1
|
Muraki Y. Simultaneous Packaging of Two Different RNA Segments into an Influenza C Virus-like Particle Occurs Inefficiently. Viruses 2025; 17:350. [PMID: 40143279 PMCID: PMC11946231 DOI: 10.3390/v17030350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 02/26/2025] [Accepted: 02/27/2025] [Indexed: 03/28/2025] Open
Abstract
Reverse genetics systems for influenza C virus encounter challenges due to the inefficient production of infectious virus particles. In the present study, we explored the underlying cause by assessing the efficiency of generating influenza C virus-like particles (C-VLPs) containing specific virus RNA (vRNA) segments. Using 293T cells transfected with plasmids encoding GFP- and DsRed2-vRNAs (each flanked by the non-coding regions of Segments 5 and 6, respectively), along with plasmids expressing virus proteins, we observed that C-VLPs containing a single vRNA segment were generated efficiently. However, the simultaneous packaging of two vRNA segments into a single C-VLP was less frequent, as demonstrated by flow cytometry and reverse-transcription PCR analyses. Statistical evaluations revealed a decreased efficiency of incorporating multiple vRNA segments into single particles, which likely contributes to the reduced production of infectious virus particles in reverse genetics systems. These findings highlight a critical limitation in the vRNA incorporation mechanism of influenza C virus, contrasting with that of influenza A virus. Hence, further studies are required to elucidate specific vRNA packaging signals and optimize vRNA expression levels to improve the production of infectious influenza C virus particles.
Collapse
Affiliation(s)
- Yasushi Muraki
- Division of Infectious Diseases and Immunology, Department of Microbiology, School of Medicine, Iwate Medical University, 1-1-1 Idaidori, Yahaba 028-3694, Iwate, Japan;
- Department of Infectious Diseases, Yamagata University Faculty of Medicine, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
| |
Collapse
|
2
|
Tanaka R, Tamao K, Ono M, Yamayoshi S, Kawaoka Y, Su'etsugu M, Noji H, Tabata KV. In vitro one-pot construction of influenza viral genomes for virus particle synthesis based on reverse genetics system. PLoS One 2024; 19:e0312776. [PMID: 39514509 PMCID: PMC11548778 DOI: 10.1371/journal.pone.0312776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/13/2024] [Indexed: 11/16/2024] Open
Abstract
The reverse genetics system, which allows the generation of influenza viruses from plasmids encoding viral genome, is a powerful tool for basic research on viral infection mechanisms and application research such as vaccine development. However, conventional plasmid construction using Escherichia coli (E.coli) cloning is time-consuming and has difficulties handling DNA encoding genes toxic for E.coli or highly repeated sequences. These limitations hamper rapid virus synthesis. In this study, we establish a very rapid in vitro one-pot plasmid construction (IVOC) based virus synthesis. This method dramatically reduced the time for genome plasmid construction, which was used for virus synthesis, from several days or more to about 8 hours. Moreover, infectious viruses could be synthesized with a similar yield to the conventional E.coli cloning-based method with high accuracy. The applicability of this method was also demonstrated by the generation of recombinant viruses carrying reporter genes from the IVOC products. This method enables the pathogenicity analysis and vaccine development using genetically modified viruses, and it is expected to allow for faster analysis of newly emerging variants than ever before. Furthermore, its application to other RNA viruses is also expected.
Collapse
Affiliation(s)
- Ryota Tanaka
- Department of Applied Chemistry, Graduate School of Engineering, the University of Tokyo, Tokyo, Japan
| | - Kenji Tamao
- Department of Applied Chemistry, Graduate School of Engineering, the University of Tokyo, Tokyo, Japan
| | - Mana Ono
- Department of Applied Chemistry, Graduate School of Engineering, the University of Tokyo, Tokyo, Japan
| | - Seiya Yamayoshi
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
- The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo, Japan
| | - Yoshihiro Kawaoka
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
- The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo, Japan
- Department of Pathobiological Sciences, Influenza Research Institute, School of Veterinary Medicine, University of Wisconsin, Madison, Wisconsin, United States of America
- Pandemic Preparedness, Infection and Advanced Research Center (UTOPIA), University of Tokyo, Tokyo, Japan
| | - Masayuki Su'etsugu
- Department of Life Science, College of Science, Rikkyo University, Tokyo, Japan
| | - Hiroyuki Noji
- Department of Applied Chemistry, Graduate School of Engineering, the University of Tokyo, Tokyo, Japan
| | - Kazuhito V Tabata
- Department of Applied Chemistry, Graduate School of Engineering, the University of Tokyo, Tokyo, Japan
| |
Collapse
|
3
|
Din GU, Wu C, Tariq Z, Hasham K, Amjad MN, Shen B, Yue L, Raza MA, Ashraf MA, Chen L, Hu Y. Unlocking influenza B: exploring molecular biology and reverse genetics for epidemic control and vaccine innovation. Virol J 2024; 21:196. [PMID: 39180083 PMCID: PMC11344405 DOI: 10.1186/s12985-024-02433-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/08/2024] [Indexed: 08/26/2024] Open
Abstract
Influenza is a highly contagious acute viral illness that affects the respiratory system, posing a significant global public health concern. Influenza B virus (IBV) causes annual seasonal epidemics. The exploration of molecular biology and reverse genetics of IBV is pivotal for understanding its replication, pathogenesis, and evolution. Reverse genetics empowers us to purposefully alter the viral genome, engineer precise genetic modifications, and unveil the secrets of virulence and resistance mechanisms. It helps us in quickly analyzing new virus strains by viral genome manipulation and the development of innovative influenza vaccines. Reverse genetics has been employed to create mutant or reassortant influenza viruses for evaluating their virulence, pathogenicity, host range, and transmissibility. Without this technique, these tasks would be difficult or impossible, making it crucial for preparing for epidemics and protecting public health. Here, we bring together the latest information on how we can manipulate the genes of the influenza B virus using reverse genetics methods, most importantly helper virus-independent techniques.
