1
|
Akbari E, Milani A, Moradi Pordanjani P, Seyedinkhorasani M, Agi E, Bolhassani A. Immunostimulatory effects of Hsp70 fragments-modified DCs: A computational and experimental study in HIV vaccine design. Microbes Infect 2025:105480. [PMID: 39956447 DOI: 10.1016/j.micinf.2025.105480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 02/07/2025] [Accepted: 02/10/2025] [Indexed: 02/18/2025]
Abstract
BACKGROUND Dendritic cells (DCs) loaded with HIV-1 antigens have been explored as a promising therapeutic approach to overcome HIV-1 infection. Heat shock proteins (Hsps) can improve cross-presentation of linked antigens by DCs. Our aim was a comprehensive in silico, in vitro, and in vivo evaluation of fusion proteins comprising the N- and C-terminal regions of Hsp70 (i.e., NT-Hsp70 and CT-Hsp70) as an adjuvant linked to HIV-1 Nef antigen in development of DCs-based vaccine candidates. METHODS Computational analyses of the NT-Hsp70-Nef and CT-Hsp70-Nef fusion constructs were performed, and their structural features and docking ability with toll-like or endocytic receptors were evaluated. The effectiveness of DCs loaded with the fusion proteins in eliciting immunity was assessed in mice. Cytokine secretion levels from splenocytes exposed to single-cycle replicable (SCR) HIV-1 were also measured in vitro. RESULTS The DCs pulsed with the fusion constructs induced robust cellular and humoral immune responses in mice and infected splenocytes. The CT-Hsp70 region showed better docking scores with immune receptors and superior adjuvanticity for inducing Nef-specific immune responses (Th1 and CTL activity) compared to the NT-Hsp70 region in DC-based immunization. CONCLUSIONS The CT-Hsp70-Nef protein demonstrated promising results in both computational and experimental analyses compared to the NT-Hsp70-Nef protein.
Collapse
Affiliation(s)
- Elahe Akbari
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | - Alireza Milani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | | | | | - Elnaz Agi
- Blood Diseases Research Center (BDRC), Iranian Comprehensive Hemophilia Care Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Azam Bolhassani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
2
|
Sui Y, Meyer TJ, Fennessey CM, Keele BF, Dadkhah K, Ma C, LaBranche CC, Breed MW, Kramer JA, Li J, Howe SE, Ferrari G, Williams LD, Cam M, Kelly MC, Shen X, Tomaras GD, Montefiori D, Greten TF, Miller CJ, Berzofsky JA. Innate protection against intrarectal SIV acquisition by a live SHIV vaccine. JCI Insight 2024; 9:e175800. [PMID: 38912579 PMCID: PMC11383375 DOI: 10.1172/jci.insight.175800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 05/08/2024] [Indexed: 06/25/2024] Open
Abstract
Identifying immune correlates of protection is a major challenge in AIDS vaccine development. Anti-Envelope antibodies have been considered critical for protection against SIV/HIV (SHIV) acquisition. Here, we evaluated the efficacy of an SHIV vaccine against SIVmac251 challenge, where the role of antibody was excluded, as there was no cross-reactivity between SIV and SHIV envelope antibodies. After 8 low-dose intrarectal challenges with SIVmac251, 12 SHIV-vaccinated animals demonstrated efficacy, compared with 6 naive controls, suggesting protection was achieved in the absence of anti-envelope antibodies. Interestingly, CD8+ T cells (and some NK cells) were not essential for preventing viral acquisition, as none of the CD8-depleted macaques were infected by SIVmac251 challenges. Initial investigation of protective innate immunity revealed that protected animals had elevated pathways related to platelet aggregation/activation and reduced pathways related to interferon and responses to virus. Moreover, higher expression of platelet factor 4 on circulating platelet-leukocyte aggregates was associated with reduced viral acquisition. Our data highlighted the importance of innate immunity, identified mechanisms, and may provide opportunities for novel HIV vaccines or therapeutic strategy development.
Collapse
Affiliation(s)
| | - Thomas J. Meyer
- CCR Collaborative Bioinformatics Resource, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | | | | | - Kimia Dadkhah
- Single Cell Analysis Facility, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Chi Ma
- Thoracic and GI Malignancies Branch, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Celia C. LaBranche
- Duke Human Vaccine Institute and
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, USA
| | - Matthew W. Breed
- Laboratory Animal Sciences Program, Frederick National Laboratory for Cancer Research, Bethesda, Maryland, USA
| | - Josh A. Kramer
- Laboratory Animal Sciences Program, Frederick National Laboratory for Cancer Research, Bethesda, Maryland, USA
| | | | | | | | - LaTonya D. Williams
- Duke Human Vaccine Institute and
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, USA
- Duke Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Maggie Cam
- CCR Collaborative Bioinformatics Resource, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Michael C. Kelly
- Single Cell Analysis Facility, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Xiaoying Shen
- Duke Human Vaccine Institute and
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, USA
- Duke Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Georgia D. Tomaras
- Duke Human Vaccine Institute and
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, USA
- Duke Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, USA
| | - David Montefiori
- Duke Human Vaccine Institute and
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, USA
| | - Tim F. Greten
- Thoracic and GI Malignancies Branch, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Christopher J. Miller
- Center for Comparative Medicine, University of California, Davis, Davis, California, USA
| | | |
Collapse
|
3
|
Caputo V, Libera M, Sisti S, Giuliani B, Diotti RA, Criscuolo E. The initial interplay between HIV and mucosal innate immunity. Front Immunol 2023; 14:1104423. [PMID: 36798134 PMCID: PMC9927018 DOI: 10.3389/fimmu.2023.1104423] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/17/2023] [Indexed: 02/01/2023] Open
Abstract
Human Immunodeficiency Virus (HIV) is still one of the major global health issues, and despite significant efforts that have been put into studying the pathogenesis of HIV infection, several aspects need to be clarified, including how innate immunity acts in different anatomical compartments. Given the nature of HIV as a sexually transmitted disease, one of the aspects that demands particular attention is the mucosal innate immune response. Given this scenario, we focused our attention on the interplay between HIV and mucosal innate response: the different mucosae act as a physical barrier, whose integrity can be compromised by the infection, and the virus-cell interaction induces the innate immune response. In addition, we explored the role of the mucosal microbiota in facilitating or preventing HIV infection and highlighted how its changes could influence the development of several opportunistic infections. Although recent progress, a proper characterization of mucosal innate immune response and microbiota is still missing, and further studies are needed to understand how they can be helpful for the formulation of an effective vaccine.
