannover Medical SchoolHannoverGermany
| | - Ryan F Boyd
- Ophthalmology ServicesCharles River LaboratoriesMattawanMIUSA
| | - Joshua T Bartoe
- Ophthalmology ServicesCharles River LaboratoriesMattawanMIUSA
| | - Jakob Siedlecki
- Department of OphthalmologyLudwig‐Maximilians‐UniversityMunichGermany
| | | | - Sabrina Babutzka
- Department of OphthalmologyLudwig‐Maximilians‐UniversityMunichGermany
- Centre for Integrated Protein Science Munich (CIPSM) at the Department of PharmacyLudwig‐Maximilians‐UniversityMunichGermany
| | - Jacqueline Bogedein
- Department of OphthalmologyLudwig‐Maximilians‐UniversityMunichGermany
- Centre for Integrated Protein Science Munich (CIPSM) at the Department of PharmacyLudwig‐Maximilians‐UniversityMunichGermany
| | - Johanna E Wagner
- Centre for Integrated Protein Science Munich (CIPSM) at the Department of PharmacyLudwig‐Maximilians‐UniversityMunichGermany
| | | | - Martin Biel
- Centre for Integrated Protein Science Munich (CIPSM) at the Department of PharmacyLudwig‐Maximilians‐UniversityMunichGermany
| | | | - Hildegard Büning
- Laboratory for Infection Biology and Gene TransferInstitute of Experimental HaematologyHannover Medical SchoolHannoverGermany
- REBIRTH Research Centre for Translational Regenerative MedicineHannover Medical SchoolHannoverGermany
| | - Stylianos Michalakis
- Department of OphthalmologyLudwig‐Maximilians‐UniversityMunichGermany
- Centre for Integrated Protein Science Munich (CIPSM) at the Department of PharmacyLudwig‐Maximilians‐UniversityMunichGermany
| |
Collapse
|
21
|
Gilhooley MJ, Hickey DG, Lindner M, Palumaa T, Hughes S, Peirson SN, MacLaren RE, Hankins MW. ON-bipolar cell gene expression during retinal degeneration: Implications for optogenetic visual restoration. Exp Eye Res 2021; 207:108553. [PMID: 33811915 PMCID: PMC8214074 DOI: 10.1016/j.exer.2021.108553] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 03/08/2021] [Accepted: 03/23/2021] [Indexed: 12/28/2022]
Abstract
Purpose Retinal bipolar cells survive even in the later stages of inherited retinal degenerations (IRDs) and so are attractive targets for optogenetic approaches to vision restoration. However, it is not known to what extent the remodelling that these cells undergo during degeneration affects their function. Specifically, it is unclear if they are free from metabolic stress, receptive to adeno-associated viral vectors, suitable for opsin-based optogenetic tools and able to propagate signals by releasing neurotransmitter. Methods Fluorescence activated cell sorting (FACS) was performed to isolate labelled bipolar cells from dissociated retinae of litter-mates with or without the IRD mutation Pde6brd1/rd1 selectively expressing an enhanced yellow fluorescent protein (EYFP) as a marker in ON-bipolar cells. Subsequent mRNA extraction allowed Illumina® microarray comparison of gene expression in bipolar cells from degenerate to those of wild type retinae. Changes in four candidate genes were further investigated at the protein level using retinal immunohistochemistry over the course of degeneration. Results A total of sixty differentially expressed transcripts reached statistical significance: these did not include any genes directly associated with native primary bipolar cell signalling, nor changes consistent with metabolic stress. Four significantly altered genes (Srm2, Slf2, Anxa7 & Cntn1), implicated in synaptic remodelling, neurotransmitter release and viral vector entry had immunohistochemical staining colocalising with ON-bipolar cell markers and varying over the course of degeneration. Conclusion Our findings suggest relatively few gene expression changes in the context of degeneration: that despite remodelling, bipolar cells are likely to remain viable targets for optogenetic vision restoration. In addition, several genes where changes were seen could provide a basis for investigations to enhance the efficacy of optogenetic therapies. Bipolar cells are attractive targets for therapeutic optogenetics in IRDs. This is the first cell specific transcriptomic analysis of bipolar cells in an IRD model. Bipolar cells maintain expression of genes essential to act as targets for optogenetics. Protein staining relating to four candidate genes (Anxa7, Cntn1, Srm2, Sulf2) is confirmed using immunohistochemistry.
Collapse
Affiliation(s)
- Michael J Gilhooley
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, OX1 3RE, United Kingdom; The Oxford Eye Hospital, Oxford, OX3 9DU, United Kingdom; Moorfields Eye Hospital, London, EC1V 2PD, United Kingdom
| | - Doron G Hickey
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, OX1 3RE, United Kingdom; Royal Victorian Eye and Ear Hospital, Melbourne, 002, Australia
| | - Moritz Lindner
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, OX1 3RE, United Kingdom; The Oxford Eye Hospital, Oxford, OX3 9DU, United Kingdom; Institute of Physiology and Pathophysiology, Department of Neurophysiology, Philipps University, Deutschhausstrasse 1-2, Marburg, 35037, Germany
| | - Teele Palumaa
- Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, OX1 3RE, United Kingdom
| | - Steven Hughes
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, OX1 3RE, United Kingdom; Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, OX1 3RE, United Kingdom
| | - Stuart N Peirson
- Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, OX1 3RE, United Kingdom
| | - Robert E MacLaren
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, OX1 3RE, United Kingdom; The Oxford Eye Hospital, Oxford, OX3 9DU, United Kingdom; Moorfields Eye Hospital, London, EC1V 2PD, United Kingdom
| | - Mark W Hankins
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, OX1 3RE, United Kingdom; Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, OX1 3RE, United Kingdom.
| |
Collapse
|
22
|
Zhang KY, Johnson TV. The internal limiting membrane: Roles in retinal development and implications for emerging ocular therapies. Exp Eye Res 2021; 206:108545. [PMID: 33753089 DOI: 10.1016/j.exer.2021.108545] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/02/2021] [Accepted: 03/16/2021] [Indexed: 12/17/2022]
Abstract
Basement membranes help to establish, maintain, and separate their associated tissues. They also provide growth and signaling substrates for nearby resident cells. The internal limiting membrane (ILM) is the basement membrane at the ocular vitreoretinal interface. While the ILM is essential for normal retinal development, it is dispensable in adulthood. Moreover, the ILM may constitute a significant barrier to emerging ocular therapeutics, such as viral gene therapy or stem cell transplantation. Here we take a neurodevelopmental perspective in examining how retinal neurons, glia, and vasculature interact with individual extracellular matrix constituents at the ILM. In addition, we review evidence that the ILM may impede novel ocular therapies and discuss approaches for achieving retinal parenchymal targeting of gene vectors and cell transplants delivered into the vitreous cavity by manipulating interactions with the ILM.