Collapse
Affiliation(s)
- Ghayyas Ud Din
- CAS Key Laboratory of Molecular Virology & Immunology, Institutional Center for Shared Technologies and Facilities, Pathogen Discovery and Big Data Platform, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, No. 320 Yueyang Road, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chunchen Wu
- Department of Laboratory Medicine, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430070, People's Republic of China
| | - Zahra Tariq
- Sundas Molecular Analysis Center, Sundas Foundation, Gujranwala, Punjab, Pakistan
| | - Kinza Hasham
- Sundas Molecular Analysis Center, Sundas Foundation, Gujranwala, Punjab, Pakistan
| | - Muhammad Nabeel Amjad
- CAS Key Laboratory of Molecular Virology & Immunology, Institutional Center for Shared Technologies and Facilities, Pathogen Discovery and Big Data Platform, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, No. 320 Yueyang Road, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bei Shen
- CAS Key Laboratory of Molecular Virology & Immunology, Institutional Center for Shared Technologies and Facilities, Pathogen Discovery and Big Data Platform, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, No. 320 Yueyang Road, Shanghai, 200031, China
| | - Lihuan Yue
- CAS Key Laboratory of Molecular Virology & Immunology, Institutional Center for Shared Technologies and Facilities, Pathogen Discovery and Big Data Platform, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, No. 320 Yueyang Road, Shanghai, 200031, China
| | - Muhammad Asif Raza
- CAS Key Laboratory of Molecular Virology & Immunology, Institutional Center for Shared Technologies and Facilities, Pathogen Discovery and Big Data Platform, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, No. 320 Yueyang Road, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Muhammad Awais Ashraf
- CAS Key Laboratory of Molecular Virology & Immunology, Institutional Center for Shared Technologies and Facilities, Pathogen Discovery and Big Data Platform, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, No. 320 Yueyang Road, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lingdie Chen
- CAS Key Laboratory of Molecular Virology & Immunology, Institutional Center for Shared Technologies and Facilities, Pathogen Discovery and Big Data Platform, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, No. 320 Yueyang Road, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yihong Hu
- CAS Key Laboratory of Molecular Virology & Immunology, Institutional Center for Shared Technologies and Facilities, Pathogen Discovery and Big Data Platform, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, No. 320 Yueyang Road, Shanghai, 200031, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
4
|
Katayama M, Murakami S, Ishida H, Matsugo H, Sekine W, Ohira K, Takenaka-Uema A, Horimoto T. Antigenic commonality and divergence of hemagglutinin-esterase-fusion protein among influenza D virus lineages revealed using epitope mapping. J Virol 2024; 98:e0190823. [PMID: 38345383 PMCID: PMC10949428 DOI: 10.1128/jvi.01908-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/20/2024] [Indexed: 03/20/2024] Open
Abstract
Influenza D virus (IDV) is one of the causative agents of bovine respiratory disease complex, which is the most common and economically burdensome disease affecting the cattle industry, and the need for an IDV vaccine has been proposed to enhance disease control. IDVs are classified into five genetic lineages based on the coding sequences of the hemagglutinin-esterase-fusion (HEF) protein, an envelope glycoprotein, which is the main target of protective antibodies against IDV infection. Herein, we prepared a panel of monoclonal antibodies (mAbs) against the HEF protein of viruses of various lineages to investigate the antigenic characteristics of IDVs and found that the mAbs could be largely separated into three groups. The first, second, and third groups demonstrated lineage-specific reactivity, cross-reactivity to viruses of multiple but not all lineages, and cross-reactivity to viruses of all lineages, respectively. Analyzing the escape mutant viruses from virus-neutralizing mAbs revealed that the receptor-binding region of the HEF molecule harbors virus-neutralizing epitopes that are conserved across multiple lineage viruses. In contrast, the apex region of the molecule possessed epitopes unique to each lineage virus. Furthermore, reverse genetics-generated recombinant viruses with point mutations revealed that amino acids within positions 210-214 of the HEF protein determined the antigenic specificity of each lineage virus. Taken together, this study reveals considerable antigenic variation among IDV lineages, although they are presumed to form a single serotype in terms of HEF antigenicity. Characterization of the antigenic epitope structure of HEF may contribute to selecting and creating effective vaccine viruses against IDV.IMPORTANCEInfluenza D viruses (IDVs) are suggested to create cross-reactive single serotypes in hemagglutinin-esterase-fusion (HEF) antigenicity, as indicated by serological analyses among distinct HEF lineage viruses. This is supported by the high identities of HEF gene sequences among strains, unlike the hemagglutinin (HA) genes of the influenza A virus that exhibit HA subtypes. Herein, we analyzed HEF antigenicity using a monoclonal antibody panel prepared from several virus lineages and found the existence of lineage-conserved and lineage-specific epitopes in HEF molecules. These findings confirm the HEF commonality and divergence among IDVs and provide useful information for constructing a vaccine containing a recombinant IDV virus with an engineered HEF gene, thereby leading to broad immunogenicity.
