1
|
米 源, 李 旭, 王 聪, 蔺 晨, 赵 志, 颜 晓, 史 平, 王 雷. [miR-2110 Affects the Biological Behaviors of Lung Adenocarcinoma by Regulating CDT1]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2024; 55:1202-1209. [PMID: 39507968 PMCID: PMC11536258 DOI: 10.12182/20240960505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Indexed: 11/08/2024]
Abstract
Objective To investigate the effect of miR-2110 on the biological behaviors, such as cell proliferation, apoptosis, and metastasis, of lung adenocarcinoma (LUAD) cells by means of cell and animal experiments. Methods Bioinformatics websites, including ENCORI, TargetScan, miRTarBase, and Tarbase, were used to analyze the changes in the expression of miR-2110 in LUAD samples and to predict miR-2110 target. LUAD tissue samples and cells were collected and the changes in the expression of miR-2110 were verified through PCR technology. CCK-8 assay, clonogenic assay, Transwell assay, and flow cytometry were conducted to analyze alterations in the functions of LUAD cells. In addition, 10 BALB/c female nude mice aged 6 to 8 weeks were randomly divided into 2 groups, and the effect of miR-2110 on LUAD was investigated by in vivo experiments. Results miR-2110 was significantly decreased in LUAD tissues and cells compared with the normal lung tissues. miR-2110 overexpression inhibited the proliferation and metastasis of LUAD cells and promoted the apoptosis of tumor cells (P<0.05). Bioinformatics prediction and dual luciferase reporter gene assay results confirmed that miR-2110 could target and bind to CDT1. In addition, overexpression of CDT1 gene reversed the proliferation, metastasis, and apoptosis of miR-2110 compared with the miR-2110 overexpression group (P<0.05). Nude mice in vivo experiments showed that miR-2110 overexpression significantly decreased the expression of Ki67, a tumor proliferation index, and vimentin and MMP9, two metastasis indices, compared with the control group. Conclusion miR-2110 can inhibit proliferation and metastasis of LUAD by targeting CDT1, providing a new rationale for the treatment of LUAD.
Collapse
Affiliation(s)
- 源 米
- 河北医科大学第四医院 急诊科 (石家庄 050017)Department of Emergency, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050017, China
| | - 旭哲 李
- 河北医科大学第四医院 急诊科 (石家庄 050017)Department of Emergency, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050017, China
| | - 聪 王
- 河北医科大学第四医院 急诊科 (石家庄 050017)Department of Emergency, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050017, China
| | - 晨曦 蔺
- 河北医科大学第四医院 急诊科 (石家庄 050017)Department of Emergency, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050017, China
| | - 志超 赵
- 河北医科大学第四医院 急诊科 (石家庄 050017)Department of Emergency, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050017, China
| | - 晓菲 颜
- 河北医科大学第四医院 急诊科 (石家庄 050017)Department of Emergency, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050017, China
| | - 平 史
- 河北医科大学第四医院 急诊科 (石家庄 050017)Department of Emergency, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050017, China
| | - 雷 王
- 河北医科大学第四医院 急诊科 (石家庄 050017)Department of Emergency, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050017, China
| |
Collapse
|
2
|
Torne AS, Robertson ES. Epigenetic Mechanisms in Latent Epstein-Barr Virus Infection and Associated Cancers. Cancers (Basel) 2024; 16:991. [PMID: 38473352 PMCID: PMC10931536 DOI: 10.3390/cancers16050991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/25/2024] [Accepted: 02/25/2024] [Indexed: 03/14/2024] Open
Abstract
The Epstein-Barr Virus (EBV) is a double-stranded DNA-based human tumor virus that was first isolated in 1964 from lymphoma biopsies. Since its initial discovery, EBV has been identified as a major contributor to numerous cancers and chronic autoimmune disorders. The virus is particularly efficient at infecting B-cells but can also infect epithelial cells, utilizing an array of epigenetic strategies to establish long-term latent infection. The association with histone modifications, alteration of DNA methylation patterns in host and viral genomes, and microRNA targeting of host cell factors are core epigenetic strategies that drive interactions between host and virus, which are necessary for viral persistence and progression of EBV-associated diseases. Therefore, understanding epigenetic regulation and its role in post-entry viral dynamics is an elusive area of EBV research. Here, we present current outlooks of EBV epigenetic regulation as it pertains to viral interactions with its host during latent infection and its propensity to induce tumorigenesis. We review the important epigenetic regulators of EBV latency and explore how the strategies involved during latent infection drive differential epigenetic profiles and host-virus interactions in EBV-associated cancers.
Collapse
Affiliation(s)
| | - Erle S. Robertson
- Tumor Virology Program, Department of Otorhinolaryngology-Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| |
Collapse
|
3
|
Daprà V, Galliano I, Rassu M, Calvi C, Montanari P, Bergallo M. Mir-155 expression is downregulated in hematopoietic stem cell transplantation patients with Epstein-Barr virus infection. Minerva Pediatr (Torino) 2023; 75:550-556. [PMID: 31833346 DOI: 10.23736/s2724-5276.19.05420-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
BACKGROUND MicroRNAs (miRNAs) are a class of short length double strand genome encoded RNAs that are produced to repress post-transcriptionally the expression of cellular mRNAs. 2578 unique mature miRNAs are currently annotated in the human genome and participate in the regulation of multiple events, such as cellular proliferation or apoptosis. The over-expression of miR-155 of cellular origin might play a key role in the life cycle of EBV. In this study 24 pediatric patients undergoing HSCT seropositive and seronegative to EBV were enrolled. Thirty-one peripheral blood samples were collected from these patients. The mir-155 expression profile has been evaluated by a stem-loop Real Time PCR in all these conditions. METHODS Of 24 patients, 4 were seronegative to EBV and EBV negative to PCR (Group I), 10 were seropositive to EBV and EBV negative to PCR (Group II) and 10 were seropositive to EBV and EBV positive to PCR (Group III). RESULTS Based on relative quantification, the mir-155 expression was compared among the groups. The comparison between HSCT patients without EBV infection seronegative to EBV (Group I) showed higher levels of mir-155 expression than patients seropositive to EBV (P=0.1419). The mir-155 expression levels in seronegative to EBV were not significantly different compared with the patients seropositive to EBV (P=0.6504). The mir-155 expression levels in seropositive to EBV without and with EBV infection (positive viral load), were not significantly (P=0.7667). Also, when we evaluated the mir-155 expression levels comparing all EBV negative patients with an active EBV infection, we did not observe a statistically significant difference (P=0.9782). CONCLUSIONS Our results are controversial, showing a higher production of mir-155 levels during EBV infection.
Collapse
Affiliation(s)
- Valentina Daprà
- Medical School, Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| | - Ilaria Galliano
- Medical School, Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| | - Marco Rassu
- Medical School, Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| | - Cristina Calvi
- Medical School, Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| | - Paola Montanari
- Medical School, Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| | - Massimiliano Bergallo
- Medical School, Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy -
| |
Collapse
|
4
|
Lin M, Hu S, Zhang T, Li J, Gao F, Zhang Z, Zheng K, Li G, Ren C, Chen X, Guo F, Zhang S. Effects of Co-Culture EBV-miR-BART1-3p on Proliferation and Invasion of Gastric Cancer Cells Based on Exosomes. Cancers (Basel) 2023; 15:2841. [PMID: 37345178 DOI: 10.3390/cancers15102841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/05/2023] [Accepted: 05/12/2023] [Indexed: 06/23/2023] Open
Abstract
AIM EBV encodes at least 44 miRNAs involved in immune regulation and disease progression. Exosomes can be used as carriers of EBV-miRNA-BART intercellular transmission and affect the biological behavior of cells. We characterized exosomes and established a co-culture experiment of exosomes to explore the mechanism of miR-BART1-3p transmission through the exosome pathway and its influence on tumor cell proliferation and invasion. MATERIALS AND METHODS Exosomes of EBV-positive and EBV-negative gastric cancer cells were characterized by transmission electron microscopy. NanoSight and Western blotting, and miRNA expression profiles in exosomes were sequenced with high throughput. Exosomes with high or low expression of miR-BART1-3p were co-cultured with AGS cells to study the effects on proliferation, invasion, and migration of gastric cancer cells. The target genes of EBV-miR-BART1-3p were screened and predicted by PITA, miRanda, RNAhybrid, virBase, and DIANA-TarBase v.8 databases, and the expression of the target genes after co-culture was detected by qPCR. RESULTS The exosomes secreted by EBV-positive and negative gastric cancer cells range in diameter from 30 nm to 150 nm and express the exosomal signature proteins CD9 and CD63. Small RNA sequencing showed that exosomes expressed some human miRNAs, among which hsa-miR-23b-3p, hsa-miR-320a-3p, and hsa-miR-4521 were highly expressed in AGS-exo; hsa-miR-21-5p, hsa-miR-148a-3p, and hsa-miR-7-5p were highly expressed in SNU-719-exo. All EBV miRNAs were expressed in SNU-719 cells and their exosomes, among which EBV-miR-BART1-5p, EBV-miR-BART22, and EBV-miR-BART16 were the highest in SNU-719 cells; EBV-miR-BART1-5p, EBV-miR-BART10-3p, and EBV-miR-BART16 were the highest in SNU-719-exo. After miR-BART1-3p silencing in gastric cancer cells, the proliferation, healing, migration, and invasion of tumor cells were significantly improved. Laser confocal microscopy showed that exosomes could carry miRNA into recipient cells. After co-culture with miR-BART1-3p silenced exosomes, the proliferation, healing, migration, and invasion of gastric cancer cells were significantly improved. The target gene of miR-BART1-3p was FAM168A, MACC1, CPEB3, ANKRD28, and USP37 after screening by a targeted database. CPEB3 was not expressed in all exosome co-cultured cells, while ANKRD28, USP37, MACC1, and FAM168A were all expressed to varying degrees. USP37 and MACC1 were down-regulated after up-regulation of miR-BART1-3p, which may be the key target genes for miR-BART1-3p to regulate the proliferation of gastric cancer cells through exosomes. CONCLUSIONS miR-BART1-3p can affect the growth of tumor cells through the exosome pathway. The proliferation, healing, migration, and invasion of gastric cancer cells were significantly improved after co-culture with exosomes of miR-BART1-3p silenced expression. USP37 and MACC1 may be potential target genes of miR-BART1-3p in regulating cell proliferation.
Collapse
Affiliation(s)
- Mengyao Lin
- Department of Pathology, The First Affiliated Hospital, Fujian Medical University, 20 Chazhong Road, Fuzhou 350005, China
- Department of Pathology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, 999 Huashan Road, Fuzhou 350212, China
| | - Shun Hu
- Department of Pathology, The First Affiliated Hospital, Fujian Medical University, 20 Chazhong Road, Fuzhou 350005, China
- Department of Pathology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, 999 Huashan Road, Fuzhou 350212, China
| | - Tianyi Zhang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Jiezhen Li
- Department of Pathology, The First Affiliated Hospital, Fujian Medical University, 20 Chazhong Road, Fuzhou 350005, China
| | - Feng Gao
- Department of Pathology, The First Affiliated Hospital, Fujian Medical University, 20 Chazhong Road, Fuzhou 350005, China
- Department of Pathology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, 999 Huashan Road, Fuzhou 350212, China
| | - Zhenzhen Zhang
- Department of Pathology, The First Affiliated Hospital, Fujian Medical University, 20 Chazhong Road, Fuzhou 350005, China
- Department of Pathology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, 999 Huashan Road, Fuzhou 350212, China
| | - Ke Zheng
- Department of Pathology, The First Affiliated Hospital, Fujian Medical University, 20 Chazhong Road, Fuzhou 350005, China
- Department of Pathology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, 999 Huashan Road, Fuzhou 350212, China
| | - Guoping Li
- Department of Pathology, The First Affiliated Hospital, Fujian Medical University, 20 Chazhong Road, Fuzhou 350005, China
- Department of Pathology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, 999 Huashan Road, Fuzhou 350212, China
| | - Caihong Ren
- Department of Pathology, The First Affiliated Hospital, Fujian Medical University, 20 Chazhong Road, Fuzhou 350005, China
- Department of Pathology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, 999 Huashan Road, Fuzhou 350212, China
| | - Xiangna Chen
- Department of Pathology, The First Affiliated Hospital, Fujian Medical University, 20 Chazhong Road, Fuzhou 350005, China
- Department of Pathology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, 999 Huashan Road, Fuzhou 350212, China
| | - Fang Guo
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Sheng Zhang
- Department of Pathology, The First Affiliated Hospital, Fujian Medical University, 20 Chazhong Road, Fuzhou 350005, China
- Department of Pathology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, 999 Huashan Road, Fuzhou 350212, China
| |
Collapse
|
5
|
Tastsoglou S, Alexiou A, Karagkouni D, Skoufos G, Zacharopoulou E, Hatzigeorgiou AG. DIANA-microT 2023: including predicted targets of virally encoded miRNAs. Nucleic Acids Res 2023:7137452. [PMID: 37094027 DOI: 10.1093/nar/gkad283] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 04/19/2023] [Indexed: 04/26/2023] Open
Abstract
DIANA-microT-CDS is a state-of-the-art miRNA target prediction algorithm catering the scientific community since 2009. It is one of the first algorithms to predict miRNA binding sites in both the 3' Untranslated Region (3'-UTR) and the coding sequence (CDS) of transcripts, with increased performance. Its current version, DIANA-microT 2023 (www.microrna.gr/microt_webserver/), brings forward a significantly updated set of interactions. DIANA-microT-CDS has been executed utilizing annotation information from Ensembl v102, miRBase 22.1 and, for the first time, MirGeneDB 2.1, yielding more than 83 million interactions in human, mouse, rat, chicken, fly and worm species. Additionally, this version delivers predicted interactions of miRNAs encoded from 20 viruses against host transcripts from human, mouse and chicken species. Numerous resources have been interconnected into DIANA-microT, including DIANA-TarBase, plasmiR, HMDD, UCSC, dbSNP, ClinVar, as well as miRNA/gene abundance values for 369 distinct cell-lines/tissues. The server interface has been redesigned allowing users to use smart filtering options, identify abundance patterns of interest, pinpoint known SNPs residing on binding sites and obtain miRNA-disease information. The contents of DIANA-microT webserver are freely accessible and can also be locally downloaded without any login requirements.
Collapse
Affiliation(s)
- Spyros Tastsoglou
- DIANA-Lab, Department of Computer Science and Biomedical Informatics, Univ. of Thessaly, Lamia 35131, Greece
- Hellenic Pasteur Institute, Athens 11521, Greece
| | - Athanasios Alexiou
- DIANA-Lab, Department of Computer Science and Biomedical Informatics, Univ. of Thessaly, Lamia 35131, Greece
- Hellenic Pasteur Institute, Athens 11521, Greece
| | - Dimitra Karagkouni
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Giorgos Skoufos
- DIANA-Lab, Department of Computer Science and Biomedical Informatics, Univ. of Thessaly, Lamia 35131, Greece
- Hellenic Pasteur Institute, Athens 11521, Greece
| | - Elissavet Zacharopoulou
- DIANA-Lab, Department of Computer Science and Biomedical Informatics, Univ. of Thessaly, Lamia 35131, Greece
- Hellenic Pasteur Institute, Athens 11521, Greece
| | - Artemis G Hatzigeorgiou
- DIANA-Lab, Department of Computer Science and Biomedical Informatics, Univ. of Thessaly, Lamia 35131, Greece
- Hellenic Pasteur Institute, Athens 11521, Greece
| |
Collapse
|
6
|
Lee SH, Kim KD, Cho M, Huh S, An SH, Seo D, Kang K, Lee M, Tanizawa H, Jung I, Cho H, Kang H. Characterization of a new CCCTC-binding factor binding site as a dual regulator of Epstein-Barr virus latent infection. PLoS Pathog 2023; 19:e1011078. [PMID: 36696451 PMCID: PMC9876287 DOI: 10.1371/journal.ppat.1011078] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 12/15/2022] [Indexed: 01/26/2023] Open
Abstract
Distinct viral gene expression characterizes Epstein-Barr virus (EBV) infection in EBV-producing marmoset B-cell (B95-8) and EBV-associated gastric carcinoma (SNU719) cell lines. CCCTC-binding factor (CTCF) is a structural chromatin factor that coordinates chromatin interactions in the EBV genome. Chromatin immunoprecipitation followed by sequencing against CTCF revealed 16 CTCF binding sites in the B95-8 and SNU719 EBV genomes. The biological function of one CTCF binding site (S13 locus) located on the BamHI A right transcript (BART) miRNA promoter was elucidated experimentally. Microscale thermophoresis assay showed that CTCF binds more readily to the stable form than the mutant form of the S13 locus. EBV BART miRNA clusters encode 22 miRNAs, whose roles are implicated in EBV-related cancer pathogenesis. The B95-8 EBV genome lacks a 11.8-kb EcoRI C fragment, whereas the SNU719 EBV genome is full-length. ChIP-PCR assay revealed that CTCF, RNA polymerase II, H3K4me3 histone, and H3K9me3 histone were more enriched at S13 and S16 (167-kb) loci in B95-8 than in the SNU719 EBV genome. 4C-Seq and 3C-PCR assays using B95-8 and SNU719 cells showed that the S13 locus was associated with overall EBV genomic loci including 3-kb and 167-kb region in both EBV genomes. We generated mutations in the S13 locus in bacmids with or without the 11.8-kb BART transcript unit (BART(+/-)). The S13 mutation upregulated BART miRNA expression, weakened EBV latency, and reduced EBV infectivity in the presence of EcoRI C fragment. Another 3C-PCR assay using four types of BART(+/-)·S13(wild-type(Wt)/mutant(Mt)) HEK293-EBV cells revealed that the S13 mutation decreased DNA associations between the 167-kb region and 3-kb in the EBV genome. Based on these results, CTCF bound to the S13 locus along with the 11.8-kb EcoRI C fragment is suggested to form an EBV 3-dimensional DNA loop for coordinated EBV BART miRNA expression and infectivity.