Collapse
|
4
|
Akbari E, Ajdary S, Ardakani EM, Agi E, Milani A, Seyedinkhorasani M, Khalaj V, Bolhassani A. Immunopotentiation by linking Hsp70 T-cell epitopes to Gag-Pol-Env-Nef-Rev multiepitope construct and increased IFN-gamma secretion in infected lymphocytes. Pathog Dis 2022; 80:6608937. [PMID: 35704612 DOI: 10.1093/femspd/ftac021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/03/2022] [Accepted: 06/13/2022] [Indexed: 11/12/2022] Open
Abstract
Therapeutic human immunodeficiency virus (HIV) vaccines can boost the anti-HIV host immunity to control viral replication and eliminate viral reservoirs in the absence of anti-retroviral therapy. In this study, two computationally designed multiepitope Gag-Pol-Env-Nef-Rev and Hsp70-Gag-Pol-Env-Nef-Rev constructs harboring immunogenic and highly conserved HIV T cell epitopes were generated in E. coli as polypeptide vaccine candidates. Furthermore, the multiepitope gag-pol-env-nef-rev and hsp70-gag-pol-env-nef-rev DNA vaccine constructs were prepared and complexed with MPG cell-penetrating peptide. The immunogenicity of the multiepitope constructs were evaluated using the homologous and heterologous prime/boost strategies in mice. Moreover, the secretion of IFN-γ was assessed in infected lymphocytes in vitro. Our data showed that the homologous polypeptide regimens could significantly induce a mixture of IgG1 and IgG2a antibody responses, activate T cells to secret IFN-γ, IL-5, IL-10, and generate Granzyme B. Moreover, IFN-γ secretion was significantly enhanced in single-cycle replicable (SCR) HIV-1 virions-infected splenocytes in these groups compared to uninfected splenocytes. The linkage of heat shock protein 70 (Hsp70) epitopes to Gag-Pol-Env-Nef-Rev polypeptide in the homologous regimen increased significantly cytokines and Granzyme B levels, and IFN-γ secretion in virions-infected splenocytes. Briefly, both designed constructs in the homologous regimens can be used as a promising vaccine candidate against HIV infection.
Collapse
Affiliation(s)
- Elahe Akbari
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran.,Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Soheila Ajdary
- Department of Immunology, Pasteur Institute of Iran, Tehran, Iran
| | | | - Elnaz Agi
- Iranian Comprehensive Hemophilia Care Center, Tehran, Iran
| | - Alireza Milani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | | | - Vahid Khalaj
- Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Azam Bolhassani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
5
|
VanBenschoten HM, Woodrow KA. Vaginal delivery of vaccines. Adv Drug Deliv Rev 2021; 178:113956. [PMID: 34481031 PMCID: PMC8722700 DOI: 10.1016/j.addr.2021.113956] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 08/06/2021] [Accepted: 08/28/2021] [Indexed: 11/22/2022]
Abstract
Recent estimates suggest that one in two sexually active individuals will acquire a sexually transmitted infection by age 25, an alarming statistic that amounts to over 1 million new infections per day worldwide. Vaccination against STIs is highly desirable for alleviating this global burden of disease. Vaginal immunization is a promising strategy to combat transmission via the vaginal mucosa. The vagina is typically considered a poor inductive site for common correlates of adaptive immunity. However, emerging evidence suggests that immune tolerance may be overcome by precisely engineered vaccination schemes that orchestrate cell-mediated immunity and establish tissue resident memory immune cells. In this review, we will discuss the unique immunological milieu of the vaginal mucosa and our current understanding of correlates of pathogenesis and protection for several common STIs. We then present a summary of recent vaginal vaccine studies and explore the role that mucosal adjuvants and delivery systems play in enhancing protection according to requisite features of immunity. Finally, we offer perspectives on the challenges and future directions of vaginal vaccine delivery, discussing remaining physiological barriers and innovative vaccine formulations that may overcome them.
Collapse
Affiliation(s)
- Hannah M VanBenschoten
- Department of Bioengineering, University of Washington, Seattle, WA 98105, United States
| | - Kim A Woodrow
- Department of Bioengineering, University of Washington, Seattle, WA 98105, United States.
