1
|
Hickman HD, Moutsopoulos NM. Viral infection and antiviral immunity in the oral cavity. Nat Rev Immunol 2025; 25:235-249. [PMID: 39533045 DOI: 10.1038/s41577-024-01100-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2024] [Indexed: 11/16/2024]
Abstract
Individual tissues have distinct antiviral properties garnered through various mechanisms, including physical characteristics, tissue-resident immune cells and commensal organisms. Although the oral mucosa has long been appreciated as a critical barrier tissue that is exposed to a continuous barrage of pathogens, many fundamental aspects of the antiviral immune response in this tissue remain unknown. Several viral pathogens, such as herpesviruses and human papillomaviruses, have been acknowledged both historically and at present for infections in the oral cavity that result in substantial clinical burden. However, recent viral outbreaks, including those with SARS-CoV-2 and mpox, featured oral symptoms even though these viruses are not generally considered oral pathogens. Ensuing studies have shown that the oral cavity is an important locale for viral infection and potential transmission of newly emergent or re-emergent pathogens, highlighting the need for an increased understanding of the mechanisms of antiviral immunity at this site. In this Review, we provide a broad overview of antiviral immune responses in the oral cavity and discuss common viral infections and their manifestations in the oral mucosa. In addition, we present current mouse models for the study of oral viral infections.
Collapse
Affiliation(s)
- Heather D Hickman
- Viral Immunity and Pathogenesis Unit, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - Niki M Moutsopoulos
- Oral Immunity and Infection Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
2
|
Chen Y, Egawa N, Zheng K, Doorbar J. How can HPV E6 manipulate host cell differentiation process to maintain the reservoir of infection. Tumour Virus Res 2025; 19:200313. [PMID: 39832674 PMCID: PMC11847044 DOI: 10.1016/j.tvr.2025.200313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/02/2025] [Accepted: 01/02/2025] [Indexed: 01/22/2025] Open
Affiliation(s)
- Yuwen Chen
- Department of Pathology, University of Cambridge, UK.
| | | | - Ke Zheng
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Shenzhen, China
| | - John Doorbar
- Department of Pathology, University of Cambridge, UK.
| |
Collapse
|
3
|
Restaino AC, Ahmadi M, Nikpoor AR, Walz A, Balood M, Eichwald T, Talbot S, Vermeer PD. TUMOR-INFILTRATING NOCICEPTOR NEURONS PROMOTE IMMUNOSUPPRESSION. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.23.609450. [PMID: 39253487 PMCID: PMC11382997 DOI: 10.1101/2024.08.23.609450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Nociceptor neurons impact tumor immunity. Removing nociceptor neurons reduced myeloid-derived suppressor cell (MDSCs) tumor infiltration in mouse models of head and neck carcinoma and melanoma. Carcinoma-released small extracellular vesicles (sEVs) attract nociceptive nerves to tumors. sEV-deficient tumors fail to develop in mice lacking nociceptor neurons. Exposure of dorsal root ganglia (DRG) neurons to cancer sEVs elevated expression of Substance P, IL-6 and injury-related neuronal markers while treatment with cancer sEVs and cytotoxic CD8 T-cells induced an immunosuppressive state (increased exhaustion ligands and cytokines). Cancer patient sEVs enhanced DRG responses to capsaicin, indicating increased nociceptor sensitivity. Conditioned media from DRG and cancer cell co-cultures promoted expression of MDSC markers in primary bone marrow cells while DRG conditioned media together with cancer sEVs induced checkpoint expression on T-cells. Our findings indicate that nociceptor neurons facilitate CD8+ T cell exhaustion and enhance MDSC infiltration. Targeting nociceptor-released IL-6 emerges as a novel strategy to disrupt harmful neuro-immune interactions in cancer and enhance anti-tumor immunity.
Collapse
Affiliation(s)
- Anthony C. Restaino
- Cancer Biology and Immunotherapies Group, Sanford Research, Sioux Falls, USA
| | - Maryam Ahmadi
- Department of Biomedical and Molecular Sciences, Queen’s University. Kingston. Canada
| | - Amin Reza Nikpoor
- Department of Biomedical and Molecular Sciences, Queen’s University. Kingston. Canada
| | - Austin Walz
- Cancer Biology and Immunotherapies Group, Sanford Research, Sioux Falls, USA
| | - Mohammad Balood
- Department of Biomedical and Molecular Sciences, Queen’s University. Kingston. Canada
| | - Tuany Eichwald
- Department of Biomedical and Molecular Sciences, Queen’s University. Kingston. Canada
- Department of Physiology and Pharmacology, Karolinska Institutet, Solna, Sweden
| | - Sebastien Talbot
- Department of Biomedical and Molecular Sciences, Queen’s University. Kingston. Canada
- Department of Physiology and Pharmacology, Karolinska Institutet, Solna, Sweden
| | - Paola D. Vermeer
- Cancer Biology and Immunotherapies Group, Sanford Research, Sioux Falls, USA
| |
Collapse
|
4
|
Restaino AC, Walz A, Barclay SM, Fettig RR, Vermeer PD. Tumor-associated genetic amplifications impact extracellular vesicle miRNA cargo and their recruitment of nerves in head and neck cancer. FASEB J 2024; 38:e23803. [PMID: 38963404 PMCID: PMC11262563 DOI: 10.1096/fj.202400625rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/19/2024] [Accepted: 06/26/2024] [Indexed: 07/05/2024]
Abstract
Cancer neuroscience is an emerging field of cancer biology focused on defining the interactions and relationships between the nervous system, developing malignancies, and their environments. Our previous work demonstrates that small extracellular vesicles (sEVs) released by head and neck squamous cell carcinomas (HNSCCs) recruit loco-regional nerves to the tumor. sEVs contain a diverse collection of biological cargo, including microRNAs (miRNAs). Here, we asked whether two genes commonly amplified in HNSCC, CCND1, and PIK3CA, impact the sEV miRNA cargo and, subsequently, sEV-mediated tumor innervation. To test this, we individually overexpressed these genes in a syngeneic murine HNSCC cell line, purified their sEVs, and tested their neurite outgrowth activity on dorsal root ganglia (DRG) neurons in vitro. sEVs purified from Ccnd1-overexpressing cells significantly increased neurite outgrowth of DRG compared to sEVs from parental or Pik3ca over-expressing cells. When implanted into C57BL/6 mice, Ccnd1 over-expressing tumor cells promoted significantly more tumor innervation in vivo. qPCR analysis of sEVs shows that increased expression of Ccnd1 altered the packaging of miRNAs (miR-15-5p, miR-17-5p, and miR-21-5p), many of which target transcripts important in regulating axonogenesis. These data indicate that genetic amplifications harbored by malignancies impose changes in sEV miRNA cargo, which can influence tumorc innervation.
