1
|
Sevastianos VA, Voulgaris TA, Dourakis SP. Hepatitis C, systemic inflammation and oxidative stress: correlations with metabolic diseases. Expert Rev Gastroenterol Hepatol 2020; 14:27-37. [PMID: 31868062 DOI: 10.1080/17474124.2020.1708191] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: Hepatitis C chronic infection has long been correlated with numerous systemic diseases, such as diabetes mellitus and hepatic steatosis. Recent studies have also revealed an association with atherosclerosis.Areas covered: An analysis is presented on the mechanisms through which the hepatitis C viral infection can lead to a systemic increase in pro-inflammatory markers, especially tumor necrosis factor-a and interleukin-6. The immunological imbalance created may, through different mechanisms, act on the metabolic pathways that contribute to the development of insulin resistance, the accumulation of lipids in the liver, and even the formation of atherosclerotic plaques. Moreover, an additional contributing factor to the above-mentioned metabolic derangements is the unopposed oxidative stress observed in chronic hepatitis C viral infection. The virus itself contributes to the formation of oxidative stress, through alterations in the trace metal homeostasis and its effect on pro-inflammatory cytokines, such as tumor necrosis factor-a.Expert opinion: The scope of this review is to emphasize the importance of the metabolic manifestations of hepatitis C viral infection and to elucidate the pathophysiological mechanisms behind their emergence.
Collapse
Affiliation(s)
- Vassilios A Sevastianos
- Department of Internal Medicine and Liver Outpatient Clinic, "Evangelismos" General Hospital, Athens, Greece
| | - Theodoros A Voulgaris
- Department of Internal Medicine and Liver Outpatient Clinic, "Evangelismos" General Hospital, Athens, Greece
| | - Spyros P Dourakis
- Department of Internal Μedicine, Medical School, National and Kapodistrian University of Athens, General Hospital of Athens Ippokrateio, Athens, Greece
| |
Collapse
|
2
|
Mazouz S, Boisvert M, Shoukry NH, Lamarre D. Reversing immune dysfunction and liver damage after direct-acting antiviral treatment for hepatitis C. CANADIAN LIVER JOURNAL 2018; 1:78-105. [DOI: 10.3138/canlivj.1.2.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 03/20/2018] [Indexed: 12/12/2022]
Abstract
The introduction of small molecules targeting viral functions has caused a paradigm shift in hepatitis C virus (HCV) treatment. Administration of these direct-acting antivirals (DAAs) achieves a complete cure in almost all treated patients with short-duration therapy and minimal side effects. Although this is a major improvement over the previous pegylated interferon plus ribavirin (PEG-IFNα/RBV) standard-of-care treatment for HCV, remaining questions address several aspects of the long-term benefits of DAA therapy. Interferon (IFN)-based treatment with successful outcome was associated with substantial reduction in liver disease–related mortality. However, emerging data suggest a complex picture and several confounding factors that influence the effect of both IFN-based and DAA therapies on immune restoration and limiting liver disease progression. We review current knowledge of restoration of innate and HCV-specific immune responses in DAA-mediated viral elimination in chronic HCV infection, and we identify future research directions to achieve long-term benefits in all cured patients and reduce HCV-related liver disease morbidity and mortality.
Collapse
Affiliation(s)
- Sabrina Mazouz
- Centre de Recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montréal, Québec, Canada
- Département de microbiologie, infectiologie et immunologie, Faculté de médecine, Université de Montréal, Montréal, Québec, Canada
- Département de médecine, Faculté de médecine, Université de Montréal, Montréal, Québec, Canada
| | - Maude Boisvert
- Centre de Recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montréal, Québec, Canada
- Département de microbiologie, infectiologie et immunologie, Faculté de médecine, Université de Montréal, Montréal, Québec, Canada
- Département de médecine, Faculté de médecine, Université de Montréal, Montréal, Québec, Canada
| | - Naglaa H Shoukry
- Centre de Recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montréal, Québec, Canada
- Département de microbiologie, infectiologie et immunologie, Faculté de médecine, Université de Montréal, Montréal, Québec, Canada
- Département de médecine, Faculté de médecine, Université de Montréal, Montréal, Québec, Canada
| | - Daniel Lamarre
- Centre de Recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montréal, Québec, Canada
- Département de microbiologie, infectiologie et immunologie, Faculté de médecine, Université de Montréal, Montréal, Québec, Canada
- Département de médecine, Faculté de médecine, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
3
|
Dustin LB. Innate and Adaptive Immune Responses in Chronic HCV Infection. Curr Drug Targets 2018; 18:826-843. [PMID: 26302811 DOI: 10.2174/1389450116666150825110532] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 07/25/2015] [Accepted: 07/27/2015] [Indexed: 12/14/2022]
Abstract
Hepatitis C virus (HCV) remains a public health problem of global importance, even in the era of potent directly-acting antiviral drugs. In this chapter, I discuss immune responses to acute and chronic HCV infection. The outcome of HCV infection is influenced by viral strategies that limit or delay the initiation of innate antiviral responses. This delay may enable HCV to establish widespread infection long before the host mounts effective T and B cell responses. HCV's genetic agility, resulting from its high rate of replication and its error prone replication mechanism, enables it to evade immune recognition. Adaptive immune responses fail to keep up with changing viral epitopes. Neutralizing antibody epitopes may be hidden by decoy structures, glycans, and lipoproteins. T cell responses fail due to changing epitope sequences and due to exhaustion, a phenomenon that may have evolved to limit immune-mediated pathology. Despite these difficulties, innate and adaptive immune mechanisms do impact HCV replication. Immune-mediated clearance of infection is possible, occurring in 20-50% of people who contract the disease. New developments raise hopes for effective immunological interventions to prevent or treat HCV infection.
Collapse
Affiliation(s)
- Lynn B Dustin
- University of Oxford, Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, Peter Medawar Building for Pathogen Research, South Parks Road, Oxford OX1 3SY, United Kingdom
| |
Collapse
|
4
|
Chartrand K, Lebel MÈ, Tarrab E, Savard P, Leclerc D, Lamarre A. Efficacy of a Virus-Like Nanoparticle As Treatment for a Chronic Viral Infection Is Hindered by IRAK1 Regulation and Antibody Interference. Front Immunol 2018; 8:1885. [PMID: 29354118 PMCID: PMC5758502 DOI: 10.3389/fimmu.2017.01885] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 12/11/2017] [Indexed: 01/01/2023] Open
Abstract
Although vaccination has been an effective way of preventing infections ever since the eighteenth century, the generation of therapeutic vaccines and immunotherapies is still a work in progress. A number of challenges impede the development of these therapeutic approaches such as safety issues related to the administration of whole pathogens whether attenuated or inactivated. One safe alternative to classical vaccination methods gaining recognition is the use of nanoparticles, whether synthetic or naturally derived. We have recently demonstrated that the papaya mosaic virus (PapMV)-like nanoparticle can be used as a prophylactic vaccine against various viral and bacterial infections through the induction of protective humoral and cellular immune responses. Moreover, PapMV is also very efficient when used as an immune adjuvant in an immunotherapeutic setting at slowing down the growth of aggressive mouse melanoma tumors in a type I interferon (IFN-I)-dependent manner. In the present study, we were interested in exploiting the capacity of PapMV of inducing robust IFN-I production as treatment for the chronic viral infection model lymphocytic choriomeningitis virus (LCMV) clone 13 (Cl13). Treatment of LCMV Cl13-infected mice with two systemic administrations of PapMV was ineffective, as shown by the lack of changes in viral titers and immune response to LCMV following treatment. Moreover, IFN-α production following PapMV administration was almost completely abolished in LCMV-infected mice. To better isolate the mechanisms at play, we determined the influence of a pretreatment with PapMV on secondary PapMV administration, therefore eliminating potential variables emanating from the infection. Pretreatment with PapMV led to the same outcome as an LCMV infection in that IFN-α production following secondary PapMV immunization was abrogated for up to 50 days while immune activation was also dramatically impaired. We showed that two distinct and overlapping mechanisms were responsible for this outcome. While short-term inhibition was partially the result of interleukin-1 receptor-associated kinase 1 degradation, a crucial component of the toll-like receptor 7 signaling pathway, long-term inhibition was mainly due to interference by PapMV-specific antibodies. Thus, we identified a possible pitfall in the use of virus-like particles for the systemic treatment of chronic viral infections and discuss mitigating alternatives to circumvent these potential problems.