Collapse
Affiliation(s)
- Misa Katayama
- Laboratory of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Shin Murakami
- Laboratory of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Hiroho Ishida
- Laboratory of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- Laboratory of Infectious Diseases, School of Veterinary Medicine, Azabu University, Kanagawa, Japan
| | - Hiromichi Matsugo
- Laboratory of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- Laboratory of RNA Viruses, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Wataru Sekine
- Laboratory of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kosuke Ohira
- Laboratory of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Akiko Takenaka-Uema
- Laboratory of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Taisuke Horimoto
- Laboratory of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
5
|
Limaye S, Shelke A, Kale MM, Kulkarni-Kale U, Kuchipudi SV. IDV Typer: An Automated Tool for Lineage Typing of Influenza D Viruses Based on Return Time Distribution. Viruses 2024; 16:373. [PMID: 38543738 PMCID: PMC10976072 DOI: 10.3390/v16030373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/24/2024] [Accepted: 02/24/2024] [Indexed: 05/23/2024] Open
Abstract
Influenza D virus (IDV) is the most recent addition to the Orthomyxoviridae family and cattle serve as the primary reservoir. IDV has been implicated in Bovine Respiratory Disease Complex (BRDC), and there is serological evidence of human infection of IDV. Evolutionary changes in the IDV genome have resulted in the expansion of genetic diversity and the emergence of multiple lineages that might expand the host tropism and potentially increase the pathogenicity to animals and humans. Therefore, there is an urgent need for automated, accurate and rapid typing tools for IDV lineage typing. Currently, IDV lineage typing is carried out using BLAST-based searches and alignment-based molecular phylogeny of the hemagglutinin-esterase fusion (HEF) gene sequences, and lineage is assigned to query sequences based on sequence similarity (BLAST search) and proximity to the reference lineages in the tree topology, respectively. To minimize human intervention and lineage typing time, we developed IDV Typer server, implementing alignment-free method based on return time distribution (RTD) of k-mers. Lineages are assigned using HEF gene sequences. The server performs with 100% sensitivity and specificity. The IDV Typer server is the first application of an RTD-based alignment-free method for typing animal viruses.
Collapse
Affiliation(s)
- Sanket Limaye
- Bioinformatics Centre, Savitribai Phule Pune University (Formerly University of Pune), Pune 411007, India; (S.L.); (A.S.)
| | - Anant Shelke
- Bioinformatics Centre, Savitribai Phule Pune University (Formerly University of Pune), Pune 411007, India; (S.L.); (A.S.)
| | - Mohan M. Kale
- Department of Statistics, Savitribai Phule Pune University (Formerly University of Pune), Pune 411007, India;
| | - Urmila Kulkarni-Kale
- Bioinformatics Centre, Savitribai Phule Pune University (Formerly University of Pune), Pune 411007, India; (S.L.); (A.S.)
| | - Suresh V. Kuchipudi
- Department of Infectious Diseases and Microbiology, University of Pittsburgh School of Public Health, Pittsburgh, PA 15261, USA
| |
Collapse
|
6
|
Probst L, Laloli L, Licheri MF, Licheri M, Gultom M, Holwerda M, V’kovski P, Dijkman R. Generation and Characterization of an Influenza D Reporter Virus. Viruses 2023; 15:2444. [PMID: 38140686 PMCID: PMC10747006 DOI: 10.3390/v15122444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Influenza D virus (IDV) can infect various livestock animals, such as cattle, swine, and small ruminants, and was shown to have zoonotic potential. Therefore, it is important to identify viral factors involved in the broad host tropism and identify potential antiviral compounds that can inhibit IDV infection. Recombinant reporter viruses provide powerful tools for studying viral infections and antiviral drug discovery. Here we present the generation of a fluorescent reporter IDV using our previously established reverse genetic system for IDV. The mNeonGreen (mNG) fluorescent reporter gene was incorporated into the IDV non-structural gene segment as a fusion protein with the viral NS1 or NS2 proteins, or as a separate protein flanked by two autoproteolytic cleavage sites. We demonstrate that only recombinant reporter viruses expressing mNG as an additional separate protein or as an N-terminal fusion protein with NS1 could be rescued, albeit attenuated, compared to the parental reverse genetic clone. Serial passaging experiments demonstrated that the mNG gene is stably integrated for up to three passages, after which internal deletions accumulate. We conducted a proof-of-principle antiviral screening with the established fluorescent reporter viruses and identified two compounds influencing IDV infection. These results demonstrate that the newly established recombinant IDV reporter virus can be applied for antiviral drug discovery and monitoring viral replication, adding a new molecular tool for investigating IDV.