Collapse
Affiliation(s)
- Anthony C. Restaino
- Cancer Biology and Immunotherapies Group, Sanford Research, 2301 East 60 Street north, Sioux Falls, SD, USA 57104
| | - Austin Walz
- Cancer Biology and Immunotherapies Group, Sanford Research, 2301 East 60 Street north, Sioux Falls, SD, USA 57104
| | - Sarah M. Barclay
- Cancer Biology and Immunotherapies Group, Sanford Research, 2301 East 60 Street north, Sioux Falls, SD, USA 57104
| | - Robin R. Fettig
- Cancer Biology and Immunotherapies Group, Sanford Research, 2301 East 60 Street north, Sioux Falls, SD, USA 57104
| | - Paola D. Vermeer
- Cancer Biology and Immunotherapies Group, Sanford Research, 2301 East 60 Street north, Sioux Falls, SD, USA 57104
| |
Collapse
|
5
|
Inyang KE, Evans CM, Heussner M, Petroff M, Reimers M, Vermeer PD, Tykocki N, Folger JK, Laumet G. HPV+ head and neck cancer-derived small extracellular vesicles communicate with TRPV1+ neurons to mediate cancer pain. Pain 2024; 165:608-620. [PMID: 37678566 PMCID: PMC10915104 DOI: 10.1097/j.pain.0000000000003045] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 06/15/2023] [Indexed: 09/09/2023]
Abstract
ABSTRACT Severe pain is often experienced by patients with head and neck cancer and is associated with a poor prognosis. Despite its frequency and severity, current treatments fail to adequately control cancer-associated pain because of our lack of mechanistic understanding. Although recent works have shed some light of the biology underlying pain in HPV-negative oral cancers, the mechanisms mediating pain in HPV+ cancers remain unknown. Cancer-derived small extracellular vesicles (cancer-sEVs) are well positioned to function as mediators of communication between cancer cells and neurons. Inhibition of cancer-sEV release attenuated pain in tumor-bearing mice. Injection of purified cancer-sEVs is sufficient to induce pain hypersensitivity in naive mice that is prevented by QX-314 treatment and in Trpv1-/- mice. Cancer-sEVs triggered calcium influx in nociceptors, and inhibition or ablation of nociceptors protects against cancer pain. Interrogation of published sequencing data of human sensory neurons exposed to human cancer-sEVs suggested a stimulation of protein translation in neurons. Induction of translation by cancer-sEVs was validated in our mouse model, and its inhibition alleviated cancer pain in mice. In summary, our work reveals that HPV+ head and neck squamous cell carcinoma-derived sEVs alter TRPV1+ neurons by promoting nascent translation to mediate cancer pain and identified several promising therapeutic targets to interfere with this pathway.
Collapse
Affiliation(s)
| | - Christine M. Evans
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Matthew Heussner
- Department of Physiology, Michigan State University, East Lansing, MI, USA
- College of Osteopathic Medicine, Michigan State University, East Lansing, MI
| | - Margaret Petroff
- Department of Pathology Michigan State University College of Veterinary Medicine, East Lansing, MI
| | - Mark Reimers
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Paola D. Vermeer
- Cancer Biology and Immunotherapies Group, Sanford Research, Sioux Falls, South Dakota
| | - Nathan Tykocki
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI
| | - Joseph K. Folger
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Geoffroy Laumet
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
6
|
Rosendo-Chalma P, Antonio-Véjar V, Ortiz Tejedor JG, Ortiz Segarra J, Vega Crespo B, Bigoni-Ordóñez GD. The Hallmarks of Cervical Cancer: Molecular Mechanisms Induced by Human Papillomavirus. BIOLOGY 2024; 13:77. [PMID: 38392296 PMCID: PMC10886769 DOI: 10.3390/biology13020077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/17/2024] [Accepted: 01/23/2024] [Indexed: 02/24/2024]
Abstract
Human papillomaviruses (HPVs) and, specifically, high-risk HPVs (HR-HPVs) are identified as necessary factors in the development of cancer of the lower genital tract, with CaCU standing out as the most prevalent tumor. This review summarizes ten mechanisms activated by HR-HPVs during cervical carcinogenesis, which are broadly associated with at least seven of the fourteen distinctive physiological capacities of cancer in the newly established model by Hanahan in 2022. These mechanisms involve infection by human papillomavirus, cellular tropism, genetic predisposition to uterine cervical cancer (CaCU), viral load, viral physical state, regulation of epigenetic mechanisms, loss of function of the E2 protein, deregulated expression of E6/E7 oncogenes, regulation of host cell protein function, and acquisition of the mesenchymal phenotype.
Collapse
Affiliation(s)
- Pedro Rosendo-Chalma
- Laboratorio de Virus y Cáncer, Unidad de Investigación Biomédica en Cáncer of Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (IIB-UNAM), Mexico City 14080, Mexico
- Unidad Académica de Posgrado, Universidad Católica de Cuenca, Cuenca 010101, Ecuador
| | - Verónica Antonio-Véjar
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39090, Guerrero, Mexico
| | - Jonnathan Gerardo Ortiz Tejedor
- Unidad Académica de Posgrado, Universidad Católica de Cuenca, Cuenca 010101, Ecuador
- Carrera de Bioquímica y Farmacia, Universidad Católica de Cuenca, Cuenca 010101, Ecuador
| | - Jose Ortiz Segarra
- Carrera de Medicina, Facultad de Ciencias Médicas, Universidad de Cuenca, Cuenca 010107, Ecuador
| | - Bernardo Vega Crespo
- Carrera de Medicina, Facultad de Ciencias Médicas, Universidad de Cuenca, Cuenca 010107, Ecuador
| | | |
Collapse
|
7
|
Trejo-Cerro O, Broniarczyk J, Kavcic N, Myers M, Banks L. Identification and characterisation of novel potential phospho-acceptor sites in HPV-16 E7. Tumour Virus Res 2023; 16:200270. [PMID: 37659653 PMCID: PMC10500460 DOI: 10.1016/j.tvr.2023.200270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 09/04/2023] Open
Abstract
Several studies have described functional regulation of high-risk human papillomaviruses (HPVs), E6 and E7 oncoproteins via posttranslational modifications (PTMs). However, how these PTMs modulate the activity of E6 and E7, particularly in their targeting of cellular proteins, is not completely understood. In this study, we show that HPV16 E7 can be phosphorylated by casein kinase I (CKI) and glycogen synthase kinase 3 (GSK3). This principal phosphorylation occurs at threonine residues 5 and 7 with a more minor role for residues 19-20 in the N-terminal region of 16 E7. Intriguingly, whilst mutational analyses suggest that residues 5 and 7 may be dispensable for the transformation of primary baby rat kidney cells by E7, intact residues 19 and 20 are required. Furthermore, negative charges at these residues (TT19-20DD) enhance the pRb-E7 interaction and cells display increased proliferation and invasion capacities. Using a proteomic approach with a phosphorylated peptide spanning the TT19-20 region of HPV16 E7, we have identified a panel of new, phospho-specific E7 interacting partners. These results shed new light on the complexity of N-terminal phosphorylation of E7 and how this can contribute towards expanding the repertoire of E7 targeted pathways.