| |
Collapse
|
6
|
Ho HM, Huang CY, Cheng YJ, Chen IH, Liu SJ, Huang CH, Huang MH. Squalene nanoemulsion reinforces mucosal and immunological fingerprints following intravaginal delivery. Biomed Pharmacother 2021; 141:111799. [PMID: 34098215 DOI: 10.1016/j.biopha.2021.111799] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 05/25/2021] [Accepted: 06/01/2021] [Indexed: 01/03/2023] Open
Abstract
This study describes the assessment of mucosal adjuvant activity of a squalene-based nanoemulsion (SQ@NE) following intravaginal delivery in mice. After immunization, a high level of recruitment of CD11b/c+ granulocytes and F4/80+ macrophages was observed in the vaginal mucosal tissues of the mice immunized with a model protein ovalbumin (OVA) formulated with SQ@NE, and then downstream regulated the expression of MHC II and costimulatory molecules CD40 and CD86 on CD11c+ cells harvested from the associated draining lymph node. With respect to cytotoxic T lymphocyte immunity, the mice immunized with SQ@NE-formulated OVA elicited a high population of OVA-specific CD8+ cells in the spleen and increased the secretion of IFN-γ, IL-2 and IL-17 from OVA-restimulated splenocytes compared with those immunized with OVA alone. By studying in vivo fluorescence imaging and B-cell immunoassays, we discovered how SQ@NE prolongs the retention of antigen depots at the mucosal membrane of the immune inductive site and allows them to properly drive the production of antibodies. The data demonstrated that SQ@NE prolonged fluorescence-labeled OVA retention at the genital tract and augmented the production of OVA-specific IgG in sera and IgA in vaginal washes. These results indicate that SQ@NE is a promising vaginal adjuvant for the induction of both mucosal and systemic immune responses, a feature that provides implications for the development of a mucosal vaccine against genital infections and sexually transmitted diseases.
Collapse
Affiliation(s)
- Hui-Min Ho
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli 35053, Taiwan
| | - Chiung-Yi Huang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli 35053, Taiwan
| | - Yu-Jhen Cheng
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli 35053, Taiwan
| | - I-Hua Chen
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli 35053, Taiwan
| | - Shih-Jen Liu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli 35053, Taiwan; Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan; Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chung-Hsiung Huang
- Department of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan.
| | - Ming-Hsi Huang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli 35053, Taiwan; Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan; Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| |
Collapse
|
7
|
Milani A, Basirnejad M, Bolhassani A. Heat-shock proteins in diagnosis and treatment: an overview of different biochemical and immunological functions. Immunotherapy 2020; 11:215-239. [PMID: 30730280 DOI: 10.2217/imt-2018-0105] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Heat-shock proteins (HSPs) have been involved in different functions including chaperone activity, protein folding, apoptosis, autophagy and immunity. The HSP families have powerful effects on the stimulation of innate immune responses through Toll-like receptors and scavenger receptors. Moreover, HSP-mediated phagocytosis directly enhances the processing and presentation of internalized antigens via the endocytic pathway in adaptive immune system. These properties of HSPs have been used for development of prophylactic and therapeutic vaccines against infectious and noninfectious diseases. Several studies also demonstrated the relationship between HSPs and drug resistance as well as their use as a novel biomarker for detecting tumors in patients. The present review describes different roles of HSPs in biology and medicine especially biochemical and immunological aspects.
Collapse
Affiliation(s)
- Alireza Milani
- Department of Hepatitis & AIDS, Pasteur Institute of Iran, Tehran, Iran.,Iranian Comprehensive Hemophilia Care Center, Tehran, Iran
| | | | - Azam Bolhassani
- Department of Hepatitis & AIDS, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
8
|
Vaccination of Macaques with DNA Followed by Adenoviral Vectors Encoding Simian Immunodeficiency Virus (SIV) Gag Alone Delays Infection by Repeated Mucosal Challenge with SIV. J Virol 2019; 93:JVI.00606-19. [PMID: 31413132 PMCID: PMC6803269 DOI: 10.1128/jvi.00606-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 08/06/2019] [Indexed: 12/16/2022] Open
Abstract
The simian immunodeficiency virus (SIV) macaque model represents the best animal model for testing new human immunodeficiency virus type 1 (HIV-1) vaccines. Previous studies employing replication-defective adenovirus (rAd) vectors that transiently express SIV internal proteins induced T cell responses that controlled virus load but did not protect against virus challenge. However, we show for the first time that SIV gag delivered in a DNA prime followed by a boost with an rAd vector confers resistance to SIV intrarectal challenge. Other partially successful SIV/HIV-1 protective vaccines induce antibody to the envelope and neutralize the virus or mediate antibody-dependent cytotoxicity. Induction of CD8 T cells which do not prevent initial infection but eradicate infected cells before infection becomes established has also shown some success. In contrast, the vaccine described here mediates resistance by a different mechanism from that described above, which may reflect CD4 T cell activity. This could indicate an alternative approach for HIV-1 vaccine development. Vaccines aimed at inducing T cell responses to protect against human immunodeficiency virus (HIV) infection have been under development for more than 15 years. Replication-defective adenovirus (rAd) vaccine vectors are at the forefront of this work and have been tested extensively in the simian immunodeficiency virus (SIV) challenge macaque model. Vaccination with rAd vectors coding for SIV Gag or other nonenvelope proteins induces T cell responses that control virus load but disappointingly is unsuccessful so far in preventing infection, and attention has turned to inducing antibodies to the envelope. However, here we report that Mauritian cynomolgus macaques (MCM), Macaca fascicularis, vaccinated with unmodified SIV gag alone in a DNA prime followed by an rAd boost exhibit increased protection from infection by repeated intrarectal challenge with low-dose SIVmac251. There was no evidence of infection followed by eradication. A significant correlation was observed between cytokine expression by CD4 T cells and delayed infection. Vaccination with gag fused to the ubiquitin gene or fragmented, designed to increase CD8 magnitude and breadth, did not confer resistance to challenge or enhance immunity. On infection, a significant reduction in peak virus load was observed in all vaccinated animals, including those vaccinated with modified gag. These findings suggest that a nonpersistent viral vector vaccine coding for internal virus proteins may be able to protect against HIV type 1 (HIV-1) infection. The mechanisms are probably distinct from those of antibody-mediated virus neutralization or cytotoxic CD8 cell killing of virus-infected cells and may be mediated in part by CD4 T cells. IMPORTANCE The simian immunodeficiency virus (SIV) macaque model represents the best animal model for testing new human immunodeficiency virus type 1 (HIV-1) vaccines. Previous studies employing replication-defective adenovirus (rAd) vectors that transiently express SIV internal proteins induced T cell responses that controlled virus load but did not protect against virus challenge. However, we show for the first time that SIV gag delivered in a DNA prime followed by a boost with an rAd vector confers resistance to SIV intrarectal challenge. Other partially successful SIV/HIV-1 protective vaccines induce antibody to the envelope and neutralize the virus or mediate antibody-dependent cytotoxicity. Induction of CD8 T cells which do not prevent initial infection but eradicate infected cells before infection becomes established has also shown some success. In contrast, the vaccine described here mediates resistance by a different mechanism from that described above, which may reflect CD4 T cell activity. This could indicate an alternative approach for HIV-1 vaccine development.