Collapse
Affiliation(s)
- Sun Hee Lee
- College of Pharmacy, Vessel-Organ Interaction Research Center, Research Institute of Pharmaceutical Science, Kyungpook National University, Daegu, Korea
| | - Kyoung-Dong Kim
- Department of Systems Biotechnology, Chung-Ang University, Anseong, Korea
| | - Miyeon Cho
- College of Pharmacy, Vessel-Organ Interaction Research Center, Research Institute of Pharmaceutical Science, Kyungpook National University, Daegu, Korea
| | - Sora Huh
- College of Pharmacy, Vessel-Organ Interaction Research Center, Research Institute of Pharmaceutical Science, Kyungpook National University, Daegu, Korea
| | - Seong Ho An
- Department of Systems Biotechnology, Chung-Ang University, Anseong, Korea
| | - Donghyun Seo
- College of Pharmacy, Vessel-Organ Interaction Research Center, Research Institute of Pharmaceutical Science, Kyungpook National University, Daegu, Korea
| | - Kyuhyun Kang
- College of Pharmacy, Vessel-Organ Interaction Research Center, Research Institute of Pharmaceutical Science, Kyungpook National University, Daegu, Korea
| | - Minhee Lee
- College of Pharmacy, Vessel-Organ Interaction Research Center, Research Institute of Pharmaceutical Science, Kyungpook National University, Daegu, Korea
| | - Hideki Tanizawa
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, United States of America
| | - Inuk Jung
- Department of Computer Science and Engineering, Kyungpook National University, Daegu, Korea
| | - Hyosun Cho
- Duksung Innovative Drug Center, College of Pharmacy, Duksung Women’s University, Seoul, Korea
- * E-mail: (HC); (HK)
| | - Hyojeung Kang
- College of Pharmacy, Vessel-Organ Interaction Research Center, Research Institute of Pharmaceutical Science, Kyungpook National University, Daegu, Korea
- * E-mail: (HC); (HK)
| |
Collapse
|
7
|
Meng Q, Sun H, Wu S, Familiari G, Relucenti M, Aschner M, Li X, Chen R. Epstein-Barr Virus-Encoded MicroRNA-BART18-3p Promotes Colorectal Cancer Progression by Targeting De Novo Lipogenesis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202116. [PMID: 36307872 PMCID: PMC9762317 DOI: 10.1002/advs.202202116] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/29/2022] [Indexed: 05/14/2023]
Abstract
The Epstein-Barr virus (EBV) genome encodes a cluster of 22 viral microRNAs, called miR-BamHI-A rightward transcripts (miR-BARTs), which are shown to promote the development of cancer. Here, this study reports that EBV-miR-BART18-3p is highly expressed in colorectal cancer (CRC) and is closely associated with the pathological and advanced clinical stages of CRC. Ectopic expression of EBV-miR-BART18-3p leads to increased migration and invasion capacities of CRC cells in vitro and causes tumor metastasis in vivo. Mechanistically, EBV-miR-BART18-3p activates the hypoxia inducible factor 1 subunit alpha/lactate dehydrogenase A axis by targeting Sirtuin, which promotes lactate accumulation and acetyl-CoA production in CRC cells under hypoxic condition. Increased acetyl-CoA utilization subsequently leads to histone acetylation of fatty acid synthase and fatty acid synthase-dependent fat synthesis, which in turn drives de novo lipogenesis. The oncogenic role of EBV-miR-BART18-3p is confirmed in the patient-derived tumor xenograft mouse model. Altogether, the findings define a novel mechanism of EBV-miR-BART18-3p in CRC development through the lipogenesis pathway and provide a potential clinical intervention target for CRC.
Collapse
Affiliation(s)
- Qingtao Meng
- Beijing Key Laboratory of Environmental Toxicology, School of Public HealthCapital Medical UniversityBeijing100069P. R. China
- Department of OncologyCapital Medical UniversityBeijing100069P. R. China
| | - Hao Sun
- Department of Occupational HealthSchool of Public HealthShanxi Medical UniversityTaiyuan030001China
- Key Laboratory of Environmental Medicine EngineeringMinistry of EducationSchool of Public HealthSoutheast UniversityNanjing210009P. R. China
| | - Shenshen Wu
- Beijing Key Laboratory of Environmental Toxicology, School of Public HealthCapital Medical UniversityBeijing100069P. R. China
| | - Giuseppe Familiari
- Laboratory of Electron Microscopy “Pietro Motta”SAIMLAL DepartmentFaculty of Pharmacy and MedicineSapienza University of Romevia Alfonso Borelli 50Rome00161Italy
| | - Michela Relucenti
- Laboratory of Electron Microscopy “Pietro Motta”SAIMLAL DepartmentFaculty of Pharmacy and MedicineSapienza University of Romevia Alfonso Borelli 50Rome00161Italy
| | - Michael Aschner
- Department of Molecular PharmacologyAlbert Einstein College of MedicineForchheimer 209, 1300 Morris Park AvenueBronxNY10461USA
| | - Xiaobo Li
- Beijing Key Laboratory of Environmental Toxicology, School of Public HealthCapital Medical UniversityBeijing100069P. R. China
- Key Laboratory of Environmental Medicine EngineeringMinistry of EducationSchool of Public HealthSoutheast UniversityNanjing210009P. R. China
| | - Rui Chen
- Beijing Key Laboratory of Environmental Toxicology, School of Public HealthCapital Medical UniversityBeijing100069P. R. China
- Department of OncologyCapital Medical UniversityBeijing100069P. R. China
- Advanced Innovation Center for Human Brain ProtectionCapital Medical UniversityBeijing100069P. R. China
- Institute for Chemical CarcinogenesisGuangzhou Medical UniversityGuangzhou511436P. R. China
| |
Collapse
|
8
|
Arisan ED, Dart DA, Grant GH, Dalby A, Kancagi DD, Turan RD, Yurtsever B, Karakus GS, Ovali E, Lange S, Uysal-Onganer P. microRNA 1307 Is a Potential Target for SARS-CoV-2 Infection: An in Vitro Model. ACS OMEGA 2022; 7:38003-38014. [PMID: 36275122 PMCID: PMC9578367 DOI: 10.1021/acsomega.2c05245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
microRNAs (miRs) are proposed as critical molecular targets in SARS-CoV-2 infection. Our recent in silico studies identified seven SARS-CoV-2 specific miR-like sequences, which are highly conserved with humans, including miR-1307-3p, with critical roles in COVID-19. In this current study, Vero cells were infected with SARS-CoV-2, and miR expression profiles were thereafter confirmed by qRT-PCR. miR-1307-3p was the most highly expressed miR in the infected cells; we, therefore, transiently inhibited its expression in both infected and uninfected cells. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) cell proliferation assay assessed cell viability following SARS-CoV-2 infection, identifying that miR-1307 expression is inversely correlated with cell viability. Lastly, changes in miR-1307-dependent pathways were analyzed through a detailed miRNOME and associated in silico analysis. In addition to our previously identified miRs, including miR-1307-3p, the upregulation of miR-193a-5p, miR-5100, and miR-23a-5p and downregulation of miR-130b-5p, miR34a-5p, miR-505-3p, miR181a-2-3p, miR-1271-5p, miR-598-3p, miR-34c-3p, and miR-129-5p were also established in Vero cells related to general lung disease-related genes following SARS-CoV-2 infection. Targeted anti-miR-1307-3p treatment rescued cell viability in infection when compared to SARS CoV-2 mediated cell cytotoxicity only. We furthermore identified by in silico analysis that miR-1307-3p is conserved in all SARS-CoV-2 sequences/strains, except in the BA.2 variant, possibly contributing to the lower disease severity of this variant, which warrants further investigation. Small RNA seq analysis was next used to evaluate alterations in the miRNOME, following miR-1307-3p manipulation, identifying critical pathobiological pathways linked to SARS-CoV-2 infection-mediated upregulation of this miR. On the basis of our findings, miRNAs like miR-1307-3p play a critical role in SARS-CoV-2 infection, including via effects on disease progression and severity.
Collapse
Affiliation(s)
- Elif Damla Arisan
- Gebze
Technical University, Institute of Biotechnology, Gebze, Kocaeli 41400, Turkiye
| | - D. Alwyn Dart
- Institute
of Medical and Biomedical Education, St
George’s University of London, Cranmer Terrace, Tooting, London SW17
0RE, United Kingdom
| | - Guy H. Grant
- School
of Life Sciences, University of Bedfordshire, Park Square, Luton LU1
3JU, United Kingdom
| | - Andrew Dalby
- School
of Life Sciences, University of Westminster, London W1W 6UW, United Kingdom
| | | | - Raife Dilek Turan
- Acibadem
Labcell Cellular Therapy Laboratory, İstanbul 34457, Turkiye
- Yeditepe
University, Institute of Biotechnology, İstanbul 34755, Turkiye
| | - Bulut Yurtsever
- Acibadem
Labcell Cellular Therapy Laboratory, İstanbul 34457, Turkiye
| | - Gozde Sir Karakus
- Acibadem
Labcell Cellular Therapy Laboratory, İstanbul 34457, Turkiye
| | - Ercument Ovali
- Acibadem
Labcell Cellular Therapy Laboratory, İstanbul 34457, Turkiye
| | - Sigrun Lange
- Tissue
Architecture and Regeneration Research Group, School of Life Sciences, University of Westminster, London W1W 6UW, United Kingdom
| | - Pinar Uysal-Onganer
- Cancer
Research Group, School of Life Sciences, University of Westminster, London W1W 6UW, United Kingdom
| |
Collapse
|
9
|
Zhang T, Chen Z, Deng J, Xu K, Che D, Lin J, Jiang P, Gu X, Xu B. Epstein-Barr virus-encoded microRNA BART22 serves as novel biomarkers and drives malignant transformation of nasopharyngeal carcinoma. Cell Death Dis 2022; 13:664. [PMID: 35907914 PMCID: PMC9338958 DOI: 10.1038/s41419-022-05107-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 01/21/2023]
Abstract
Nasopharyngeal carcinoma (NPC) is an epithelial malignancy ubiquitously associated with Epstein-Barr virus (EBV). EBV generates various viral microRNAs (miRNAs) by processing the BHRF1 and BamHI A rightward (BART) transcripts. These BART miRNAs are abundantly expressed in NPC, but their functions and molecular mechanisms remain largely unknown. Our study found that the EBV-encoded microRNA BART-22 was significantly upregulated in NPC tissues and positively correlated with tumor progression. Furthermore, we found that EBV-miR-BART-22 was a significant predictor of poor prognosis in NPC. A reliable nomogram model to predict the preoperative overall survival (OS) of NPC patients was established. The area under the receiver operating characteristic (ROC) curve value for 5-year survival was 0.91. Elevated levels of EBV-miR-BART-22 significantly promoted the epithelial-mesenchymal transition (EMT) and metastasis of NPC cells in vivo and in vitro. We found that EBV-miR-BART-22 directly targets the 3'-UTR of MOSPD2 mRNA to promote the EMT and metastasis of NPC cells by activating the Wnt/β-catenin signaling pathway. Our findings provide a potential prognostic biomarker and new insight into the molecular mechanisms of NPC metastasis.
Collapse
Affiliation(s)
- Ting Zhang
- Department of Laboratory Medicine, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China
| | - Zui Chen
- Department of Laboratory Medicine, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China
| | - Jing Deng
- Department of Laboratory Medicine, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China
| | - Kaixiong Xu
- Department of Laboratory Medicine, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China
| | - Di Che
- Department of Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Jiamin Lin
- Department of Laboratory Medicine, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China
| | - Ping Jiang
- Department of Laboratory Medicine, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China
| | - Xiaoqiong Gu
- Department of Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.
| | - Banglao Xu
- Department of Laboratory Medicine, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China.
| |
Collapse
|
10
|
Lin C, Lin K, Zhang B, Su Y, Guo Q, Lu T, Xu Y, Lin S, Zong J, Pan J. OUP accepted manuscript. Oncologist 2022; 27:e340-e349. [PMID: 35380720 PMCID: PMC8982379 DOI: 10.1093/oncolo/oyac024] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 11/13/2021] [Indexed: 11/23/2022] Open
Abstract
Background Nasopharyngeal carcinoma is an Epstein-Barr virus (EBV)-associated tumor that is highly common in southern China. Our previous sequencing data demonstrated that the EBV-encoded microRNA BART8-3p was most upregulated in nasopharyngeal carcinoma (NPC) and was closely associated with the metastasis of NPC. However, the values of plasma BART8-3p in NPC patients have not yet been well characterized. Material and Methods We quantified plasma BART8-3p expression by quantitative real-time PCR in 205 newly diagnosed NPC patients. Kaplan-Meier analysis was used to compare overall survival (OS), distant metastasis-free survival (DMFS), and locoregional relapse-free survival (LRRFS) between the groups. Results Plasma pretreatment BART8-3p was highly expressed in NPC patients compared with healthy controls. Pretreatment BART8-3p yielded a 92% predictive value for detecting NPC. Importantly, BART8-3p decreased dramatically after therapy relative to pretreatment levels. High levels of pretreatment or post-treatment BART8-3p were associated with worse OS, DMFS, and LRRFS. Multivariate analysis showed that high pretreatment or post-treatment BART8-3p was an independent unfavorable prognostic marker for OS (HR 3.82, 95% CI 1.77-8.24, P = .001 or HR 2.74, 95% CI 1.27-5.91, P = .010), DMFS (HR 2.82, 95% CI 1.36-5.85, P = .005 or HR 3.27, 95% CI 1.57-6.81, P = .002), and LRRFS (HR 1.94, 95% CI 1.12-3.35, P = .018 or HR 2.03, 95% CI 1.14-3.62, P = .016) in NPC. Subgroup analysis revealed that for patients with locally advanced NPC with high levels of pretreatment BART8-3p (n = 58), more cycles of chemotherapy (≥6 cycles) tended to prolong OS (P = .070). Over 50% (6/11) patients with high levels of post-treatment BART8-3p presented distant metastasis. Conclusion Plasma BART8-3p is a promising biomarker for the detection and prognosis of NPC.