Collapse
Affiliation(s)
- Lukas Probst
- Institute for Infectious Diseases, University of Bern, 3001 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Laura Laloli
- Institute for Infectious Diseases, University of Bern, 3001 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Manon Flore Licheri
- Institute for Infectious Diseases, University of Bern, 3001 Bern, Switzerland
| | - Matthias Licheri
- Institute for Infectious Diseases, University of Bern, 3001 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Mitra Gultom
- Institute for Infectious Diseases, University of Bern, 3001 Bern, Switzerland
| | - Melle Holwerda
- Institute for Infectious Diseases, University of Bern, 3001 Bern, Switzerland
| | - Philip V’kovski
- Institute for Infectious Diseases, University of Bern, 3001 Bern, Switzerland
| | - Ronald Dijkman
- Institute for Infectious Diseases, University of Bern, 3001 Bern, Switzerland
- Multidisciplinary Center for Infectious Diseases, University of Bern, 3012 Bern, Switzerland
- European Virus Bioinformatics Center, 07743 Jena, Germany
- Microscope Imaging Center, University of Bern, 3012 Bern, Switzerland
| |
Collapse
|
7
|
Ishida H, Murakami S, Kamiki H, Matsugo H, Katayama M, Sekine W, Ohira K, Takenaka-Uema A, Horimoto T. Generation of a recombinant temperature-sensitive influenza D virus. Sci Rep 2023; 13:3806. [PMID: 36882459 PMCID: PMC9992382 DOI: 10.1038/s41598-023-30942-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 03/03/2023] [Indexed: 03/09/2023] Open
Abstract
Influenza D virus (IDV) is a causative agent of the bovine respiratory disease complex (BRDC), which is the most common and costly disease affecting the cattle industry. For developing a candidate vaccine virus against IDV, we sought to produce a temperature-sensitive strain, similar to the live attenuated, cold-adapted vaccine strain available against the influenza A virus (IAV). To this end, we produced a recombinant IDV (designated rD/OK-AL) strain by introducing mutations responsible for the adaptation of the IAV vaccine strain to cold conditions and conferring sensitivity to high temperatures into PB2 and PB1 proteins using reverse genetics. The rD/OK-AL strain grew efficiently at 33 °C but did not grow at 37 °C in the cell culture, indicating its high-temperature sensitivity. In mice, rD/OK-AL was attenuated following intranasal inoculation. It mediated the production of high levels of antibodies against IDV in the serum. When the rD/OK-AL-inoculated mice were challenged with the wild-type virus, the virus was not detected in respiratory organs after the challenge, indicating complete protection against IDV. These results imply that the rD/OK-AL might be a potential candidate for the development of live attenuated vaccines for IDV that can be used to control BRDC.
Collapse
Affiliation(s)
- Hiroho Ishida
- Laboratory of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Shin Murakami
- Laboratory of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan.
| | - Haruhiko Kamiki
- Laboratory of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Hiromichi Matsugo
- Laboratory of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Misa Katayama
- Laboratory of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Wataru Sekine
- Laboratory of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kosuke Ohira
- Laboratory of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Akiko Takenaka-Uema
- Laboratory of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Taisuke Horimoto
- Laboratory of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
8
|
Takashita E, Murakami S, Matsuzaki Y, Fujisaki S, Morita H, Nagata S, Katayama M, Mizuta K, Nishimura H, Watanabe S, Horimoto T, Hasegawa H. Antiviral Susceptibilities of Distinct Lineages of Influenza C and D Viruses. Viruses 2023; 15:244. [PMID: 36680284 PMCID: PMC9861540 DOI: 10.3390/v15010244] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/10/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
The emergence and spread of antiviral-resistant influenza viruses are of great concern. To minimize the public health risk, it is important to monitor antiviral susceptibilities of influenza viruses. Analyses of the antiviral susceptibilities of influenza A and B viruses have been conducted globally; however, those of influenza C and D viruses are limited. Here, we determined the susceptibilities of influenza C viruses representing all six lineages (C/Taylor, C/Yamagata, C/Sao Paulo, C/Aichi, C/Kanagawa, and C/Mississippi) and influenza D viruses representing four lineages (D/OK, D/660, D/Yama2016, and D/Yama2019) to RNA polymerase inhibitors (baloxavir and favipiravir) by using a focus reduction assay. All viruses tested were susceptible to both drugs. We then performed a genetic analysis to check for amino acid substitutions associated with baloxavir and favipiravir resistance and found that none of the viruses tested possessed these substitutions. Use of the focus reduction assay with the genotypic assay has proven valuable for monitoring the antiviral susceptibilities of influenza C and D viruses as well as influenza A and B viruses. Antiviral susceptibility monitoring of all influenza virus types should continue in order to assess the public health risks posed by these viruses.