Collapse
Affiliation(s)
- Karine Chartrand
- Immunovirology Laboratory, Institut national de la recherche scientifique (INRS), INRS-Institut Armand-Frappier, Laval, Quebec, Canada
| | - Marie-Ève Lebel
- Immunovirology Laboratory, Institut national de la recherche scientifique (INRS), INRS-Institut Armand-Frappier, Laval, Quebec, Canada
| | - Esther Tarrab
- Immunovirology Laboratory, Institut national de la recherche scientifique (INRS), INRS-Institut Armand-Frappier, Laval, Quebec, Canada
| | - Pierre Savard
- Infectious Disease Research Center, Department of Microbiology, Infectiology and Immunology, Laval University, Quebec City, Quebec, Canada
| | - Denis Leclerc
- Infectious Disease Research Center, Department of Microbiology, Infectiology and Immunology, Laval University, Quebec City, Quebec, Canada
| | - Alain Lamarre
- Immunovirology Laboratory, Institut national de la recherche scientifique (INRS), INRS-Institut Armand-Frappier, Laval, Quebec, Canada
| |
Collapse
|
5
|
Lapko N, Zawadka M, Polosak J, Worthen GS, Danet-Desnoyers G, Puzianowska-Kuźnicka M, Laudanski K. Long-term Monocyte Dysfunction after Sepsis in Humanized Mice Is Related to Persisted Activation of Macrophage-Colony Stimulation Factor (M-CSF) and Demethylation of PU.1, and It Can Be Reversed by Blocking M-CSF In Vitro or by Transplanting Naïve Autologous Stem Cells In Vivo. Front Immunol 2017; 8:401. [PMID: 28507543 PMCID: PMC5410640 DOI: 10.3389/fimmu.2017.00401] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 03/21/2017] [Indexed: 01/02/2023] Open
Abstract
The duration of post-sepsis long-term immune suppression is poorly understood. Here, we focused on the role of monocytes (MO) as the pivotal cells for long-term regulation of post-sepsis milieu. Lost ability of MO to adapt is seen in several acute conditions, but it is unclear for how long MO aberrancy post-sepsis can persist. Interestingly, the positive feedback loop sustaining secretion of macrophage-colony stimulation factor (M-CSF) can persist even after resolution of sepsis and significantly alters performance of MO. Here, we investigated the activation of M-CSF, and it as critical regulator of PU.1 in mice surviving 28 days after sepsis. Our primary readout was the ability of MO to differentiate into dendritic cells (DCs; MO→iDC) in vitro since this is one of the critical processes regulating a successful transition from innate to acquired immunity. We utilized a survival modification of the cecal ligation and puncture (CLP) model of sepsis in humanized mice. Animals were sacrificed 28 days after CLP (tCLP+28d). Untouched (CONTR) or sham-operated (SHAM) animals served as controls. Some animals received rescue from stem cells originally used for grafting 2 weeks after CLP. We found profound decrease of MO→iDC in the humanized mice 28 days after sepsis, demonstrated by depressed expression of CD1a, CD83, and CD209, diminished production of IL-12p70, and depressed ability to stimulate T cells in mice after CLP as compared to SHAM or CONTR. In vitro defect in MO→iDC was accompanied by in vivo decrease of BDCA-3+ endogenous circulating DC. Interestingly, post-CLP MO had persistent activation of M-CSF pathway, shown by exaggerated secretion of M-CSF, activation of PU.1, and demethylation of SPII. Neutralization of the M-CSF in vitro reversed the post-CLP MO→iDC aberration. Furthermore, transplantation of naïve, autologous stem cell-derived MO restored CLP-deteriorated ability of MO to become DC, measured as recovery of CD1a expression, enhanced production of IL-12p70, and ability of IL-4 and GM-CSF MO to stimulate allogeneic T cells. Our results suggest the role of epigenetic mediated M-CSF aberration in mediating post-sepsis immune system recovery.
Collapse
Affiliation(s)
- Natalia Lapko
- 2nd Department of Anesthesiology and Intensive Care, Medical University of Warsaw, Warsaw, Poland
| | - Mateusz Zawadka
- Faculty of Medicine, Ivano-Frankivsk Medical Institute, Ivano-Frankivsk, Ukraine
| | - Jacek Polosak
- Department of Human Epigenetics, Mossakowski Medical Research Centre, PAS, Warsaw, Poland
| | - George S Worthen
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | | - Monika Puzianowska-Kuźnicka
- Department of Human Epigenetics, Mossakowski Medical Research Centre, PAS, Warsaw, Poland.,Department of Geriatrics and Gerontology, Medical Centre of Postgraduate Education, Warsaw, Poland
| | - Krzysztof Laudanski
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
6
|
Rodrigue-Gervais IG, Rigsby H, Jouan L, Willems B, Lamarre D. Intact dendritic cell pathogen-recognition receptor functions associate with chronic hepatitis C treatment-induced viral clearance. PLoS One 2014; 9:e102605. [PMID: 25033043 PMCID: PMC4102513 DOI: 10.1371/journal.pone.0102605] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 06/20/2014] [Indexed: 12/17/2022] Open
Abstract
Although studies have addressed the exhaustion of the host's immune response to HCV and its role in treatment, there is little information about the possible contribution of innate immunity to treatment-induced clearance. We hypothesized that because intact myeloid dendritic cell (MDC) pathogen sensing functions are associated with improved HCV-specific CD8+ T cell functionality in some chronically infected patients, it might enhance HCV clearance rate under standard interferon therapy. To investigate this hypothesis, TLR-induced MDC activation and HCV-specific CD8+ T cell response quality were monitored longitudinally at the single-cell level using polychromatic flow cytometry in chronically infected patients undergoing interferon therapy. We correlated the immunological, biochemical and virological data with response to treatment. We demonstrate that the clinical efficacy of interferon-induced viral clearance is influenced by the extent to which HCV inhibits MDC functions before treatment, rather than solely on a breakdown of the extrinsic T cell immunosuppressive environment. Thus, viral inhibition of MDC functions before treatment emerges as a co-determining factor in the clinical efficacy of interferon therapy during chronic HCV infection.
Collapse
Affiliation(s)
- Ian Gaël Rodrigue-Gervais
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CR-CHUM), Montréal, Québec, Canada
| | - Hawley Rigsby
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CR-CHUM), Montréal, Québec, Canada
| | - Loubna Jouan
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CR-CHUM), Montréal, Québec, Canada
| | - Bernard Willems
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CR-CHUM), Montréal, Québec, Canada
- Département de Médecine, Université de Montréal, Montréal, Québec, Canada
| | - Daniel Lamarre
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CR-CHUM), Montréal, Québec, Canada
- Département de Médecine, Université de Montréal, Montréal, Québec, Canada
- * E-mail:
| |
Collapse
|
7
|
Abdel-Hakeem MS, Shoukry NH. Protective immunity against hepatitis C: many shades of gray. Front Immunol 2014; 5:274. [PMID: 24982656 PMCID: PMC4058636 DOI: 10.3389/fimmu.2014.00274] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 05/27/2014] [Indexed: 12/11/2022] Open
Abstract
The majority of individuals who become acutely infected with hepatitis C virus (HCV) develop chronic infection and suffer from progressive liver damage while approximately 25% are able to eliminate the virus spontaneously. Despite the recent introduction of new direct-acting antivirals, there is still no vaccine for HCV. As a result, new infections and reinfections will remain a problem in developing countries and among high risk populations like injection drug users who have limited access to treatment and who continue to be exposed to the virus. The outcome of acute HCV is determined by the interplay between the host genetics, the virus, and the virus-specific immune response. Studies in humans and chimpanzees have demonstrated the essential role of HCV-specific CD4 and CD8 T cell responses in protection against viral persistence. Recent data suggest that antibody responses play a more important role than what was previously thought. Individuals who spontaneously resolve acute HCV infection develop long-lived memory T cells and are less likely to become persistently infected upon reexposure. New studies examining high risk cohorts are identifying correlates of protection during real life exposures and reinfections. In this review, we discuss correlates of protective immunity during acute HCV and upon reexposure. We draw parallels between HCV and the current knowledge about protective memory in other models of chronic viral infections. Finally, we discuss some of the yet unresolved questions about key correlates of protection and their relevance for vaccine development against HCV.