Collapse
Affiliation(s)
- Cheng Lin
- Department of Radiation Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, People’s Republic of China
- The School of Clinical Medicine and Fujian Medical University, Fuzhou, People’s Republic of China
| | - Keyu Lin
- Department of Radiation Biology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, People’s Republic of China
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ying Su
- Department of Radiation Biology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, People’s Republic of China
| | - Qiaojuan Guo
- Department of Radiation Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, People’s Republic of China
| | - Tianzhu Lu
- Department of Radiation Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, People’s Republic of China
| | - Yuanji Xu
- Department of Radiation Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, People’s Republic of China
| | - Shaojun Lin
- Department of Radiation Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, People’s Republic of China
| | - Jingfeng Zong
- Department of Radiation Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, People’s Republic of China
- Corresponding author: Jianji Pan and Jingfeng Zong, Department of Radiation Oncology, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital No. 420 Fuma Road, Fuzhou 350014, People’s Republic of China. ;
| | - Jianji Pan
- Department of Radiation Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, People’s Republic of China
- Corresponding author: Jianji Pan and Jingfeng Zong, Department of Radiation Oncology, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital No. 420 Fuma Road, Fuzhou 350014, People’s Republic of China. ;
| |
Collapse
|
11
|
Valverde A, Seal A, Nares S, Shukla D, Naqvi AR. Human herpesvirus-encoded MicroRNA in host-pathogen interaction. Adv Biol Regul 2021; 82:100829. [PMID: 34560402 PMCID: PMC11646283 DOI: 10.1016/j.jbior.2021.100829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/28/2021] [Accepted: 09/13/2021] [Indexed: 11/17/2022]
Abstract
Human herpesviruses (HHV) are ubiquitous, linear dsDNA viruses that establish lifelong latency, disrupted by sporadic reactivation. HHV have evolved diverse ingenious mechanisms to evade robust host defenses. Incorporation of unique stem loop sequences that generate viral microRNAs (v-miRs) exemplifies one such evolutionary adaptation in HHV. These noncoding RNAs can control cellular and viral transcriptomes highlighting their ability in shaping host-HHV interactions. We summarize recent developments in functional characterization of HHV-encoded miRNAs in shaping the outcome of host-pathogen interaction. Non-immunogenic dissemination of v-miRs through exosomes confer added advantage to HHV in incessant modulation of host microenvironment. This review delineates the mechanistic role of v-miRs in facilitating viral persistence and tropism by targeting genes associated with cellular (apoptosis, angiogenesis, cell migration, etc.) and viral life cycle (latency, lytic and reactivation). Burgeoning evidences indicate plausible association of v-miRs in various immune-mediated diseases (nasopharyngeal carcinoma, neurological disorders, periodontal diseases, etc.) and herpesvirus-related malignancies indicating their broad-spectrum impact on host cellular pathways. We propose to exploit tisssue and systemic levels of v-miRs as diagnostic and prognostic markers for cancers and immune-mediated diseases. Therapeutic targeting of v-miRs will advance the promising outcomes of preclinical discoveries to bedside application.
Collapse
Affiliation(s)
- Araceli Valverde
- Department of Periodontics, College of Dentistry, University of Illinois at Chicago, United States
| | - Alexandra Seal
- Department of Periodontics, College of Dentistry, University of Illinois at Chicago, United States
| | - Salvador Nares
- Department of Periodontics, College of Dentistry, University of Illinois at Chicago, United States
| | - Deepak Shukla
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL, United States; Department of Ophthalmology and Visual Sciences, University of Illinois Medical Center, Chicago, IL, United States
| | - Afsar Raza Naqvi
- Department of Periodontics, College of Dentistry, University of Illinois at Chicago, United States.
| |
Collapse
|
12
|
Paul S, Saikia M, Chakraborty S. Identification of novel microRNAs in Rous sarcoma Virus (RSV) and their target sites in tumor suppressor genes of chicken. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2021; 96:105139. [PMID: 34798320 DOI: 10.1016/j.meegid.2021.105139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 11/09/2021] [Indexed: 06/13/2023]
Abstract
A small non-coding, evolutionarily conserved regulatory RNA molecule known as microRNA (miRNA) regulates various cellular activities and pathways. MicroRNAs remain evolutionarily conserved in different species of same taxa. They are present in all organisms including viruses. Viral miRNAs are small, less conserved and less stable and have higher negative minimal folding free energy than miRNAs of different organisms. The size of viral precursor miRNA is approximately 60-119 nucleotides in length. The structure of the mature miRNA sequences is predicted by using higher negative MFE (ΔG) value. Rous sarcoma Virus (RSV), named after its inventor Peyton Rous, has been known for causing tumors in the chicken for which it is known as an oncogenic retrovirus. Using specific criteria we have predicted 5 potential miRNAs in RSV which targeted 8 tumor suppressor genes in Gallus gallus. This study aims to predict the potential miRNAs, secondary structures and their targets for better understanding of the regulatory network of Rous sarcoma virus miRNA in forming sarcoma.
Collapse
Affiliation(s)
- Sunanda Paul
- Department of Biotechnology, Assam University, Silchar 788011, Assam, India
| | - Momi Saikia
- Department of Biotechnology, Assam University, Silchar 788011, Assam, India
| | - Supriyo Chakraborty
- Department of Biotechnology, Assam University, Silchar 788011, Assam, India.
| |
Collapse
|
13
|
Zhu QY, Zhao GX, Li Y, Talakatta G, Mai HQ, Le QT, Young LS, Zeng MS. Advances in pathogenesis and precision medicine for nasopharyngeal carcinoma. MedComm (Beijing) 2021; 2:175-206. [PMID: 34766141 PMCID: PMC8491203 DOI: 10.1002/mco2.32] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 12/13/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a squamous carcinoma with apparent geographical and racial distribution, mostly prevalent in East and Southeast Asia, particularly concentrated in southern China. The epidemiological trend over the past decades has suggested a substantial reduction in the incidence rate and mortality rate due to NPC. These results may reflect changes in lifestyle and environment, and more importantly, a deeper comprehension of the pathogenic mechanism of NPC, leading to much progress in the preventing, screening, and treating for this cancer. Herein, we present the recent advances on the key signal pathways involved in pathogenesis of NPC, the mechanism of Epstein‐Barr virus (EBV) entry into the cell, and the progress of EBV vaccine and screening biomarkers. We will also discuss in depth the development of various therapeutic approaches including radiotherapy, chemotherapy, surgery, targeted therapy, and immunotherapy. These research advancements have led to a new era of precision medicine in NPC.
Collapse
Affiliation(s)
- Qian-Ying Zhu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy Sun Yat-sen University Cancer Center (SYSUCC) Guangzhou China
| | - Ge-Xin Zhao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy Sun Yat-sen University Cancer Center (SYSUCC) Guangzhou China
| | - Yan Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy Sun Yat-sen University Cancer Center (SYSUCC) Guangzhou China
| | - Girish Talakatta
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy Sun Yat-sen University Cancer Center (SYSUCC) Guangzhou China
| | - Hai-Qiang Mai
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy Sun Yat-sen University Cancer Center (SYSUCC) Guangzhou China
| | - Quynh-Thu Le
- Department of Radiation Oncology Stanford California
| | - Lawrence S Young
- Warwick Medical School University of Warwick Coventry United Kingdom
| | - Mu-Sheng Zeng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy Sun Yat-sen University Cancer Center (SYSUCC) Guangzhou China
| |
Collapse
|
14
|
Ungerleider N, Bullard W, Kara M, Wang X, Roberts C, Renne R, Tibbetts S, Flemington EK. EBV miRNAs are potent effectors of tumor cell transcriptome remodeling in promoting immune escape. PLoS Pathog 2021; 17:e1009217. [PMID: 33956915 PMCID: PMC8130916 DOI: 10.1371/journal.ppat.1009217] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 05/18/2021] [Accepted: 04/15/2021] [Indexed: 12/11/2022] Open
Abstract
The Epstein Barr virus (EBV) contributes to the tumor phenotype through a limited set of primarily non-coding viral RNAs, including 31 mature miRNAs. Here we investigated the impact of EBV miRNAs on remodeling the tumor cell transcriptome. Strikingly, EBV miRNAs displayed exceptionally abundant expression in primary EBV-associated Burkitt’s Lymphomas (BLs) and Gastric Carcinomas (GCs). To investigate viral miRNA targeting, we used the high-resolution approach, CLASH in GC and BL cell models. Affinity constant calculations of targeting efficacies for CLASH hits showed that viral miRNAs bind their targets more effectively than their host counterparts, as did Kaposi’s sarcoma-associated herpesvirus (KSHV) and murine gammaherpesvirus 68 (MHV68) miRNAs. Using public BL and GC RNA-seq datasets, we found that high EBV miRNA targeting efficacies translates to enhanced reduction of target expression. Pathway analysis of high efficacy EBV miRNA targets showed enrichment for innate and adaptive immune responses. Inhibition of the immune response by EBV miRNAs was functionally validated in vivo through the finding of inverse correlations between EBV miRNAs and immune cell infiltration and T-cell diversity in BL and GC datasets. Together, this study demonstrates that EBV miRNAs are potent effectors of the tumor transcriptome that play a role in suppressing host immune response. Burkitt’s Lymphoma and gastric cancer are both associated with EBV, a prolific DNA tumor virus that latently resides in nearly all human beings. Despite mostly restricting viral gene expression to noncoding RNAs, EBV has important influences on the fitness of infected tumor cells. Here, we show that the miRNA class of viral noncoding RNAs are a major viral contributor to remodeling the tumor cell regulatory machinery in patient tumor samples. First, an assessment of miRNA expression in clinical tumor samples showed that EBV miRNAs are expressed at unexpectedly high levels relative to cell miRNAs. Using a highly specific miRNA target identification approach, CLASH, we comprehensively identified both viral and cellular miRNA targets and the relative abundance of each miRNA-mRNA interaction. We also show that viral miRNAs bind to and alter the expression of their mRNA targets more effectively than their cellular miRNA counterparts. Pathway analysis of the most effectively targeted mRNAs revealed enrichment of immune signaling pathways and we show a corresponding inverse correlation between EBV miRNA expression and infiltrating immune cells in EBV positive primary tumors. Altogether, this study shows that EBV miRNAs are key regulators of the tumor cell phenotype and the immune cell microenvironment.
Collapse
Affiliation(s)
- Nathan Ungerleider
- Department of Pathology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, Louisiana, United States of America
| | - Whitney Bullard
- Department of Molecular Genetics and Microbiology, UF Health Cancer Center, University of Florida, Gainesville, Florida, United States of America
| | - Mehmet Kara
- Department of Molecular Genetics and Microbiology, UF Health Cancer Center, University of Florida, Gainesville, Florida, United States of America
| | - Xia Wang
- Department of Pathology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, Louisiana, United States of America
| | - Claire Roberts
- Department of Pathology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, Louisiana, United States of America
| | - Rolf Renne
- Department of Molecular Genetics and Microbiology, UF Health Cancer Center, University of Florida, Gainesville, Florida, United States of America
| | - Scott Tibbetts
- Department of Molecular Genetics and Microbiology, UF Health Cancer Center, University of Florida, Gainesville, Florida, United States of America
- * E-mail: (ST); (EKF)
| | - Erik K. Flemington
- Department of Pathology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, Louisiana, United States of America
- * E-mail: (ST); (EKF)
| |
Collapse
|
15
|
Ungerleider N, Bullard W, Kara M, Wang X, Roberts C, Renne R, Tibbetts S, Flemington EK. EBV miRNAs are potent effectors of tumor cell transcriptome remodeling in promoting immune escape. PLoS Pathog 2021; 17:e1009217. [PMID: 33956915 DOI: 10.1101/2020.12.21.423766] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 05/18/2021] [Accepted: 04/15/2021] [Indexed: 05/21/2023] Open
Abstract
The Epstein Barr virus (EBV) contributes to the tumor phenotype through a limited set of primarily non-coding viral RNAs, including 31 mature miRNAs. Here we investigated the impact of EBV miRNAs on remodeling the tumor cell transcriptome. Strikingly, EBV miRNAs displayed exceptionally abundant expression in primary EBV-associated Burkitt's Lymphomas (BLs) and Gastric Carcinomas (GCs). To investigate viral miRNA targeting, we used the high-resolution approach, CLASH in GC and BL cell models. Affinity constant calculations of targeting efficacies for CLASH hits showed that viral miRNAs bind their targets more effectively than their host counterparts, as did Kaposi's sarcoma-associated herpesvirus (KSHV) and murine gammaherpesvirus 68 (MHV68) miRNAs. Using public BL and GC RNA-seq datasets, we found that high EBV miRNA targeting efficacies translates to enhanced reduction of target expression. Pathway analysis of high efficacy EBV miRNA targets showed enrichment for innate and adaptive immune responses. Inhibition of the immune response by EBV miRNAs was functionally validated in vivo through the finding of inverse correlations between EBV miRNAs and immune cell infiltration and T-cell diversity in BL and GC datasets. Together, this study demonstrates that EBV miRNAs are potent effectors of the tumor transcriptome that play a role in suppressing host immune response.
Collapse
Affiliation(s)
- Nathan Ungerleider
- Department of Pathology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, Louisiana, United States of America
| | - Whitney Bullard
- Department of Molecular Genetics and Microbiology, UF Health Cancer Center, University of Florida, Gainesville, Florida, United States of America
| | - Mehmet Kara
- Department of Molecular Genetics and Microbiology, UF Health Cancer Center, University of Florida, Gainesville, Florida, United States of America
| | - Xia Wang
- Department of Pathology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, Louisiana, United States of America
| | - Claire Roberts
- Department of Pathology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, Louisiana, United States of America
| | - Rolf Renne
- Department of Molecular Genetics and Microbiology, UF Health Cancer Center, University of Florida, Gainesville, Florida, United States of America
| | - Scott Tibbetts
- Department of Molecular Genetics and Microbiology, UF Health Cancer Center, University of Florida, Gainesville, Florida, United States of America
| | - Erik K Flemington
- Department of Pathology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, Louisiana, United States of America
| |
Collapse
|
16
|
Prinz C, Mese K, Weber D. MicroRNA Changes in Gastric Carcinogenesis: Differential Dysregulation during Helicobacter pylori and EBV Infection. Genes (Basel) 2021; 12:genes12040597. [PMID: 33921696 PMCID: PMC8073778 DOI: 10.3390/genes12040597] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/05/2021] [Accepted: 04/14/2021] [Indexed: 12/11/2022] Open
Abstract
Despite medical advances, gastric-cancer (GC) mortality remains high in Europe. Bacterial infection with Helicobacter pylori (H. pylori) and viral infection with the Epstein–Barr virus (EBV) are associated with the development of both distal and proximal gastric cancer. Therefore, the detection of these infections and the prediction of further cancer development could be clinically significant. To this end, microRNAs (miRNAs) could serve as promising new tools. MiRNAs are highly conserved noncoding RNAs that play an important role in gene silencing, mainly acting via translational repression and the degradation of mRNA targets. Recent reports demonstrate the downregulation of numerous miRNAs in GC, especially miR-22, miR-145, miR-206, miR-375, and miR-490, and these changes seem to promote cancer-cell invasion and tumor spreading. The dysregulation of miR-106b, miR-146a, miR-155, and the Let-7b/c complex seems to be of particular importance during H. pylori infection or gastric carcinogenesis. In contrast, many reports describe changes in host miRNA expression and outline the effects of bamHI-A region rightward transcript (BART) miRNA in EBV-infected tissue. The differential regulation of these miRNA, acting alone or in close interaction when both infections coexist, may therefore enable us to detect cancer earlier. In this review, we focus on the two different etiologies of gastric cancer and outline the molecular pathways through which H. pylori- or EBV-induced changes might synergistically act via miR-155 dysregulation to potentiate cancer risk. The three markers, namely, H. pylori presence, EBV infection, and miR-155 expression, may be checked in routine biopsies to evaluate the risk of developing gastric cancer.