Collapse
Affiliation(s)
- Oscar Trejo-Cerro
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, I-34149, Trieste, Italy.
| | - Justyna Broniarczyk
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, I-34149, Trieste, Italy; Department of Molecular Virology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614, Poznan, Poland
| | - Nezka Kavcic
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, I-34149, Trieste, Italy
| | - Michael Myers
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, I-34149, Trieste, Italy
| | - Lawrence Banks
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, I-34149, Trieste, Italy.
| |
Collapse
|
8
|
Cruz-Gregorio A, Aranda-Rivera AK, Pedraza-Chaverri J. Pathological Similarities in the Development of Papillomavirus-Associated Cancer in Humans, Dogs, and Cats. Animals (Basel) 2022; 12:ani12182390. [PMID: 36139250 PMCID: PMC9495210 DOI: 10.3390/ani12182390] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/10/2022] [Accepted: 09/11/2022] [Indexed: 12/05/2022] Open
Abstract
Simple Summary Papillomavirus (PV) infection affects many species, including humans and domestic animals, such as dogs and cats. Some of these infections involve the development of cancer due to the presence of PV. There are similarities in the pathology of these three PV-associated cancers, which may provide crucial insights into cancer development in these species, extrapolating both markers and possible treatment in the three species. For example, the oncoproteins E5, E6, and E7 are the main causes of the development of cancer associated with PV, and the possible therapies associated with the blockage or reduction of these oncoproteins can be of great benefit for the reduction and/or elimination of cancer associated with PV. Thus, our review focuses on the similarities in the context of pathology and biomarkers in canine, feline, and human cancers associated with PV. We review the main biomarkers, E5, E6, and E7 oncoproteins, and their overexpression in Canis familiaris, Felis catus, and human papillomavirus and their association with the development of cancer. Furthermore, we also discuss that a potential treatment for PV-related cancer is the reduction or blocking of these oncoproteins. Abstract Canis familiaris, Felis catus, and human papillomavirus are nonenveloped viruses that share similarities in the initiation and development of cancer. For instance, the three species overexpress the oncoproteins E6 and E7, and Canis familiaris and human papillomavirus overexpress the E5 oncoprotein. These similarities in the pathophysiology of cancer among the three species are beneficial for treating cancer in dogs, cats, and humans. To our knowledge, this topic has not been reviewed so far. This review focuses on the information on cancer research in cats and dogs comparable to that being conducted in humans in the context of comparative pathology and biomarkers in canine, feline, and human cancer. We also focus on the possible benefit of treatment associated with the E5, E6, and E7 oncoproteins for cancer in dogs, cats, and humans.
Collapse
|
9
|
Skelin J, Sabol I, Tomaić V. Do or Die: HPV E5, E6 and E7 in Cell Death Evasion. Pathogens 2022; 11:pathogens11091027. [PMID: 36145459 PMCID: PMC9502459 DOI: 10.3390/pathogens11091027] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/21/2022] Open
Abstract
Human papillomaviruses (HPVs) infect the dividing cells of human epithelia and hijack the cellular replication machinery to ensure their own propagation. In the effort to adapt the cell to suit their own reproductive needs, the virus changes a number of processes, amongst which is the ability of the cell to undergo programmed cell death. Viral infections, forced cell divisions and mutations, which accumulate as a result of uncontrolled proliferation, all trigger one of several cell death pathways. Here, we examine the mechanisms employed by HPVs to ensure the survival of infected cells manipulated into cell cycle progression and proliferation.
Collapse
|
10
|
Furumoto H, Okada R, Kato T, Wakiyama H, Inagaki F, Fukushima H, Okuyama S, Furusawa A, Choyke PL, Kobayashi H. Optimal Light Dose for hEGFR-Targeted Near-Infrared Photoimmunotherapy. Cancers (Basel) 2022; 14:cancers14164042. [PMID: 36011036 PMCID: PMC9406827 DOI: 10.3390/cancers14164042] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/15/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Near-infrared photoimmunotherapy (NIR-PIT) is a cancer therapy that selectively destroys target cells by first injecting monoclonal antibodies conjugated with a photon absorber (IRDye700DX) into the subject and then activating it at the tumor site by applying nonthermal doses of NIR light at 690 nm. NIR-PIT causes immediate immunogenic cell death but also induces a slightly delayed activation of anti-tumor host immunity which can result in complete responses. The immediate therapeutic effect of NIR-PIT can be enhanced by increasing the dose of near-infrared light irradiation; however, this can cause local side effects such as edema. Since the activation of host immunity also adds to the anti-tumor effect it might be possible to reduce the light dose to avoid immediate side effects while maintaining efficacy of the therapy. In this study, we varied the light dose needed to achieve the maximum therapeutic effect in an immunocompetent mouse model. We show that higher-than-needed light doses caused significant local transient edema that could be avoided with lower but still effective light doses. Here, we present our strategy for optimizing the light dose for NIR-PIT. Abstract Near-infrared photoimmunotherapy (NIR-PIT) is a newly developed cancer therapy that targets cancer cells using a monoclonal antibody-photon absorber conjugate (APC) that is bound to the target cell surface. Subsequent application of low levels of NIR light results in immediate cancer cell death. The anti-tumor effect of NIR-PIT in immunocompromised mice depends on immediate cancer cell death; therefore, the efficacy increases in a light-dose-dependent manner. However, NIR-PIT also induces a strong anti-tumor immune activation in immunocompetent mice that begins soon after therapy. Thus, it may be possible to reduce the light dose, which might otherwise cause local edema while maintaining therapeutic efficacy. In this study, we determined the optimal dose of NIR light in NIR-PIT based on a comparison of the therapeutic and adverse effects. Either one of two monoclonal antibodies (mAbs) against human epidermal growth factor receptor (hEGFR), Cetuximab or Panitumumab, were conjugated with a photo-absorbing chemical, IRDye700DX (IR700), and then injected in hEGFR-expressing mEERL (mEERL-hEGFR) tumor-bearing C57BL/6 immunocompetent mice or A431-GFP-luc tumor-bearing athymic immunocompromised mice. NIR light was varied between 0 to 100 J/cm2 one day after administration of APC. In an immunocompromised mouse model, tumor growth was inhibited in a light-dose-dependent manner, yet extensive local edema and weight loss were observed at 100 J/cm2. On the other hand, in an immunocompetent mouse model using the mEERL-hEGFR cell line, maximal tumor response was achieved at 50 J/cm2, with a commensurate decrease in local edema. In this study, we show that a relatively low dose of NIR light is sufficient in an immunocompetent mouse model and avoids side effects seen with higher light doses required in immunocompetent mice. Thus, light dosing can be optimized in NIR-PIT based on the expected immune response.