Collapse
Affiliation(s)
- Emi Takashita
- Research Center for Influenza and Respiratory Viruses, National Institute of Infectious Diseases, Tokyo 208-0011, Japan
| | - Shin Murakami
- Department of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan
| | - Yoko Matsuzaki
- Department of Infectious Diseases, Yamagata University Faculty of Medicine, Yamagata 990-9585, Japan
| | - Seiichiro Fujisaki
- Research Center for Influenza and Respiratory Viruses, National Institute of Infectious Diseases, Tokyo 208-0011, Japan
| | - Hiroko Morita
- Research Center for Influenza and Respiratory Viruses, National Institute of Infectious Diseases, Tokyo 208-0011, Japan
| | - Shiho Nagata
- Research Center for Influenza and Respiratory Viruses, National Institute of Infectious Diseases, Tokyo 208-0011, Japan
| | - Misa Katayama
- Department of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan
| | - Katsumi Mizuta
- Department of Microbiology, Yamagata Prefectural Institute of Public Health, Yamagata 990-0031, Japan
| | - Hidekazu Nishimura
- Virus Research Center, Clinical Research Division, Sendai Medical Center, Sendai 983-8520, Japan
| | - Shinji Watanabe
- Research Center for Influenza and Respiratory Viruses, National Institute of Infectious Diseases, Tokyo 208-0011, Japan
| | - Taisuke Horimoto
- Department of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan
| | - Hideki Hasegawa
- Research Center for Influenza and Respiratory Viruses, National Institute of Infectious Diseases, Tokyo 208-0011, Japan
| |
Collapse
|
9
|
Robinson E, Schulein C, Jacobson BT, Jones K, Sago J, Huber V, Jutila M, Bimczok D, Rynda-Apple A. Pathophysiology of Influenza D Virus Infection in Specific-Pathogen-Free Lambs with or without Prior Mycoplasma ovipneumoniae Exposure. Viruses 2022; 14:1422. [PMID: 35891403 PMCID: PMC9321583 DOI: 10.3390/v14071422] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/23/2022] [Accepted: 06/27/2022] [Indexed: 12/04/2022] Open
Abstract
Polymicrobial pneumonias occur frequently in cattle, swine, and sheep, resulting in major economic losses. Individual pathogens comprising these complex infections may be mild on their own but can instead exhibit synergism or increase host susceptibility. Two examples of such pathogens, Mycoplasma ovipneumoniae (M. ovipneumoniae) and influenza D viruses (IDVs), naturally infect domestic sheep. In sheep, the role of M. ovipneumoniae in chronic nonprogressive pneumonia is well-established, but the pathogenesis of IDV infection has not previously been studied. We utilized a specific-pathogen-free sheep flock to study the clinical response to IDV infection in naïve vs. M. ovipneumoniae-exposed lambs. Lambs were inoculated intranasally with M. ovipneumoniae or mock infection, followed after four weeks by infection with IDV. Pathogen shedding was tracked, and immunological responses were evaluated by measuring acute phase response and IDV-neutralizing antibody titers. While lamb health statuses remained subclinical, M. ovipneumoniae-exposed lambs had significantly elevated body temperatures during IDV infection compared to M. ovipneumoniae-naïve, IDV-infected lambs. Moreover, we found a positive correlation between prior M. ovipneumoniae burden, early-infection IDV shedding, and IDV-neutralizing antibody response. Our findings suggest that IDV infection may not induce clinical symptoms in domestic sheep, but previous M. ovipneumoniae exposure may promote mild IDV-associated inflammation.
Collapse
Affiliation(s)
- Ema Robinson
- Department of Microbiology and Cell Biology, Montana State University, 2155 Analysis Drive, Bozeman, MT 59718, USA; (E.R.); (C.S.); (B.T.J.); (K.J.); (M.J.); (D.B.)
| | - Clyde Schulein
- Department of Microbiology and Cell Biology, Montana State University, 2155 Analysis Drive, Bozeman, MT 59718, USA; (E.R.); (C.S.); (B.T.J.); (K.J.); (M.J.); (D.B.)
| | - B. Tegner Jacobson
- Department of Microbiology and Cell Biology, Montana State University, 2155 Analysis Drive, Bozeman, MT 59718, USA; (E.R.); (C.S.); (B.T.J.); (K.J.); (M.J.); (D.B.)
| | - Kerri Jones
- Department of Microbiology and Cell Biology, Montana State University, 2155 Analysis Drive, Bozeman, MT 59718, USA; (E.R.); (C.S.); (B.T.J.); (K.J.); (M.J.); (D.B.)
| | - Jonathon Sago
- Montana State Veterinary Diagnostic Laboratory, 1911 West Lincoln Street, Bozeman, MT 59718, USA;
| | - Victor Huber
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA;
| | - Mark Jutila
- Department of Microbiology and Cell Biology, Montana State University, 2155 Analysis Drive, Bozeman, MT 59718, USA; (E.R.); (C.S.); (B.T.J.); (K.J.); (M.J.); (D.B.)
| | - Diane Bimczok
- Department of Microbiology and Cell Biology, Montana State University, 2155 Analysis Drive, Bozeman, MT 59718, USA; (E.R.); (C.S.); (B.T.J.); (K.J.); (M.J.); (D.B.)
| | - Agnieszka Rynda-Apple
- Department of Microbiology and Cell Biology, Montana State University, 2155 Analysis Drive, Bozeman, MT 59718, USA; (E.R.); (C.S.); (B.T.J.); (K.J.); (M.J.); (D.B.)
| |
Collapse
|
10
|
Sreenivasan CC, Sheng Z, Wang D, Li F. Host Range, Biology, and Species Specificity of Seven-Segmented Influenza Viruses-A Comparative Review on Influenza C and D. Pathogens 2021; 10:1583. [PMID: 34959538 PMCID: PMC8704295 DOI: 10.3390/pathogens10121583] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/26/2021] [Accepted: 11/30/2021] [Indexed: 02/06/2023] Open
Abstract
Other than genome structure, influenza C (ICV), and D (IDV) viruses with seven-segmented genomes are biologically different from the eight-segmented influenza A (IAV), and B (IBV) viruses concerning the presence of hemagglutinin-esterase fusion protein, which combines the function of hemagglutinin and neuraminidase responsible for receptor-binding, fusion, and receptor-destroying enzymatic activities, respectively. Whereas ICV with humans as primary hosts emerged nearly 74 years ago, IDV, a distant relative of ICV, was isolated in 2011, with bovines as the primary host. Despite its initial emergence in swine, IDV has turned out to be a transboundary bovine pathogen and a broader host range, similar to influenza A viruses (IAV). The receptor specificities of ICV and IDV determine the host range and the species specificity. The recent findings of the presence of the IDV genome in the human respiratory sample, and high traffic human environments indicate its public health significance. Conversely, the presence of ICV in pigs and cattle also raises the possibility of gene segment interactions/virus reassortment between ICV and IDV where these viruses co-exist. This review is a holistic approach to discuss the ecology of seven-segmented influenza viruses by focusing on what is known so far on the host range, seroepidemiology, biology, receptor, phylodynamics, species specificity, and cross-species transmission of the ICV and IDV.