Collapse
Affiliation(s)
- Christian Prinz
- Medizinische Klinik 2, Helios Universitätsklinikum Wuppertal, 42283 Wuppertal, Germany;
- Lehrstuhl Innere Medizin 1, University of Witten/Herdecke gGmbH, 42283 Wuppertal, Germany;
- Correspondence: ; Tel.: +49-202-896-2243; Fax: +49-202-896-2740
| | - Kemal Mese
- Lehrstuhl Innere Medizin 1, University of Witten/Herdecke gGmbH, 42283 Wuppertal, Germany;
- Institute of Virology, University of Göttingen, 37075 Göttingen, Germany
| | - David Weber
- Medizinische Klinik 2, Helios Universitätsklinikum Wuppertal, 42283 Wuppertal, Germany;
- Lehrstuhl Innere Medizin 1, University of Witten/Herdecke gGmbH, 42283 Wuppertal, Germany;
| |
Collapse
|
17
|
Meng H, Wang S, Yang W, Ding X, Li N, Chu Z, Li X. Identification of virulence associated milRNAs and their bidirectional targets in Rhizoctonia solani and maize during infection. BMC PLANT BIOLOGY 2021; 21:155. [PMID: 33771101 PMCID: PMC8004440 DOI: 10.1186/s12870-021-02930-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 03/10/2021] [Indexed: 05/06/2023]
Abstract
BACKGROUND Anastomosis group 1 IA (AG1-IA) of Rhizoctonia solani is the major agent of banded leaf and sheath blight (BLSB) disease that causes severe yield loss in many worldwide crops. MicroRNAs (miRNAs) are ~ 22 nt non-coding RNAs that negatively regulate gene expression levels by mRNA degradation or translation inhibition. A better understanding of miRNA function during AG1-IA infection can expedite to elucidate the molecular mechanisms of fungi-host interactions. RESULTS In this study, we sequenced three small RNA libraries obtained from the mycelium of AG1-IA isolate, non-infected maize sheath and mixed maize sheath 3 days after inoculation. In total, 137 conserved and 34 novel microRNA-like small RNAs (milRNAs) were identified from the pathogen. Among these, one novel and 17 conserved milRNAs were identified as potential virulence-associated (VA) milRNAs. Subsequently, the prediction of target genes for these milRNAs was performed in both AG1-IA and maize, while functional annotation of these targets suggested a link to pathogenesis-related biological processes. Further, expression patterns of these virulence-associated milRNAs demonstrated that theyparticipate in the virulence of AG1-IA. Finally, regulation of one maize targeting gene, GRMZM2G412674 for Rhi-milRNA-9829-5p, was validated by dual-luciferase assay and identified to play a positive role in BLSB resistance in two maize mutants. These results suggest the global differentially expressed milRNAs of R. solani AG1-IA that participate in the regulation of target genes in both AG1-IA and maize to reinforce its pathogenicity. CONCLUSIONS Our data have provided a comprehensive overview of the VA-milRNAs of R. solani and identified that they are probably the virulence factors by directly interfered in host targeting genes. These results offer new insights on the molecular mechanisms of R.solani-maize interactions during the process of infection.
Collapse
Affiliation(s)
- Hongxu Meng
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China
| | - Shaoli Wang
- Yantai Academy of Agricultural Sciences, Yan'tai, 265500, Shandong, People's Republic of China
| | - Wei Yang
- Key Laboratory of Quality Improvement of Agricultural Products of Zhejiang Province, School of Agriculture and Food Science, Zhejiang A&F University, Lin'an, Hangzhou, 311300, Zhejiang, China
| | - Xinhua Ding
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China
| | - Ning Li
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China
| | - Zhaohui Chu
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China.
| | - Xiaoming Li
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China.
| |
Collapse
|
18
|
Bayda N, Tilloy V, Chaunavel A, Bahri R, Halabi MA, Feuillard J, Jaccard A, Ranger-Rogez S. Comprehensive Epstein-Barr Virus Transcriptome by RNA-Sequencing in Angioimmunoblastic T Cell Lymphoma (AITL) and Other Lymphomas. Cancers (Basel) 2021; 13:610. [PMID: 33557089 PMCID: PMC7913808 DOI: 10.3390/cancers13040610] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/24/2021] [Accepted: 01/28/2021] [Indexed: 12/16/2022] Open
Abstract
The Epstein-Barr virus (EBV) is associated with angioimmunoblastic T cell lymphoma (AITL) in more than 80% of cases. Few studies have focused on this association and it is not clear now what role the virus plays in this pathology. We used next-generation sequencing (NGS) to study EBV transcriptome in 14 AITLs compared to 21 other lymphoma samples and 11 cell lines including 4 lymphoblastoid cell lines (LCLs). Viral transcripts were recovered using capture probes and sequencing was performed on Illumina. Bam-HI A rightward transcripts (BARTs) were the most latency transcripts expressed in AITLs, suggesting they may play a role in this pathology. Thus, BARTs, already described as highly expressed in carcinoma cells, are also very present in AITLs and other lymphomas. They were poorly expressed in cell lines other than LCLs. AITLs showed a latency IIc, with BNLF2a gene expression. For most AITLs, BCRF1, which encodes a homologous protein of human interleukin 10, vIL-10, was in addition expressed. This co-expression can contribute to immune escape and survival of infected cells. Considering these results, it can be assumed that EBV plays a pathogenic role in AITLs.
Collapse
Affiliation(s)
- Nader Bayda
- Microbiology Department, UMR CNRS 7276, INSERM U1262, Faculty of Pharmacy, 87025 Limoges, France; (N.B.); (R.B.); (M.A.H.)
- Department of Infectious Disease Control, Faculty of Public Health, Jinan University, Tripoli 1300, Lebanon
| | - Valentin Tilloy
- National Reference Center for Herpesviruses, Bioinformatics, Centre de Biologie Recherche et Santé, 87000 Limoges, France;
| | - Alain Chaunavel
- Pathology Department, Centre de Biologie Recherche et Santé, 87000 Limoges, France;
| | - Racha Bahri
- Microbiology Department, UMR CNRS 7276, INSERM U1262, Faculty of Pharmacy, 87025 Limoges, France; (N.B.); (R.B.); (M.A.H.)
| | - Mohamad Adnan Halabi
- Microbiology Department, UMR CNRS 7276, INSERM U1262, Faculty of Pharmacy, 87025 Limoges, France; (N.B.); (R.B.); (M.A.H.)
| | - Jean Feuillard
- Biological Hematology Department, UMR CNRS 7276, INSERM U1262, Centre de Biologie Recherche et Santé, 87000 Limoges, France;
| | - Arnaud Jaccard
- Clinical Hematology Department, UMR CNRS 7276, INSERM U1262, University Hospital Dupuytren, 87042 Limoges, France;
| | - Sylvie Ranger-Rogez
- Microbiology Department, UMR CNRS 7276, INSERM U1262, Faculty of Pharmacy, 87025 Limoges, France; (N.B.); (R.B.); (M.A.H.)
- Virology Department, UMR CNRS 7276, INSERM U1262, Centre de Biologie Recherche et Santé, 87000 Limoges, France
| |
Collapse
|
19
|
Torres K, Landeros N, Wichmann IA, Polakovicova I, Aguayo F, Corvalan AH. EBV miR-BARTs and human lncRNAs: Shifting the balance in competing endogenous RNA networks in EBV-associated gastric cancer. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166049. [PMID: 33401001 DOI: 10.1016/j.bbadis.2020.166049] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 12/04/2020] [Accepted: 12/14/2020] [Indexed: 02/06/2023]
Abstract
Non-coding RNAs (ncRNAs) contribute to the regulation of gene expression. By acting as competing endogenous RNA (ceRNA), long non-coding RNAs (lncRNAs) hijack microRNAs (miRNAs) and inhibit their ability to bind their coding targets. Viral miRNAs can compete with and target the same transcripts as human miRNAs, shifting the balance in networks associated with multiple cellular processes and diseases. Epstein-Barr virus (EBV) is an example of how a subset of viral coding RNA and non-coding RNAs can cause deregulation of human transcripts and contribute to the development of EBV-associated malignancies. EBV non-coding transforming genes include lncRNAs (i.e circular RNAs), and small ncRNAs (i.e. miRNAs). Among the latter, most ongoing research has focused on miR-BARTs whereas target many genes associated with apoptosis and epithelial-mesenchymal transition, in EBV-associated gastric cancer (GC). In this review, we propose to include the interactions between EBV ncRNAs human transcripts in the hypothesis known as "competitive viral and host RNAs". These interactions may shift the balance in biological pathways such as apoptosis and epithelial-mesenchymal transition in EBV-associated gastric cancer.
Collapse
Affiliation(s)
- Keila Torres
- Advanced Center for Chronic Diseases, Pontificia Universidad Católica de Chile, Santiago, Chile; UC Center for Investigational Oncology, Pontificia Universidad Católica de Chile, Santiago, Chile; Department of Hematology-Oncology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Natalia Landeros
- Advanced Center for Chronic Diseases, Pontificia Universidad Católica de Chile, Santiago, Chile; UC Center for Investigational Oncology, Pontificia Universidad Católica de Chile, Santiago, Chile; Department of Hematology-Oncology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ignacio A Wichmann
- Advanced Center for Chronic Diseases, Pontificia Universidad Católica de Chile, Santiago, Chile; UC Center for Investigational Oncology, Pontificia Universidad Católica de Chile, Santiago, Chile; Department of Hematology-Oncology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Iva Polakovicova
- Advanced Center for Chronic Diseases, Pontificia Universidad Católica de Chile, Santiago, Chile; UC Center for Investigational Oncology, Pontificia Universidad Católica de Chile, Santiago, Chile; Department of Hematology-Oncology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Francisco Aguayo
- Advanced Center for Chronic Diseases, Universidad de Chile, Santiago, Chile; Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Alejandro H Corvalan
- Advanced Center for Chronic Diseases, Pontificia Universidad Católica de Chile, Santiago, Chile; UC Center for Investigational Oncology, Pontificia Universidad Católica de Chile, Santiago, Chile; Department of Hematology-Oncology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
20
|
Wang G, Li M, Zhang C, Zhan N, Cheng H, Gao Y, Sun C, Deng W, Li T. Identification of microRNA-like RNAs in Cordyceps guangdongensis and their expression profile under differential developmental stages. Fungal Genet Biol 2020; 147:103505. [PMID: 33347973 DOI: 10.1016/j.fgb.2020.103505] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 12/10/2020] [Accepted: 12/12/2020] [Indexed: 12/14/2022]
Abstract
Cordyceps guangdongensis is a well-known fungus with high nutritional and medicinal value. The metabolite profile of C. guangdongensis is similar to that of Ophiocordyceps sinensis. In plants and animals, microRNAs play important roles in regulating gene expression at the post-transcriptional level. MicroRNA-like RNAs (milRNAs) have been documented in several macro-fungi. To comprehensively investigate the milRNAs in C. guangdongensis, three small RNA libraries from the differentially developmental stages were constructed. Twenty-six conserved milRNAs were identified, and 19 novel milRNA candidates were predicted. Among them, 20 milRNAs were differentially expressed across the developmental processes, and 12 milRNAs were verified using stem-loop quantitative real-time reverse transcription polymerase chain reaction. In addition, the potential target genes of milRNA were predicted to be involved in the development of fruiting bodies and metabolite biosynthesis. This study is the first to report the milRNAs of C. guangdongensis, and provides important insights into studies of milRNA regulation pathways in ascomycete fungi.
Collapse
Affiliation(s)
- Gangzheng Wang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Min Li
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; College of Agriculture and Animal Husbandry, Tibet University, Nyingchi 860000, China
| | - Chenghua Zhang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Ning Zhan
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Huijiao Cheng
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; South China Agricultural University, Guangzhou 510642, China
| | - Yu Gao
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Chengyuan Sun
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; South China Agricultural University, Guangzhou 510642, China
| | - Wangqiu Deng
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China.
| | - Taihui Li
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China.
| |
Collapse
|
21
|
Chan AP, Choi Y, Schork NJ. Conserved Genomic Terminals of SARS-CoV-2 as Coevolving Functional Elements and Potential Therapeutic Targets. mSphere 2020; 5:e00754-20. [PMID: 33239366 PMCID: PMC7690956 DOI: 10.1128/msphere.00754-20] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 11/05/2020] [Indexed: 12/14/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has infected over 40 million people worldwide, with over 1 million deaths as of October 2020 and with multiple efforts in the development and testing of antiviral drugs and vaccines under way. In order to gain insights into SARS-CoV-2 evolution and drug targets, we investigated how and to what extent the SARS-CoV-2 genome sequence differs from those of other well-characterized human and animal coronavirus genomes, as well as how polymorphic SARS-CoV-2 genomes are generally. We ultimately sought to identify features in the SARS-CoV-2 genome that may contribute to its viral replication, host pathogenicity, and vulnerabilities. Our analyses suggest the presence of unique sequence signatures in the 3' untranslated region (3'-UTR) of betacoronavirus lineage B, which phylogenetically encompasses SARS-CoV-2 and SARS-CoV as well as multiple groups of bat and animal coronaviruses. In addition, we identified genome-wide patterns of variation across different SARS-CoV-2 strains that likely reflect the effects of selection. Finally, we provide evidence for a possible host-microRNA-mediated interaction between the 3'-UTR and human microRNA hsa-miR-1307-3p based on the results of multiple computational target prediction analyses and an assessment of similar interactions involving the influenza A H1N1 virus. This interaction also suggests a possible survival mechanism, whereby a mutation in the SARS-CoV-2 3'-UTR leads to a weakened host immune response. The potential roles of host microRNAs in SARS-CoV-2 replication and infection and the exploitation of conserved features in the 3'-UTR as therapeutic targets warrant further investigation.IMPORTANCE The coronavirus disease 2019 (COVID-19) outbreak is having a dramatic global effect on public health and the economy. As of October 2020, SARS-CoV-2 has been detected in over 189 countries, has infected over 40 million people, and is responsible for more than 1 million deaths. The genome of SARS-CoV-2 is small but complex, and its functions and interactions with human host factors are being studied extensively. The significance of our study is that, using extensive SARS-CoV-2 genome analysis techniques, we identified potential interacting human host microRNA targets that share similarity with those of influenza A virus H1N1. Our study results will allow the development of virus-host interaction models that will enhance our understanding of SARS-CoV-2 pathogenesis and motivate the exploitation of both the interacting viral and host factors as therapeutic targets.
Collapse
Affiliation(s)
- Agnes P Chan
- The Translational Genomics Research Institute (TGen), Phoenix, Arizona, USA
| | - Yongwook Choi
- The Translational Genomics Research Institute (TGen), Phoenix, Arizona, USA
| | - Nicholas J Schork
- The Translational Genomics Research Institute (TGen), Phoenix, Arizona, USA
- Department of Population Sciences, The City of Hope National Medical Center, Duarte, California, USA
- Department of Molecular and Cell Biology, The City of Hope National Medical Center, Duarte, California, USA
| |
Collapse
|
22
|
Wang H, Liu W, Luo B. The roles of miRNAs and lncRNAs in Epstein-Barr virus associated epithelial cell tumors. Virus Res 2020; 291:198217. [PMID: 33137402 DOI: 10.1016/j.virusres.2020.198217] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 10/24/2020] [Accepted: 10/26/2020] [Indexed: 12/12/2022]
Abstract
Epstein-Barr virus (EBV) infection is highly prevalent in the population and is known to be associated with a variety of human tumors, such as nasopharyngeal carcinoma, gastric cancer, and lymphoma; however, the mechanisms of EBV carcinogenesis remain unclear. Recent studies have revealed that many non-coding RNAs participate in the regulation of proliferation, migration, invasion, and other processes in EBV-associated tumor, and the interaction between ncRNAs and the potential target genes has gradually become a research hotspot. Therefore, here, we discuss the expression and roles of ncRNAs in EBV-associated epithelial tumors.