Collapse
Affiliation(s)
- Mohamed S Abdel-Hakeem
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM) , Montréal, QC , Canada ; Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université de Montréal , Montréal, QC , Canada ; Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University , Cairo , Egypt
| | - Naglaa H Shoukry
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM) , Montréal, QC , Canada ; Département de Médecine, Faculté de Médecine, Université de Montréal , Montréal, QC , Canada
| |
Collapse
|
8
|
Rana D, Chawla Y, Arora SK. Success of antiviral therapy in chronic hepatitis C infection relates to functional status of myeloid dendritic cells. Indian J Med Res 2013; 138:766-78. [PMID: 24434330 PMCID: PMC3928708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Chronic hepatitis C infection poses a major global health predicament and appears to be potent threat to mankind. The treatment in wide use is interferon/ribavirin combination therapy which is generally effective in about 60-70 per cent of patients carrying genotype 3 and causes significant morbidity. The response to therapy is largely guided by limited number of factors such as genotype of virus, rapid virological response, ethnicity, pre-therapy viral load, etc. While involvement of host genetic factors has been a major focus of research in playing an important role in the outcome of disease, the role of immune system cannot be marginalized. Poor cellular trafficking and suboptimal T cell responses in liver, the hall marks of chronic hepatitis C virus infection, might be attributed to defective antigen presentation. Various immunological factors, both innate and adaptive, play role in the pathogenesis of the disease and become dysfunctional in active disease. Recent reports suggest the major impact of functional and numerical status of dendritic cells in deciding the fate of antiviral therapy. In this review we take a look at the involvement of dendritic cells in playing an important role in the response to therapy.
Collapse
Affiliation(s)
- Deepa Rana
- Department of Immunopathology, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| | - Yogesh Chawla
- Department of Hepatology, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| | - Sunil K. Arora
- Department of Immunopathology, Postgraduate Institute of Medical Education & Research, Chandigarh, India,Reprint requests: Dr Sunil K. Arora, Professor, Department of Immunopathology, Postgraduate Institute of Medical Education & Research, Chandigarh 160 012, India e-mail:
| |
Collapse
|
9
|
Golden-Mason L, Rosen HR. Natural killer cells: multifaceted players with key roles in hepatitis C immunity. Immunol Rev 2013; 255:68-81. [PMID: 23947348 PMCID: PMC3765000 DOI: 10.1111/imr.12090] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 05/08/2013] [Accepted: 05/14/2013] [Indexed: 12/11/2022]
Abstract
Natural killer cells (NKs) are involved in every stage of hepatitis C viral (HCV) infection, from protection against HCV acquisition and resolution in the acute phase to treatment-induced clearance. In addition to their direct antiviral actions, NKs are involved in the induction and priming of appropriate downstream T-cell responses. In the setting of chronic HCV, overall NK cell levels are decreased, subset distribution is altered, and changes in NK receptor (NKR) expression have been demonstrated, although the contribution of individual NKRs to viral clearance or persistence remains to be clarified. Enhanced NK cell cytotoxicity accompanied by insufficient interferon-γ production may promote liver damage in the setting of chronic infection. Treatment-induced clearance is associated with activation of NK cells, and it will be of interest to monitor NK cell responses to triple therapy. Activated NK cells also have anti-fibrotic properties, and the same hepatic NK cell populations that are actively involved in control of HCV may also be involved in control of HCV-associated liver damage. We still have much to learn, in particular: how do liver-derived NKs influence the outcome of HCV infection? Do NK receptors recognize HCV-specific components? And, are HCV-specific memory NK populations generated?
Collapse
Affiliation(s)
- Lucy Golden-Mason
- Division of Gastroenterology and Hepatology, Hepatitis C Center, Department of Medicine, University of Colorado Denver (UCD), Aurora, CO, USA
| | | |
Collapse
|
10
|
Pelletier S, Bédard N, Said E, Ancuta P, Bruneau J, Shoukry NH. Sustained hyperresponsiveness of dendritic cells is associated with spontaneous resolution of acute hepatitis C. J Virol 2013; 87:6769-81. [PMID: 23576504 PMCID: PMC3676083 DOI: 10.1128/jvi.02445-12] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Accepted: 03/25/2013] [Indexed: 12/11/2022] Open
Abstract
Some studies have reported that dendritic cells (DCs) may be dysfunctional in a subset of patients with chronic hepatitis C virus (HCV) infection. However, the function of DCs during acute HCV infection and their role in determining infectious outcome remain elusive. Here, we examined the phenotype and function of myeloid DCs (mDCs) and plasmacytoid DCs (pDCs) during acute HCV infection. Three groups of injection drug users (IDUs) at high risk of HCV infection were studied: an uninfected group, a group with acute HCV infection with spontaneous resolution, and a group with acute infection with chronic evolution. We examined the frequency, maturation status, and cytokine production capacity of DCs in response to the Toll-like receptor 4 (TLR4) and TLR7/8 ligands lipopolysaccharide (LPS) and single-stranded RNA (ssRNA), respectively. Several observations could distinguish HCV-negative IDUs and acute HCV resolvers from patients with acute infection with chronic evolution. First, we observed a decrease in the frequency of mature CD86(+), programmed death-1 receptor ligand-positive (PDL1(+)), and PDL2(+) pDCs. This phenotype was associated with the increased sensitivity of pDCs from resolvers and HCV-negative IDUs versus the group with acute infection with chronic evolution to ssRNA stimulation in vitro. Second, LPS-stimulated mDCs from resolvers and HCV-negative IDUs produced higher levels of cytokines than mDCs from the group with acute infection with chronic evolution. Third, mDCs from all patients with acute HCV infection, irrespective of their outcomes, produced higher levels of cytokines during the early acute phase in response to ssRNA than mDCs from healthy controls. However, this hyperresponsiveness was sustained only in spontaneous resolvers. Altogether, our results suggest that the immature pDC phenotype and sustained pDC and mDC hyperresponsiveness are associated with spontaneous resolution of acute HCV infection.
Collapse
Affiliation(s)
- Sandy Pelletier
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Hôpital St-Luc,
- Département de Microbiologie et Immunologie,
| | - Nathalie Bédard
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Hôpital St-Luc,
| | - Elias Said
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Hôpital St-Luc,
- Département de Microbiologie et Immunologie,
| | - Petronela Ancuta
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Hôpital St-Luc,
- Département de Microbiologie et Immunologie,
| | - Julie Bruneau
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Hôpital St-Luc,
- Département de Médecine Familiale,
| | - Naglaa H. Shoukry
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Hôpital St-Luc,
- Département de Médecine, Université de Montréal, Montréal, Quebec, Canada
| |
Collapse
|
11
|
Sehgal M, Khan ZK, Talal AH, Jain P. Dendritic Cells in HIV-1 and HCV Infection: Can They Help Win the Battle? Virology (Auckl) 2013; 4:1-25. [PMID: 25512691 PMCID: PMC4222345 DOI: 10.4137/vrt.s11046] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Persistent infections with human immunodeficiency virus type 1 (HIV-1) and hepatitis C virus (HCV) are a major cause of morbidity and mortality worldwide. As sentinels of our immune system, dendritic cells (DCs) play a central role in initiating and regulating a potent antiviral immune response. Recent advances in our understanding of the role of DCs during HIV-1 and HCV infection have provided crucial insights into the mechanisms employed by these viruses to impair DC functions in order to evade an effective immune response against them. Modulation of the immunological synapse between DC and T-cell, as well as dysregulation of the crosstalk between DCs and natural killer (NK) cells, are emerging as two crucial mechanisms. This review focuses on understanding the interaction of HIV-1 and HCV with DCs not only to understand the immunopathogenesis of chronic HIV-1 and HCV infection, but also to explore the possibilities of DC-based immunotherapeutic approaches against them. Host genetic makeup is known to play major roles in infection outcome and rate of disease progression, as well as response to anti-viral therapy in both HIV-1 and HCV-infected individuals. Therefore, we highlight the genetic variations that can potentially affect DC functions, especially in the setting of chronic viral infection. Altogether, we address if DCs’ potential as critical effectors of antiviral immune response could indeed be utilized to combat chronic infection with HIV-1 and HCV.