Collapse
Affiliation(s)
- Kevin Y Zhang
- Glaucoma Center of Excellence, Wilmer Eye Institute, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Maumenee B-110, Baltimore, MD, 21287, USA
| | - Thomas V Johnson
- Glaucoma Center of Excellence, Wilmer Eye Institute, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Maumenee B-110, Baltimore, MD, 21287, USA.
| |
Collapse
|
23
|
Han IC, Cheng JL, Burnight ER, Ralston CL, Fick JL, Thomsen GJ, Tovar EF, Russell SR, Sohn EH, Mullins RF, Stone EM, Tucker BA, Wiley LA. Retinal Tropism and Transduction of Adeno-Associated Virus Varies by Serotype and Route of Delivery (Intravitreal, Subretinal, or Suprachoroidal) in Rats. Hum Gene Ther 2020; 31:1288-1299. [PMID: 32948113 DOI: 10.1089/hum.2020.043] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Viral-mediated gene augmentation offers tremendous promise for the treatment of inherited retinal diseases. The development of effective gene therapy requires an understanding of the vector's tissue-specific behavior, which may vary depending on serotype, route of delivery, or target species. Using an ex vivo organotypic explant system, we previously demonstrated that retinal tropism and transduction of adeno-associated virus type 2 (AAV2) vary significantly depending on serotype in human eyes. However, the ex vivo system has limited ability to assess route of ocular delivery, and relatively little literature exists on tropic differences between serotypes and routes of delivery in vivo. In this study, we demonstrate that retinal tropism and transduction efficiency of five different AAV2 serotypes (AAV2/1, AAV2/2, AAV2/6, AAV2/8, and AAV2/9) expressing enhanced green fluorescent protein driven by a cytomegalovirus promoter vary greatly depending on serotype and route of delivery (intravitreal, subretinal, or suprachoroidal) in rats. With subretinal delivery, all serotypes successfully transduced the retinal pigmented epithelium and outer nuclear layer (ONL), with AAV2/1 displaying the highest transduction efficiency and AAV2/2 and AAV2/6 showing lower ONL transduction. There was minimal transduction of the inner retina through subretinal delivery for any serotype. Tropism by suprachoroidal delivery mirrored that of subretinal delivery for all AAV serotypes but resulted in a wider distribution and greater ONL transduction. With intravitreal delivery, retinal transduction was seen primarily in the inner retina (retinal nerve fiber, ganglion cell, and inner nuclear layers) for AAV2/1 and AAV2/6, with AAV2/6 showing the highest transduction. When compared with data from human explant models, there are substantial differences in tropism and transduction that are important to consider when using rats as preclinical models for the development of ocular gene therapies for humans.
Collapse
Affiliation(s)
- Ian C Han
- Institute for Vision Research, Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Justine L Cheng
- Institute for Vision Research, Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Erin R Burnight
- Institute for Vision Research, Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Christy L Ralston
- Institute for Vision Research, Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Jessica L Fick
- Institute for Vision Research, Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Gabriella J Thomsen
- Institute for Vision Research, Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Emilio F Tovar
- Institute for Vision Research, Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Stephen R Russell
- Institute for Vision Research, Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Elliott H Sohn
- Institute for Vision Research, Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Robert F Mullins
- Institute for Vision Research, Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Edwin M Stone
- Institute for Vision Research, Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Budd A Tucker
- Institute for Vision Research, Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Luke A Wiley
- Institute for Vision Research, Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
24
|
Engineered AAV8 capsid acquires heparin and AVB sepharose binding capacity but has altered in vivo transduction efficiency. Gene Ther 2020; 30:236-244. [PMID: 33028973 PMCID: PMC8024426 DOI: 10.1038/s41434-020-00198-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 09/18/2020] [Accepted: 09/24/2020] [Indexed: 11/16/2022]
Abstract
Naturally occurring adeno-associated virus (AAV) serotypes that bind to ligands such as AVB sepharose or heparin can be purified by affinity chromatography, which is a more efficient and scalable method than gradient ultracentrifugation. Wild type AAV8 does not bind effectively to either of these molecules, which constitutes a barrier to using this vector when a high throughput design is required. Previously, AAV8 was engineered to contain a SPAKFA amino acid sequence to facilitate purification using AVB sepharose resin; however, in vivo studies were not conducted to examine whether these capsid mutations altered the transduction profile. To address this gap in knowledge, a mutant AAV8 capsid was engineered to bind to AVB sepharose and heparan sulfate (AAV8-AVB-HS), which efficiently bound to both affinity columns, resulting in elution yields of >80% of the total vector loaded compared to <5% for wild type AAV8. However, in vivo comparison by intramuscular, intravenous, and intraperitoneal vector administration demonstrated a significant decrease in AAV8-AVB-HS transduction efficiency without alteration of the transduction profile. Therefore, although it is possible to engineer AAV capsids to bind various affinity ligands, the consequences associated with mutating surface exposed residues have the potential to negatively impact other vector characteristics including in vivo potency and production yield. This study demonstrates the importance of evaluating all aspects of vector performance when engineering AAV capsids.
Collapse
|
25
|
Casey GA, Papp KM, MacDonald IM. Ocular Gene Therapy with Adeno-associated Virus Vectors: Current Outlook for Patients and Researchers. J Ophthalmic Vis Res 2020; 15:396-399. [PMID: 32864069 PMCID: PMC7431728 DOI: 10.18502/jovr.v15i3.7457] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
In this "Perspective", we discuss ocular gene therapy - the patient's perspective, the various strategies of gene replacement and gene editing, the place of adeno-associated virus vectors, routes of delivery to the eye and the remaining question - "why does immunity continue to limit efficacy?" Through the coordinated efforts of patients, researchers, granting agencies and industry, and after many years of pre-clinical studies, biochemical, cellular, and animal models, we are seeing clinical trials emerge for many previously untreatable heritable ocular disorders. The pathway to therapies has been led by the successful treatment of the RPE65 form of Leber congenital amaurosis with LUXTURNA TM . In some cases, immune reactions to the vectors continue to occur, limiting efficacy. The underlying mechanisms of inflammation require further study, and new vectors need to be designed that limit the triggers of immunity. Researchers studying ocular gene therapies and clinicians enrolling patients in clinical trials must recognize the current limitations of these therapies to properly manage expectations and avoid disappointment, but we believe that gene therapies are well on their way to successful, widespread utilization to treat heritable ocular disorders.
Collapse
Affiliation(s)
- Geoffrey A Casey
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Canada
| | | | - Ian M MacDonald
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Canada.,Department of Ophthalmology, Faculty of Medicine and Dentistry, University of Alberta, Canada
| |
Collapse
|
26
|
Kiss S, Grishanin R, Nguyen A, Rosario R, Greengard JS, Nieves J, Gelfman CM, Gasmi M. Analysis of Aflibercept Expression in NHPs following Intravitreal Administration of ADVM-022, a Potential Gene Therapy for nAMD. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 18:345-353. [PMID: 32671137 PMCID: PMC7341454 DOI: 10.1016/j.omtm.2020.06.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 06/08/2020] [Indexed: 12/21/2022]
Abstract
Several standard-of-care therapies for the treatment of retinal disease, including aflibercept, inhibit vascular endothelial growth factor (VEGFA). The main shortcoming of these therapies is potential undertreatment due to a lack of compliance resulting from the need for repeated injections. Gene therapy may provide sustained levels of anti-VEGFA proteins in the retina following a single injection. In this nonhuman primate study, we explored whether ADVM-022, a recombinant adeno-associated virus (AAV) vector designed to express aflibercept, could induce anti-VEGFA protein levels comparable with those observed following a single-bolus intravitreal (IVT) injection of the standard-of-care aflibercept recombinant protein. The results demonstrated that intraocular levels of aflibercept measured at 56 days after a single IVT injection of ADVM-022 were equivalent to those in the aflibercept recombinant protein-injected animals measured 21–32 days post-administration. ADVM-022-injected animals exhibited signs of an initial self-limiting inflammatory response, but overall all doses were well tolerated. ADVM-022 administration did not result in systemic exposure to aflibercept at any dose evaluated. These results demonstrated that a single IVT injection of ADVM-022 resulted in safe and efficacious aflibercept levels in the therapeutic range, suggesting the potential of a gene therapy approach for long-term treatment of retinal disease with anti-VEGF therapy.