Collapse
Affiliation(s)
- Hanqing Wang
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Shandong, 266021, China.
| | - Wen Liu
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Shandong, 266021, China.
| | - Bing Luo
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Shandong, 266021, China.
| |
Collapse
|
23
|
Lung RWM, Tong JHM, Ip LM, Lam KH, Chan AWH, Chak WP, Chung LY, Yeung WW, Hau PM, Chau SL, Tsao SW, Lau KM, Lo KW, To KF. EBV-encoded miRNAs can sensitize nasopharyngeal carcinoma to chemotherapeutic drugs by targeting BRCA1. J Cell Mol Med 2020; 24:13523-13535. [PMID: 33074587 PMCID: PMC7701581 DOI: 10.1111/jcmm.16007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 09/24/2020] [Accepted: 09/29/2020] [Indexed: 12/14/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is an Epstein‐Barr virus (EBV)‐associated epithelial malignancy. The high expression of BART‐miRNAs (miR‐BARTs) during latent EBV infection in NPC strongly supports their pathological importance in cancer progression. Recently, we found that several BART‐miRNAs work co‐operatively to modulate the DNA damage response (DDR) by reducing Ataxia‐telangiectasia‐mutated (ATM) activity. In this study, we further investigated the role of miR‐BARTs on DDR. The immunohistochemical study showed that the DNA repair gene, BRCA1, is consistently down‐regulated in primary NPCs. Using computer prediction programs and a series of reporter assays, we subsequently identified the negative regulatory role of BART2‐3p, BART12, BART17‐5p and BART19‐3p in BRCA1 expression. The ectopic expression of these four miR‐BARTs suppressed endogenous BRCA1 expression in EBV‐negative epithelial cell lines, whereas BRCA1 expression was enhanced by repressing endogenous miR‐BARTs activities in C666‐1 cells. More importantly, suppressing BRCA1 expression in nasopharyngeal epithelial cell lines using miR‐BART17‐5p and miR‐BART19‐3p mimics reduced the DNA repair capability and increased the cell sensitivity to the DNA‐damaging chemotherapeutic drugs, cisplatin and doxorubicin. Our findings suggest that miR‐BARTs play a novel role in DDR and may facilitate the development of effective NPC therapies.
Collapse
Affiliation(s)
- Raymond Wai-Ming Lung
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Joanna Hung-Man Tong
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Lok-Man Ip
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Ka-Hei Lam
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Anthony Wing-Hung Chan
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Wing-Po Chak
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Lau-Ying Chung
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Walter Wai Yeung
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Pok-Man Hau
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Shuk-Ling Chau
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Sai-Wah Tsao
- Department of Biomedical Sciences and Center of Nasopharyngeal Carcinoma Research, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, China
| | - Kin-Mang Lau
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Kwok-Wai Lo
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Ka-Fai To
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China.,Institute of Digestive Disease, Partner State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
24
|
Dai W, Chung DLS, Chow LKY, Yu VZ, Lei LC, Leong MML, Chan CKC, Ko JMY, Lung ML. Clinical Outcome-Related Mutational Signatures Identified by Integrative Genomic Analysis in Nasopharyngeal Carcinoma. Clin Cancer Res 2020; 26:6494-6504. [PMID: 32988965 DOI: 10.1158/1078-0432.ccr-20-2854] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/04/2020] [Accepted: 09/23/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE Investigation of biological mechanisms underlying genetic alterations in cancer can assist the understanding of etiology and identify the potential prognostic biomarkers. EXPERIMENTAL DESIGN We performed an integrative genomic analysis for a total of 731 nasopharyngeal carcinoma cases from five independent nasopharyngeal carcinoma cohorts to identify the genetic events associated with clinical outcomes. RESULTS In addition to the known mutational signatures associated with aging, APOBEC and mismatch repair (MMR), a new signature for homologous recombination deficiency (BRCAness) was discovered in 64 of 216 (29.6%) cases in the discovery set including three cohorts. This signature appeared more frequently in the recurrent and metastatic tumors and significantly correlated with shorter overall survival (OS) in the primary tumors. Independent prognostic value of MMR and BRCAness signatures was revealed by multivariable Cox analysis after adjustment for clinical parameters and stratification by studies. The cases with both signatures had much worse clinical outcome than those without these signatures [hazard ratio (HR), 12.4; P = 0.002]. This correlation was confirmed in the validation set (HR, 8.9; P = 0.003). The BRCAness signature is highly associated with BRCA2 pathogenic germline or somatic alterations (7.8% vs. 0%; P = 0.002). Targeted sequencing results from a prospective nasopharyngeal carcinoma cohort (N = 402) showed that the cases carrying BRCA2 germline rare variants are more likely to have poor OS and progression-free survival. CONCLUSIONS Our study highlights importance of defects of DNA repair machinery in nasopharyngeal carcinoma pathogenesis and their prognostic values for clinical implications. These signatures will be useful for patient stratification to evaluate conventional and new treatment for precision medicine in nasopharyngeal carcinoma.
Collapse
Affiliation(s)
- Wei Dai
- Department of Clinical Oncology, University of Hong Kong, Pokfulam, Hong Kong (SAR), P. R. China. .,University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, P. R. China
| | - Dittman Lai-Shun Chung
- Department of Clinical Oncology, University of Hong Kong, Pokfulam, Hong Kong (SAR), P. R. China
| | - Larry Ka-Yue Chow
- Department of Clinical Oncology, University of Hong Kong, Pokfulam, Hong Kong (SAR), P. R. China
| | - Valen Zhuoyou Yu
- Department of Clinical Oncology, University of Hong Kong, Pokfulam, Hong Kong (SAR), P. R. China
| | - Lisa Chan Lei
- Department of Clinical Oncology, University of Hong Kong, Pokfulam, Hong Kong (SAR), P. R. China
| | - Merrin Man-Long Leong
- Department of Clinical Oncology, University of Hong Kong, Pokfulam, Hong Kong (SAR), P. R. China
| | - Candy King-Chi Chan
- Department of Clinical Oncology, University of Hong Kong, Pokfulam, Hong Kong (SAR), P. R. China
| | - Josephine Mun-Yee Ko
- Department of Clinical Oncology, University of Hong Kong, Pokfulam, Hong Kong (SAR), P. R. China
| | - Maria Li Lung
- Department of Clinical Oncology, University of Hong Kong, Pokfulam, Hong Kong (SAR), P. R. China.
| |
Collapse
|
25
|
Chan AP, Choi Y, Schork NJ. Conserved Genomic Terminals of SARS-CoV-2 as Co-evolving Functional Elements and Potential Therapeutic Targets. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.07.06.190207. [PMID: 32676601 PMCID: PMC7359523 DOI: 10.1101/2020.07.06.190207] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
To identify features in the genome of the SARS-CoV-2 pathogen responsible for the COVID-19 pandemic that may contribute to its viral replication, host pathogenicity, and vulnerabilities, we investigated how and to what extent the SARS-CoV-2 genome sequence differs from other well-characterized human and animal coronavirus genomes. Our analyses suggest the presence of unique sequence signatures in the 3'-untranslated region (UTR) of betacoronavirus lineage B, which phylogenetically encompasses SARS-CoV-2, SARS-CoV, as well as multiple groups of bat and animal coronaviruses. In addition, we identified genome-wide patterns of variation across different SARS-CoV-2 strains that likely reflect the effects of selection. Finally, we provide evidence for a possible host microRNA-mediated interaction between the 3'-UTR and human microRNA hsa-miR-1307-3p based on predicted, yet extensive, complementary base-pairings and similar interactions involving the Influenza A H1N1 virus. This interaction also suggests a possible survival mechanism, whereby a mutation in the SARS-CoV-2 3'-UTR leads to a weakened host immune response. The potential roles of host microRNAs in SARS-CoV-2 replication and infection, and the exploitation of conserved features in the 3'-UTR as therapeutic targets warrant further investigation.
Collapse
Affiliation(s)
- Agnes. P. Chan
- The Translational Genomics Research Institute (TGen), Phoenix, AZ
| | - Yongwook Choi
- The Translational Genomics Research Institute (TGen), Phoenix, AZ
| | - Nicholas J. Schork
- The Translational Genomics Research Institute (TGen), Phoenix, AZ
- Departments of Population Sciences and Molecular and Cell Biology, The City of Hope National Medical Center, Duarte, CA
| |
Collapse
|
26
|
miRNAs: EBV Mechanism for Escaping Host's Immune Response and Supporting Tumorigenesis. Pathogens 2020; 9:pathogens9050353. [PMID: 32397085 PMCID: PMC7281681 DOI: 10.3390/pathogens9050353] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 04/25/2020] [Accepted: 05/04/2020] [Indexed: 12/18/2022] Open
Abstract
Epstein-Barr virus (EBV) or human herpesvirus 4 (HHV-4) is a ubiquitous human oncogenic virus, and the first human virus found to express microRNAs (miRNAs). Its genome contains two regions encoding more than 40 miRNAs that regulate expression of both viral and human genes. There are numerous evidences that EBV miRNAs impact immune response, affect antigen presentation and recognition, change T- and B-cell communication, drive antibody production during infection, and have a role in cell apoptosis. Moreover, the ability of EBV to induce B-cell transformation and take part in mechanisms of oncogenesis in humans is well known. Although EBV infection is associated with development of various diseases, the role of its miRNAs is still not understood. There is abundant data describing EBV miRNAs in nasopharyngeal carcinoma and several studies that have tried to evaluate their role in gastric carcinoma and lymphoma. This review aims to summarize so far known data about the role of EBV miRNAs in altered regulation of gene expression in human cells in EBV-associated diseases.
Collapse
|
27
|
EBV microRNA-BHRF1-2-5p targets the 3'UTR of immune checkpoint ligands PD-L1 and PD-L2. Blood 2020; 134:2261-2270. [PMID: 31856276 DOI: 10.1182/blood.2019000889] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 10/28/2019] [Indexed: 01/08/2023] Open
Abstract
Epstein-Barr virus-positive (EBV+) diffuse large B-cell lymphomas (DLBCLs) express high levels of programmed death ligand 1 (PD-L1) and PD-L2. MicroRNA (miR) regulation is an important mechanism for the fine-tuning of gene expression via 3'-untranslated region (3'UTR) targeting, and we have previously demonstrated strong EBV miR expression in EBV+ DLBCL. Whereas the EBV latent membrane protein-1 (LMP1) is known to induce PD-L1/L2, a potential counterregulatory role of EBV miR in the fine-tuning of PD-L1/L2 expression remains to be established. To examine this, a novel in vitro model of EBV+ DLBCL was developed, using the viral strain EBV WIL, which unlike common laboratory strains retains intact noncoding regions where several EBV miRs reside. This enabled interrogation of the relationship among EBV latency genes, cell of origin (COO), PD-L1, PD-L2, and EBV miRs. The model successfully recapitulated the full spectrum of B-cell differentiation, with 4 discrete COO phases: early and late germinal center B cells (GCBs) and early and late activated B cells (ABCs). Interestingly, PD-L1/L2 levels increased markedly during transition from late GCB to early ABC phase, after LMP1 upregulation. EBV miR-BamHI fragment H rightward open reading frame 1 (BHRF1)-2-5p clustered apart from other EBV miRs, rising during late GCB phase. Bioinformatic prediction, together with functional validation, confirmed EBV miR-BHRF1-2-5p bound to PD-L1 and PD-L2 3'UTRs to reduce PD-L1/L2 surface protein expression. Results indicate a novel mechanism by which EBV miR-BHRF1-2-5p plays a context-dependent counterregulatory role to fine-tune the expression of the LMP1-driven amplification of these inhibitory checkpoint ligands. Further identification of immune checkpoint-targeting miRs may enable potential novel RNA-based therapies to emerge.
Collapse
|
28
|
Moss LI, Tompkins VS, Moss WN. Differential expression analysis comparing EBV uninfected to infected human cell lines identifies induced non-micro small non-coding RNAs. Noncoding RNA Res 2020; 5:32-36. [PMID: 32154466 PMCID: PMC7052066 DOI: 10.1016/j.ncrna.2020.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 02/11/2020] [Accepted: 02/12/2020] [Indexed: 11/29/2022] Open
Abstract
Epstein–Barr virus (EBV) is a ubiquitous human herpes virus, which is implicated in cancer and various autoimmune diseases. This study profiles non-micro small non-coding RNA expression changes induced by latent EBV infection. Using small RNA-Seq, 346 non-micro small RNAs were identified as being significantly differentially expressed between EBV(+) BJAB-B1 and EBV(−) BJAB cell lines. Select small RNA expression changes were experimentally validated in the BJAB-B1 cell line as well as the EBV-infected Raji and Jijoye cell lines. This latter analysis recapitulated the previously identified induction of vault RNA1, while also finding novel evidence for the deregulation of several tRNAs and a snoRNA.
Collapse
Affiliation(s)
- Lumbini I Moss
- Roy J. Carver Department of Biophysics, Biochemistry and Molecular Biology, Iowa State University, Ames, IA, 50011, USA
| | - Van S Tompkins
- Roy J. Carver Department of Biophysics, Biochemistry and Molecular Biology, Iowa State University, Ames, IA, 50011, USA
| | - Walter N Moss
- Roy J. Carver Department of Biophysics, Biochemistry and Molecular Biology, Iowa State University, Ames, IA, 50011, USA
| |
Collapse
|
29
|
Shao J, Wang L, Liu Y, Qi Q, Wang B, Lu S, Liu C. Identification of milRNAs and their target genes in Ganoderma lucidum by high-throughput sequencing and degradome analysis. Fungal Genet Biol 2020; 136:103313. [DOI: 10.1016/j.fgb.2019.103313] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 08/09/2019] [Accepted: 11/15/2019] [Indexed: 12/15/2022]
|
30
|
Huang J, Qin Y, Yang C, Wan C, Dai X, Sun Y, Meng J, Lu Y, Li Y, Zhang Z, Wu B, Xu S, Jin H, Yang K. Downregulation of ABI2 expression by EBV-miR-BART13-3p induces epithelial-mesenchymal transition of nasopharyngeal carcinoma cells through upregulation of c-JUN/SLUG signaling. Aging (Albany NY) 2020; 12:340-358. [PMID: 31907338 PMCID: PMC6977665 DOI: 10.18632/aging.102618] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 12/05/2019] [Indexed: 12/14/2022]
Abstract
Existing evidence has shown that circulating Epstein-Barr virus (EBV)-miR-BART13-3p is highly expressed in plasma of nasopharyngeal carcinoma (NPC) patients, especially among patients with advanced diseases. However, the exact role that EBV-miR-BART13-3p plays in the development of NPC remains poorly understood. Here we show that up-regulated expression of EBV-miR-BART13-3p leads to increased capacity in migration and invasion of NPC cells in vitro and causes tumor metastasis in vivo. Furthermore, we find that EBV-miR-BART13-3p directly targets ABI2, known as a tumor suppressor and a cell migration inhibitor, drives epithelial-mesenchymal transition (EMT) by activating c-JUN/SLUG signaling pathway. Silencing ABI2 shows similar effects to overexpression of EBV-miR-BART13-3p, whereas reconstitution of ABI2 resulted in a phenotypic reversion, highlighting the role of ABI2 in EBV-miR-BART13-3p-driven metastasis in NPC. Besides, expression levels of ABI2 in NPC tissue samples correlate with N stages of NPC patients. Taken together, these results suggest a novel mechanism by which ABI2 downregulation by EBV-miR-BART13-3p promotes EMT and metastasis of NPC via upregulating c-JUN/SLUG signaling pathway.
Collapse
Affiliation(s)
- Jing Huang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - You Qin
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chensu Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chao Wan
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiaomeng Dai
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yajie Sun
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jingshu Meng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yanwei Lu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yan Li
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhanjie Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Bian Wu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shuangbing Xu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Honglin Jin
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Kunyu Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
31
|
Zhang X, Ye Y, Fu M, Zheng B, Qiu Q, Huang Z. Implication of viral microRNAs in the genesis and diagnosis of Epstein-Barr virus-associated tumors. Oncol Lett 2019; 18:3433-3442. [PMID: 31516561 PMCID: PMC6732978 DOI: 10.3892/ol.2019.10713] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 06/26/2019] [Indexed: 12/13/2022] Open
Abstract
The Epstein-Barr virus (EBV) is tightly associated with a variety of human tumors, including Burkitt lymphoma and acquired immune deficiency syndrome-related lymphoma of B-cell origin, as well as nasopharyngeal carcinoma and gastric cancer of epithelial origin. The virus latently infects the host cells and expresses proteins and non-coding RNAs to achieve malignancy. MicroRNAs (miRNAs or miRs) are small RNAs consisting of 19-25 nucleotides, which directly bind to the 3'-untranslated region of mRNAs to promote degradation and inhibit translation of mRNAs. EBV-encoded miRs are generated from two regions of the viral genome, within the apoptosis regulator BHRF1 gene locus and near the BamHI A region in a latency type-dependent manner. In addition, EBV-encoded miRs epigenetically regulate the expression of molecules that are effectors of the cell cycle progression, migration, apoptosis and innate immunity, serving a vital role in supporting viral replication and occurrence of EBV-associated tumors. The feasibility of using such miRs as biomarkers for the diagnosis and prognosis of EBV-associated tumors is currently under investigation.