Collapse
|
9
|
Kozlowski PA, Aldovini A. Mucosal Vaccine Approaches for Prevention of HIV and SIV Transmission. CURRENT IMMUNOLOGY REVIEWS 2019; 15:102-122. [PMID: 31452652 PMCID: PMC6709706 DOI: 10.2174/1573395514666180605092054] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 04/19/2018] [Accepted: 05/30/2018] [Indexed: 02/06/2023]
Abstract
Optimal protective immunity to HIV will likely require that plasma cells, memory B cells and memory T cells be stationed in mucosal tissues at portals of viral entry. Mucosal vaccine administration is more effective than parenteral vaccine delivery for this purpose. The challenge has been to achieve efficient vaccine uptake at mucosal surfaces, and to identify safe and effective adjuvants, especially for mucosally administered HIV envelope protein immunogens. Here, we discuss strategies used to deliver potential HIV vaccine candidates in the intestine, respiratory tract, and male and female genital tract of humans and nonhuman primates. We also review mucosal adjuvants, including Toll-like receptor agonists, which may adjuvant both mucosal humoral and cellular immune responses to HIV protein immunogens.
Collapse
Affiliation(s)
- Pamela A. Kozlowski
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Anna Aldovini
- Department of Medicine, and Harvard Medical School, Boston Children’s Hospital, Department of Pediatrics, Boston MA, 02115, USA
| |
Collapse
|
10
|
Singh B, Maharjan S, Sindurakar P, Cho KH, Choi YJ, Cho CS. Needle-Free Immunization with Chitosan-Based Systems. Int J Mol Sci 2018; 19:E3639. [PMID: 30463211 PMCID: PMC6274840 DOI: 10.3390/ijms19113639] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 11/10/2018] [Accepted: 11/12/2018] [Indexed: 02/02/2023] Open
Abstract
Despite successful use, needle-based immunizations have several issues such as the risk of injuries and infections from the reuse of needles and syringes and the low patient compliance due to pain and fear of needles during immunization. In contrast, needle-free immunizations have several advantages including ease of administration, high level of patient compliance and the possibility of mass vaccination. Thus, there is an increasing interest on developing effective needle-free immunizations via cutaneous and mucosal approaches. Here, we discuss several methods of needle-free immunizations and provide insights into promising use of chitosan systems for successful immunization.
Collapse
Affiliation(s)
- Bijay Singh
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.
- Research Institute for Bioscience and Biotechnology, Kathmandu 44600, Nepal.
| | - Sushila Maharjan
- Research Institute for Bioscience and Biotechnology, Kathmandu 44600, Nepal.
- Division of Engineering in Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA.
| | - Princy Sindurakar
- Department of Biology, College of the Holy Cross, Worcester, MA 01610, USA.
| | - Ki-Hyun Cho
- Department of Plastic Surgery, Cleveland Clinic, Cleveland, OH 44195, USA.
| | - Yun-Jaie Choi
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea.
| | - Chong-Su Cho
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
11
|
Sun X, Zhang H, Xu S, Shi L, Dong J, Gao D, Chen Y, Feng H. Membrane-anchored CCL20 augments HIV Env-specific mucosal immune responses. Virol J 2017; 14:163. [PMID: 28830557 PMCID: PMC5568278 DOI: 10.1186/s12985-017-0831-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Accepted: 08/16/2017] [Indexed: 12/15/2022] Open
Abstract
Background Induction of broad immune responses at mucosal site remains a primary goal for most vaccines against mucosal pathogens. Abundance of evidence indicates that the co-delivery of mucosal adjuvants, including cytokines, is necessary to induce effective mucosal immunity. In the present study, we set out to evaluate the role of a chemokine, CCL20, as an effective mucosal adjuvant for HIV vaccine. Methods To evaluate the role of CCL20 as a potent adjuvant for HIV vaccine, we examined its effects on antigen-specific antibody responses, level of antibody-secreting cells, cytokine production and intestinal homing of plasma cells in vaccine immunized mice. Results CCL20-incorporated VLP administered by mucosal route (intranasal (n = 10, p = 0.0085) or intravaginal (n = 10, p = 0.0091)) showed much higher potency in inducing Env-specific IgA antibody response than those administered by intramuscular route (n = 10). For intranasal administration, the HIV Env-specific IFN-γ(751 pg/ml), IL-4 (566 pg/ml), IL-5 (811 pg/ml) production and IgA-secreting plasma cells (62 IgA-secreting plasma cells/106 cells) in mucosal lamina propria were significantly augmented in CCL20-incorporated VLP immunized mice as compared to those immunized with Env only VLPs (p = 0.0332, 0.0398, 0.033, 0.0302 for IFN-γ, IL-4, IL-5, and IgA-secreting plasma cells, respectively). Further, anti-CCL20 mAb partially suppressed homing of Env-specific IgA ASCs into small intestine in mice immunized with CCL20-incorporated VLP by intranasal (62 decreased to 16 IgA- secreting plasma cells/106 cells, p = 0.0341) or intravaginal (52 decreased to 13 IgA- secreting plasma cells/106 cells, p = 0.0332) routes. Conclusion Our data indicated that the VLP-incorporated CCL20 can enhance HIV Env-specific immune responses in mice, especially those occurring in the mucosal sites. We also found that i.m. prime followed by mucosal boost is critical and required for CCL20 to exert its full function as an effective mucosal adjuvant. Therefore, co-incorporation of CCL20 into Env VLPs when combined with mucosal administration could represent a novel and promising HIV vaccine candidate.