Collapse
Affiliation(s)
- Szilárd Kiss
- Weill Cornell Medical College, New York, NY, USA
| | | | | | | | | | | | | | - Mehdi Gasmi
- Adverum Biotechnologies, Menlo Park, CA, USA
| |
Collapse
|
27
|
Boye SL, Choudhury S, Crosson S, Di Pasquale G, Afione S, Mellen R, Makal V, Calabro KR, Fajardo D, Peterson J, Zhang H, Leahy MT, Jennings CK, Chiorini JA, Boyd RF, Boye SE. Novel AAV44.9-Based Vectors Display Exceptional Characteristics for Retinal Gene Therapy. Mol Ther 2020; 28:1464-1478. [PMID: 32304666 PMCID: PMC7264435 DOI: 10.1016/j.ymthe.2020.04.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/28/2020] [Accepted: 04/02/2020] [Indexed: 01/13/2023] Open
Abstract
The majority of inherited retinal diseases (IRDs) are caused by mutations in genes expressed in photoreceptors (PRs). The ideal vector to address these conditions is one that transduces PRs in large areas of retina with the smallest volume/lowest titer possible, and efficiently transduces foveal cones, the cells responsible for acute, daylight vision that are often the only remaining area of functional retina in IRDs. The purpose of our study was to evaluate the retinal tropism and potency of a novel capsid, AAV44.9, and rationally designed derivatives thereof. We found that AAV44.9 and AAV44.9(E531D) transduced retinas of subretinally injected (SRI) mice with higher efficiency than did benchmark AAV5- and AAV8-based vectors. In macaques, highly efficient cone and rod transduction was observed following submacular and peripheral SRI. AAV44.9- and AAV44.9(E531D)-mediated GFP fluorescence extended laterally well beyond SRI bleb margins. Notably, extrafoveal injection (i.e., fovea not detached during surgery) led to transduction of up to 98% of foveal cones. AAV44.9(E531D) efficiently transduced parafoveal and perifoveal cones, whereas AAV44.9 did not. AAV44.9(E531D) was also capable of restoring retinal function to a mouse model of IRD. These novel capsids will be useful for addressing IRDs that would benefit from an expansive treatment area.
Collapse
Affiliation(s)
- Sanford L Boye
- Department of Pediatrics and the Powell Gene Therapy Center, University of Florida, Gainesville, FL, USA
| | - Shreyasi Choudhury
- Department of Ophthalmology, University of Florida, Gainesville, FL, USA
| | - Sean Crosson
- Department of Ophthalmology, University of Florida, Gainesville, FL, USA
| | - Giovanni Di Pasquale
- Adeno-Associated Virus Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Sandra Afione
- Adeno-Associated Virus Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Russell Mellen
- Department of Ophthalmology, University of Florida, Gainesville, FL, USA
| | - Victoria Makal
- Department of Ophthalmology, University of Florida, Gainesville, FL, USA
| | - Kaitlyn R Calabro
- Department of Ophthalmology, University of Florida, Gainesville, FL, USA
| | - Diego Fajardo
- Department of Ophthalmology, University of Florida, Gainesville, FL, USA
| | - James Peterson
- Department of Ophthalmology, University of Florida, Gainesville, FL, USA
| | - Hangning Zhang
- Department of Ophthalmology, University of Florida, Gainesville, FL, USA
| | - Matthew T Leahy
- Ophthalmology Services, Charles River Laboratories, Mattawan, MI, USA
| | - Colin K Jennings
- Ophthalmology Services, Charles River Laboratories, Mattawan, MI, USA
| | - John A Chiorini
- Adeno-Associated Virus Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Ryan F Boyd
- Ophthalmology Services, Charles River Laboratories, Mattawan, MI, USA
| | - Shannon E Boye
- Department of Ophthalmology, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
28
|
Cabanes-Creus M, Westhaus A, Navarro RG, Baltazar G, Zhu E, Amaya AK, Liao SHY, Scott S, Sallard E, Dilworth KL, Rybicki A, Drouyer M, Hallwirth CV, Bennett A, Santilli G, Thrasher AJ, Agbandje-McKenna M, Alexander IE, Lisowski L. Attenuation of Heparan Sulfate Proteoglycan Binding Enhances In Vivo Transduction of Human Primary Hepatocytes with AAV2. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 17:1139-1154. [PMID: 32490035 PMCID: PMC7260615 DOI: 10.1016/j.omtm.2020.05.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 05/07/2020] [Indexed: 12/19/2022]
Abstract
Use of the prototypical adeno-associated virus type 2 (AAV2) capsid delivered unexpectedly modest efficacy in an early liver-targeted gene therapy trial for hemophilia B. This result is consistent with subsequent data generated in chimeric mouse-human livers showing that the AAV2 capsid transduces primary human hepatocytes in vivo with low efficiency. In contrast, novel variants generated by directed evolution in the same model, such as AAV-NP59, transduce primary human hepatocytes with high efficiency. While these empirical data have immense translational implications, the mechanisms underpinning this enhanced AAV capsid transduction performance in primary human hepatocytes are yet to be fully elucidated. Remarkably, AAV-NP59 differs from the prototypical AAV2 capsid by only 11 aa and can serve as a tool to study the correlation between capsid sequence/structure and vector function. Using two orthogonal vectorological approaches, we have determined that just 2 of the 11 changes present in AAV-NP59 (T503A and N596D) account for the enhanced transduction performance of this capsid variant in primary human hepatocytes in vivo, an effect that we have associated with attenuation of heparan sulfate proteoglycan (HSPG) binding affinity. In support of this hypothesis, we have identified, using directed evolution, two additional single amino acid substitution AAV2 variants, N496D and N582S, which are highly functional in vivo. Both substitution mutations reduce AAV2's affinity for HSPG. Finally, we have modulated the ability of AAV8, a highly murine-hepatotropic serotype, to interact with HSPG. The results support our hypothesis that enhanced HSPG binding can negatively affect the in vivo function of otherwise strongly hepatotropic variants and that modulation of the interaction with HSPG is critical to ensure maximum efficiency in vivo. The insights gained through this study can have powerful implications for studies into AAV biology and capsid development for preclinical and clinical applications targeting liver and other organs.