Collapse
Affiliation(s)
- Chithra C. Sreenivasan
- Maxwell H. Gluck Equine Research Center, University of Kentucky, Lexington, KY 40546, USA; (C.C.S.); (D.W.)
| | - Zizhang Sheng
- Aaron Diamond AIDS Research Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA;
| | - Dan Wang
- Maxwell H. Gluck Equine Research Center, University of Kentucky, Lexington, KY 40546, USA; (C.C.S.); (D.W.)
| | - Feng Li
- Maxwell H. Gluck Equine Research Center, University of Kentucky, Lexington, KY 40546, USA; (C.C.S.); (D.W.)
| |
Collapse
|
11
|
Ishida H, Murakami S, Kamiki H, Matsugo H, Katayama M, Sekine W, Ohira K, Takenaka-Uema A, Horimoto T. Construction of an Influenza D Virus with an Eight-Segmented Genome. Viruses 2021; 13:v13112166. [PMID: 34834971 PMCID: PMC8619389 DOI: 10.3390/v13112166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 11/16/2022] Open
Abstract
Influenza D virus (IDV) may cause the bovine respiratory disease complex, which is the most common and costly disease affecting the cattle industry. Previously, we revealed that eight segments could be actively packaged in its single virion, suggesting that IDV with the seven-segmented genome shows an agnostic genome packaging mechanism. Herein, we engineered an eight-segmented recombinant IDV in which the NS1 or NS2 genes were separated from NS segment into independent segments (NS1 or NS2 segments, respectively), leading to monocistronic translation of each NS protein. We constructed two plasmids: one for the viral RNA (vRNA)-synthesis of the NS1 segment with a silent mutation at the splicing acceptor site, which controls NS2 transcription in the NS segment; and another for the RNA synthesis of the NS2 segment, with deletion of the intron in the NS segment. These plasmids and six other vRNA-synthesis plasmids were used to fabricate an infectious eight-segmented IDV via reverse genetics. This system enables analysis of the functions of NS1 or NS2. We tested the requirement of the N-terminal overlapping region (NOR) in these proteins for viral infectivity. We rescued a virus with NOR-deleted NS2 protein, which displayed a growth rate equivalent to that of the eight-segmented virus with intact NS2. Thus, the NOR may not influence viral growth. In contrast, a virus with NOR-deleted NS1 protein could not be rescued. These results indicate that the eight-segmented rescue system of IDV may provide an alternative method to analyze viral proteins at the molecular level.
Collapse
|
12
|
Identification of One Critical Amino Acid Residue of the Nucleoprotein as a Determinant for In Vitro Replication Fitness of Influenza D Virus. J Virol 2021; 95:e0097121. [PMID: 34190601 DOI: 10.1128/jvi.00971-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The newly identified influenza D virus (IDV) of the Orthomyxoviridae family has a wide host range with a broad geographical distribution. Despite the first appearance in U.S. pig herds in 2011, subsequent studies demonstrated that IDV is widespread in global cattle populations, supporting a theory that IDV utilizes bovines as a primary reservoir. Our investigation of the two reference influenza D viruses, D/swine/Oklahoma/1334/2011 (OK/11), isolated from swine, and D/Bovine/Oklahoma/660/2013 (660/13), isolated from cattle, revealed that 660/13 replicated to titers approximately 100-fold higher than those for OK/11 in multiple cell lines. By using a recently developed IDV reverse-genetics system derived from low-titer OK/11, we generated recombinant chimeric OK/11 viruses in which one of the seven genome segments was replaced with its counterpart from high-titer 660/13 virus. Further characterization demonstrated that the replication level of the chimeric OK/11 virus was significantly increased only when harboring the 660/13 nucleoprotein (NP) segment. Finally, through both gain-of-function and loss-of-function experiments, we identified that one amino acid residue at position 381, located in the body domain of NP protein, was a key determinant for the replication difference between the low-titer OK/11 virus and the high-titer 660/13 virus. Taken together, our findings provide important insight into IDV replication fitness mediated by the NP protein, which should facilitate future study of the infectious virus particle production mechanism of IDV. IMPORTANCE Little is known about the virus infection and production mechanism for newly discovered influenza D virus (IDV), which utilizes bovines as a primary reservoir, with frequent spillover to new hosts, including swine. In this study, we showed that of two well-characterized IDVs, 660/13 replicated more efficiently (approximately 100-fold higher) than OK/11. Using a recently developed IDV reverse-genetics system, we identified viral nucleoprotein (NP) as a primary determinant of the different replication capacities observed between these two nearly identical viruses. Mechanistic investigation further revealed that a mutation at NP position 381 evidently modulated virus fitness. Taken together, these observations indicate that IDV NP protein performs a critical role in infectious virus particle production. Our study thus illustrates an NP-based mechanism for efficient IDV infection and production in vitro.