Collapse
Affiliation(s)
- Mohit Sehgal
- Department of Microbiology and Immunology, and the Drexel Institute for Biotechnology and Virology Research, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Zafar K Khan
- Department of Microbiology and Immunology, and the Drexel Institute for Biotechnology and Virology Research, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Andrew H Talal
- Center for the Study of Hepatitis C, Weill Cornell Medical College, New York, NY
| | - Pooja Jain
- Department of Microbiology and Immunology, and the Drexel Institute for Biotechnology and Virology Research, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
12
|
Es-Saad S, Tremblay N, Baril M, Lamarre D. Regulators of innate immunity as novel targets for panviral therapeutics. Curr Opin Virol 2012; 2:622-8. [PMID: 23017246 PMCID: PMC7102864 DOI: 10.1016/j.coviro.2012.08.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Accepted: 08/30/2012] [Indexed: 12/21/2022]
Abstract
Interferons (IFNs) have long been used as an immunomodulatory therapy for a large array of acute and chronic viral infections. However, IFN therapies have been plagued by severe side effects. The discovery of pathogen recognition receptors (PRR) rejuvenated the interest for immunomodulatory therapies. The successes obtained with Toll-like receptor (TLR) agonists in activating immune cells and as adjuvant for prophylactic vaccines against different viruses paved the way to targeted immunomodulatory therapy. Better characterization of pathogen-induced immune disorders and newly discovered regulators of innate immunity have now the potential to specifically withdraw prevailing subversion mechanisms and to transform antiviral treatments by introducing panviral therapeutics with less adverse effects than IFN therapies.
Collapse
Affiliation(s)
- Salwa Es-Saad
- Institut de Recherche en Immunologie et en Cancérologie (IRIC), Montréal, Québec, Canada
| | - Nicolas Tremblay
- Institut de Recherche en Immunologie et en Cancérologie (IRIC), Montréal, Québec, Canada
| | - Martin Baril
- Institut de Recherche en Immunologie et en Cancérologie (IRIC), Montréal, Québec, Canada
| | - Daniel Lamarre
- Institut de Recherche en Immunologie et en Cancérologie (IRIC), Montréal, Québec, Canada
- Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
13
|
Restoration of innate and adaptive immune responses by HCV viral inhibition with an induction approach using natural interferon-beta in chronic hepatitis C. Clin Dev Immunol 2012; 2012:582716. [PMID: 22966239 PMCID: PMC3433154 DOI: 10.1155/2012/582716] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 06/03/2012] [Accepted: 06/03/2012] [Indexed: 12/30/2022]
Abstract
Chronic hepatitis C (CHC) is a serious medical problem necessitating more effective treatment. This study investigated the hypothesis that an induction approach with nIFN-beta for 24 weeks followed by PEG-IFN-alpha+ribavirin (standard of care: SOC) for 48 weeks (novel combination treatment: NCT) would increase the initial virologic response rate and restore innate and adaptive immune responses in CHC. Seven CHC patients with a high viral load and genotype 1b were treated with NCT. Serum cytokine and chemokine levels were evaluated during NCT. NCT prevented viral escape and breakthrough resulting in persistent viral clearance of HCVRNA. IL-15 was increased at the end of induction therapy in both early virologic responders (EAVRs) and late virologic responders (LAVRs); CXCL-8, CXCL-10, and CCL-4 levels were significantly decreased (P < 0.05) in EAVR but not in LAVR during NCT, and IL-12 increased significantly (P < 0.05) and CXCL-8 decreased significantly (P < 0.05) after the end of NCT in EAVR but not in LAVR. NCT prevented viral breakthrough with viral clearance leading to improvement of innate and adaptive immunity resulting in a sustained virologic response (SVR). NCT (n = 8) achieved a higher SVR rate than SOC (n = 8) in difficult-to-treat CHC patients with genotype 1 and high viral loads.
Collapse
|
14
|
Jouan L, Chatel-Chaix L, Melançon P, Rodrigue-Gervais IG, Raymond VA, Selliah S, Bilodeau M, Grandvaux N, Lamarre D. Targeted impairment of innate antiviral responses in the liver of chronic hepatitis C patients. J Hepatol 2012; 56:70-7. [PMID: 21835140 DOI: 10.1016/j.jhep.2011.07.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2010] [Revised: 07/12/2011] [Accepted: 07/14/2011] [Indexed: 01/01/2023]
Abstract
BACKGROUND & AIMS Innate sensing of viral infection activates a global defense response including type I interferon (IFN) and IFN-stimulated genes (ISGs) expression. We previously reported that HCV NS3/4A protease, an essential protein in viral polyprotein processing, can abrogate antiviral signaling pathways and effectors' response when ectopically expressed in human hepatocytes by cleaving antiviral adaptor CARDIF. However, whether HCV mediates evasion of innate immunity in patients with chronic infection remains unclear. METHODS In this study, paired liver biopsies and corresponding purified hepatocytes of chronic hepatitis C patients and controls were subjected to transcriptional analysis of selected innate immune genes and to CARDIF protein detection. RESULTS We report that an antiviral response is largely supported by infected hepatocytes as demonstrated by upregulation of the representative antiviral genes ISG15, ISG56, and OASL as well as chemokines genes CXCL9, CXCL10, and CXCL11 measured in both HCV-derived liver biopsies and hepatocytes; that the mRNA levels of these indicator ISGs correlate inversely with HCV RNA level; and more importantly that expression of the early responsive IRF3-dependent genes type I IFNβ, type III IL28A/IL29, and chemokine CCL5 are severely compromised and associated to a global decrease of CARDIF adaptor in infected hepatocytes. CONCLUSIONS Altogether the data argue for a strong viral strategy that counteracts the host's early antiviral response of hepatocytes from chronic patients without impairing ISGs induced via classical IFN pathway.
Collapse
Affiliation(s)
- Loubna Jouan
- Institut de Recherche en Immunologie et en Cancérologie (IRIC), Université de Montréal, Québec, Canada H3T 1J4
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
The human immune system is under constant challenge from many viruses, some of which the body is successfully able to clear. Other viruses have evolved to escape the host immune responses and thus persist, leading to the development of chronic diseases. Dendritic cells are professional antigen-presenting cells that play a major role in both innate and adaptive immunity against different pathogens. This review focuses on the interaction of different chronic viruses with dendritic cells and the viruses' ability to exploit this critical cell type to their advantage so as to establish persistence within the host.
Collapse
Affiliation(s)
- Saifur Rahman
- Department of Microbiology and Immunology, Drexel Institute for Biotechnology and Virology Research, Drexel University College of Medicine, 3805 Old Easton Road, Doylestown, PA 18902, USA
| | | | | |
Collapse
|
16
|
Hammond T, Lee S, Watson MW, Flexman JP, Cheng W, Price P. Decreased IFNγ production correlates with diminished production of cytokines by dendritic cells in patients infected with hepatitis C virus and receiving therapy. J Viral Hepat 2011; 18:482-92. [PMID: 20529204 DOI: 10.1111/j.1365-2893.2010.01331.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Toll-like receptor (TLR) expression and the signalling pathways that lead to the production of accessory cytokines by antigen-presenting cells (APCs) both have potential to limit T-cell responses to viral antigens. Here, expression of TLR and retinoic acid inducible gene I (RIG-I) and responses evoked through these proteins were evaluated in patients chronically infected with HCV, before and during pegylated interferon-α (IFNα) and ribavirin therapy. Expression of TLR2, 3, 4, 7, 9 and RIG-I on APCs and cytokine production by DCs were measured by flow cytometry. Production of IL-12 by myeloid dendritic cells (mDCs), IFNα by plasmacytoid cells (pDCs) and IFNγ by peripheral blood mononuclear cells was measured after stimulation with TLR ligands. IFNγ ELISpot responses to HCV and CMV antigens declined on therapy. TLR and RIG-I expression on mDCs, pDCs, B cells and monocytes was either similar or higher in patients than that in controls and generally increased during therapy. Therapy impaired IL-12 and IFNα production by DCs and reduced production of IFNγ by PBMCs after stimulation with ligands for TLR3, TLR7/8, TLR9 and RIG-I. This was independent of whether patients attained a sustained virological response. HCV disease and interferon-based therapy reduced IFN-γ responses to HCV antigens and TLR agonists. This was not accompanied by reduced expression of pertinent TLR but correlated with diminished production of co-stimulatory cytokines by DCs stimulated via TLR.