Collapse
Affiliation(s)
- Marti Cabanes-Creus
- Translational Vectorology Research Unit, Children's Medical Research Institute, The University of Sydney, Westmead, NSW 2145, Australia
| | - Adrian Westhaus
- Translational Vectorology Research Unit, Children's Medical Research Institute, The University of Sydney, Westmead, NSW 2145, Australia.,Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Renina Gale Navarro
- Translational Vectorology Research Unit, Children's Medical Research Institute, The University of Sydney, Westmead, NSW 2145, Australia
| | - Grober Baltazar
- Translational Vectorology Research Unit, Children's Medical Research Institute, The University of Sydney, Westmead, NSW 2145, Australia
| | - Erhua Zhu
- Translational Vectorology Research Unit, Children's Medical Research Institute, The University of Sydney, Westmead, NSW 2145, Australia.,Gene Therapy Research Unit, Children's Medical Research Institute & The Children's Hospital at Westmead, University of Sydney, Westmead, NSW 2145, Australia
| | - Anais K Amaya
- Gene Therapy Research Unit, Children's Medical Research Institute & The Children's Hospital at Westmead, University of Sydney, Westmead, NSW 2145, Australia
| | - Sophia H Y Liao
- Translational Vectorology Research Unit, Children's Medical Research Institute, The University of Sydney, Westmead, NSW 2145, Australia
| | - Suzanne Scott
- Gene Therapy Research Unit, Children's Medical Research Institute & The Children's Hospital at Westmead, University of Sydney, Westmead, NSW 2145, Australia.,Commonwealth Scientific and Industrial Research Organisation (CSIRO), North Ryde, NSW 2113, Australia
| | - Erwan Sallard
- Translational Vectorology Research Unit, Children's Medical Research Institute, The University of Sydney, Westmead, NSW 2145, Australia
| | - Kimberley L Dilworth
- Translational Vectorology Research Unit, Children's Medical Research Institute, The University of Sydney, Westmead, NSW 2145, Australia
| | - Arkadiusz Rybicki
- Translational Vectorology Research Unit, Children's Medical Research Institute, The University of Sydney, Westmead, NSW 2145, Australia
| | - Matthieu Drouyer
- Translational Vectorology Research Unit, Children's Medical Research Institute, The University of Sydney, Westmead, NSW 2145, Australia
| | - Claus V Hallwirth
- Gene Therapy Research Unit, Children's Medical Research Institute & The Children's Hospital at Westmead, University of Sydney, Westmead, NSW 2145, Australia
| | - Antonette Bennett
- Department of Biochemistry and Molecular Biology, Center for Structural Biology, University of Florida, Gainesville, FL 32610, USA
| | - Giorgia Santilli
- Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Adrian J Thrasher
- Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Mavis Agbandje-McKenna
- Department of Biochemistry and Molecular Biology, Center for Structural Biology, University of Florida, Gainesville, FL 32610, USA
| | - Ian E Alexander
- Gene Therapy Research Unit, Children's Medical Research Institute & The Children's Hospital at Westmead, University of Sydney, Westmead, NSW 2145, Australia.,Discipline of Child and Adolescent Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Leszek Lisowski
- Translational Vectorology Research Unit, Children's Medical Research Institute, The University of Sydney, Westmead, NSW 2145, Australia.,Vector and Genome Engineering Facility, Children's Medical Research Institute, The University of Sydney, Westmead, NSW 2145, Australia.,Military Institute of Hygiene and Epidemiology, Biological Threats Identification and Countermeasure Center, 24-100 Puławy, Poland
| |
Collapse
|
29
|
Gorovits B, Fiscella M, Havert M, Koren E, Long B, Milton M, Purushothama S. Recommendations for the Development of Cell-Based Anti-Viral Vector Neutralizing Antibody Assays. AAPS JOURNAL 2020; 22:24. [DOI: 10.1208/s12248-019-0403-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 12/03/2019] [Indexed: 12/22/2022]
|
30
|
Retina transduction by rAAV2 after intravitreal injection: comparison between mouse and rat. Gene Ther 2019; 26:479-490. [PMID: 31562387 DOI: 10.1038/s41434-019-0100-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 09/04/2019] [Accepted: 09/09/2019] [Indexed: 12/11/2022]
Abstract
Adeno-associated virus vectors (rAAV) are currently the most common vehicle used in clinical trials of retinal gene therapy, usually delivered through subretinal injections to target cells of the outer retina. However, targeting the inner retina requires intravitreal injections, a simple and safe procedure, which is effective for transducing the rodent retina, but still of low efficiency in the eyes of primates. We investigated whether adjuvant pharmacological agents may enhance rAAV transduction of the retinas of mouse and rat after intravitreal delivery. Tyrosine kinase inhibitors were highly efficient in mice, especially imatinib and genistein, and promoted transduction even of the outer retina. In rats, however, we report that they were not effective. Even with direct proteasomal inhibition in rats, the effects upon transduction were only minimal and restricted to the inner retina. Even tyrosine capsid mutant rAAVs in rats had a transduction profile similar to wtAAV. Thus, the differences between mouse and rat, in both eye size and the inner limiting membrane, compromise the efficiency of AAV vectors penetration from the vitreous into the retina, and impact the efficacy of strategies developed to enhance intravitreal retinal rAAV transduction. Further improvement of strategies, then are required.
Collapse
|
31
|
Tordo J, O'Leary C, Antunes ASLM, Palomar N, Aldrin-Kirk P, Basche M, Bennett A, D'Souza Z, Gleitz H, Godwin A, Holley RJ, Parker H, Liao AY, Rouse P, Youshani AS, Dridi L, Martins C, Levade T, Stacey KB, Davis DM, Dyer A, Clément N, Björklund T, Ali RR, Agbandje-McKenna M, Rahim AA, Pshezhetsky A, Waddington SN, Linden RM, Bigger BW, Henckaerts E. A novel adeno-associated virus capsid with enhanced neurotropism corrects a lysosomal transmembrane enzyme deficiency. Brain 2019; 141:2014-2031. [PMID: 29788236 PMCID: PMC6037107 DOI: 10.1093/brain/awy126] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 03/21/2018] [Indexed: 12/20/2022] Open
Abstract
Recombinant adeno-associated viruses (AAVs) are popular in vivo gene transfer vehicles. However, vector doses needed to achieve therapeutic effect are high and some target tissues in the central nervous system remain difficult to transduce. Gene therapy trials using AAV for the treatment of neurological disorders have seldom led to demonstrated clinical efficacy. Important contributing factors are low transduction rates and inefficient distribution of the vector. To overcome these hurdles, a variety of capsid engineering methods have been utilized to generate capsids with improved transduction properties. Here we describe an alternative approach to capsid engineering, which draws on the natural evolution of the virus and aims to yield capsids that are better suited to infect human tissues. We generated an AAV capsid to include amino acids that are conserved among natural AAV2 isolates and tested its biodistribution properties in mice and rats. Intriguingly, this novel variant, AAV-TT, demonstrates strong neurotropism in rodents and displays significantly improved distribution throughout the central nervous system as compared to AAV2. Additionally, sub-retinal injections in mice revealed markedly enhanced transduction of photoreceptor cells when compared to AAV2. Importantly, AAV-TT exceeds the distribution abilities of benchmark neurotropic serotypes AAV9 and AAVrh10 in the central nervous system of mice, and is the only virus, when administered at low dose, that is able to correct the neurological phenotype in a mouse model of mucopolysaccharidosis IIIC, a transmembrane enzyme lysosomal storage disease, which requires delivery to every cell for biochemical correction. These data represent unprecedented correction of a lysosomal transmembrane enzyme deficiency in mice and suggest that AAV-TT-based gene therapies may be suitable for treatment of human neurological diseases such as mucopolysaccharidosis IIIC, which is characterized by global neuropathology.