Collapse
Affiliation(s)
- Xiangning Zhang
- Department of Pathophysiology, Chinese-American Collaborative Cancer Institute, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Yudong Ye
- Department of Otolaryngology, Dongguan City People's Hospital, Dongguan, Guangdong 523059, P.R. China
| | - Ming Fu
- Department of Otolaryngology, Dongguan City People's Hospital, Dongguan, Guangdong 523059, P.R. China
| | - Biying Zheng
- Department of Clinical Microbiology, College of Laboratory Medicine, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Qianhui Qiu
- Department of Otolaryngology, Pearl River Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Zunnan Huang
- Department of Pathophysiology, Chinese-American Collaborative Cancer Institute, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| |
Collapse
|
32
|
Wang W, Yin Y, Shan X, Zhou X, Liu P, Cao Q, Zhu D, Zhang J, Zhu W. The Value of Plasma-Based MicroRNAs as Diagnostic Biomarkers for Ovarian Cancer. Am J Med Sci 2019; 358:256-267. [DOI: 10.1016/j.amjms.2019.07.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 07/04/2019] [Accepted: 07/16/2019] [Indexed: 02/07/2023]
|
33
|
Tsang CM, Lui VWY, Bruce JP, Pugh TJ, Lo KW. Translational genomics of nasopharyngeal cancer. Semin Cancer Biol 2019; 61:84-100. [PMID: 31521748 DOI: 10.1016/j.semcancer.2019.09.006] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/11/2019] [Accepted: 09/11/2019] [Indexed: 12/26/2022]
Abstract
Nasopharyngeal carcinoma (NPC), also named the Cantonese cancer, is a unique cancer with strong etiological association with infection of the Epstein-Barr virus (EBV). With particularly high prevalence in Southeast Asia, the involvement of EBV and genetic aberrations contributive to NPC tumorigenesis have remained unclear for decades. Recently, genomic analysis of NPC has defined it as a genetically homogeneous cancer, driven largely by NF-κB signaling caused by either somatic aberrations of NF-κB negative regulators or by overexpression of the latent membrane protein 1 (LMP1), an EBV viral oncoprotein. This represents a landmark finding of the NPC genome. Exome and RNA sequencing data from new EBV-positive NPC models also highlight the importance of PI3K pathway aberrations in NPC. We also realize for the first time that NPC mutational burden, mutational signatures, MAPK/PI3K aberrations, and MHC Class I gene aberrations, are prognostic for patient outcome. Together, these multiple genomic discoveries begin to shape the focus of NPC therapy development. Given the challenge of NF-κB targeting in human cancers, more innovative drug discovery approaches should be explored to target the unique atypical NF-κB activation feature of NPC. Our next decade of NPC research should focus on further identification of the -omic landscapes of recurrent and metastatic NPC, development of gene-based precision medicines, as well as large-scale drug screening with the newly developed and well-characterized EBV-positive NPC models. Focused preclinical and clinical investigations on these major directions may identify new and effective targeting strategies to further improve survival of NPC patients.
Collapse
Affiliation(s)
- Chi Man Tsang
- Department of Anatomical and cellular Pathology and State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - Vivian Wai Yan Lui
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - Jeffrey P Bruce
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 1L7, Canada
| | - Trevor J Pugh
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 1L7, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, M5G 1L7, Canada; Ontario Institute for Cancer Research, Toronto, ON, M5G 1L7, Canada
| | - Kwok Wai Lo
- Department of Anatomical and cellular Pathology and State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong Special Administrative Region.
| |
Collapse
|
34
|
Identification of a novel antiviral micro-RNA targeting the NS1 protein of the H1N1 pandemic human influenza virus and a corresponding viral escape mutation. Antiviral Res 2019; 171:104593. [PMID: 31470040 DOI: 10.1016/j.antiviral.2019.104593] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 08/22/2019] [Accepted: 08/25/2019] [Indexed: 12/20/2022]
Abstract
The influenza A virus (IAV) NS1 protein is one of the major regulators of pathogenicity, being able to suppress innate immune response and host protein synthesis. In this study we identified the human micro RNA hsa-miR-1307-3p as a novel potent suppressor of NS1 expression and influenza virus replication. Transcriptomic analysis indicates that hsa-miR-1307-3p also negatively regulates apoptosis and promotes cell proliferation. In addition, we identified a novel mutation in the NS1 gene of A(H1N1)pdm09 strains circulating in Italy in the 2010-11 season, which enabled the virus to escape the hsa-miR-1307-3p inhibition, conferring replicative advantage to the virus in human cells. To the best of our knowledge, this is the first validation of suppression of IAV H1N1 NS1 by a human micro RNA and the first example of an escape mutation from micro RNA-mediated antiviral response for the A(H1N1)pdm09 virus.
Collapse
|
35
|
Zhou Y, Wang M, Shuang T, Liu Y, Zhang Y, Shi C. MiR-1307 influences the chemotherapeutic sensitivity in ovarian cancer cells through the regulation of the CIC transcriptional repressor. Pathol Res Pract 2019; 215:152606. [PMID: 31500928 DOI: 10.1016/j.prp.2019.152606] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 08/06/2019] [Accepted: 08/18/2019] [Indexed: 01/26/2023]
Abstract
BACKGROUND Extended from our previously observation that expression of miR-1307 in chemoresistant primary ovarian cancer tissues is elevated, here we are aiming to dissect the function of miR-1307 and its predicted target gene, CIC (capicua transcriptional repressor), in ovarian cancer chemotherapy. METHODS We evaluated the expression of miR-1307 and CIC in chemoresistant and chemosensitive ovarian cancer tissues and cells by real time-PCR and western blot. We used chemoresistant/chemosensitive cells with miR-1307 suppression/overexpression to study the biological effects of miR-1307 by MTT and flow cytometer. Dual luciferase reporter gene assay was used to validate direct binding between miR-1307 and the 3'-UTR of CIC. Real-time PCR and western blot analyses, MTT and flow cytometry were used to reveal the biological effects of miR-1307 and CIC, as well as their regulation. RESULTS We found that miR-1307 affects cell cycle dynamics, cell viability in ovarian cancer cells. In addition, its expression level can influence chemosensitivity to paclitaxel in ovarian cancer cells. We also validate that CIC is a downstream target of miR-1307 via its regulation on 3'-UTR of CIC gene and ETV4 and ETV5 are also regulated by miR-1307/CIC axis. CONCLUSIONS Our data suggested that miR-1307 may be involved in the resistance of ovarian cancer to chemotherapy drugs via regulation of CIC, and should be further explored as a potential therapeutic target.
Collapse
Affiliation(s)
- Yingying Zhou
- Department of Obstetrics/Gynecology, Shengjing Hospital, China Medical University, Shenyang, China
| | - Min Wang
- Department of Obstetrics/Gynecology, Shengjing Hospital, China Medical University, Shenyang, China.
| | - Ting Shuang
- Department of Obstetrics/Gynecology, Shengjing Hospital, China Medical University, Shenyang, China; Department of Obstetrics/Gynecology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shanxi, China
| | - Yisi Liu
- Department of Obstetrics/Gynecology, Shengjing Hospital, China Medical University, Shenyang, China; Cancer Hospital, China Medical University, Shenyang, China
| | - Yongqi Zhang
- Department of Obstetrics/Gynecology, Shengjing Hospital, China Medical University, Shenyang, China; Department of Obstetrics/Gynecology, Roicare Hospital & Clinics, Shenyang, China
| | - Cong Shi
- Department of Obstetrics/Gynecology, Shengjing Hospital, China Medical University, Shenyang, China; Women's and Children's Hospital, Shenyang, China
| |
Collapse
|
36
|
Rana MA, Ijaz B, Daud M, Tariq S, Nadeem T, Husnain T. Interplay of Wnt β-catenin pathway and miRNAs in HBV pathogenesis leading to HCC. Clin Res Hepatol Gastroenterol 2019; 43:373-386. [PMID: 30377095 DOI: 10.1016/j.clinre.2018.09.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 09/05/2018] [Accepted: 09/24/2018] [Indexed: 02/04/2023]
Abstract
The prevalence of Hepatocellular carcinoma (HCC) has been identified world-wide. Plethora of factors including chronic infection of HBV/HCV has been characterized for the development of HCC. Although the onset and progression of HCC has been linked with awry of various signaling pathways but precise mechanism, still lies under the multitude layers of curiosity. HBV is spreading with insane speed throughout the world and has been found a main culprit in HCC development after regulating the several cellular pathways including Wnt/β-catenin, Raf/MAPK, Akt and affecting cell multiplication to genomic instability. The role of Wnt/FZD/β-catenin signaling pathway is centralized in liver functions and its anomalous activation leads to HCC development. β-catenin mainly plays a pivotal role in canonical pathway of the system. Altered mainly overexpression of β-catenin along its nuclear localization tunes the aberrations in liver functions and set disease progression. In the development of HCC, modulation of Wnt/FZD/β-catenin signaling pathway by HBV has been established. As HBV infects the cell it affects the miRNAs, the master regulators of cell. Previous studies showed the connection between HBV and cellular miRNAs. In the present review, we unveiled how HBV is deciphering the cellular miRNAs like miR-26a, miR-15a, miR-16-1, miR-148a, miR-132, miR-122, miR-34a, miR-21, miR-29a, miR-222 and miR-199a/b-3p to modulate the Wnt/FZD/β-catenin signaling pathway and develop HCC. These HBV mediated miRNAs may prove future therapeutic options to treat HBV-Wnt/FZD/β-catenin associated HCC.
Collapse
Affiliation(s)
- Muhammad Adeel Rana
- Department of microbiology, Quaid-i-Azam University, Islamabad, Pakistan; Centre of Excellence in Molecular Biology, University of the Punjab, Lahore Pakistan
| | - Bushra Ijaz
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore Pakistan.
| | - Muhammad Daud
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore Pakistan
| | - Sommyya Tariq
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore Pakistan
| | - Tariq Nadeem
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore Pakistan
| | - Tayyab Husnain
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore Pakistan
| |
Collapse
|
37
|
Wang M, Gu B, Chen X, Wang Y, Li P, Wang K. The Function and Therapeutic Potential of Epstein-Barr Virus-Encoded MicroRNAs in Cancer. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 17:657-668. [PMID: 31400608 PMCID: PMC6698931 DOI: 10.1016/j.omtn.2019.07.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 05/14/2019] [Accepted: 07/06/2019] [Indexed: 02/06/2023]
Abstract
Epstein-Barr virus (EBV) is a ubiquitous human γ-herpesvirus that infects over 90% of the global population. EBV is considered a contributory factor in a variety of malignancies including nasopharyngeal carcinoma, gastric carcinoma, Burkitt lymphoma, and Hodgkin’s lymphoma. Notably, EBV was the first virus found to encode microRNAs (miRNAs). Increasing evidence indicates that EBV-encoded miRNAs contribute to the carcinogenesis and development of EBV-associated malignancies. EBV miRNAs have been shown to inhibit the expression of genes involved in cell proliferation, apoptosis, invasion, and immune signaling pathways. Therefore, EBV miRNAs perform a significant function in the complex host-virus interaction and EBV-driven carcinogenesis. However, the integrated mechanisms underlying the roles of EBV miRNAs in carcinogenesis remain to be further explored. In this review, we describe recent advances regarding the involvement of EBV miRNAs in the pathogenesis of EBV-associated malignancies and discuss their potential utility as cancer biomarkers. An in-depth investigation into the pro-carcinogenic role of EBV miRNAs will expand our knowledge of the biological processes associated with virus-driven tumors and contribute to the development of novel therapeutic strategies for the treatment of EBV-associated malignancies.
Collapse
Affiliation(s)
- Man Wang
- Institute for Translational Medicine, Medical College of Qingdao University, Dengzhou Road 38, Qingdao 266021, China.
| | - Bianli Gu
- Henan Key Laboratory of Cancer Epigenetics, Cancer Institute, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China
| | - Xinzhe Chen
- Institute for Translational Medicine, Medical College of Qingdao University, Dengzhou Road 38, Qingdao 266021, China
| | - Yefu Wang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Peifeng Li
- Institute for Translational Medicine, Medical College of Qingdao University, Dengzhou Road 38, Qingdao 266021, China
| | - Kun Wang
- Institute for Translational Medicine, Medical College of Qingdao University, Dengzhou Road 38, Qingdao 266021, China.
| |
Collapse
|
38
|
Corvalán AH, Ruedlinger J, de Mayo T, Polakovicova I, Gonzalez-Hormazabal P, Aguayo F. The Phylogeographic Diversity of EBV and Admixed Ancestry in the Americas⁻Another Model of Disrupted Human-Pathogen Co-Evolution. Cancers (Basel) 2019; 11:cancers11020217. [PMID: 30769835 PMCID: PMC6406347 DOI: 10.3390/cancers11020217] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 12/19/2018] [Accepted: 12/20/2018] [Indexed: 12/24/2022] Open
Abstract
Epstein-Barr virus (EBV) is an etiological agent for gastric cancer with significant worldwide variations. Molecular characterizations of EBV have shown phylogeographical variations among healthy populations and in EBV-associated diseases, particularly the cosegregated BamHI-I fragment and XhoI restriction site of exon 1 of the LMP-1 gene. In the Americas, both cosegregated variants are present in EBV carriers, which aligns with the history of Asian and European human migration to this continent. Furthermore, novel recombinant variants have been found, reflecting the genetic makeup of this continent. However, in the case of EBV-associated gastric cancer (EBV-associated GC), the cosegregated European BamHI-“i” fragment and XhoI restriction site strain prevails. Thus, we propose that a disrupted coevolution between viral phylogeographical strains and mixed human ancestry in the Americas might explain the high prevalence of this particular gastric cancer subtype. This cosegregated region contains two relevant transcripts for EBV-associated GC, the BARF-1 and miR-BARTs. Thus, genome-wide association studies (GWAS) or targeted sequencing of both transcripts may be required to clarify their role as a potential source of this disrupted coevolution.
Collapse
Affiliation(s)
- Alejandro H Corvalán
- Department of Hematology and Oncology, Pontificia Universidad Catolica de Chile, Santiago 8330034, Chile.
- Advanced Center for Chronic Diseases (ACCDiS), Pontificia Universidad Catolica de Chile, Santiago 8330034, Chile.
| | - Jenny Ruedlinger
- Department of Hematology and Oncology, Pontificia Universidad Catolica de Chile, Santiago 8330034, Chile.
- Advanced Center for Chronic Diseases (ACCDiS), Pontificia Universidad Catolica de Chile, Santiago 8330034, Chile.
| | - Tomas de Mayo
- Department of Hematology and Oncology, Pontificia Universidad Catolica de Chile, Santiago 8330034, Chile.
- Advanced Center for Chronic Diseases (ACCDiS), Pontificia Universidad Catolica de Chile, Santiago 8330034, Chile.
- Faculty of Sciences, School of Medicine, Universidad Mayor, Santiago 7510041, Chile.
| | - Iva Polakovicova
- Department of Hematology and Oncology, Pontificia Universidad Catolica de Chile, Santiago 8330034, Chile.
- Advanced Center for Chronic Diseases (ACCDiS), Pontificia Universidad Catolica de Chile, Santiago 8330034, Chile.
| | - Patricio Gonzalez-Hormazabal
- Program of Human Genetics, Instituto Ciencias Biomedicas, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile.
| | - Francisco Aguayo
- Advanced Center for Chronic Diseases (ACCDiS), Pontificia Universidad Catolica de Chile, Santiago 8330034, Chile.
- Department of Basic and Clinical Oncology, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile.
| |
Collapse
|
39
|
Dong M, Chen JN, Huang JT, Gong LP, Shao CK. The roles of EBV-encoded microRNAs in EBV-associated tumors. Crit Rev Oncol Hematol 2019; 135:30-38. [PMID: 30819444 DOI: 10.1016/j.critrevonc.2019.01.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 01/22/2019] [Accepted: 01/22/2019] [Indexed: 12/19/2022] Open
Abstract
Epstein-Barr virus (EBV) is believed to be a pathogen causing a number of human cancers, but the pathogenic mechanisms remain unclear. An increasing number of studies have indicated that EBV-encoded microRNAs (EBV miRNAs) are expressed in a latency type- and tumor type-dependent manner, playing important roles in the development and progression of EBV-associated tumors. By targeting one or more genes of the virus and the host, EBV miRNAs are responsible for the deregulation of a variety of viral and host cell biological processes, including viral replication, latency maintenance, immune evasion, cell apoptosis and metabolism, and tumor proliferation and metastasis. In addition, some EBV miRNAs can be used as excellent diagnostic, prognostic and treatment efficacy predictive biomarkers for EBV-associated tumors. More importantly, EBV miRNA-targeting therapeutics have emerged and have been developing rapidly, which may open a new era in the treatment of EBV-associated tumors in the near future.