Collapse
|
11
|
Lee HS, Yun HY, Lee EW, Shin HC, Kim SJ, Ku B. Structural and biochemical analysis of the PTPN4 PDZ domain bound to the C-terminal tail of the human papillomavirus E6 oncoprotein. J Microbiol 2022; 60:395-401. [PMID: 35089587 DOI: 10.1007/s12275-022-1606-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/21/2021] [Accepted: 12/24/2021] [Indexed: 12/14/2022]
Abstract
High-risk genotypes of human papillomaviruses (HPVs) are directly implicated in various abnormalities associated with cellular hyperproliferation, including cervical cancer. E6 is one of two oncoproteins encoded in the HPV genome, which recruits diverse PSD-95/Dlg/ZO-1 (PDZ) domain-containing human proteins through its C-terminal PDZ-binding motif (PBM) to be degraded by means of the proteasome pathway. Among the three PDZ domain-containing protein tyrosine phosphatases, protein tyrosine phosphatase non-receptor type 3 (PTPN3) and PTPN13 were identified to be recognized by HPV E6 in a PBM-dependent manner. However, whether HPV E6 associates with PTPN4, which also has a PDZ domain and functions as an apoptosis regulator, remains undetermined. Herein, we present structural and biochemical evidence demonstrating the direct interaction between the PBM of HPV16 E6 and the PDZ domain of human PTPN4 for the first time. X-ray crystallographic structure determination and binding measurements using isothermal titration calorimetry demonstrated that hydrophobic interactions in which Leu158 of HPV16 E6 plays a key role and a network of intermolecular hydrogen bonds sustain the complex formation between PTPN4 PDZ and the PBM of HPV16 E6. In addition, it was verified that the corresponding motifs from several other high-risk HPV genotypes, including HPV18, HPV31, HPV33, and HPV45, bind to PTPN4 PDZ with comparable affinities, suggesting that PTPN4 is a common target of various pathogenic HPV genotypes.
Collapse
Affiliation(s)
- Hye Seon Lee
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Hye-Yeoung Yun
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea.,Department of Bioscience, University of Science and Technology KRIBB School, Daejeon, 34113, Republic of Korea
| | - Eun-Woo Lee
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Ho-Chul Shin
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Seung Jun Kim
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea. .,Department of Bioscience, University of Science and Technology KRIBB School, Daejeon, 34113, Republic of Korea.
| | - Bonsu Ku
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea. .,Department of Bioscience, University of Science and Technology KRIBB School, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
12
|
Selection of antibody and light exposure regimens alters therapeutic effects of EGFR-targeted near-infrared photoimmunotherapy. Cancer Immunol Immunother 2022; 71:1877-1887. [PMID: 35013765 PMCID: PMC9271517 DOI: 10.1007/s00262-021-03124-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 11/26/2021] [Indexed: 11/27/2022]
Abstract
Near-infrared photoimmunotherapy (NIR-PIT) is a cell-specific cancer therapy that uses an antibody-photoabsorber (IRDye700DX, IR700) conjugate (APC) and NIR light. Intravenously injected APC binds the target cells, and subsequent NIR light exposure induces immunogenic cell death only in targeted cells. Panitumumab and cetuximab are antibodies that target human epidermal growth factor receptor (hEGFR) and are suitable for NIR-PIT. In athymic nude mouse models, panitumumab-based NIR-PIT showed superior therapeutic efficacy compared to cetuximab-based NIR-PIT because of the longer half-life of panitumumab-IR700 (pan-IR700) compared with cetuximab-IR700 (cet-IR700). Two light exposures on two consecutive days have also been shown to induce superior effects compared to a single light exposure in the athymic nude mouse model. However, the optimal regimen has not been assessed in immunocompetent mice. In this study, we compared panitumumab and cetuximab in APCs for NIR-PIT, and single and double light exposures using a newly established hEGFR-expressing cancer cell line derived from immunocompetent C57BL/6 mice (mEERL-hEGFR cell line). Fluorescence imaging showed that the decline of pan-IR700 was slower than cet-IR700 confirming a longer clearance time. Among all the combinations tested, mice receiving pan-IR700 and double light exposure showed the greatest tumor growth inhibition. This group was also shown to activate CD8+ T lymphocytes in lymph nodes and accumulate CD8+ T lymphocytes to a greater extent within the tumor compared with the control group. These results showed that APCs with longer half-life and double light exposure lead to superior outcomes in cancer cell-targeted NIR-PIT in an immunocompetent mouse model.