Collapse
Affiliation(s)
- Julie Tordo
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Claire O'Leary
- Stem Cell and Neurotherapies, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
| | - André S L M Antunes
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Nuria Palomar
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Patrick Aldrin-Kirk
- Molecular Neuromodulation, Wallenberg Neuroscience Center, Lund University, Lund, Sweden
| | - Mark Basche
- Department of Genetics, UCL Institute of Ophthalmology, London, UK
| | - Antonette Bennett
- Department of Biochemistry and Molecular Biology, Center for Structural Biology, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Zelpha D'Souza
- Stem Cell and Neurotherapies, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
| | - Hélène Gleitz
- Stem Cell and Neurotherapies, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
| | - Annie Godwin
- Stem Cell and Neurotherapies, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
| | - Rebecca J Holley
- Stem Cell and Neurotherapies, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
| | - Helen Parker
- Stem Cell and Neurotherapies, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
| | - Ai Yin Liao
- Stem Cell and Neurotherapies, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
| | - Paul Rouse
- Stem Cell and Neurotherapies, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
| | - Amir Saam Youshani
- Stem Cell and Neurotherapies, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
| | - Larbi Dridi
- CHU Ste-Justine, University of Montreal, Montreal, Canada
| | - Carla Martins
- CHU Ste-Justine, University of Montreal, Montreal, Canada
| | - Thierry Levade
- Centre Hospitalo-Universitaire de Toulouse, Institut Fédératif de Biologie, Laboratoire de Biochimie Métabolique, and Unité Mixte de Recherche (UMR) 1037 Institut National de la Santé et de la Recherche Médicale (INSERM), Centre de Recherche en Cancérologie de Toulouse, Toulouse, France
| | - Kevin B Stacey
- Manchester Collaborative Centre for Inflammation Research, Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
| | - Daniel M Davis
- Manchester Collaborative Centre for Inflammation Research, Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
| | - Adam Dyer
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Nathalie Clément
- Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, FL, USA
| | - Tomas Björklund
- Molecular Neuromodulation, Wallenberg Neuroscience Center, Lund University, Lund, Sweden
| | - Robin R Ali
- Department of Genetics, UCL Institute of Ophthalmology, London, UK
| | - Mavis Agbandje-McKenna
- Department of Biochemistry and Molecular Biology, Center for Structural Biology, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Ahad A Rahim
- Department of Pharmacology, UCL School of Pharmacy, University College London, London, UK
| | | | - Simon N Waddington
- Gene Transfer Technology Group, Institute for Women's Health, University College London, London, UK.,Wits/SAMRC Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - R Michael Linden
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Brian W Bigger
- Stem Cell and Neurotherapies, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
| | - Els Henckaerts
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| |
Collapse
|
32
|
Lee SH, Sim KS, Kim CY, Park TK. Transduction Pattern of AAVs in the Trabecular Meshwork and Anterior-Segment Structures in a Rat Model of Ocular Hypertension. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2019; 14:197-205. [PMID: 31406700 PMCID: PMC6685643 DOI: 10.1016/j.omtm.2019.06.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 06/27/2019] [Indexed: 12/19/2022]
Abstract
Adeno-associated viruses (AAVs) are the vector of choice for gene therapy in the eye, and self-complementary AAVs (scAAVs), which do not require second-strand DNA synthesis, can be transduced into cells of the trabecular meshwork (TM). The scAAV transduction patterns in the anterior segment of normotensive eyes have been investigated previously, but those in ocular hypertensive (OHT) eyes have not. We assessed the transduction efficiencies of AAV serotypes 2, 5, and 8 in the anterior-segment structures of the eyes of Sprague-Dawley rats with OHT by circumlimbal suturing, followed 3 days later by intracameral injection of scAAV serotype 2 (scAAV2), scAAV5, or scAAV8 packaged with EGFP. The transduction of scAAV2 and scAAV5 in the TM of OHT rats was markedly enhanced after 1 month, and transduction of scAAV5 was more efficient than that of scAAV2; transduction of scAAV8 into the TM did not occur. The transduction of scAAV2, scAAV5, and scAAV8 was enhanced in the ciliary body, iris, and corneal endothelium of the OHT eyes for 3 months. The expression levels of receptors for scAAV2 and scAAV5 were significantly increased in the OHT compared with control eyes. The results demonstrated that scAAV2 and scAAV5 target the ciliary body and TM in OHT eyes, and that the OHT-related changes in anterior-segment structures enhance scAAV transduction.
Collapse
Affiliation(s)
- Si Hyung Lee
- Department of Ophthalmology, College of Medicine, Soonchunhyang University, Cheonan 31151, Republic of Korea.,Department of Ophthalmology, Soonchunhyang University Hospital Bucheon, Bucheon 14584, Republic of Korea
| | - Kyeong Sun Sim
- Department of Ophthalmology, College of Medicine, Soonchunhyang University, Cheonan 31151, Republic of Korea.,Department of Ophthalmology, Soonchunhyang University Hospital Bucheon, Bucheon 14584, Republic of Korea
| | - Chan Yun Kim
- Institute of Vision Research, Department of Ophthalmology, Severance Hospital, Yonsei University, College of Medicine, Seoul 03722, Korea
| | - Tae Kwann Park
- Department of Ophthalmology, College of Medicine, Soonchunhyang University, Cheonan 31151, Republic of Korea.,Department of Ophthalmology, Soonchunhyang University Hospital Bucheon, Bucheon 14584, Republic of Korea
| |
Collapse
|
33
|
Peynshaert K, Devoldere J, Minnaert AK, De Smedt SC, Remaut K. Morphology and Composition of the Inner Limiting Membrane: Species-Specific Variations and Relevance toward Drug Delivery Research. Curr Eye Res 2019; 44:465-475. [PMID: 30638413 DOI: 10.1080/02713683.2019.1565890] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The inner limiting membrane (ILM) represents the structural boundary between the vitreous and the retina, and is suggested to act as a barrier for a wide range of retinal therapies. While it is widely acknowledged that the morphology of the human ILM exhibits regional variations and undergoes age-related changes, insight into its structure in laboratory animals is very limited. Besides presenting a detailed overview of the morphology and composition of the human ILM, this review specifically reflects on the species-specific differences in ILM structure. With these differences in mind, we furthermore summarize the most relevant reports on the barrier role of the ILM with regard to viral vectors, nanoparticles, anti-VEGF medication and stem cells. Overall, this review aims to deliberate on the impact of species-specific ILM variations on drug delivery research as well as to pinpoint knowledge gaps which future basic research should resolve.