Collapse
Affiliation(s)
- T Hammond
- School of Pathology and Laboratory Medicine, University of Western Australia, WA, Australia
| | | | | | | | | | | |
Collapse
|
17
|
Reeves RK, Evans TI, Fultz PN, Johnson RP. Potential confusion of contaminating CD16+ myeloid DCs with anergic CD16+ NK cells in chimpanzees. Eur J Immunol 2011; 41:1070-4. [PMID: 21360701 PMCID: PMC3106337 DOI: 10.1002/eji.201040832] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Revised: 12/07/2010] [Accepted: 01/25/2011] [Indexed: 11/06/2022]
Abstract
Precise identification of NK-cell populations in humans and nonhuman primates has been confounded by imprecise phenotypic definitions. A common definition used in nonhuman primates, including chimpanzees, is CD3(-) CD8α(+) CD16(+) , and this is the dominant NK-cell phenotype in peripheral blood. However, recent data suggest that in chimpanzees a rare CD8α(-) CD16(+) population also exists. Herein, we present evidence validating the existence of this rare subset in chimpanzee peripheral blood, but also demonstrating that gating on CD3(-) CD8α(-) CD16(+) cells can inadvertently include a large number of CD16(+) myeloid DCs (mDCs). We confirmed the inclusion of mDCs in CD3(-) CD8α(-) CD16(+) gated cells by demonstrating high expression of CD11c, BDCA-1 and HLA-DR, and by the lack of expression of NKp46 and intracellular perforin. We also functionally validated the CD8α(-) NK-cell and mDC populations by mutually exclusive responsiveness to a classical NK-cell stimulus, MHC class I-deficient cells, and a prototypic mDC stimulus, poly I:C, respectively. Overall, these data demonstrate common problems with gating of NK cells that can lead to erroneous conclusions and highlight a critical need for consensus protocols for NK-cell phenotyping.
Collapse
Affiliation(s)
- R. Keith Reeves
- Division of Immunology, New England Primate Research Center, Harvard Medical School, Southborough Campus, Pine Hill Drive, Southborough, MA, 01772
| | - Tristan I. Evans
- Division of Immunology, New England Primate Research Center, Harvard Medical School, Southborough Campus, Pine Hill Drive, Southborough, MA, 01772
| | - Patricia N. Fultz
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, 35294
| | - R. Paul Johnson
- Division of Immunology, New England Primate Research Center, Harvard Medical School, Southborough Campus, Pine Hill Drive, Southborough, MA, 01772
- Ragon Institute of Massachusetts General Hospital, MIT, and Harvard, and Infectious Disease Unit, Massachusetts General Hospital, Boston, MA 02115
| |
Collapse
|
18
|
Riezu-Boj JI, Larrea E, Aldabe R, Guembe L, Casares N, Galeano E, Echeverria I, Sarobe P, Herrero I, Sangro B, Prieto J, Lasarte JJ. Hepatitis C virus induces the expression of CCL17 and CCL22 chemokines that attract regulatory T cells to the site of infection. J Hepatol 2011; 54:422-31. [PMID: 21129807 DOI: 10.1016/j.jhep.2010.07.014] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Revised: 06/28/2010] [Accepted: 07/12/2010] [Indexed: 12/20/2022]
Abstract
BACKGROUND & AIMS The mechanisms by which Foxp3+ T regulatory cells (Treg) accumulate in HCV infected livers are not known. Here, we studied the role of chemokines CCL17 and CCL22 in this process. METHODS Chemokine mRNA levels were determined by qPCR in liver biopsies from 26 HCV chronically infected patients (CHC), 11 patients with treatment-induced sustained virological response (SVR), 16 patients with other liver diseases unrelated to HCV, and 24 normal livers. Double-immunofluorescence Foxp3/CD3 or CD11c/CCL22 was performed in liver sections. Chemokine production by monocyte-derived dendritic cells (MDDC) co-cultured with uninfected or HCV-JFH1 infected Huh7 cells was measured by qPCR and ELISA. Chemotactic activity of culture supernatants was also tested. RESULTS Foxp3+ Treg were increased in CHC livers as compared to controls. Patients with CHC showed elevated intrahepatic levels of CCL17 mRNA compared to normal livers or livers from subjects with SVR or other forms of liver disease. Intrahepatic CCL22 expression was also higher in CHC than in healthy subjects or SVR patients but similar to that observed in other liver diseases. Dendritic cells producing CCL22 could be found inside the hepatic lobule in CHC patients. Contact between MDDC and HCV-JFH1-infected Huh7 cells induced the expression of CCL17 and CCL22 in a process partially dependent on ICAM-1. Transwell experiments showed that upregulation of these chemokines enhanced Treg migration. CONCLUSIONS Contact of HCV-infected cells with dendritic cells induces the production of Treg-attracting chemokines, an effect which may favour liver accumulation of Treg in CHC. Our findings contribute to explain the mechanism by which HCV escapes the immune response and thus reveals novel therapeutic targets.
Collapse
Affiliation(s)
- José-Ignacio Riezu-Boj
- Gene Therapy and Hepatology Area, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Jo J, Lohmann V, Bartenschlager R, Thimme R. Experimental models to study the immunobiology of hepatitis C virus. J Gen Virol 2010; 92:477-93. [PMID: 21148278 DOI: 10.1099/vir.0.027987-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Effective host immune responses are essential for the control of hepatitis C virus (HCV) infection and persistence of HCV has indeed been attributed to their failure. In recent years, several in vitro and in vivo experimental models have allowed studies of host immune responses against HCV. Numerous observations derived from these models have improved our understanding of the mechanisms responsible for the host's ability to clear the virus as well as of the mechanisms responsible for the host's failure to control HCV replication. Importantly, several findings obtained with these model systems have been confirmed in studies of acutely or chronically HCV-infected individuals. Collectively, several mechanisms are used by HCV to escape host immune responses, such as poor induction of the innate immune response and escaping/impairing adaptive immunity. In this review, we summarize current findings from experimental models available for studies of the immune response targeting HCV and discuss the relevance of these findings for the in vivo situation in HCV-infected humans.
Collapse
Affiliation(s)
- Juandy Jo
- Department of Medicine II, University Medical Center Freiburg, Germany
| | | | | | | |
Collapse
|
20
|
Canaday DH, Burant CJ, Jones L, Aung H, Woc-Colburn L, Anthony DD. Preserved MHC-II antigen processing and presentation function in chronic HCV infection. Cell Immunol 2010; 266:187-91. [PMID: 21055734 PMCID: PMC3005840 DOI: 10.1016/j.cellimm.2010.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Revised: 10/04/2010] [Accepted: 10/12/2010] [Indexed: 01/07/2023]
Abstract
Individuals with chronic HCV infection have impaired response to vaccine, though the etiology remains to be elucidated. Dendritic cells (DC) and monocytes (MN) provide antigen uptake, processing, presentation, and costimulatory functions necessary to achieve optimal immune responses. The integrity of antigen processing and presentation function within these antigen presenting cells (APC) in the setting of HCV infection has been unclear. We used a novel T cell hybridoma system that specifically measures MHC-II antigen processing and presentation function of human APC. Results demonstrate MHC-II antigen processing and presentation function is preserved in both myeloid DC (mDC) and MN in the peripheral blood of chronically HCV-infected individuals, and indicates that an alteration in this function does not likely underlie the defective HCV-infected host response to vaccination.