Collapse
|
13
|
Olson B, Norgard MA, Levasseur PR, Zhu X, Marks DL. Physiologic and molecular characterization of a novel murine model of metastatic head and neck cancer cachexia. J Cachexia Sarcopenia Muscle 2021; 12:1312-1332. [PMID: 34231343 PMCID: PMC8517353 DOI: 10.1002/jcsm.12745] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/19/2021] [Accepted: 06/08/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Cancer cachexia is a metabolic disorder characterized by the progressive loss of fat and lean mass that results in significant wasting, ultimately leading to reduced quality of life and increased mortality. Effective therapies for cachexia are lacking, potentially owing to the mismatch in clinically relevant models of cachexia. Specifically, cachexia observed in a clinical setting is commonly associated with advanced or late-stage cancers that are metastatic, yet pre-clinical metastatic models of cachexia are limited. Furthermore, the prevalence of cachexia in head and neck cancer patients is high, yet few pre-clinical models of head and neck cancer cachexia exist. In addition to these shortcomings, cachexia is also heterogeneous among any given cancer, whereas patients with similar disease burden may experience significantly different degrees of cachexia symptoms. In order to address these issues, we characterize a metastatic model of human papilloma virus (HPV) positive head and neck squamous cell carcinoma that recapitulates the cardinal clinical and molecular features of cancer cachexia. METHODS Male and female C57BL/6 mice were implanted subcutaneously with oropharyngeal squamous cell carcinoma cells stably transformed with HPV16 E6 and E7 together with hRas and luciferase (mEERL) that metastasizes to the lungs (MLM). We then robustly characterize the physiologic, behavioural, and molecular signatures during tumour development in two MLM subclones. RESULTS Mice injected with MLM tumour cells rapidly developed primary tumours and eventual metastatic lesions to the lungs. MLM3, but not MLM5, engrafted mice progressively lost fat and lean mass during tumour development despite the absence of anorexia (P < 0.05). Behaviourally, MLM3-implanted mice displayed decreased locomotor behaviours and impaired nest building (P < 0.05). Muscle catabolism programmes associated with cachexia, including E3 ubiquitin ligase and autophagy up-regulation, along with progressive adipose wasting and accompanying browning gene signatures, were observed. Tumour progression also corresponded with hypothalamic and peripheral organ inflammation, as well as an elevation in neutrophil-to-lymphocyte ratio (P < 0.05). Finally, we characterize the fat and lean mass sparing effects of voluntary wheel running on MLM3 cachexia (P < 0.05). CONCLUSIONS This syngeneic MLM3 allograft model of metastatic cancer cachexia is reliable, consistent, and readily recapitulates key clinical and molecular features and heterogeneity of cancer cachexia. Because few metastatic models of cachexia exist-even though cachexia often accompanies metastatic progression-we believe this model more accurately captures cancer cachexia observed in a clinical setting and thus is well suited for future mechanistic studies and pre-clinical therapy development for this crippling metabolic disorder.
Collapse
Affiliation(s)
- Brennan Olson
- Papé Family Pediatric Research InstituteOregon Health & Science UniversityPortlandORUSA
- Medical Scientist Training ProgramOregon Health & Science UniversityPortlandORUSA
| | - Mason A. Norgard
- Papé Family Pediatric Research InstituteOregon Health & Science UniversityPortlandORUSA
| | - Peter R. Levasseur
- Papé Family Pediatric Research InstituteOregon Health & Science UniversityPortlandORUSA
| | - Xinxia Zhu
- Papé Family Pediatric Research InstituteOregon Health & Science UniversityPortlandORUSA
| | - Daniel L. Marks
- Papé Family Pediatric Research InstituteOregon Health & Science UniversityPortlandORUSA
- Brenden‐Colson Center for Pancreatic CareOregon Health and & Science University PortlandORUSA
- Knight Cancer InstituteOregon Health & Science UniversityPortlandORUSA
| |
Collapse
|
14
|
Kato T, Okada R, Furusawa A, Inagaki F, Wakiyama H, Furumoto H, Okuyama S, Fukushima H, Choyke PL, Kobayashi H. Simultaneously Combined Cancer Cell- and CTLA4-Targeted NIR-PIT Causes a Synergistic Treatment Effect in Syngeneic Mouse Models. Mol Cancer Ther 2021; 20:2262-2273. [PMID: 34518299 DOI: 10.1158/1535-7163.mct-21-0470] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/12/2021] [Accepted: 09/01/2021] [Indexed: 11/16/2022]
Abstract
Near-infrared photoimmunotherapy (NIR-PIT) is a new cancer treatment that utilizes antibody-IRDye700DX (IR700) conjugates. The clinical use of NIR-PIT has recently been approved in Japan for patients with inoperable head and neck cancer targeting human epidermal growth factor receptor (hEGFR). Previously, cytotoxic T-lymphocyte antigen 4 (CTLA4)-targeted NIR-PIT has been shown to strongly inhibit tumor progression and prolonged survival was seen in different tumor models due to enhanced T-cell-mediated antitumor immunity. In this study, combined NIR-PIT targeting CTLA4 expressing cells and cancer cells was investigated in four tumor models including a newly established hEGFR-expressing murine oropharyngeal cancer cell (mEERL-hEGFR). While single molecule-targeted therapy (NIR-PIT targeting hEGFR or CTLA4) did not inhibit tumor progression in poorly immunogenic mEERL-hEGFR tumor, dual (CTLA4/hEGFR)-targeted NIR-PIT significantly suppressed tumor growth and prolonged survival resulting in a 38% complete response rate. After the dual-targeted NIR-PIT, depletion of CTLA4 expressing cells, which were mainly regulatory T cells (Tregs), and an increase in the CD8+/Treg ratio in the tumor bed were observed, suggesting enhanced host antitumor immunity. Furthermore, dual-targeted NIR-PIT showed antitumor immunity in distant untreated tumors of the same type. Thus, simultaneous cancer cell-targeted NIR-PIT and CTLA4-targeted NIR-PIT is a promising new cancer therapy strategy, especially in poorly immunogenic tumors where NIR-PIT monotherapy is suboptimal.
Collapse
Affiliation(s)
- Takuya Kato
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Ryuhei Okada
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Aki Furusawa
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Fuyuki Inagaki
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Hiroaki Wakiyama
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Hideyuki Furumoto
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Shuhei Okuyama
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Hiroshi Fukushima
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Peter L Choyke
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Hisataka Kobayashi
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland.