Collapse
|
13
|
Holwerda M, Laloli L, Wider M, Schönecker L, Becker J, Meylan M, Dijkman R. Establishment of a Reverse Genetic System from a Bovine Derived Influenza D Virus Isolate. Viruses 2021; 13:v13030502. [PMID: 33803792 PMCID: PMC8003313 DOI: 10.3390/v13030502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/06/2021] [Accepted: 03/08/2021] [Indexed: 11/23/2022] Open
Abstract
The ruminant-associated influenza D virus (IDV) has a broad host tropism and was shown to have zoonotic potential. To identify and characterize molecular viral determinants influencing the host spectrum of IDV, a reverse genetic system is required. For this, we first performed 5′ and 3′ rapid amplification of cDNA ends (RACE) of all seven genomic segments, followed by assessment of the 5′ and 3′ NCR activity prior to constructing the viral genomic segments of a contemporary Swiss bovine IDV isolate (D/CN286) into the bidirectional pHW2000 vector. The bidirectional plasmids were transfected in HRT-18G cells followed by viral rescue on the same cell type. Analysis of the segment specific 5′ and 3′ non-coding regions (NCR) highlighted that the terminal 3′ end of all segments harbours an uracil instead of a cytosine nucleotide, similar to other influenza viruses. Subsequent analysis on the functionality of the 5′ and 3′ NCR in a minireplicon assay revealed that these sequences were functional and that the variable sequence length of the 5′ and 3′ NCR influences reporter gene expression. Thereafter, we evaluated the replication efficiency of the reverse genetic clone on conventional cell lines of human, swine and bovine origin, as well as by using an in vitro model recapitulating the natural replication site of IDV in bovine and swine. This revealed that the reverse genetic clone D/CN286 replicates efficiently in all cell culture models. Combined, these results demonstrate the successful establishment of a reverse genetic system from a contemporary bovine IDV isolate that can be used for future identification and characterization of viral determinants influencing the broad host tropism of IDV.
Collapse
Affiliation(s)
- Melle Holwerda
- Institute of Virology and Immunology, 3012 Bern, Switzerland;
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland
- Institute for Infectious Diseases, University of Bern, 3001 Bern, Switzerland; (L.L.); (M.W.)
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Laura Laloli
- Institute for Infectious Diseases, University of Bern, 3001 Bern, Switzerland; (L.L.); (M.W.)
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Manon Wider
- Institute for Infectious Diseases, University of Bern, 3001 Bern, Switzerland; (L.L.); (M.W.)
| | - Lutz Schönecker
- Institute of Veterinary Bacteriology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland;
- Clinic for Ruminants, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland; (J.B.); (M.M.)
- Department of Clinical Veterinary Science, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland
| | - Jens Becker
- Clinic for Ruminants, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland; (J.B.); (M.M.)
- Department of Clinical Veterinary Science, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland
| | - Mireille Meylan
- Clinic for Ruminants, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland; (J.B.); (M.M.)
- Department of Clinical Veterinary Science, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland
| | - Ronald Dijkman
- Institute of Virology and Immunology, 3012 Bern, Switzerland;
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland
- Institute for Infectious Diseases, University of Bern, 3001 Bern, Switzerland; (L.L.); (M.W.)
- Correspondence: ; Tel.: +41-31-664-0783
| |
Collapse
|
14
|
The host cellular protein Ndufaf4 interacts with the vesicular stomatitis virus M protein and affects viral propagation. Virus Genes 2021; 57:250-257. [PMID: 33635491 DOI: 10.1007/s11262-021-01833-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 02/10/2021] [Indexed: 10/22/2022]
Abstract
Vesicular stomatitis virus (VSV) is an archetypal member of Mononegavirales which causes important diseases in cattle, horses and pigs. The matrix protein (M) of VSV plays critical roles in the replication, assembly/budding and pathogenesis of VSV. To further investigate the role of M during viral growth, we used a two-hybrid system to screen for host factors that interact with the M protein. Here, NADH: ubiquinone oxidoreductase complex assembly factor 4 (Ndufaf4) was identified as an M-binding partner, and this interaction was confirmed by yeast cotransformation and GST pulldown assays. The globular domain of M was mapped and shown to be critical for the M-Ndufaf4 interaction. Two double mutations (E156A/H157A, D180A/E181A) in M impaired the M-Ndufaf4 interaction. Overexpression of Ndufaf4 inhibited VSV propagation, and knockdown of Ndufaf4 by short hairpin RNA (shRNA) markedly promoted VSV replication. Finally, we also demonstrate that the anti-VSV effect of Ndufaf4 is independent of activation of the type I IFN response. These results indicated that Ndufaf4 might exploit other mechanisms to affect VSV replication. In summary, we identify Ndufaf4 as a potential target for the inhibition of VSV propagation. These results provided further insight into the study of VSV pathogenesis.