Collapse
Affiliation(s)
- D H Canaday
- GRECC, Louis Stokes Cleveland VA Hospital, United States.
| | | | | | | | | | | |
Collapse
|
21
|
Rodrigue-Gervais IG, Lamarre D. [Hepatitis C virus subverts pattern recognition receptors-mediated control of adaptative immunity orchestrated by dendritic cells]. Med Sci (Paris) 2010; 26:869-74. [PMID: 20929679 DOI: 10.1051/medsci/20102610869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Chronic hepatitis C virus (HCV) is a liver-borne infectious disease that remains a major global health threat. The mechanisms whereby HCV evades the host's immune defences and establishes persistent infection remain elusive; but they likely require a complex and coordinated interruption of the interplay between innate and adaptive immune actors. This review discusses the concept that HCV evades the host's immune response to its components partly because of its ability to inactivate the major orchestrator of the adaptive immune response - the DCs. It argues that DCs constitute an immunologically relevant cellular viral host actively targeted by HCV. This targeting disrupts TRIF- and IPS-1-dependent but not MyD88-coupled pathogen recognition receptors (PRR) sensing pathways in these infected cells to foil the networks by which innate immunity to HCV is translated into virus-specific adaptive immune-mediated host resistance. Thus, as a culprit, this cell-specific and numerically restrained DC defect offers a promising field of investigation in which to study and understand the HCV-restricted nature of the deficit in cellular immunity in persistently infected -individuals who have otherwise normal immune functions to unrelated pathogens. In this model, protective immunity is contingent on proper processing and delivery of danger signals by DCs presenting HCV antigens.
Collapse
|
22
|
Park SJ, Hahn YS. Regulation of host innate immunity by hepatitis C virus: crosstalk between hepatocyte and NK/DC. REVIEWS IN INFECTION 2010; 1:151-157. [PMID: 24688607 PMCID: PMC3969740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Hepatitis C virus (HCV) infection in humans is remarkably efficient in establishing viral persistence, leading to the development of liver cirrhosis and hepatocellular carcinoma. CD8+ T cells are involved in controlling HCV infection; but, in chronic HCV patients, severe CD4+ and CD8+ T cell dysfunction has been observed. This suggests that HCV may employ numerous mechanisms to counteract or possibly suppress the host T cell responses. The primary site of HCV replication occurs within hepatocytes in the liver. As a result of liver enodothelial cells perforated by fenestrations, parenchymal cells (hepatocytes) are not separated by a basal membrane, and thereby HCV-infected hepatocytes are extensively capable of interacting with innate immune cells including NK, DC. Recent studies reveal that the function of NK and DC function is significantly impaired in chronic HCV patients. Given a critical role of NK and DC in limiting HCV replication at the early phase of viral infection, it is likely that HCV-infected hepatocytes might be responsible for impairing NK and DC function by enhancing the expression of immunoregulatory molecules (either soluble or cell surface). Thus, this impairment of innate immunity attributes to the failure of generating effective T cell responses to clear HCV infection. In this article, we will review studies highlighting the regulation of innate immunity by HCV and crosstalk between hepatocytes and NK/DC in the hepatic environment.
Collapse
Affiliation(s)
- Sung-Jae Park
- Beirne B Carter Center for Immunology Research, University of Virginia, Charlottesville, VA 22908, USA
- Department of Internal Medicine, College of Medicine, Inje University, Busan, Korea
| | - Young S. Hahn
- Beirne B Carter Center for Immunology Research, University of Virginia, Charlottesville, VA 22908, USA
- Department of Microbiology, University of Virginia, Charlottesville, VA 22908, USA
- Department of Pathology, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
23
|
Hammond T, Lee S, Watson MW, Flexman JP, Cheng W, Fernandez S, Price P. Toll-like receptor (TLR) expression on CD4+ and CD8+ T-cells in patients chronically infected with hepatitis C virus. Cell Immunol 2010; 264:150-5. [PMID: 20579979 DOI: 10.1016/j.cellimm.2010.06.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Revised: 05/11/2010] [Accepted: 06/02/2010] [Indexed: 12/24/2022]
Abstract
Toll-like receptor (TLR) expression on T-cells and the signalling pathways that lead to the production of cytokines may limit antigen-specific T-cell responses. Here, expression of TLR and retinoic acid inducible gene I (RIG-I) on T-cells were evaluated in patients chronically infected with hepatitis C virus (HCV), before and during pegylated interferon-alpha and ribavirin therapy. Expression of TLR2,3,4,7,9 and retinoic acid inducible gene (RIG)-I on different CD4(+) and CD8(+) T-cell sub-populations (naïve: CD45RA(+)CD57(-); central memory: T(CM) CD45RA(-)CD57(-); effector memory: T(EM) CD45RA(-)CD57(+) and terminally differentiated effector memory: T(EMRA) CD45RA(+)CD57(+)) were measured by flow cytometry. TLR7, TLR9 and RIG-I expression on CD4(+) T-cells and RIG-I expression on CD8(+) T-cells was higher in patients than healthy controls. Therapy increased expression of TLR2, TLR4 and TLR9 and this was observed for all T-cell sub-populations. Evaluation of TLR expression at baseline did not identify patients able to achieve sustained virological response following therapy.
Collapse
Affiliation(s)
- Talia Hammond
- School of Pathology and Laboratory Medicine, University of Western Australia, Australia
| | | | | | | | | | | | | |
Collapse
|
24
|
A look behind closed doors: interaction of persistent viruses with dendritic cells. Nat Rev Microbiol 2010; 8:350-60. [PMID: 20372157 DOI: 10.1038/nrmicro2332] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Persistent infections with HIV, hepatitis B virus and hepatitis C virus are major causes of morbidity and mortality worldwide. As sentinels of the immune system, dendritic cells (DCs) are crucial for the generation of protective antiviral immunity. Recent advances in our understanding of the role of DCs during infection with these viruses provide insights into the mechanisms used by these viruses to exploit DC function and evade innate and adaptive immunity. In this Review we highlight the current knowledge about the interaction between DCs and these viruses and the underlying mechanisms that might influence the outcome of viral infections.
Collapse
|
25
|
Rodrigue-Gervais IG, Rigsby H, Jouan L, Sauvé D, Sékaly RP, Willems B, Lamarre D. Dendritic cell inhibition is connected to exhaustion of CD8+ T cell polyfunctionality during chronic hepatitis C virus infection. THE JOURNAL OF IMMUNOLOGY 2010; 184:3134-44. [PMID: 20173023 DOI: 10.4049/jimmunol.0902522] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Although chronic viral infections have evolved mechanisms to interfere with aspects of pathogen recognition by dendritic cells (DCs), the role that these APCs play in virus-specific T cell exhaustion is unclear. Herein we report that NS3-dependent suppression of Toll/IL-1 domain-containing adapter-inducing IFN-beta- and IFN-beta promoter stimulator-1- but not MyD88-coupled pathogen-recognition receptor-induced synthesis of proinflammatory cytokines (IL-12 and TNF-alpha) from DCs by hepatitis C virus (HCV) is a distinctive feature of a subgroup of chronically infected patients. The result is decreased CD8(+) T cell polyfunctional capacities (production of IFN-gamma, IL-2, TNF-alpha, and CD107a mobilization) that is confined to HCV specificities and that relates to the extent to which HCV inhibits DC responses in infected subjects, despite comparable plasma viral load, helper T cell environments, and inhibitory programmed death 1 receptor/ligand signals. Thus, subjects in whom pathogen-recognition receptor signaling in DCs was intact exhibited enhanced polyfunctionality (i.e., IL-2-secretion and CD107a). In addition, differences between HCV-infected patients in the ability of CD8(+) T cells to activate multiple functions in response to HCV did not apply to CD8(+) T cells specific for other immune-controlled viruses (CMV, EBV, and influenza). Our findings identify reversible virus evasion of DC-mediated innate immunity as an additional important factor that impacts the severity of polyfunctional CD8(+) T cell exhaustion during a chronic viral infection.