| |
Collapse
|
15
|
Nahand JS, Khanaliha K, Mirzaei H, Moghoofei M, Baghi HB, Esghaei M, Khatami AR, Fatemipour M, Bokharaei-Salim F. Possible role of HPV/EBV coinfection in anoikis resistance and development in prostate cancer. BMC Cancer 2021; 21:926. [PMID: 34399719 PMCID: PMC8369687 DOI: 10.1186/s12885-021-08658-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 08/08/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND This study aimed to evaluate the possible role of human papillomavirus (HPV) and Epstein-Barr virus (EBV) coinfection as an etiological factor for prostate cancer (PCa) development. METHODS This case-control study was conducted on 67 patients with PCa and 40 control subjects. The expression levels of cellular and viral factors involved in inflammation, tumor progression, and metastasis were quantified, using the enzyme-linked immunosorbent assay (ELISA) and quantitative real-time polymerase chain reaction (qRT-PCR) assay. RESULTS The EBV/HPV coinfection was reported in 14.9% of patients in the case group and 7.5% of the control subjects. The high-risk types of HPV, that is, HPV 16 and HPV 18, were responsible for 50 and 30% of HPV/EBV-coinfected PCa cases (n = 10), respectively. No significant relationship was observed between PCa and HPV/EBV coinfection (OR = 2.9, 95% CI: 0.18-45.2, P = 0.31). However, the highest percentage of HPV genome integration was found in the HPV/EBV-coinfected PCa group (8/10; 80%). Also, the mean expression levels of inflammatory factors (IL-17, IL-6, TNF-α, NF-κB, VEGF, ROS, and RNS), anti-apoptotic mediators (Bcl-2 and survivin), and anti-anoikis factors (Twist and N-cadherin) were significantly higher in the HPV/EBV-coinfected PCa group, compared to the non-coinfected PCa cases. Nevertheless, the tumor-suppressor proteins (p53 and pRb) and E-cadherin (inhibitor of anoikis resistance) showed significant downregulations in the HPV/EBV-coinfected PCa group, compared to the non-coinfected PCa cases. CONCLUSION The HPV/EBV coinfection may be an etiological factor for PCa through modulation of cellular behaviors.
Collapse
Affiliation(s)
- Javid Sadri Nahand
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Khadijeh Khanaliha
- Research Center of Pediatric Infectious Diseases, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohsen Moghoofei
- Infectious Diseases Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hossein Bannazadeh Baghi
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Esghaei
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Reza Khatami
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Fatemipour
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Farah Bokharaei-Salim
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
16
|
Okada R, Furusawa A, Vermeer DW, Inagaki F, Wakiyama H, Kato T, Nagaya T, Choyke PL, Spanos WC, Allen CT, Kobayashi H. Near-infrared photoimmunotherapy targeting human-EGFR in a mouse tumor model simulating current and future clinical trials. EBioMedicine 2021; 67:103345. [PMID: 33933782 PMCID: PMC8102756 DOI: 10.1016/j.ebiom.2021.103345] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 11/25/2022] Open
Abstract
Background near-infrared photoimmunotherapy (NIR-PIT) is a cancer treatment that uses antibody-photoabsorber (IRDye700DX, IR700) conjugates (APCs) which bind to target cells and are photoactivated by NIR light inducing rapid necrotic cell death. NIR-PIT targeting human epidermal growth factor receptor (hEGFR) has been shown to destroy hEGFR expressing human tumor cells and to be effective in immunodeficient mouse models. NIR-PIT can also be targeted to cells in the tumor microenvironment, for instance, CD25-targeted NIR-PIT can be used to selectively deplete regulatory T cells (Tregs) within a tumor. The aim of this study was to evaluate the combined therapeutic efficacy of hEGFR and CD25-targeted NIR-PIT in a newly established hEGFR expressing murine oropharyngeal cell line (mEERL-hEGFR). Methods panitumumab conjugated with IR700 (pan-IR700) was used as the cancer cell-directed component of NIR-PIT and anti-CD25-F(ab′)2-IR700 was used as the tumor microenvironment-directed component of NIR-PIT. Efficacy was evaluated using tumor-bearing mice in four groups: (1) non-treatment group (control), (2) pan-IR700 based NIR-PIT (pan-PIT), (3) anti-CD25-F(ab′)2-IR700 based NIR-PIT (CD25-PIT), (4) combined NIR-PIT with pan-IR700 and anti-CD25- F(ab′)2-IR700 (combined PIT). Findings the combined PIT group showed the greatest inhibition of tumor growth. Destruction of cancer cells likely leads to an immune response which is amplified by the loss of Tregs in the tumor microenvironment. Interpretation combined hEGFR and CD25-targeted NIR-PIT is a promising treatment for hEGFR expressing cancers in which Treg cells play an immunosuppressive role.
Collapse
Affiliation(s)
- Ryuhei Okada
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States
| | - Aki Furusawa
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States
| | - Daniel W Vermeer
- Cancer Biology Research Center, Sanford Research, Sioux Falls, SD 57104, United States
| | - Fuyuki Inagaki
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States
| | - Hiroaki Wakiyama
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States
| | - Takuya Kato
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States
| | - Tadanobu Nagaya
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States
| | - Peter L Choyke
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States
| | - William C Spanos
- Cancer Biology Research Center, Sanford Research, Sioux Falls, SD 57104, United States; Department of Surgery, University of South Dakota Sanford School of Medicine, Sioux Falls, SD 57105, United States
| | - Clint T Allen
- Translational Tumor Immunology Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, United States
| | - Hisataka Kobayashi
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States.
| |
Collapse
|
17
|
Fatemipour M, Nahand JS, Fard Azar ME, Baghi HB, Taghizadieh M, Sorayyayi S, Hussen BM, Mirzaei H, Moghoofei M, Bokharaei-Salim F. Human papillomavirus and prostate cancer: The role of viral expressed proteins in the inhibition of anoikis and induction of metastasis. Microb Pathog 2021; 152:104576. [PMID: 33086103 DOI: 10.1016/j.micpath.2020.104576] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND The aim of this study is to address the role of HPV in prostate cancer (PCa) development through the inducement of resistance to anoikis. METHODS In this case-control study, prostate tissues and blood samples were collected from 116 individuals, including 72 cases with PCa and 44 non-malignant prostate tissue samples as a control group. The expression level of HPV genes (E2, E6, and E7) and cellular genes including anti-apoptotic mediators (Bcl-2 and survivin), tumor suppressor proteins (Rb and p53), and some mediators involved in anoikis resistance and invasiveness (E-cadherin, N-cadherin, Twist, PTPN13 and SLUG) were evaluated. RESULTS HPV genome was identified in 36.1% cases and 15.9% control samples, additionally there was found to be a statistic significant association between the presence of HPV and PCa (OR = 1.64, 95% C.I = 0.8-1.8, P-value = 0.023). HPV genotype 16 and 18 were the most prevalent genotype in both in the PCa group and the control group. The expression level of the tumor suppressor proteins (Rb and p53) and anti-apoptotic mediators (Bcl-2 and Survivin) were significantly decreased and increased, respectively, in the HPV-positive specimens compared to the HPV-negative specimens. Furthermore, the mean expression level of N-cadherin, SLUG, and TWIST in the HPV-positive specimens was higher than HPV-negative specimens while the mean expression level of PTPN-13 and E-cadherin genes in the HPV-positive specimens was lower than HPV-negative specimens. CONCLUSION Our study suggests that HPV infection may be involved in the development of PCa metastases by modulating anoikis resistance related genes.