Collapse
Affiliation(s)
- Karen Peynshaert
- a Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences , Ghent University , Ghent , Belgium.,b Ghent Research Group on Nanomedicines , Ghent University , Ghent , Belgium
| | - Joke Devoldere
- a Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences , Ghent University , Ghent , Belgium.,b Ghent Research Group on Nanomedicines , Ghent University , Ghent , Belgium
| | - An-Katrien Minnaert
- a Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences , Ghent University , Ghent , Belgium.,b Ghent Research Group on Nanomedicines , Ghent University , Ghent , Belgium
| | - Stefaan C De Smedt
- a Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences , Ghent University , Ghent , Belgium.,b Ghent Research Group on Nanomedicines , Ghent University , Ghent , Belgium
| | - Katrien Remaut
- a Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences , Ghent University , Ghent , Belgium.,b Ghent Research Group on Nanomedicines , Ghent University , Ghent , Belgium
| |
Collapse
|
34
|
Katada Y, Kobayashi K, Tsubota K, Kurihara T. Evaluation of AAV-DJ vector for retinal gene therapy. PeerJ 2019; 7:e6317. [PMID: 30671314 PMCID: PMC6339780 DOI: 10.7717/peerj.6317] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 12/19/2018] [Indexed: 01/02/2023] Open
Abstract
Purpose The most common virus vector used in gene therapy research for ophthalmologic diseases is the adeno-associated virus (AAV) vector, which has been used successfully in a number of preclinical and clinical studies. It is important to evaluate novel AAV vectors in animal models for application of clinical gene therapy. The AAV-DJ (type 2/type 8/type 9 chimera) was engineered from shuffling eight different wild-type native viruses. In this study, we investigated the efficiency of gene transfer by AAV-DJ injections into the retina. Methods One microliter of AAV-2-CAGGS-EGFP or AAV-DJ-CAGGS-EGFP vector at a titer of 1.4 × 10e12 vg/ml was injected intravitreally or subretinally in each eye of C57BL/6 mice. We evaluated the transduction characteristics of AAV-2 and -DJ vectors using fluorescence microscopy and electroretinography. Results The results confirmed that AAV-DJ could deeply transfer gene to photoreceptor layer with intravitreal injection and has an efficient gene transfer to various cell types especially the Mueller cells in the retina. Retinal function was not affected by AAV-DJ infection or ectopic EGFP expression. Conclusions The AAV-DJ vector efficiently induces the reporter gene in both the inner and outer murine retina without functional toxicity. These data indicated that the AAV-DJ vector is a useful tool for the gene therapy research targeting retinal disorders.
Collapse
Affiliation(s)
- Yusaku Katada
- Department of Ophthalmology, School of Medicine, Keio University, Shinjuku-ku, Tokyo, Japan.,Laboratory of Photobiology, School of Medicine, Keio University, Shinjuku-ku, Tokyo, Japan
| | - Kenta Kobayashi
- Section of Viral Vector Development, Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi, Japan
| | - Kazuo Tsubota
- Department of Ophthalmology, School of Medicine, Keio University, Shinjuku-ku, Tokyo, Japan
| | - Toshihide Kurihara
- Department of Ophthalmology, School of Medicine, Keio University, Shinjuku-ku, Tokyo, Japan.,Laboratory of Photobiology, School of Medicine, Keio University, Shinjuku-ku, Tokyo, Japan
| |
Collapse
|
35
|
Lee SH, Yang JY, Madrakhimov S, Park HY, Park K, Park TK. Adeno-Associated Viral Vector 2 and 9 Transduction Is Enhanced in Streptozotocin-Induced Diabetic Mouse Retina. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2018; 13:55-66. [PMID: 30666309 PMCID: PMC6330514 DOI: 10.1016/j.omtm.2018.11.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 11/25/2018] [Indexed: 12/19/2022]
Abstract
Adeno-associated viruses (AAVs) are currently the most popular vector platform technology for ocular gene therapy. While transduction efficiency and tropism of intravitreally administered AAV has been fairly well established in various retinal conditions, its transduction pattern in diabetic retinas has not previously been characterized. Here, we describe the transduction efficiencies of four different AAV serotypes, AAV2, 5, 8, and 9, in streptozotocin (STZ)-induced diabetic mouse retinas after intravitreal injections, which differed according to the duration of diabetic induction. STZ was intraperitoneally injected into C57/B6 diabetic mice subjected to unilateral intravitreal injection of AAV2, AAV5, AAV8, and AAV9 packaged with EGFP. Significantly enhanced AAV2 and AAV9 transduction was observed in 2-month-old diabetic mouse retinas compared to the 2-week-old diabetic mouse retinas and nondiabetic, vector uninjected or injected retinas. Intravitreal injection of AAV5 or AAV8 serotype in 2-month- and 2-week-old diabetic mouse retinas did not show any significant vector transduction enhancement compared to the nondiabetic control retinas. The tropism of AAV2 and AAV9 in diabetic mouse retinas differed. AAV2 was transduced into various retinal cells, including Müller cells, microglia, retinal ganglion cells (RGCs), bipolar cells, horizontal cells, and amacrine cells, whereas AAV9 was effectively transduced only into RGC and horizontal cells. The expression levels of receptors and co-receptors for AAV2 and AAV9 were significantly increased in 2-month-old diabetic mouse retinas. The results of our study demonstrated that AAV2 and AAV9 may be the vector of choice in treating diabetic retinopathy (DR) with gene therapy, and DR-related retinal changes may improve AAV vector transduction efficiency.