Collapse
Affiliation(s)
- Min Dong
- Department of Medical Oncology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Jian-Ning Chen
- Department of Pathology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Jun-Ting Huang
- Department of Pathology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Li-Ping Gong
- Department of Pathology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Chun-Kui Shao
- Department of Pathology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China.
| |
Collapse
|
40
|
Epstein-Barr Virus Infection of Cell Lines Derived from Diffuse Large B-Cell Lymphomas Alters MicroRNA Loading of the Ago2 Complex. J Virol 2019; 93:JVI.01297-18. [PMID: 30429351 DOI: 10.1128/jvi.01297-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 11/05/2018] [Indexed: 12/15/2022] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is an aggressive lymphoid tumor which is occasionally Epstein-Barr virus (EBV) positive and is further subtyped as activated B-cell DLBCL (ABC-DLBCL) and germinal center B-cell DLBCL (GCB-DLBCL), which has implications for prognosis and treatment. We performed Ago2 RNA immunoprecipitation followed by high-throughput RNA sequencing (Ago2-RIP-seq) to capture functionally active microRNAs (miRNAs) in EBV-negative ABC-DLBCL and GCB-DLBCL cell lines and their EBV-infected counterparts. In parallel, total miRNA profiles of these cells were determined to capture the cellular miRNA profile for comparison with the functionally active profile. Selected miRNAs with differential abundances were validated using real-time quantitative PCR (RT-qPCR) and Northern blotting. We found 6 miRNAs with differential abundances (2 upregulated and 4 downregulated miRNAs) between EBV-negative and -positive ABC-DLBCL cells and 12 miRNAs with differential abundances (3 upregulated and 9 downregulated miRNAs) between EBV-negative and -positive GCB-DLBCL cells. Eight and twelve miRNAs were confirmed using RT-qPCR in ABC-DLBCL and GCB-DLBCL cells, respectively. Selected miRNAs were analyzed in additional type I/II versus type III EBV latency DLBCL cell lines. Furthermore, upregulation of miR-221-3p and downregulation of let7c-5p in ABC-DLBCL cells and upregulation of miR-363-3p and downregulation of miR-423-5p in GCB-DLBCL cells were verified using RIP-Northern blotting. Our comprehensive sequence analysis of the DLBCL miRNA profiles identified sets of deregulated miRNAs by Ago2-RIP-seq. Our Ago2-IP-seq miRNA profile could be considered an important data set for the detection of deregulated functionally active miRNAs in DLBCLs and could possibly lead to the identification of miRNAs as biomarkers for the classification of DLBCLs or even as targets for personalized targeted treatment.IMPORTANCE Diffuse large B-cell lymphoma (DLBCL) is a highly aggressive tumor of lymphoid origin which is occasionally Epstein-Barr virus (EBV) positive. MicroRNAs are found in most multicellular organisms and even in viruses such as EBV. They regulate the synthesis of proteins by binding to their cognate mRNA. MicroRNAs are tethered to their target mRNAs by "Argonaute" proteins. Here we compared the overall miRNA content of the Ago2 complex by differential loading to the overall content of miRNAs in two DLBCL cell lines and their EBV-converted counterparts. In all cell lines, the Ago2 load was different from the overall expression of miRNAs. In addition, the loading of the Ago2 complex was changed upon infection with EBV. This indicates that the virus not only changes the overall content of miRNAs but also influences the expression of proteins by affecting the Ago complexes.
Collapse
|
41
|
Zhao Z, Partridge V, Sousares M, Shelton SD, Holland CL, Pertsemlidis A, Du L. microRNA-2110 functions as an onco-suppressor in neuroblastoma by directly targeting Tsukushi. PLoS One 2018; 13:e0208777. [PMID: 30550571 PMCID: PMC6294380 DOI: 10.1371/journal.pone.0208777] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 11/21/2018] [Indexed: 11/18/2022] Open
Abstract
microRNA-2110 (miR-2110) was previously identified as inducing neurite outgrowth in a neuroblastoma cell lines BE(2)-C, suggesting its differentiation-inducing and oncosuppressive function in neuroblastoma. In this study, we demonstrated that synthetic miR-2110 mimic had a generic effect on reducing cell survival in neuroblastoma cell lines with distinct genetic backgrounds, although the induction of cell differentiation traits varied between cell lines. In investigating the mechanisms underlying such functions of miR-2110, we identified that among its predicted target genes down-regulated by miR-2110, knockdown of Tsukushi (TSKU) expression showed the most potent effect in inducing cell differentiation and reducing cell survival, suggesting that TSKU protein plays a key role in mediating the functions of miR-2110. In investigating the clinical relevance of miR-2110 and TSKU expression in neuroblastoma patients, we found that low tumor miR-2110 levels were significantly correlated with high tumor TSKU mRNA levels, and that both low miR-2110 and high TSKU mRNA levels were significantly correlated with poor patient survival. These findings altogether support the oncosuppressive function of miR-2110 and suggest an important role for miR-2110 and its target TSKU in neuroblastoma tumorigenesis and in determining patient prognosis.
Collapse
Affiliation(s)
- Zhenze Zhao
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, Texas, United States of America
| | - Veronica Partridge
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, Texas, United States of America
| | - Michaela Sousares
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, Texas, United States of America
| | - Spencer D. Shelton
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, Texas, United States of America
| | - Cory L. Holland
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, Texas, United States of America
| | - Alexander Pertsemlidis
- Greehey Children’s Cancer Research Institute, UT Health San Antonio, San Antonio, Texas, United States of America
- Department of Cell Systems and Anatomy, The University of Texas Health, San Antonio, Texas, United States of America
- Department of Pediatrics, The University of Texas Health, San Antonio, Texas, United States of America
| | - Liqin Du
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, Texas, United States of America
- * E-mail:
| |
Collapse
|
42
|
Gao W, Wong TS, Lv KX, Zhang MJ, Tsang RKY, Chan JYW. Detection of Epstein-Barr virus (EBV)-encoded microRNAs in plasma of patients with nasopharyngeal carcinoma. Head Neck 2018; 41:780-792. [PMID: 30548946 DOI: 10.1002/hed.25544] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 08/03/2018] [Accepted: 09/28/2018] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Nasopharyngeal carcinoma (NPC) latently infected by Epstein-Barr virus (EBV) expresses 40 EBV BART microRNAs (miRNAs). Difference in diagnostic efficacy of these miRNAs on NPC detection was observed. Here, we performed a comprehensive evaluation on the efficacy of these miRNAs. METHODS Quantitative polymerase chain reaction was performed on plasma nucleic acid isolated from patients with NPC and noncancer donors. RESULTS For primary NPC, BART2-5P, BART6-3P, BART7-3P, BART7-5P, BART9-5P, BART11-3P, BART17-5P, and BART19-5P were significantly elevated. For recurrent NPC, plasma levels of BART2-3P, BART2-5P, BART5-3P, BART5-5P, BART6-3P, BART8-3P, BART9-5P, BART17-5P, BART19-3P, and BART20-3P were significantly increased. Area under curve (AUC) analysis showed that BART19-5P had the best performance to identify NPC which was serologically EBV DNA undetectable. For recurrent NPC, BART8-3P and BART10-3P had highest AUC value for identifying cancer in EBV DNA undetectable plasma. CONCLUSION Our data supported the use of circulating EBV miRNAs in NPC and recurrent NPC detection.
Collapse
Affiliation(s)
- Wei Gao
- Division of Head and Neck, Department of Surgery, The University of Hong Kong, Hong Kong SAR, China.,Shenzhen Institute of Research and Innovation, The University of Hong Kong, China
| | - Thian-Sze Wong
- Division of Head and Neck, Department of Surgery, The University of Hong Kong, Hong Kong SAR, China.,Shenzhen Institute of Research and Innovation, The University of Hong Kong, China
| | - Ke-Xing Lv
- Division of Head and Neck, Department of Surgery, The University of Hong Kong, Hong Kong SAR, China
| | - Min-Juan Zhang
- Division of Head and Neck, Department of Surgery, The University of Hong Kong, Hong Kong SAR, China.,Shenzhen Institute of Research and Innovation, The University of Hong Kong, China
| | - Raymond King-Yin Tsang
- Division of Head and Neck, Department of Surgery, The University of Hong Kong, Hong Kong SAR, China.,Shenzhen Institute of Research and Innovation, The University of Hong Kong, China
| | - Jimmy Yu-Wai Chan
- Division of Head and Neck, Department of Surgery, The University of Hong Kong, Hong Kong SAR, China.,Shenzhen Institute of Research and Innovation, The University of Hong Kong, China
| |
Collapse
|
43
|
Xiong J, Zhao WL. Advances in multiple omics of natural-killer/T cell lymphoma. J Hematol Oncol 2018; 11:134. [PMID: 30514323 PMCID: PMC6280527 DOI: 10.1186/s13045-018-0678-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 11/20/2018] [Indexed: 12/23/2022] Open
Abstract
Natural-killer/T cell lymphoma (NKTCL) represents the most common subtype of extranodal lymphoma with aggressive clinical behavior. Prevalent in Asians and South Americans, the pathogenesis of NKTCL remains to be fully elucidated. Using system biology techniques including genomics, transcriptomics, epigenomics, and metabolomics, novel biomarkers and therapeutic targets have been revealed in NKTCL. Whole-exome sequencing studies identify recurrent somatic gene mutations, involving RNA helicases, tumor suppressors, JAK-STAT pathway molecules, and epigenetic modifiers. Another genome-wide association study reports that single nucleotide polymorphisms mapping to the class II MHC region on chromosome 6 contribute to lymphomagenesis. Alterations of oncogenic signaling pathways janus kinase-signal transducer and activator of transcription (JAK-STAT), nuclear factor-κB (NF-κB), mitogen-activated protein kinase (MAPK), WNT, and NOTCH, as well as epigenetic dysregulation of microRNA and long non-coding RNAs, are also frequently observed in NKTCL. As for metabolomic profiling, abnormal amino acids metabolism plays an important role on disease progression of NKTCL. Of note, through targeting multiple omics aberrations, clinical outcome of NKTCL patients has been significantly improved by asparaginase-based regimens, immune checkpoints inhibitors, and histone deacetylation inhibitors. Future investigations will be emphasized on molecular classification of NKTCL using integrated analysis of system biology, so as to optimize targeted therapeutic strategies of NKTCL in the era of precision medicine.
Collapse
Affiliation(s)
- Jie Xiong
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin Er Road, Shanghai, 200025, China
| | - Wei-Li Zhao
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin Er Road, Shanghai, 200025, China. .,Pôle de Recherches Sino-Français en Science du Vivant et Génomique, Laboratory of Molecular Pathology, Shanghai, China.
| |
Collapse
|
44
|
Zheng X, Wang J, Wei L, Peng Q, Gao Y, Fu Y, Lu Y, Qin Z, Zhang X, Lu J, Ou C, Li Z, Zhang X, Liu P, Xiong W, Li G, Yan Q, Ma J. Epstein-Barr Virus MicroRNA miR-BART5-3p Inhibits p53 Expression. J Virol 2018; 92:e01022-18. [PMID: 30209170 PMCID: PMC6232473 DOI: 10.1128/jvi.01022-18] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 09/05/2018] [Indexed: 12/26/2022] Open
Abstract
Epstein-Barr virus (EBV) is the first human virus found to encode many microRNAs. It is etiologically linked to nasopharyngeal carcinoma and EBV-associated gastric carcinoma. During the latent infection period, there are only a few EBV proteins expressed, whereas EBV microRNAs, such as the BamHI-A region rightward transcript (BART) microRNAs, are highly expressed. However, how these BART miRNAs precisely regulate the tumor growth in nasopharyngeal carcinoma and gastric carcinoma remains obscure. Here, we report that upregulation of EBV-miR-BART5-3p promotes the growth of nasopharyngeal carcinoma and gastric carcinoma cells. BART5-3p directly targets the tumor suppressor gene TP53 on its 3'-untranslated region (3'-UTR) and consequently downregulates CDKN1A, BAX, and FAS expression, leading to acceleration of the cell cycle progress and inhibition of cell apoptosis. BART5-3p contributes to the resistance to chemotherapeutic drugs and ionizing irradiation-induced p53 increase. Moreover, BART5-3p also facilitates degradation of p53 proteins. BART5-3p is the first EBV-microRNA to be identified as inhibiting p53 expression and function, which suggests a novel mechanism underlying the strategies employed by EBV to maintain latent infection and promote the development of EBV-associated carcinomas.IMPORTANCE EBV encodes 44 mature microRNAs, which have been proven to promote EBV-associated diseases by targeting host genes and self-viral genes. In EBV-associated carcinomas, the expression of viral protein is limited but the expression of BART microRNAs is extremely high, suggesting that they could be major factors in the contribution of EBV-associated tumorigenesis. p53 is a critical tumor suppressor. Unlike in most human solid tumors, TP53 mutations are rare in nasopharyngeal carcinoma and EBV-associated gastric carcinoma tissues, suggesting a possibility that some EBV-encoded products suppress the functions of p53. This study provides the first evidence that a BART microRNA can suppress p53 expression by directly targeting its 3'-UTR. This study implies that EBV can use its BART microRNAs to modulate the expression of p53, thus maintaining its latency and contributing to tumorigenesis.