Collapse
Affiliation(s)
- Xianliang Sun
- Medical school of Jiaxing University, Jiahang road 118#, Nanhu District, Jiaxing City, Zhejiang Province, 314000, China
| | - Han Zhang
- Department of Microbiology & Immunology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Shuiling Xu
- Medical school of Jiaxing University, Jiahang road 118#, Nanhu District, Jiaxing City, Zhejiang Province, 314000, China
| | - Lili Shi
- Medical school of Jiaxing University, Jiahang road 118#, Nanhu District, Jiaxing City, Zhejiang Province, 314000, China
| | - Jingjian Dong
- Medical school of Jiaxing University, Jiahang road 118#, Nanhu District, Jiaxing City, Zhejiang Province, 314000, China
| | - Dandan Gao
- Jiaxing Maternity and Child Health Care Hospital, Jiaxing, Zhejiang, 314000, China
| | - Yan Chen
- Medical school of Jiaxing University, Jiahang road 118#, Nanhu District, Jiaxing City, Zhejiang Province, 314000, China
| | - Hao Feng
- Medical school of Jiaxing University, Jiahang road 118#, Nanhu District, Jiaxing City, Zhejiang Province, 314000, China.
| |
Collapse
|
12
|
A novel mechanism linking memory stem cells with innate immunity in protection against HIV-1 infection. Sci Rep 2017; 7:1057. [PMID: 28432326 PMCID: PMC5430909 DOI: 10.1038/s41598-017-01188-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 03/27/2017] [Indexed: 11/23/2022] Open
Abstract
HIV infection affects 37 million people and about 1.7 million are infected annually. Among the phase III clinical trials only the RV144 vaccine trial elicited significant protection against HIV-1 acquisition, but the efficacy and immune memory were inadequate. To boost these vaccine functions we studied T stem cell memory (TSCM) and innate immunity. TSCM cells were identified by phenotypic markers of CD4+ T cells and they were further characterised into 4 subsets. These expressed the common IL-2/IL-15 receptors and another subset of APOBEC3G anti-viral restriction factors, both of which were upregulated. In contrast, CD4+ TSCM cells expressing CCR5 co-receptors and α4β7 mucosal homing integrins were decreased. A parallel increase in CD4+ T cells was recorded with IL-15 receptors, APOBEC3G and CC chemokines, the latter downmodulating CCR5 molecules. We suggest a novel mechanism of dual memory stem cells; the established sequential memory pathway, TSCM →Central →Effector memory CD4+ T cells and the innate pathway consisting of the 4 subsets of TSCM. Both pathways are likely to be activated by endogenous HSP70. The TSCM memory stem cell and innate immunity pathways have to be optimised to boost the efficacy and immune memory of protection against HIV-1 in the clinical trial.
Collapse
|
13
|
Biotechnology approaches to produce potent, self-adjuvanting antigen-adjuvant fusion protein subunit vaccines. Biotechnol Adv 2017; 35:375-389. [PMID: 28288861 DOI: 10.1016/j.biotechadv.2017.03.005] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Revised: 03/08/2017] [Accepted: 03/08/2017] [Indexed: 01/07/2023]
Abstract
Traditional vaccination approaches (e.g. live attenuated or killed microorganisms) are among the most effective means to prevent the spread of infectious diseases. These approaches, nevertheless, have failed to yield successful vaccines against many important pathogens. To overcome this problem, methods have been developed to identify microbial components, against which protective immune responses can be elicited. Subunit antigens identified by these approaches enable the production of defined vaccines, with improved safety profiles. However, they are generally poorly immunogenic, necessitating their administration with potent immunostimulatory adjuvants. Since few safe and effective adjuvants are currently used in vaccines approved for human use, with those available displaying poor potency, or an inability to stimulate the types of immune responses required for vaccines against specific diseases (e.g. cytotoxic lymphocytes (CTLs) to treat cancers), the development of new vaccines will be aided by the availability of characterized platforms of new adjuvants, improving our capacity to rationally select adjuvants for different applications. One such approach, involves the addition of microbial components (pathogen-associated molecular patterns; PAMPs), that can stimulate strong immune responses, into subunit vaccine formulations. The conjugation of PAMPs to subunit antigens provides a means to greatly increase vaccine potency, by targeting immunostimulation and antigen to the same antigen presenting cell. Thus, methods that enable the efficient, and inexpensive production of antigen-adjuvant fusions represent an exciting mean to improve immunity towards subunit antigens. Herein we review four protein-based adjuvants (flagellin, bacterial lipoproteins, the extra domain A of fibronectin (EDA), and heat shock proteins (Hsps)), which can be genetically fused to antigens to enable recombinant production of antigen-adjuvant fusion proteins, with a focus on their mechanisms of action, structural or sequence requirements for activity, sequence modifications to enhance their activity or simplify production, adverse effects, and examples of vaccines in preclinical or human clinical trials.