Collapse
Affiliation(s)
- Si Hyung Lee
- Department of Ophthalmology, College of Medicine, Soonchunhyang University, Cheonan 31151, Republic of Korea.,Department of Ophthalmology, Soonchunhyang University Hospital Bucheon, Bucheon 14584, Republic of Korea
| | - Jin Young Yang
- Department of Ophthalmology, Soonchunhyang University Hospital Bucheon, Bucheon 14584, Republic of Korea.,Department of Biomedical Science, Graduate School, Soonchunhyang University, Asan 31538, Republic of Korea
| | - Sanjar Madrakhimov
- Department of Ophthalmology, Soonchunhyang University Hospital Bucheon, Bucheon 14584, Republic of Korea.,Department of Biomedical Science, Graduate School, Soonchunhyang University, Asan 31538, Republic of Korea
| | - Ha Yan Park
- Department of Ophthalmology, Soonchunhyang University Hospital Bucheon, Bucheon 14584, Republic of Korea
| | - Keerang Park
- Department of Biopharmacy, Chungbuk Health & Science University, Cheongju, Chungbuk 28150, Republic of Korea
| | - Tae Kwann Park
- Department of Ophthalmology, College of Medicine, Soonchunhyang University, Cheonan 31151, Republic of Korea.,Department of Ophthalmology, Soonchunhyang University Hospital Bucheon, Bucheon 14584, Republic of Korea
| |
Collapse
|
36
|
Kaltenbach DD, Jaishankar D, Hao M, Beer JC, Volin MV, Desai UR, Tiwari V. Sulfotransferase and Heparanase: Remodeling Engines in Promoting Virus Infection and Disease Development. Front Pharmacol 2018; 9:1315. [PMID: 30555321 PMCID: PMC6282075 DOI: 10.3389/fphar.2018.01315] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 10/29/2018] [Indexed: 01/08/2023] Open
Abstract
An extraordinary binding site generated in heparan sulfate (HS) structures, during its biosynthesis, provides a unique opportunity to interact with multiple protein ligands including viral proteins, and therefore adds tremendous value to this master molecule. An example of such a moiety is the sulfation at the C3 position of glucosamine residues in HS chain via 3-O sulfotransferase (3-OST) enzymes, which generates a unique virus-cell fusion receptor during herpes simplex virus (HSV) entry and spread. Emerging evidence now suggests that the unique patterns in HS sulfation assist multiple viruses in invading host cells at various steps of their life cycles. In addition, sulfated-HS structures are known to assist in invading host defense mechanisms and initiating multiple inflammatory processes; a critical event in the disease development. All these processes are detrimental for the host and therefore raise the question of how HS-sulfation is regulated. Epigenetic modulations have been shown to be implicated in these reactions during HSV infection as well as in HS modifying enzyme sulfotransferases, and therefore pose a critical component in answering it. Interestingly, heparanase (HPSE) activity is shown to be upregulated during virus infection and multiple other diseases assisting in virus replication to promote cell and tissue damage. These phenomena suggest that sulfotransferases and HPSE serve as key players in extracellular matrix remodeling and possibly generating unique signatures in a given disease. Therefore, identifying the epigenetic regulation of OST genes, and HPSE resulting in altered yet specific sulfation patterns in HS chain during virus infection, will be a significant a step toward developing potential diagnostic markers and designing novel therapies.
Collapse
Affiliation(s)
- Dominik D Kaltenbach
- Department of Biomedical Sciences, College of Graduate Studies, Midwestern University, Downers Grove, IL, United States
| | - Dinesh Jaishankar
- Department of Ophthalmology & Visual Sciences, University of Illinois at Chicago, Chicago, IL, United States
| | - Meng Hao
- Chicago College of Pharmacy, Midwestern University, Downers Grove, IL, United States
| | - Jacob C Beer
- Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL, United States
| | - Michael V Volin
- Department of Microbiology & Immunology, College of Graduate Studies, Midwestern University, Downers Grove, IL, United States
| | - Umesh R Desai
- Department of Medicinal Chemistry and Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA, United States
| | - Vaibhav Tiwari
- Department of Microbiology & Immunology, College of Graduate Studies, Midwestern University, Downers Grove, IL, United States
| |
Collapse
|
37
|
Sullivan JA, Stanek LM, Lukason MJ, Bu J, Osmond SR, Barry EA, O'Riordan CR, Shihabuddin LS, Cheng SH, Scaria A. Rationally designed AAV2 and AAVrh8R capsids provide improved transduction in the retina and brain. Gene Ther 2018; 25:205-219. [PMID: 29785047 DOI: 10.1038/s41434-018-0017-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 03/25/2018] [Accepted: 03/27/2018] [Indexed: 01/18/2023]
Abstract
The successful application of adeno-associated virus (AAV) gene delivery vectors as a therapeutic paradigm will require efficient gene delivery to the appropriate cells in affected organs. In this study, we utilized a rational design approach to introduce modifications to the AAV2 and AAVrh8R capsids and the resulting variants were evaluated for transduction activity in the retina and brain. The modifications disrupted either capsid/receptor binding or altered capsid surface charge. Specifically, we mutated AAV2 amino acids R585A and R588A, which are required for binding to its receptor, heparan sulfate proteoglycans, to generate a variant referred to as AAV2-HBKO. In contrast to parental AAV2, the AAV2-HBKO vector displayed low-transduction activity following intravitreal delivery to the mouse eye; however, following its subretinal delivery, AAV2-HBKO resulted in significantly greater photoreceptor transduction. Intrastriatal delivery of AAV2-HBKO to mice facilitated widespread striatal and cortical expression, in contrast to the restricted transduction pattern of the parental AAV2 vector. Furthermore, we found that altering the surface charge on the AAVrh8R capsid by modifying the number of arginine residues on the capsid surface had a profound impact on subretinal transduction. The data further validate the potential of capsid engineering to improve AAV gene therapy vectors for clinical applications.
Collapse
Affiliation(s)
| | - Lisa M Stanek
- Sanofi, 49 New York Avenue, Framingham, MA, 01701-9322, USA
| | | | - Jie Bu
- Sanofi, 49 New York Avenue, Framingham, MA, 01701-9322, USA
| | | | | | | | | | - Seng H Cheng
- Sanofi, 49 New York Avenue, Framingham, MA, 01701-9322, USA
| | - Abraham Scaria
- Sanofi, 49 New York Avenue, Framingham, MA, 01701-9322, USA
| |
Collapse
|
38
|
Peynshaert K, Devoldere J, De Smedt SC, Remaut K. In vitro and ex vivo models to study drug delivery barriers in the posterior segment of the eye. Adv Drug Deliv Rev 2018; 126:44-57. [PMID: 28939376 DOI: 10.1016/j.addr.2017.09.007] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 07/18/2017] [Accepted: 09/08/2017] [Indexed: 12/18/2022]
Abstract
Many ocular disorders leading to blindness could benefit from efficient delivery of therapeutics to the retina. However, despite extensive research into drug delivery vehicles and administration techniques, efficacy remains limited because of the many static and dynamic barriers present in the eye. Comprehension of the various barriers and especially how to overcome them can improve our ability to estimate the potential of existent drug delivery vectors and support the design of new ones. To this end, this review gives an overview of the most important ocular barriers for each administration route to the back of the eye. For each barrier, its biological composition and its role as an obstacle towards macromolecules, nanoparticles and viral vectors will be discussed; special attention will be paid to the influence of size, charge and lipophilicity of drug(s) (carrier) on their ability to overcome each barrier. Finally, the most significant available in vitro and ex vivo methods and models to test the potential of a therapeutic to cross each barrier are listed.