Collapse
Affiliation(s)
- Ian Gaël Rodrigue-Gervais
- Département de Microbiologie et Immunologie, Centre de Recherche du Centre Hospitalier de Université de Montréal, Montréal, Québec, Canada
| | | | | | | | | | | | | |
Collapse
|
26
|
Wegert M, La Monica N, Tripodi M, Adler G, Dikopoulos N. Impaired interferon type I signalling in the liver modulates the hepatic acute phase response in hepatitis C virus transgenic mice. J Hepatol 2009; 51:271-8. [PMID: 19464068 DOI: 10.1016/j.jhep.2009.03.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2008] [Revised: 02/17/2009] [Accepted: 03/05/2009] [Indexed: 12/14/2022]
Abstract
BACKGROUND/AIMS The immunomodulatory active hepatitis C virus (HCV) has been shown to interfere with antiviral interferon (IFN) type I functions. The aim of the study was to determine whether further basic innate immunologic functions are influenced by HCV. METHODS The acute phase response (APR) was induced in HCV transgenic (tg) mice and C57BL/6J control mice using lipopolysaccharide. Activation of transcription factors, mRNA expression and production of cytokines and acute phase proteins (APP) were determined. IFN type I and tumor necrosis factor (TNF) alpha signalling were investigated after polyI:C or TNF-alpha treatment. RESULTS HCV tg mice showed an attenuated APR: hepatic activation of nuclear factor kappa B (NFkappaB) and interferon-stimulated gene factor 3 (ISGF3), hepatic expression of interleukin (IL) 6, IL-10, and IFN-gamma mRNA, serum concentrations of IL-6 and IFN-gamma and production of type II acute phase proteins were reduced compared to wild-type mice. While no differences in NFkappaB activation could be detected after TNF-alpha injection, HCV tg mice showed reduced activation of ISGF3 and reduced transactivation of IFN target genes after polyI:C treatment. CONCLUSIONS Besides antiviral defence mechanisms, interruption of IFN type I signalling by HCV modulates the APR which is aimed at a variety of pathogens.
Collapse
Affiliation(s)
- Mona Wegert
- Department of Internal Medicine I, Center for Internal Medicine, University of Ulm, Albert-Einstein Allee 23, 89081 Ulm, Germany.
| | | | | | | | | |
Collapse
|
27
|
Raymond VA, Selliah S, Ethier C, Houle R, Jouan L, Maniere T, Lamarre D, Willems B, Bilodeau M. Primary cultures of human hepatocytes isolated from hepatitis C virus-infected cirrhotic livers as a model to study hepatitis C infection. Liver Int 2009; 29:942-9. [PMID: 19302183 DOI: 10.1111/j.1478-3231.2009.01996.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND/AIM Since the discovery of hepatitis C virus (HCV), researchers have encountered difficulties with in vitro models. The aim of this study was to determine whether HCV-infected human primary hepatocytes, isolated from cirrhotic livers at liver transplantation, can be used as a model to study HCV infection. METHODS Hepatocytes were isolated with collagenase and cultured over a 20-day period on different matrices. Viral kinetics was monitored with/without treatment by real-time polymerase chain reaction. RESULTS Cell yield and viability were higher with uninfected/non-cirrhotic livers (77.2+/-1.8%) in comparison with HCV-infected cirrhotic livers (68.8+/-12%). HCV-infected hepatocytes behaved similar to non-infected cells and expressed albumin and cytochrome P4502E1. HCV-positive strand was identified in supernatants and cell lysates. HCV-negative strand was only found inside cells and correlated with viral RNA recovery in the medium. Improvement in the degree of hepatocyte differentiation was associated with better HCV recovery. Antiviral treatment with interferon-alpha, EX4 and cyclosporine A induced significant reductions in HCV RNA. CONCLUSION Primary cultures of HCV-infected human hepatocytes from end-stage cirrhotic livers is feasible, represents an excellent model to study specific virus-host interactions and can be used to assess viral replication.
Collapse
Affiliation(s)
- Valérie-Ann Raymond
- Laboratoire d'hépatologie cellulaire, Centre hospitalier de l'Université de Montréal (CHUM)-Hôpital Saint-Luc, Montréal, QC, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Marukian S, Jones CT, Andrus L, Evans MJ, Ritola KD, Charles ED, Rice CM, Dustin LB. Cell culture-produced hepatitis C virus does not infect peripheral blood mononuclear cells. Hepatology 2008; 48:1843-50. [PMID: 19003912 PMCID: PMC2592497 DOI: 10.1002/hep.22550] [Citation(s) in RCA: 206] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
UNLABELLED Hepatitis C virus (HCV) replicates primarily in the liver, but HCV RNA has been observed in association with other tissues and cells including B and T lymphocytes, monocytes, and dendritic cells. We have taken advantage of a recently described, robust system that fully recapitulates HCV entry, replication and virus production in vitro to re-examine the issue of HCV infection of blood cell subsets. The HCV replicase inhibitor 2'C-methyl adenosine was used to distinguish HCV RNA replication from RNA persistence. Whereas cell culture-grown HCV replicated in Huh-7.5 hepatoma cells, no HCV replication was detected in B or T lymphocytes, monocytes, macrophages, or dendritic cells from healthy donors. No blood cell subset tested expressed significant levels of Claudin-1, a tight junction protein needed for HCV infection of Huh-7.5 cells. A B cell line expressing high levels of Claudin-1, CD81, and scavenger receptor BI remained resistant to HCV pseudoparticle infection. We bypassed the block in HCV entry by transfecting HCV RNA into blood cell subsets. Transfected RNA was not detectably translated and induced high levels of interferon-alpha. Supernatants from HCV RNA-transfected macrophages inhibited HCV replication in Huh-7.5 cells. CONCLUSION We conclude that multiple blocks prevent blood cells from supporting HCV infection.
Collapse
MESH Headings
- Antigens, CD/metabolism
- B-Lymphocytes/cytology
- B-Lymphocytes/metabolism
- B-Lymphocytes/virology
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/virology
- Cell Line
- Cell Line, Tumor
- Cells, Cultured
- Claudin-1
- Dendritic Cells/cytology
- Dendritic Cells/metabolism
- Dendritic Cells/virology
- Hepacivirus/genetics
- Hepacivirus/pathogenicity
- Hepacivirus/physiology
- Humans
- Leukocytes, Mononuclear/cytology
- Leukocytes, Mononuclear/metabolism
- Leukocytes, Mononuclear/virology
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Liver Neoplasms/virology
- Membrane Proteins/metabolism
- RNA, Viral/genetics
- Scavenger Receptors, Class B/metabolism
- Tetraspanin 28
- Transfection
- Virus Replication/physiology
Collapse
Affiliation(s)
- Svetlana Marukian
- Center for the Study of Hepatitis C, Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065
| | - Christopher T. Jones
- Center for the Study of Hepatitis C, Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065
| | - Linda Andrus
- Center for the Study of Hepatitis C, Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065
| | - Matthew J. Evans
- Center for the Study of Hepatitis C, Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065
| | - Kimberly D. Ritola
- Center for the Study of Hepatitis C, Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065
| | - Edgar D. Charles
- Center for the Study of Hepatitis C, Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065
| | - Charles M. Rice
- Center for the Study of Hepatitis C, Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065
| | - Lynn B. Dustin
- Center for the Study of Hepatitis C, Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065
| |
Collapse
|
29
|
Echeverría I, Zabaleta A, Silva L, Díaz-Valdés N, Riezu-Boj JI, Lasarte JJ, Borrás-Cuesta F, Civeira MP, Prieto J, Sarobe P. Monocyte-derived dendritic cells from HCV-infected patients transduced with an adenovirus expressing NS3 are functional when stimulated with the TLR3 ligand poly(I:C). J Viral Hepat 2008; 15:782-9. [PMID: 18637068 DOI: 10.1111/j.1365-2893.2008.01020.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Dendritic cells (DC) transfected with an adenovirus encoding hepatitis C virus (HCV) NS3 protein (AdNS3) induce potent antiviral immune responses when used to immunize mice. However, in HCV infected patients, controversial results have been reported regarding the functional properties of monocyte-derived DC (MoDC), a cell population commonly used in DC vaccination protocols. Thus, with the aim of future vaccination studies we decided to characterize MoDC from HCV patients transfected with AdNS3 and stimulated with the TLR3 ligand poly(I:C). Phenotypic and functional properties of these cells were compared with those from MoDC obtained from uninfected individuals. PCR analysis showed that HCV RNA was negative in MoDC from patients after the culture period. Also, phenotypic analysis of these cells showed lower expression of CD80, CD86, and CD40, but similar expression of HLA-DR molecules as compared to MoDC from uninfected individuals. Functional assays of MoDC obtained from patients and controls showed a similar ability to activate allogeneic lymphocytes or to produce IL-12 and IL-10, although lower IFN-alpha levels were produced by cells from HCV patients after poly(I:C) stimulation. Moreover, both groups of MoDC induced similar profiles of IFN-gamma and IL-5 after stimulation of allogeneic T-cells. Finally, migration assays did not reveal any difference in their ability to respond to CCL21 chemokine. In conclusion, MoDC from HCV patients are functional after transduction with AdNS3 and stimulation with poly(I:C). These findings suggest that these cells may be useful for therapeutic vaccination in chronic HCV infection.