Collapse
|
14
|
McKay PF, Mann JFS, Pattani A, Kett V, Aldon Y, King D, Malcolm RK, Shattock RJ. Intravaginal immunisation using a novel antigen-releasing ring device elicits robust vaccine antigen-specific systemic and mucosal humoral immune responses. J Control Release 2017; 249:74-83. [PMID: 28115243 PMCID: PMC5333785 DOI: 10.1016/j.jconrel.2017.01.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 12/23/2016] [Accepted: 01/10/2017] [Indexed: 01/28/2023]
Abstract
The generation of effective levels of antigen-specific immunity at the mucosal sites of pathogen entry is a key goal for vaccinologists. We explored topical vaginal application as an approach to initiate local antigen-specific immunity, enhance previously existing systemic immunity or re-target responses to the mucosae. To deliver a protein vaccine formulation to the vaginal mucosal surface, we used a novel vaginal ring device comprising a silicone elastomer body into which three freeze-dried, rod-shaped, hydroxypropylmethylcellulose inserts were incorporated. Each rod contained recombinant HIV-1 CN54gp140 protein (167μg)±R848 (167μg) adjuvant. The inserts were loaded into cavities within each ring such that only the ends of the inserts were initially exposed. Sheep received a prime-boost vaccination regime comprising intramuscular injection of 100μg CN54gp140+200μg R848 followed by three successive ring applications of one week duration and separated by one month intervals. Other sheep received only the ring devices without intramuscular priming. Serum and vaginal mucosal fluids were sampled every two weeks and analysed by CN54gp140 ELISA and antigen-specific B cells were measured by flow cytometry at necropsy. Vaccine antigen-specific serum antibody responses were detected in both the intramuscularly-primed and vaginal mucosally-primed groups. Those animals that received only vaginal vaccinations had identical IgG but superior IgA responses. Analysis revealed that all animals exhibited mucosal antigen-specific IgG and IgA with the IgA responses 30-fold greater than systemic levels. Importantly, very high numbers of antigen-specific B cells were detected in local genital draining lymph nodes. We have elicited local genital antigen-specific immune responses after topical application of an adjuvanted antigen formulation within a novel vaginal ring vaccine release device. This regimen and delivery method elicited high levels of antigen-specific mucosal IgA and large numbers of local antigen-reactive B cells, both likely essential for effective mucosal protection.
Collapse
Affiliation(s)
- Paul F McKay
- Imperial College London, Department of Medicine, Division of Infectious Diseases, Section of Virology, Norfolk Place, London W2 1PG, UK.
| | - Jamie F S Mann
- Imperial College London, Department of Medicine, Division of Infectious Diseases, Section of Virology, Norfolk Place, London W2 1PG, UK
| | - Aditya Pattani
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Vicky Kett
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Yoann Aldon
- Imperial College London, Department of Medicine, Division of Infectious Diseases, Section of Virology, Norfolk Place, London W2 1PG, UK
| | - Deborah King
- Imperial College London, Department of Medicine, Division of Infectious Diseases, Section of Virology, Norfolk Place, London W2 1PG, UK
| | - R Karl Malcolm
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Robin J Shattock
- Imperial College London, Department of Medicine, Division of Infectious Diseases, Section of Virology, Norfolk Place, London W2 1PG, UK
| |
Collapse
|
15
|
Qualai J, Cantero J, Li LX, Carrascosa JM, Cabré E, Dern O, Sumoy L, Requena G, McSorley SJ, Genescà M. Adhesion Molecules Associated with Female Genital Tract Infection. PLoS One 2016; 11:e0156605. [PMID: 27272720 PMCID: PMC4896633 DOI: 10.1371/journal.pone.0156605] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 05/17/2016] [Indexed: 11/19/2022] Open
Abstract
Efforts to develop vaccines that can elicit mucosal immune responses in the female genital tract against sexually transmitted infections have been hampered by an inability to measure immune responses in these tissues. The differential expression of adhesion molecules is known to confer site-dependent homing of circulating effector T cells to mucosal tissues. Specific homing molecules have been defined that can be measured in blood as surrogate markers of local immunity (e.g. α4β7 for gut). Here we analyzed the expression pattern of adhesion molecules by circulating effector T cells following mucosal infection of the female genital tract in mice and during a symptomatic episode of vaginosis in women. While CCR2, CCR5, CXCR6 and CD11c were preferentially expressed in a mouse model of Chlamydia infection, only CCR5 and CD11c were clearly expressed by effector T cells during bacterial vaginosis in women. Other homing molecules previously suggested as required for homing to the genital mucosa such as α4β1 and α4β7 were also differentially expressed in these patients. However, CD11c expression, an integrin chain rarely analyzed in the context of T cell immunity, was the most consistently elevated in all activated effector CD8+ T cell subsets analyzed. This molecule was also induced after systemic infection in mice, suggesting that CD11c is not exclusive of genital tract infection. Still, its increase in response to genital tract disorders may represent a novel surrogate marker of mucosal immunity in women, and warrants further exploration for diagnostic and therapeutic purposes.