Collapse
Affiliation(s)
- Maryam Fatemipour
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Javid Sadri Nahand
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Hossein Bannazadeh Baghi
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Taghizadieh
- Department of Pathology, School of Medicine, Center for Women's Health Research Zahra, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saba Sorayyayi
- Department of Clinical Biochemistry, Faculty of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohsen Moghoofei
- Department of Microbiology, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Farah Bokharaei-Salim
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
18
|
Scarth JA, Patterson MR, Morgan EL, Macdonald A. The human papillomavirus oncoproteins: a review of the host pathways targeted on the road to transformation. J Gen Virol 2021; 102:001540. [PMID: 33427604 PMCID: PMC8148304 DOI: 10.1099/jgv.0.001540] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/25/2020] [Indexed: 12/24/2022] Open
Abstract
Persistent infection with high-risk human papillomaviruses (HR-HPVs) is the causal factor in over 99 % of cervical cancer cases, and a significant proportion of oropharyngeal and anogenital cancers. The key drivers of HPV-mediated transformation are the oncoproteins E5, E6 and E7. Together, they act to prolong cell-cycle progression, delay differentiation and inhibit apoptosis in the host keratinocyte cell in order to generate an environment permissive for viral replication. The oncoproteins also have key roles in mediating evasion of the host immune response, enabling infection to persist. Moreover, prolonged infection within the cellular environment established by the HR-HPV oncoproteins can lead to the acquisition of host genetic mutations, eventually culminating in transformation to malignancy. In this review, we outline the many ways in which the HR-HPV oncoproteins manipulate the host cellular environment, focusing on how these activities can contribute to carcinogenesis.
Collapse
Affiliation(s)
- James A. Scarth
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, West Yorkshire, LS2 9JT, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, West Yorkshire, LS2 9JT, UK
| | - Molly R. Patterson
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, West Yorkshire, LS2 9JT, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, West Yorkshire, LS2 9JT, UK
| | - Ethan L. Morgan
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, West Yorkshire, LS2 9JT, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, West Yorkshire, LS2 9JT, UK
- Present address: Tumour Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institute of Health, Bethesda, MD 20892, USA
| | - Andrew Macdonald
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, West Yorkshire, LS2 9JT, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, West Yorkshire, LS2 9JT, UK
| |
Collapse
|
19
|
Chaudhary R, Slebos RJC, Song F, McCleary-Sharpe KP, Masannat J, Tan AC, Wang X, Amaladas N, Wu W, Hall GE, Conejo-Garcia JR, Hernandez-Prera JC, Chung CH. Effects of checkpoint kinase 1 inhibition by prexasertib on the tumor immune microenvironment of head and neck squamous cell carcinoma. Mol Carcinog 2021; 60:138-150. [PMID: 33378592 PMCID: PMC7856233 DOI: 10.1002/mc.23275] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 12/12/2020] [Indexed: 12/20/2022]
Abstract
Prognosis for patients with recurrent and/or metastatic head and neck squamous cell carcinoma (HNSCC) remains poor. Development of more effective and less toxic targeted therapies is necessary for HNSCC patients. Checkpoint kinase 1 (CHK1) plays a vital role in cell cycle regulation and is a promising therapeutic target in HNSCC. Prexasertib, a CHK1 inhibitor, induces DNA damage and cell death, however, its effect on the tumor immune microenvironment (TIME) is largely unknown. Therefore, we evaluated a short-term and long-term effects of prexasertib in HNSCC and its TIME. Prexasertib caused increased DNA damage and cell death in vitro and significant tumor regression and improved survival in vivo. The gene expression and multiplex immunohistochemistry (mIHC) analyses of the in vivo tumors demonstrated increased expression of genes that are related to T-cell activation and increased immune cell trafficking, and decreased expression of genes that related to immunosuppression. However, increased expression of genes related to immunosuppression emerged over time suggesting evasion of immune surveillances. These findings in gene expression analyses were confirmed using mIHC which showed differential modulation of TIME in the tumor margins and as well as cores over time. These results suggest that evasion of immune surveillance, at least in part, may contribute to the acquired resistance to prexasertib in HNSCC.
Collapse
Affiliation(s)
- Ritu Chaudhary
- Department of Head and Neck-Endocrine Oncology, Moffitt
Cancer Center, Tampa, Florida, USA
| | - Robbert J. C. Slebos
- Department of Head and Neck-Endocrine Oncology, Moffitt
Cancer Center, Tampa, Florida, USA
| | - Feifei Song
- Department of Head and Neck-Endocrine Oncology, Moffitt
Cancer Center, Tampa, Florida, USA
| | | | - Jude Masannat
- Department of Head and Neck-Endocrine Oncology, Moffitt
Cancer Center, Tampa, Florida, USA
| | - Aik Choon Tan
- Department of Biostatistics and Bioinformatics, Moffitt
Cancer Center, Tampa, Florida, USA
| | - Xuefeng Wang
- Department of Biostatistics and Bioinformatics, Moffitt
Cancer Center, Tampa, Florida, USA
| | - Nelusha Amaladas
- Lilly Research Laboratories, Eli Lilly and Company,
Indianapolis, Indiana, USA
| | - Wenjuan Wu
- Lilly Research Laboratories, Eli Lilly and Company,
Indianapolis, Indiana, USA
| | - Gerald E. Hall
- Lilly Research Laboratories, Eli Lilly and Company,
Indianapolis, Indiana, USA
| | | | | | - Christine H. Chung
- Department of Head and Neck-Endocrine Oncology, Moffitt
Cancer Center, Tampa, Florida, USA
| |
Collapse
|
20
|
Padash Barmchi M, Thomas M, Thatte JV, Vats A, Zhang B, Cagan RL, Banks L. Inhibition of kinase IKKβ suppresses cellular abnormalities induced by the human papillomavirus oncoprotein HPV 18E6. Sci Rep 2021; 11:1111. [PMID: 33441820 PMCID: PMC7807017 DOI: 10.1038/s41598-020-80193-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 12/15/2020] [Indexed: 11/14/2022] Open
Abstract
Human papillomavirus (HPV) is the leading cause of cervical cancer and has been implicated in several other cancer types including vaginal, vulvar, penile, and oropharyngeal cancers. Despite the recent availability of a vaccine, there are still over 310,000 deaths each year worldwide. Current treatments for HPV-mediated cancers show limited efficacy, and would benefit from improved understanding of disease mechanisms. Recently, we developed a Drosophila 'HPV 18 E6' model that displayed loss of cellular morphology and polarity, junctional disorganization, and degradation of the major E6 target Magi; we further provided evidence that mechanisms underlying HPV E6-induced cellular abnormalities are conserved between humans and flies. Here, we report a functional genetic screen of the Drosophila kinome that identified IKK[Formula: see text]-a regulator of NF-κB-as an enhancer of E6-induced cellular defects. We demonstrate that inhibition of IKK[Formula: see text] reduces Magi degradation and that this effect correlates with hyperphosphorylation of E6. Further, the reduction in IKK[Formula: see text] suppressed the cellular transformation caused by the cooperative action of HPVE6 and the oncogenic Ras. Finally, we demonstrate that the interaction between IKK[Formula: see text] and E6 is conserved in human cells: inhibition of IKK[Formula: see text] blocked the growth of cervical cancer cells, suggesting that IKK[Formula: see text] may serve as a novel therapeutic target for HPV-mediated cancers.