Collapse
Affiliation(s)
- Xiang Zheng
- Xiangya Hospital, Cancer Research Institute, Central South University, Changsha, China
- Clinical Anatomy & Reproductive Medicine Application Institute, Department of Histology and Embryology, School of Medicine, University of South China, Hengyang, China
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Jia Wang
- Xiangya Hospital, Cancer Research Institute, Central South University, Changsha, China
| | - Lingyu Wei
- Xiangya Hospital, Cancer Research Institute, Central South University, Changsha, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Qiu Peng
- Xiangya Hospital, Cancer Research Institute, Central South University, Changsha, China
| | - Yingxue Gao
- Xiangya Hospital, Cancer Research Institute, Central South University, Changsha, China
| | - Yuxin Fu
- Xiangya Hospital, Cancer Research Institute, Central South University, Changsha, China
| | - Yuanjun Lu
- Xiangya Hospital, Cancer Research Institute, Central South University, Changsha, China
| | - Zailong Qin
- Xiangya Hospital, Cancer Research Institute, Central South University, Changsha, China
| | - Xuemei Zhang
- Xiangya Hospital, Cancer Research Institute, Central South University, Changsha, China
| | - Jianhong Lu
- Xiangya Hospital, Cancer Research Institute, Central South University, Changsha, China
| | - Chunlin Ou
- Xiangya Hospital, Cancer Research Institute, Central South University, Changsha, China
| | - Zhengshuo Li
- Xiangya Hospital, Cancer Research Institute, Central South University, Changsha, China
| | - Xiaoyue Zhang
- Xiangya Hospital, Cancer Research Institute, Central South University, Changsha, China
| | - Peishan Liu
- Xiangya Hospital, Cancer Research Institute, Central South University, Changsha, China
| | - Wei Xiong
- Xiangya Hospital, Cancer Research Institute, Central South University, Changsha, China
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Guiyuan Li
- Xiangya Hospital, Cancer Research Institute, Central South University, Changsha, China
| | - Qun Yan
- Xiangya Hospital, Cancer Research Institute, Central South University, Changsha, China
| | - Jian Ma
- Xiangya Hospital, Cancer Research Institute, Central South University, Changsha, China
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
45
|
Lin C, Zong J, Lin W, Wang M, Xu Y, Zhou R, Lin S, Guo Q, Chen H, Ye Y, Zhang B, Pan J. EBV-miR-BART8-3p induces epithelial-mesenchymal transition and promotes metastasis of nasopharyngeal carcinoma cells through activating NF-κB and Erk1/2 pathways. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:283. [PMID: 30477559 PMCID: PMC6257964 DOI: 10.1186/s13046-018-0953-6] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 11/07/2018] [Indexed: 12/22/2022]
Abstract
Background Epstein-Barr virus (EBV) is ubiquitously associated with nasopharyngeal carcinoma (NPC). EBV encodes two groups of microRNAs (miRNAs) which are divided into BamHI fragment H rightward open reading frame 1 (BHRF1) and BamHI-A rightward transcripts (BART) microRNAs. EBV miR-BART has been found to be involved in the development and progression of NPC. However, so far the role of EBV-miR-BART8-3p in NPC progression remains unknown. This study aimed to investigate the role of EBV-miR-BART8-3p in NPC and explore the underlying mechanisms. Methods miRNA expression was profiled in NPC and normal nasopharyngeal mucosal specimens using miRNA sequencing. EBV-miR-BART8-3p and RNF38 expression was quantified with qPCR assay. The migration, invasion and metastasis of NPC cells were evaluated using CCK-8, colony-forming, wound-healing, and migration and invasion assays. The expression levels of epithelial-mesenchymal transition (EMT)-related markers,metastasis-related markers and NF-κB and Erk1/2 signaling proteins were determined using Western blotting. Tumorigenic assay was performed to evaluate the pulmonary metastatic ability of NPC cells in vivo. Results EBV BART miRNAs were highly over-expressed and co-expressed in NPC and might be associated with deactivated immune response in NPC according to the sequencing analysis. EBV-miR-BART8-3p expression was significantly higher in human NPC specimens than in normal nasopharyngeal mucosal specimens. EBV-miR-BART8-3p was found to promote NPC migration, invasion and metastasis, drove an EMT process and upregulated expression of metastasis-related proteins expression in NPC cells. Our data showed EBV-miR-BART8-3p directly targeted RNF38 in NPC cells. Conclusion The present study demonstrates that EBV-miR-BART8-3p plays a significant role in inducing EMT and promoting metastasis through directly targeting RNF38 in NPC cells via the activation of NF-κB and Erk1/2 signaling pathways. Our findings suggest that EBV-miR-BART8-3p is a potential therapeutic target for NPC. Electronic supplementary material The online version of this article (10.1186/s13046-018-0953-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Cheng Lin
- Fujian Medical University, Fuzhou, 350108, Fujian Province, China.,Department of Radiation Oncology, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou, 350011, Fujian Province, China
| | - Jingfeng Zong
- Department of Radiation Oncology, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou, 350011, Fujian Province, China
| | - Wansong Lin
- Laboratory of Immuno-Oncology, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou, 350011, Fujian Province, China
| | - Minghui Wang
- Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY, 10029, USA
| | - Yuanji Xu
- Department of Radiation Oncology, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou, 350011, Fujian Province, China
| | - Rui Zhou
- Fujian Medical University, Fuzhou, 350108, Fujian Province, China
| | - Shaojun Lin
- Department of Radiation Oncology, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou, 350011, Fujian Province, China
| | - Qiaojuan Guo
- Department of Radiation Oncology, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou, 350011, Fujian Province, China
| | - Honglin Chen
- State Key Laboratory for Emerging Infectious Diseases, Department of Microbiology and the Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The University of Hong Kong, Hong Kong, SAR, China
| | - Yunbin Ye
- Laboratory of Immuno-Oncology, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou, 350011, Fujian Province, China.,Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, 350014, Fujian, China
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY, 10029, USA.
| | - Jianji Pan
- Department of Radiation Oncology, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou, 350011, Fujian Province, China.
| |
Collapse
|
46
|
Zhao CX, Zhu W, Ba ZQ, Xu HJ, Liu WD, Zhu B, Wang L, Song YJ, Yuan S, Ren CP. The regulatory network of nasopharyngeal carcinoma metastasis with a focus on EBV, lncRNAs and miRNAs. Am J Cancer Res 2018; 8:2185-2209. [PMID: 30555738 PMCID: PMC6291648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 10/16/2018] [Indexed: 06/09/2023] Open
Abstract
Metastasis of nasopharyngeal carcinoma (NPC) remains a main cause of death for NPC patients even though great advances have been made in therapeutic approaches. An in-depth study into the molecular mechanisms of NPC metastasis will help us combat NPC. Epstein-Barr virus (EBV) infection is an evident feature of nonkeratinizing NPC and is strongly associated with tumor metastasis. Recently, long noncoding RNAs (lncRNAs) and microRNAs (miRNAs) have become a hot topic of research due to their epigenetic regulatory roles in NPC metastasis. The EBV products, lncRNAs and miRNAs can target each other and share several common signaling pathways, which form an interconnected, complex molecular regulatory network. In this review, we discuss the features of this regulatory network and summarize the molecular mechanisms of NPC metastasis, focusing on EBV, lncRNAs and miRNAs with updated knowledge.
Collapse
Affiliation(s)
- Chen-Xuan Zhao
- The Key Laboratory of Carcinogenesis of The Chinese Ministry of Health and The Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, P. R. China
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, School of Basic Medical Science, Central South UniversityChangsha 410078, Hunan, P. R. China
| | - Wei Zhu
- The Key Laboratory of Carcinogenesis of The Chinese Ministry of Health and The Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, P. R. China
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, School of Basic Medical Science, Central South UniversityChangsha 410078, Hunan, P. R. China
| | - Zheng-Qing Ba
- The Key Laboratory of Carcinogenesis of The Chinese Ministry of Health and The Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, P. R. China
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, School of Basic Medical Science, Central South UniversityChangsha 410078, Hunan, P. R. China
| | - Hong-Juan Xu
- The Key Laboratory of Carcinogenesis of The Chinese Ministry of Health and The Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, P. R. China
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, School of Basic Medical Science, Central South UniversityChangsha 410078, Hunan, P. R. China
| | - Wei-Dong Liu
- The Key Laboratory of Carcinogenesis of The Chinese Ministry of Health and The Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, P. R. China
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, School of Basic Medical Science, Central South UniversityChangsha 410078, Hunan, P. R. China
| | - Bin Zhu
- The Key Laboratory of Carcinogenesis of The Chinese Ministry of Health and The Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, P. R. China
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, School of Basic Medical Science, Central South UniversityChangsha 410078, Hunan, P. R. China
| | - Lei Wang
- The Key Laboratory of Carcinogenesis of The Chinese Ministry of Health and The Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, P. R. China
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, School of Basic Medical Science, Central South UniversityChangsha 410078, Hunan, P. R. China
| | - Yu-Jia Song
- The Key Laboratory of Carcinogenesis of The Chinese Ministry of Health and The Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, P. R. China
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, School of Basic Medical Science, Central South UniversityChangsha 410078, Hunan, P. R. China
| | - Shuai Yuan
- The Key Laboratory of Carcinogenesis of The Chinese Ministry of Health and The Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, P. R. China
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, School of Basic Medical Science, Central South UniversityChangsha 410078, Hunan, P. R. China
| | - Cai-Ping Ren
- The Key Laboratory of Carcinogenesis of The Chinese Ministry of Health and The Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, P. R. China
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, School of Basic Medical Science, Central South UniversityChangsha 410078, Hunan, P. R. China
| |
Collapse
|
47
|
Sun L, Meckes DG. Methodological Approaches to Study Extracellular Vesicle miRNAs in Epstein⁻Barr Virus-Associated Cancers. Int J Mol Sci 2018; 19:ijms19092810. [PMID: 30231493 PMCID: PMC6164614 DOI: 10.3390/ijms19092810] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 09/14/2018] [Accepted: 09/14/2018] [Indexed: 02/07/2023] Open
Abstract
Epstein Barr-virus (EBV) was the first virus identified to be associated with human cancer in 1964 and is found ubiquitously throughout the world's population. It is now established that EBV contributes to the development and progression of multiple human cancers of both lymphoid and epithelial cell origins. EBV encoded miRNAs play an important role in tumor proliferation, angiogenesis, immune escape, tissue invasion, and metastasis. Recently, EBV miRNAs have been found to be released from infected cancer cells in extracellular vesicles (EVs) and regulate gene expression in neighboring uninfected cells present in the tumor microenvironment and possibly at distal sites. As EVs are abundant in many biological fluids, the viral and cellular miRNAs present within EBV-modified EVs may serve as noninvasion markers for cancer diagnosis and prognosis. In this review, we discuss recent advances in EV isolation and miRNA detection, and provide a complete workflow for EV purification from plasma and deep-sequencing for biomarker discovery.
Collapse
Affiliation(s)
- Li Sun
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL 32306, USA.
| | - David G Meckes
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL 32306, USA.
| |
Collapse
|
48
|
Kanokudom S, Mahony TJ, Smith DR, Assavalapsakul W. Modulation of bovine herpesvirus 1 infection by virally encoded microRNAs. Virus Res 2018; 257:1-6. [PMID: 30193942 DOI: 10.1016/j.virusres.2018.08.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 08/24/2018] [Accepted: 08/31/2018] [Indexed: 12/27/2022]
Abstract
Bovine herpesvirus 1 (BoHV-1), is a member of the subfamily Alphaherpesvirinae in the order Herpesviridae and is a ubiquitous pathogen of cattle responsible for significant economic loss worldwide. The BoHV-1 genome encodes at least 10 BoHV-1 microRNA (miRNA) genes, whose functions remain poorly understood. This study sought to understand the role of three BoHV-1 miRNA genes, Bhv1-miR-B6, Bhv1-miR-B8 and Bhv1-miR-B9, which are located proximal to the BoHV-1 origins of replication (OriS). Therefore, plasmids expressing the precursor miRNA hairpins for the Bhv1-miR-B6, Bhv1-miR-B8, and Bhv1-miR-B9 genes were constructed and transfected into Madin-Darby bovine kidney cells prior to BoHV-1 infection. Interestingly, transient expression of either Bhv1-miR-B8 or Bhv1-miR-B9 in Madin-Darby bovine kidney cells prior to infection resulted in partial suppression of BoHV-1 replication, quantified through estimating levels of glycoprotein C mRNA and protein levels. Putative interactions between the mature miRNA bhv1-miR-B8-3p and bhv1-miR-B9 and BoHV-1 transcripts were identified providing plausible pathways for these molecules to affect virus replication. Therefore, these two miRNAs are implicated in the post-transcriptional regulation of BoHV-1 transcripts important for virus replication and could be used to limit BoHV-1 replication.
Collapse
Affiliation(s)
- Sitthichai Kanokudom
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Timothy J Mahony
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Duncan R Smith
- Institute of Molecular Biosciences, Mahidol University, Salaya Campus, Nakornpathom, 73170, Thailand
| | - Wanchai Assavalapsakul
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
49
|
Polakovicova I, Jerez S, Wichmann IA, Sandoval-Bórquez A, Carrasco-Véliz N, Corvalán AH. Role of microRNAs and Exosomes in Helicobacter pylori and Epstein-Barr Virus Associated Gastric Cancers. Front Microbiol 2018; 9:636. [PMID: 29675003 PMCID: PMC5895734 DOI: 10.3389/fmicb.2018.00636] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 03/19/2018] [Indexed: 12/17/2022] Open
Abstract
Emerging evidence suggests that chronic inflammation caused by pathogen infection is connected to the development of various types of cancer. It is estimated that up to 20% of all cancer deaths is linked to infections and inflammation. In gastric cancer, such triggers can be infection of the gastric epithelium by either Helicobacter pylori (H. pylori), a bacterium present in half of the world population; or by Epstein-Barr virus (EBV), a double-stranded DNA virus which has recently been associated with gastric cancer. Both agents can establish lifelong inflammation by evolving to escape immune surveillance and, under certain conditions, contribute to the development of gastric cancer. Non-coding RNAs, mainly microRNAs (miRNAs), influence the host innate and adaptive immune responses, though long non-coding RNAs and viral miRNAs also alter these processes. Reports suggest that chronic infection results in altered expression of host miRNAs. In turn, dysregulated miRNAs modulate the host inflammatory immune response, favoring bacterial survival and persistence within the gastric mucosa. Given the established roles of miRNAs in tumorigenesis and innate immunity, they may serve as an important link between H. pylori- and EBV-associated inflammation and carcinogenesis. Example of this is up-regulation of miR-155 in H. pylori and EBV infection. The tumor environment contains a variety of cells that need to communicate with each other. Extracellular vesicles, especially exosomes, allow these cells to deliver certain type of information to other cells promoting cancer growth and metastasis. Exosomes have been shown to deliver not only various types of genetic information, mainly miRNAs, but also cytotoxin-associated gene A (CagA), a major H. pylori virulence factor. In addition, a growing body of evidence demonstrates that exosomes contain genetic material of viruses and viral miRNAs and proteins such as EBV latent membrane protein 1 (LMP1) which are delivered into recipient cells. In this review, we focus on the dysregulated H. pylori- and EBV-associated miRNAs while trying to unveil possible causal mechanisms. Moreover, we discuss the role of exosomes as vehicles for miRNA delivery in H. pylori- and EBV-related carcinogenesis.
Collapse
Affiliation(s)
- Iva Polakovicova
- Advanced Center for Chronic Diseases, Pontificia Universidad Católica de Chile, Santiago, Chile.,UC Center for Investigational Oncology, Pontificia Universidad Católica de Chile, Santiago, Chile.,Department of Hematology-Oncology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Sofia Jerez
- Department of Hematology-Oncology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ignacio A Wichmann
- Advanced Center for Chronic Diseases, Pontificia Universidad Católica de Chile, Santiago, Chile.,UC Center for Investigational Oncology, Pontificia Universidad Católica de Chile, Santiago, Chile.,Department of Hematology-Oncology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | - Nicolás Carrasco-Véliz
- Advanced Center for Chronic Diseases, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alejandro H Corvalán
- Advanced Center for Chronic Diseases, Pontificia Universidad Católica de Chile, Santiago, Chile.,UC Center for Investigational Oncology, Pontificia Universidad Católica de Chile, Santiago, Chile.,Department of Hematology-Oncology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
50
|
Wang M, Yu F, Wu W, Wang Y, Ding H, Qian L. Epstein-Barr virus-encoded microRNAs as regulators in host immune responses. Int J Biol Sci 2018; 14:565-576. [PMID: 29805308 PMCID: PMC5968849 DOI: 10.7150/ijbs.24562] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 03/06/2018] [Indexed: 12/12/2022] Open
Abstract
Epstein-Barr virus (EBV) is an oncogenic virus that infects over 90% of the world's adult population. EBV can establish life-long latent infection in host due to the balance between EBV and host immune system. EBV latency is associated with various malignancies such as nasopharyngeal carcinoma, gastric carcinoma and Burkitt's lymphoma. EBV is the first human virus that has the capability to encode microRNAs (miRNAs). Remarkably, EBV-encoded miRNAs are abundantly expressed in latently-infected cells and serve important function in viral infection and pathogenesis. Increasing evidence indicates that EBV miRNAs target the host mRNAs involved in cell proliferation, apoptosis and transformation. EBV miRNAs also inhibit the expression of viral antigens, thereby enabling infected cells to escape immune recognition. Intriguingly, EBV miRNAs directly suppress host antiviral immunity by interfering with antigen presentation and immune cell activation. This review will update the current knowledge about EBV miRNAs implicated in host immune responses. An in-depth understanding of the functions of EBV miRNAs in host antiviral immunity will shed light on the EBV-host interactions and provide potential therapeutic targets for the treatment of EBV-associated malignancies.
Collapse
Affiliation(s)
- Man Wang
- Institute for Translational Medicine, Medical College of Qingdao University, Dengzhou Road 38, Qingdao 266021, China
| | - Fei Yu
- Institute for Translational Medicine, Medical College of Qingdao University, Dengzhou Road 38, Qingdao 266021, China
| | - Wei Wu
- Institute for Translational Medicine, Medical College of Qingdao University, Dengzhou Road 38, Qingdao 266021, China
| | - Yu Wang
- Institute for Translational Medicine, Medical College of Qingdao University, Dengzhou Road 38, Qingdao 266021, China
| | - Han Ding
- Institute for Translational Medicine, Medical College of Qingdao University, Dengzhou Road 38, Qingdao 266021, China
| | - Lili Qian
- Institute for Translational Medicine, Medical College of Qingdao University, Dengzhou Road 38, Qingdao 266021, China
| |
Collapse
|