Collapse
Affiliation(s)
- Jamal Qualai
- Mucosal Immunology Unit, Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), AIDS Research Institute IrsiCaixa-HIVACAT, Can Ruti Campus, Badalona, Spain
| | - Jon Cantero
- Mucosal Immunology Unit, Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), AIDS Research Institute IrsiCaixa-HIVACAT, Can Ruti Campus, Badalona, Spain
| | - Lin-Xi Li
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - José Manuel Carrascosa
- Department of Dermatology, University Hospital “Germans Trias i Pujol,” Badalona, Universitat Autònoma de Barcelona, Spain
| | - Eduard Cabré
- Department of Gastroenterology, University Hospital “Germans Trias i Pujol,” Can Ruti Campus, Badalona, Catalonia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Olga Dern
- Atenció Salut Sexual i Reproductiva (ASSIR), Centre d'Atenció Primària (CAP) Sant Fèlix, Institut Català de la Salut (ICS), Sabadell, Spain
| | - Lauro Sumoy
- Genomics and Bioinformatics Group, Institute for Predictive and Personalized Medicine of Cancer (IMPPC), Can Ruti Campus, Badalona, Spain
| | - Gerard Requena
- Flow Cytometry Unit, Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Spain
| | - Stephen J. McSorley
- Center for Comparative Medicine (CCM), Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
| | - Meritxell Genescà
- Mucosal Immunology Unit, Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), AIDS Research Institute IrsiCaixa-HIVACAT, Can Ruti Campus, Badalona, Spain
- * E-mail: (MG)
| |
Collapse
|
16
|
Cosgrove CA, Lacey CJ, Cope AV, Bartolf A, Morris G, Yan C, Baden S, Cole T, Carter D, Brodnicki E, Shen X, Joseph S, DeRosa SC, Peng L, Yu X, Ferrari G, Seaman M, Montefiori DC, Frahm N, Tomaras GD, Stöhr W, McCormack S, Shattock RJ. Comparative Immunogenicity of HIV-1 gp140 Vaccine Delivered by Parenteral, and Mucosal Routes in Female Volunteers; MUCOVAC2, A Randomized Two Centre Study. PLoS One 2016; 11:e0152038. [PMID: 27159166 PMCID: PMC4861263 DOI: 10.1371/journal.pone.0152038] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 03/07/2016] [Indexed: 12/16/2022] Open
Abstract
Background Defining optimal routes for induction of mucosal immunity represents an important research priority for the HIV-1 vaccine field. In particular, it remains unclear whether mucosal routes of immunization can improve mucosal immune responses. Methods In this randomized two center phase I clinical trial we evaluated the systemic and mucosal immune response to a candidate HIV-1 Clade C CN54gp140 envelope glycoprotein vaccine administered by intramuscular (IM), intranasal (IN) and intravaginal (IVAG) routes of administration in HIV negative female volunteers. IM immunizations were co-administered with Glucopyranosyl Lipid Adjuvant (GLA), IN immunizations with 0.5% chitosan and IVAG immunizations were administered in an aqueous gel. Results Three IM immunizations of CN54 gp140 at either 20 or 100 μg elicited significantly greater systemic and mucosal antibodies than either IN or IVAG immunizations. Following additional intramuscular boosting we observed an anamnestic antibody response in nasally primed subjects. Modest neutralizing responses were detected against closely matched tier 1 clade C virus in the IM groups. Interestingly, the strongest CD4 T-cell responses were detected after IN and not IM immunization. Conclusions These data show that parenteral immunization elicits systemic and mucosal antibodies in women. Interestingly IN immunization was an effective prime for IM boost, while IVAG administration had no detectable impact on systemic or mucosal responses despite IM priming. Clinical Trials Registration EudraCT 2010-019103-27 and the UK Clinical Research Network (UKCRN) Number 11679
Collapse
Affiliation(s)
| | - Charles J. Lacey
- Hull York Medical School & Centre for Immunology and Infection, University of York, York, United Kingdom
| | - Alethea V. Cope
- Mucosal Infection & Immunity Group, Division of Infectious Diseases, Department of Medicine, Imperial College London, London, United Kingdom
| | - Angela Bartolf
- Centre for Infection, St George’s, University of London, London, United Kingdom
| | - Georgina Morris
- Hull York Medical School & Centre for Immunology and Infection, University of York, York, United Kingdom
| | - Celine Yan
- Mucosal Infection & Immunity Group, Division of Infectious Diseases, Department of Medicine, Imperial College London, London, United Kingdom
| | - Susan Baden
- Centre for Infection, St George’s, University of London, London, United Kingdom
| | - Tom Cole
- Mucosal Infection & Immunity Group, Division of Infectious Diseases, Department of Medicine, Imperial College London, London, United Kingdom
| | - Darrick Carter
- Infectious Disease Research Institute (IDRI), Seattle, WA, United States of America
| | - Elizabeth Brodnicki
- Medical Research Council, Clinical Trials Unit at UCL, University College London, London, United Kingdom
| | - Xiaoying Shen
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, United States of America
| | - Sarah Joseph
- Medical Research Council, Clinical Trials Unit at UCL, University College London, London, United Kingdom
| | - Stephen C. DeRosa
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Lili Peng
- Statistical Center for HIV/AIDS Research and Prevention, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Xuesong Yu
- Statistical Center for HIV/AIDS Research and Prevention, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Guido Ferrari
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, United States of America
- Department of Surgery, Duke University Medical Center, Durham, NC, United States of America
| | - Mike Seaman
- CAVD Neutralizing Antibody Laboratory, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States of America
| | - David C. Montefiori
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, United States of America
- Department of Surgery, Duke University Medical Center, Durham, NC, United States of America
| | - Nicole Frahm
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Georgia D. Tomaras
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, United States of America
- Department of Surgery, Duke University Medical Center, Durham, NC, United States of America
| | - Wolfgang Stöhr
- Medical Research Council, Clinical Trials Unit at UCL, University College London, London, United Kingdom
| | - Sheena McCormack
- Medical Research Council, Clinical Trials Unit at UCL, University College London, London, United Kingdom
| | - Robin J. Shattock
- Mucosal Infection & Immunity Group, Division of Infectious Diseases, Department of Medicine, Imperial College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
17
|
Pritchard LK, Vasiljevic S, Ozorowski G, Seabright GE, Cupo A, Ringe R, Kim HJ, Sanders RW, Doores KJ, Burton DR, Wilson IA, Ward AB, Moore JP, Crispin M. Structural Constraints Determine the Glycosylation of HIV-1 Envelope Trimers. Cell Rep 2015; 11:1604-13. [PMID: 26051934 DOI: 10.1016/j.celrep.2015.05.017] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 04/23/2015] [Accepted: 05/11/2015] [Indexed: 10/23/2022] Open
Abstract
A highly glycosylated, trimeric envelope glycoprotein (Env) mediates HIV-1 cell entry. The high density and heterogeneity of the glycans shield Env from recognition by the immune system, but paradoxically, many potent broadly neutralizing antibodies (bNAbs) recognize epitopes involving this glycan shield. To better understand Env glycosylation and its role in bNAb recognition, we characterized a soluble, cleaved recombinant trimer (BG505 SOSIP.664) that is a close structural and antigenic mimic of native Env. Large, unprocessed oligomannose-type structures (Man8-9GlcNAc2) are notably prevalent on the gp120 components of the trimer, irrespective of the mammalian cell expression system or the bNAb used for affinity purification. In contrast, gp41 subunits carry more highly processed glycans. The glycans on uncleaved, non-native oligomeric gp140 proteins are also highly processed. A homogeneous, oligomannose-dominated glycan profile is therefore a hallmark of a native Env conformation and a potential Achilles' heel that can be exploited for bNAb recognition and vaccine design.