Collapse
|
15
|
Abstract
From its initial isolation in the USA in 2011 to the present, influenza D virus (IDV) has been detected in cattle and swine populations worldwide. IDV has exceptional thermal and acid stability and a broad host range. The virus utilizes cattle as its natural reservoir and amplification host with periodic spillover to other mammalian species, including swine. IDV infection can cause mild to moderate respiratory illnesses in cattle and has been implicated as a contributor to bovine respiratory disease (BRD) complex, which is the most common and costly disease affecting the cattle industry. Bovine and swine IDV outbreaks continue to increase globally, and there is increasing evidence indicating that IDV may have the potential to infect humans. This review discusses recent advances in IDV biology and epidemiology, and summarizes our current understanding of IDV pathogenesis and zoonotic potential.
Collapse
Affiliation(s)
- Jieshi Yu
- Department of Veterinary Science, Maxwell H. Gluck Equine Research Center, University of Kentucky, Lexington, Kentucky 40546, USA
| | - Feng Li
- Department of Veterinary Science, Maxwell H. Gluck Equine Research Center, University of Kentucky, Lexington, Kentucky 40546, USA
| | - Dan Wang
- Department of Veterinary Science, Maxwell H. Gluck Equine Research Center, University of Kentucky, Lexington, Kentucky 40546, USA
| |
Collapse
|
16
|
Okda FA, Griffith E, Sakr A, Nelson E, Webby R. New Diagnostic Assays for Differential Diagnosis Between the Two Distinct Lineages of Bovine Influenza D Viruses and Human Influenza C Viruses. Front Vet Sci 2020; 7:605704. [PMID: 33363244 PMCID: PMC7759653 DOI: 10.3389/fvets.2020.605704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 11/11/2020] [Indexed: 11/13/2022] Open
Abstract
Influenza D virus (IDV), a novel orthomyxovirus, is currently emerging in cattle worldwide. It shares >50% sequence similarity with the human influenza C virus (HICV). Two clades of IDV are currently co-circulating in cattle herds in the U.S. New assays specific for each lineage are needed for accurate surveillance. Also, differential diagnosis between zoonotic human influenza C virus and the two clades of IDV are important to assess the zoonotic potential of IDV. We developed an enzyme-linked immunosorbent assay (ELISA) based on two different epitopes HEF and NP and four peptides, and fluorescent focus neutralization assay to differentiate between IDV bovine and swine clades. Calf sera were obtained, and bovine samples underwent surveillance. Our results highlight the importance of position 215 with 212 in determining the heterogeneity between the two lineages. We needed IFA and FFN for tissue culture-based analysis and a BSL2 facility for analyzing virus interactions. Unfortunately, these are not available in many veterinary centers. Hence, our second aim was to develop an iELISA using specific epitopes to detect two lineages of IDVs simultaneously. Epitope-iELISA accurately detects neutralizing and non-neutralizing antibodies against the IDV in non-BSL2 laboratories and veterinary clinics and is cost-effective and sensitive. To differentiate between IDVs and HICVs, whole antigen blocking, polypeptides, and single-peptide ELISAs were developed. A panel of ferret sera against both viruses was used. Results suggested that both IDV and ICV had a common ancestor, and IDV poses a zoonotic risk to individuals with prior or current exposure to cattle. IDV peptides IANAGVK (286-292 aa), KTDSGR (423-428 aa), and RTLTPAT (448-455 aa) could differentiate between the two viruses, whereas peptide AESSVNPGAKPQV (203-215 aa) detected the presence of IDV in human sera but could not deny that it could be ICV, because the only two conserved influenza C peptides shared 52% sequence similarity with IDV and cross-reacted with IDV. However, blocking ELISAs differentiated between the two viruses. Diagnostic tools and assays to differentiate between ICV and IDV are required for serological and epidemiological analysis to clarify the complexity and evolution and eliminate misdiagnosis between ICV and IDV in human samples.
Collapse
Affiliation(s)
- Faten A Okda
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, United States.,Veterinary Division, National Research Center, Cairo, Egypt
| | - Elizabeth Griffith
- Department of Chemical and Therapeutic, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Ahmed Sakr
- Department of Business Administration and Management, Dakota State University, Madison, SD, United States
| | - Eric Nelson
- Veterinary & Biomedical Sciences Department, Animal Disease Research and Diagnostic Laboratory, South Dakota State University, Brookings, SD, United States
| | - Richard Webby
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, United States
| |
Collapse
|
17
|
Liu R, Sheng Z, Huang C, Wang D, Li F. Influenza D virus. Curr Opin Virol 2020; 44:154-161. [PMID: 32932215 PMCID: PMC7755673 DOI: 10.1016/j.coviro.2020.08.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 12/31/2022]
Abstract
Influenza D is the only type of influenza virus that mainly affects cattle with frequent spillover to other species. Since the initial description of influenza D virus (IDV) in 2011, the virus has been found to circulate among cattle and swine populations worldwide. Research conducted during the past several years has led to an increased understanding of this novel influenza virus with bovines as a reservoir. In this review, we describe the current knowledge of epidemiology and host range of IDV followed by discussion of infection biology and animal model development for IDV. Finally, we review progress towards understanding of the pathogenesis and host response of IDV as well as developing preventive vaccines for IDV.
Collapse
Affiliation(s)
- Runxia Liu
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, USA
| | - Zizhang Sheng
- Zukerman Institute of Mind Brain Behavior, Columbia University, New York, NY, USA
| | - Chen Huang
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, USA
| | - Dan Wang
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, USA
| | - Feng Li
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, USA.
| |
Collapse
|