Collapse
|
39
|
Transduction Patterns of Adeno-associated Viral Vectors in a Laser-Induced Choroidal Neovascularization Mouse Model. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2018; 9:90-98. [PMID: 29766021 PMCID: PMC5948198 DOI: 10.1016/j.omtm.2018.01.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 01/16/2018] [Indexed: 12/17/2022]
Abstract
Adeno-associated virus (AAV) vector is a promising platform technology for ocular gene therapy. Recently clinical successes to treat choroidal neovascularization (CNV) in wet type age-related macular degeneration have been reported. However, because pathologic conditions of the retina may alter the tropism of viral vectors, it is necessary to evaluate the transduction efficiency of different serotypes of AAV vectors in the retinas with CNVs. Here, we show the patterns and efficacy of transduction of AAV2, -5, and -8 vectors in a laser-induced CNV mouse model. C57BL/6J mice were subjected to unilateral laser photocoagulation on the right eye to induce CNV 5 days prior to intravitreal injection of AAV2, -5, and -8 capsids expressing EGFP. Transduction was increased around CNV lesions for all AAV capsid types, and AAV2 resulted in the highest transduction efficiency. In the absence of CNV, the AAV2 vector transduced ganglion and inner nuclear layer (INL) cells, and AAV5 and AAV8 transduced only a small proportion of cells in the retinal ganglion cell layer. CNV increased AAV2 vector expression throughout the retina and in and around CNVs; the transduced cells included retinal ganglion cells, Müller cells, cells from the INL and outer nuclear layer (ONL), photoreceptors, and retinal pigment epithelium (RPE) cells. Inflammatory cells and endothelial cells in CNVs were also transduced by AAV2. AAV5 and AAV8 were transduced in retinal ganglion, Müller, INL, ONL, and RPE cells in a localized pattern, and only endothelial cells at the surface of CNV lesions showed EGFP expression. Taken together, CNV formation resulted in enhanced transduction of AAV2, -5, and -8, and AAV2 exhibited the highest transduction efficiency in cells in CNV lesions.
Collapse
|
40
|
Huang ZR, Chen HY, Hu ZZ, Xie P, Liu QH. PTEN knockdown with the Y444F mutant AAV2 vector promotes axonal regeneration in the adult optic nerve. Neural Regen Res 2018; 13:135-144. [PMID: 29451218 PMCID: PMC5840979 DOI: 10.4103/1673-5374.224381] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The lack of axonal regeneration is the major cause of vision loss after optic nerve injury in adult mammals. Activating the PI3K/AKT/mTOR signaling pathway has been shown to enhance the intrinsic growth capacity of neurons and to facilitate axonal regeneration in the central nervous system after injury. The deletion of the mTOR negative regulator phosphatase and tensin homolog (PTEN) enhances regeneration of adult corticospinal neurons and ganglion cells. In the present study, we used a tyrosine-mutated (Y444F) AAV2 vector to efficiently express a short hairpin RNA (shRNA) for silencing PTEN expression in retinal ganglion cells. We evaluated cell survival and axonal regeneration in a rat model of optic nerve axotomy. The rats received an intravitreal injection of wildtype AAV2 or Y444F mutant AAV2 (both carrying shRNA to PTEN) 4 weeks before optic nerve axotomy. Compared with the wildtype AAV2 vector, the Y444F mutant AAV2 vector enhanced retinal ganglia cell survival and stimulated axonal regeneration to a greater extent 6 weeks after axotomy. Moreover, post-axotomy injection of the Y444F AAV2 vector expressing the shRNA to PTEN rescued ~19% of retinal ganglion cells and induced axons to regenerate near to the optic chiasm. Taken together, our results demonstrate that PTEN knockdown with the Y444F AAV2 vector promotes retinal ganglion cell survival and stimulates long-distance axonal regeneration after optic nerve axotomy. Therefore, the Y444F AAV2 vector might be a promising gene therapy tool for treating optic nerve injury.
Collapse
Affiliation(s)
- Zheng-Ru Huang
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing; Department of Ophthalmology, the Second People's Hospital of Changshu, Changshu, Jiangsu Province, China
| | - Hai-Ying Chen
- Department of Ophthalmology, The Second People's Hospital of Changshu, Changshu, Jiangsu Province, China
| | - Zi-Zhong Hu
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Ping Xie
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Qing-Huai Liu
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| |
Collapse
|
41
|
Gupta PR, Huckfeldt RM. Gene therapy for inherited retinal degenerations: initial successes and future challenges. J Neural Eng 2017; 14:051002. [DOI: 10.1088/1741-2552/aa7a27] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
42
|
Liang KJ, Woodard KT, Weaver MA, Gaylor JP, Weiss ER, Samulski RJ. AAV-Nrf2 Promotes Protection and Recovery in Animal Models of Oxidative Stress. Mol Ther 2017; 25:765-779. [PMID: 28253482 DOI: 10.1016/j.ymthe.2016.12.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 11/07/2016] [Accepted: 12/14/2016] [Indexed: 12/24/2022] Open
Abstract
NRF2 is a transcription factor that drives antioxidant gene expression in multiple organ systems. We hypothesized that Nrf2 overexpression could be therapeutically applied toward diseases in which redox homeostasis is disrupted. In this study, adeno-associated virus (AAV)-Nrf2 was tested in a mouse model of acute acetaminophen-induced liver toxicity and successfully conferred protection from hepatotoxicity, validating the vector design and early onset of NRF2-mediated protection. Furthermore, therapeutic potential of AAV-Nrf2 in chronic disease also was tested in a light-induced mouse model of age-related macular degeneration. Adult BALB/c mice were intravitreally injected with AAV-Nrf2 and subject to light damage following injection. Retinal thickness and function were monitored following light damage using optical coherence tomography and electroretinography, respectively. By 3 months post-damage, injected eyes had greater retinal thickness compared to uninjected controls. At 1 month post-damage, AAV-Nrf2 injection facilitated full functional recovery from light damage. Our results suggest a therapeutic potential for Nrf2 overexpression in acute and long-term capacities in multiple organ systems, opening up doors for combination gene therapy where replacement gene therapy requires additional therapeutic support to prevent further degeneration.
Collapse
Affiliation(s)
- Katharine J Liang
- Gene Therapy Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kenton T Woodard
- Gene Therapy Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Mark A Weaver
- Departments of Medicine and Biostatistics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - John Paul Gaylor
- Gene Therapy Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ellen R Weiss
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - R Jude Samulski
- Gene Therapy Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
43
|
Exosome-associated AAV2 vector mediates robust gene delivery into the murine retina upon intravitreal injection. Sci Rep 2017; 7:45329. [PMID: 28361998 PMCID: PMC5374486 DOI: 10.1038/srep45329] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 02/22/2017] [Indexed: 12/13/2022] Open
Abstract
Widespread gene transfer to the retina is challenging as it requires vector systems to overcome physical and biochemical barriers to enter and diffuse throughout retinal tissue. We investigated whether exosome-associated adeno-associated virus, (exo-AAV) enabled broad retinal targeting following intravitreal (IVT) injection, as exosomes have been shown to traverse biological barriers and mediate widespread distribution upon systemic injection. We packaged an AAV genome encoding green fluorescent protein (GFP) into conventional AAV2 and exo-AAV2 vectors. Vectors were IVT injected into the eyes of adult mice. GFP expression was noninvasively monitored by fundus imaging and retinal expression was analyzed 4 weeks post-injection by qRT-PCR and histology. Exo-AAV2 outperformed conventional AAV2 in GFP expression based on fundus image analysis and qRT-PCR. Exo-AAV2 demonstrated deeper penetration in the retina, efficiently reaching the inner nuclear and outer plexiform, and to a lesser extent the outer nuclear layer. Cell targets were ganglion cells, bipolar cells, Müller cells, and photoreceptors. Exo-AAV2 serves as a robust gene delivery tool for murine retina, and the simplicity of production and isolation should make it widely applicable to basic research of the eye.
Collapse
|