Collapse
Affiliation(s)
- Laura K Pritchard
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Snezana Vasiljevic
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Gabriel Ozorowski
- Department of Integrative Structural and Computational Biology, IAVI Neutralizing Antibody Center and the collaboration for AIDS Vaccine Discovery, Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Gemma E Seabright
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Albert Cupo
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, NY 10021, USA
| | - Rajesh Ringe
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, NY 10021, USA
| | - Helen J Kim
- Department of Integrative Structural and Computational Biology, IAVI Neutralizing Antibody Center and the collaboration for AIDS Vaccine Discovery, Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Rogier W Sanders
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, NY 10021, USA; Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center of the University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Katie J Doores
- King's College London School of Medicine at Guy's, King's and St. Thomas' Hospitals, Guy's Hospital, Great Maze Pond, London SE1 9RT, UK
| | - Dennis R Burton
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA; International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA; Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Boston, MA 02142, USA
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, IAVI Neutralizing Antibody Center and the collaboration for AIDS Vaccine Discovery, Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, IAVI Neutralizing Antibody Center and the collaboration for AIDS Vaccine Discovery, Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - John P Moore
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, NY 10021, USA
| | - Max Crispin
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.
| |
Collapse
|
18
|
Yamada E, Yoshikawa R, Nakano Y, Misawa N, Koyanagi Y, Sato K. Impacts of humanized mouse models on the investigation of HIV-1 infection: illuminating the roles of viral accessory proteins in vivo. Viruses 2015; 7:1373-90. [PMID: 25807049 PMCID: PMC4379576 DOI: 10.3390/v7031373] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 03/10/2015] [Accepted: 03/10/2015] [Indexed: 12/26/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) encodes four accessory genes: vif, vpu, vpr, and nef. Recent investigations using in vitro cell culture systems have shed light on the roles of these HIV-1 accessory proteins, Vif, Vpr, Vpu, and Nef, in counteracting, modulating, and evading various cellular factors that are responsible for anti-HIV-1 intrinsic immunity. However, since humans are the exclusive target for HIV-1 infection, conventional animal models are incapable of mimicking the dynamics of HIV-1 infection in vivo. Moreover, the effects of HIV-1 accessory proteins on viral infection in vivo remain unclear. To elucidate the roles of HIV-1 accessory proteins in the dynamics of viral infection in vivo, humanized mouse models, in which the mice are xenotransplanted with human hematopoietic stem cells, has been utilized. This review describes the current knowledge of the roles of HIV-1 accessory proteins in viral infection, replication, and pathogenicity in vivo, which are revealed by the studies using humanized mouse models.
Collapse
Affiliation(s)
- Eri Yamada
- Laboratory of Viral Pathogenesis, Institute for Virus Research, Kyoto University, Kyoto 6068507, Japan.
| | - Rokusuke Yoshikawa
- Laboratory of Viral Pathogenesis, Institute for Virus Research, Kyoto University, Kyoto 6068507, Japan.
| | - Yusuke Nakano
- Laboratory of Viral Pathogenesis, Institute for Virus Research, Kyoto University, Kyoto 6068507, Japan.
| | - Naoko Misawa
- Laboratory of Viral Pathogenesis, Institute for Virus Research, Kyoto University, Kyoto 6068507, Japan.
| | - Yoshio Koyanagi
- Laboratory of Viral Pathogenesis, Institute for Virus Research, Kyoto University, Kyoto 6068507, Japan.
| | - Kei Sato
- Laboratory of Viral Pathogenesis, Institute for Virus Research, Kyoto University, Kyoto 6068507, Japan.
- CREST, Japan Science and Technology Agency, Saitama 3220012, Japan.
| |
Collapse
|
19
|
Abstract
Limited understanding of correlates of protection from HIV transmission hinders development of an efficacious vaccine. D. J. M. Lewis and colleagues (J. Virol. 88:11648-11657, 2014, doi:10.1128/JVI.01621-14) now report that vaginal immunization with an HIVgp140 vaccine linked to the 70-kDa heat shock protein downregulated the human immunodeficiency virus (HIV) coreceptor CCR5 (chemokine [C-C motif] receptor 5) and increased expression of the HIV resistance factor APOBEC3G (apolipoprotein B mRNA-editing, enzyme-catalytic, polypeptide-like 3G), in women. These effects correlated with HIV suppression ex vivo. Thus, vaccine-induced innate responses not only facilitate adaptive immunity-they may prove to be critical for preventing HIV transmission.
Collapse
|