Collapse
Affiliation(s)
- I Echeverría
- Division of Hepatology and Gene Therapy, Center for Applied Medical Research (CIMA), Pamplona, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Della Bella S, Giannelli S, Taddeo A, Presicce P, Villa ML. Application of six-color flow cytometry for the assessment of dendritic cell responses in whole blood assays. J Immunol Methods 2008; 339:153-64. [PMID: 18835394 DOI: 10.1016/j.jim.2008.09.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Revised: 09/03/2008] [Accepted: 09/11/2008] [Indexed: 12/24/2022]
Abstract
Analysis of peripheral blood dendritic cells (PBDCs) is increasingly reaching clinical relevance in a wide range of pathologies, in which investigating the capacity of DC subsets to respond adequately to specific stimuli may aid the comprehension of underlying immunopathologic mechanisms. The evaluation of PBDC responses directly challenged in whole blood (WB) samples offers many advantages over other methods that require DC isolation and culture, but it is limited in multiparametric analysis, currently based on 3- or 4-color assays. Therefore, in this study we developed a 6-color assay dedicated to the analysis of PBDC responses upon WB stimulation. We incubated WB samples with ligands to toll-like receptors (TLRs) with a clear-cut distribution on myeloid DCs (mDCs) or plasmacytoid (pDCs) and analyzed DC responses in terms of upregulation of activation/maturation markers, as well as production of a wide range of regulatory cytokines. Four colors were used to gate on mDCs and pDCs that were identified as lineage-/HLA-DR+/CD11c+ and lineage-/HLA-DR+/CD123+, respectively, and two further colors were used to analyze either the surface expression of CD80, CD86, CD40 or CD83, or the intracellular accumulation of IL-12, tumor-necrosis factor (TNF)-alpha, interferon (IFN)-alpha, IL-6, IL-10 or IL-4. With this method, we could directly compare in the same flow cytometric tube the responses of mDCs and pDCs to TLR stimulation, and investigate the reciprocal coexpression of distinct activation markers or regulatory cytokines. We suggest that the 6-color WB assay presented here may represent a novel tool for investigating the complex biology of DCs.
Collapse
Affiliation(s)
- Silvia Della Bella
- Laboratory of Immunology, Dipartimento di Scienze e Tecnologie Biomediche, Università degli Studi di Milano, Milan, Italy.
| | | | | | | | | |
Collapse
|
31
|
Abstract
Eradication of hepatitis C virus (HCV) infection requires a complex and coordinated interplay between innate and adaptive immune responses that, when it fails, leads to chronic infection. In this review, the innate immune mechanisms by which HCV is sensed and by which HCV undermines host defense are discussed. The critical role of dendritic cells in antigen presentation and T-cell activation in addition to type I interferon production and interference of HCV with innate immune cell functions are reviewed. Finally, current and emerging therapeutic approaches targeting innate immune pathways are evaluated.
Collapse
Affiliation(s)
- Gyongyi Szabo
- Department of Medicine-LRB215, University of Massachusetts Medical School, Worcester, MA 01605-2324, USA. <>
| | | |
Collapse
|
32
|
Miyazaki M, Kanto T, Inoue M, Itose I, Miyatake H, Sakakibara M, Yakushijin T, Kakita N, Hiramatsu N, Takehara T, Kasahara A, Hayashi N. Impaired cytokine response in myeloid dendritic cells in chronic hepatitis C virus infection regardless of enhanced expression of Toll-like receptors and retinoic acid inducible gene-I. J Med Virol 2008; 80:980-8. [PMID: 18428149 DOI: 10.1002/jmv.21174] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Dendritic cells utilize various sets of Toll-like receptors (TLR) or cytosolic sensors to detect pathogens and evoke immune responses. In patients with hepatitis C virus (HCV) infection, a higher prevalence of various infectious diseases is reported; suggesting that innate immunity against pathogens is impaired. The aim of this study was to clarify whether the TLR and retinoic acid inducible gene-I (RIG-I) system in myeloid dendritic cells is preserved or not in chronic HCV infection. The expression of TLRs, RIG-I and its relatives were compared in myeloid dendritic cells between 39 patients and 52 healthy volunteers. The induction of type-I interferon (IFN) and inflammatory cytokines was examined in response to agonists for TLR2 (palmitoyl-3-cysteine-serine-lysine-4), TLR3/RIG-I (polyinosine-polycytidylic acid) or TLR4 (lipopolysaccharide). The relative expressions of TLR2, TLR4, RIG-I, and LGP2 from the patients were significantly higher than those from the volunteers, whereas TLR3 and MDA-5 expressions did not differ. In search for factors regulating TLR/RIG-I expression, it was shown that IFN-alpha, polyinosine-polycytidylic acid and lipopolysaccharide induced TLR3, TLR4 and RIG-I, but TNF-alpha, HCV core or HCV non-structural proteins did not. For the functional analyses, myeloid dendritic cells from the patients induced significantly less amounts of IFN-beta, TNF-alpha and IL-12p70 in response to polyinosine-polycytidylic acid or lipopolysaccharide. It is noteworthy that the expression of TRIF and TRAF6, which are essential adaptor molecules transmitting TLR3 or TLR4-dependent signals, is reduced in the patients. Thus, innate cytokine responses in myeloid dendritic cells are impaired regardless of enhanced expressions of TLR2, TLR4, and RIG-I in HCV infection.
Collapse
Affiliation(s)
- Masanori Miyazaki
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Perrin-Cocon L, Agaugué S, Diaz O, Vanbervliet B, Dollet S, Guironnet-Paquet A, André P, Lotteau V. Th1 disabled function in response to TLR4 stimulation of monocyte-derived DC from patients chronically-infected by hepatitis C virus. PLoS One 2008; 3:e2260. [PMID: 18509450 PMCID: PMC2377338 DOI: 10.1371/journal.pone.0002260] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2007] [Accepted: 04/17/2008] [Indexed: 02/06/2023] Open
Abstract
Background Lack of protective antibodies and inefficient cytotoxic responses are characteristics of chronic hepatitis C infection. A defect in dendritic cell (DC) function has thus been suspected, but this remains a controversial issue. Methods and Findings Here we show that monocyte-derived DC (MoDC) from chronically-infected patients can mature in response to TLR1/2, TLR2/6 or TLR3 ligands. In contrast, when stimulated with the TLR4 ligand LPS, MoDC from patients show a profound defect in inducing IFNγ secretion by allogeneic T cells. This defect is not due to defective phenotypic maturation or to the presence of HCV-RNA in DC or monocytes but is correlated to reduced IL-12 secretion by DC. Restoration of DC ability to stimulate IFNγ secretion can be obtained by blocking MEK activation in DC, indicating that MEK/ERK pathway is involved in the Th1 defect of MoDC. Monocytes from HCV patients present increased spontaneous secretion of cytokines and chemokines, especially MIP-1β. Addition of MIP-1β on healthy monocytes during differentiation results in DC that have Th1 defect characteristic of MoDC from HCV patients, suggesting that MIP-1β secretion by HCV monocytes participates in the Th1 defect of DC. Conclusions Our data indicate that monocytes from HCV patients are activated in vivo. This interferes with their differentiation into DC, leading to deficient TLR4 signaling in these cells that are enable to induce a Th1 response. This specific defect is linked to the activation of the MEK/ERK pathway.
Collapse
|