Collapse
Affiliation(s)
| | - Miranda Thomas
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Jayashree V Thatte
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Arushi Vats
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Bing Zhang
- Division of Biological Sciences, University of Missouri, Columbia, MO, USA
| | - Ross L Cagan
- Institute of Cancer Sciences, University of Glasgow, Wolfson Wohl Cancer Research Centre, Glasgow, Scotland, UK
| | - Lawrence Banks
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| |
Collapse
|
21
|
Dual Role of the PTPN13 Tyrosine Phosphatase in Cancer. Biomolecules 2020; 10:biom10121659. [PMID: 33322542 PMCID: PMC7763032 DOI: 10.3390/biom10121659] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/07/2020] [Accepted: 12/09/2020] [Indexed: 02/08/2023] Open
Abstract
In this review article, we present the current knowledge on PTPN13, a class I non-receptor protein tyrosine phosphatase identified in 1994. We focus particularly on its role in cancer, where PTPN13 acts as an oncogenic protein and also a tumor suppressor. To try to understand these apparent contradictory functions, we discuss PTPN13 implication in the FAS and oncogenic tyrosine kinase signaling pathways and in the associated biological activities, as well as its post-transcriptional and epigenetic regulation. Then, we describe PTPN13 clinical significance as a prognostic marker in different cancer types and its impact on anti-cancer treatment sensitivity. Finally, we present future research axes following recent findings on its role in cell junction regulation that implicate PTPN13 in cell death and cell migration, two major hallmarks of tumor formation and progression.
Collapse
|
22
|
Hussen BM, Ahmadi G, Marzban H, Fard Azar ME, Sorayyayi S, Karampour R, Nahand JS, Hidayat HJ, Moghoofei M. The role of HPV gene expression and selected cellular MiRNAs in lung cancer development. Microb Pathog 2020; 150:104692. [PMID: 33301856 DOI: 10.1016/j.micpath.2020.104692] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/04/2020] [Accepted: 12/04/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND The high mortality rate of lung cancer can be justified that strong need to explore new aspect of tumor biology. Human papillomavirus (HPV) has been detected as risk factor for the development of lung cancer. The aim of this study was to determine the role of HPV and cellular/miRNAs genes expression in the epithelial-mesenchymal transition (EMT) and development of lung cancer. METHODS In this case-control study, 109 lung cancer tissue and 52 controls were included. We analyzed the presence of HPV infection, its genotypes (in positive samples) and the expression of viral genes (E2, E6 and E7). Also, We examined the expression of celluar factors including (a) p53 and retinoblastoma (Rb) (as anti-carcinogenic genes), (b) EMT related genes, (c) selected miRNAs. RESULTS Our results reported 51.4% and 23.1% of HPV genome in tumor tissues and control tissues samples, respectively. There was a significant association between the HPV positive status and lung cancer (OR = 3.26, 95% C.I = 1.47-7.02, P = 0.001). HPV type 16 was the most prevalent genotype in tissues. The expression of p53, RB, TIMP1, CCNG-1, E-cad and PTPN13 were decreased while MMP-2 and N-cad were increased in HPV-positive tumor/control tissues compared to HPV-negative tissues. Also, among miRNAs, let-7, miR-23, miR-34, miR-125, miR-146 were downregulated and miR-20, miR-424 were upregulated in HPV-positve tissues compared to HPV-negative tissues. CONCLUSION This study demonstrated that HPV infection and interaction with cellular genes and miRNAs promote EMT which involved in the lung cancer development.
Collapse
Affiliation(s)
- Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Gelavizh Ahmadi
- Department of Biotechnology, Faculty of Sciences, University of Maragheh, Maragheh, Iran
| | - Havva Marzban
- Department of Pathology and Experimental Animals, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | | | - Saba Sorayyayi
- Department of Clinical Biochemistry, Faculty of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Romina Karampour
- Department of Pathobiology, Faculty of Veterinary Medicine, Razi University, Kermanshah, Iran
| | - Javid Sadri Nahand
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hazha Jamal Hidayat
- Department of Biology, College of Education, Salahaddin University, Erbil, Iraq
| | - Mohsen Moghoofei
- Department of Microbiology, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
23
|
Willemsen A, van den Boom A, Dietz J, Bilge Dagalp S, Dogan F, Bravo IG, Ehrhardt A, Ehrke-Schulz E. Genomic and phylogenetic characterization of ChPV2, a novel goat PV closely related to the Xi-PV1 species infecting bovines. Virol J 2020; 17:167. [PMID: 33126890 PMCID: PMC7602357 DOI: 10.1186/s12985-020-01440-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 10/21/2020] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Papillomaviruses (PVs) infecting artiodactyls are very diverse, and only second in number to PVs infecting primates. PVs associated to lesions in economically important ruminant species have been isolated from cattle and sheep. METHODS Potential PV DNA from teat lesions of a Damascus goat was isolated, cloned and sequenced. The PV genome was analyzed using bioinformatics approaches to detect open reading frames and to predict potential features of encoded proteins as well as putative regulatory elements. Sequence comparison and phylogenetic analyses using the concatenated E1E2L2L1 nucleotide and amino acid alignments was used to reveal the relationship of the new PV to the known PV diversity and its closest relevants. RESULTS We isolated and characterized the full-genome of novel Capra hircus papillomavirus. We identified the E6, E7, E1, E2, L2, L1 open reading frames with protein coding potential and putative active elements in the ChPV2 proteins and putative regulatory genome elements. Sequence similarities of L1 and phylogenetic analyses using concatenated E1E2L2L1 nucleotide and amino acid alignments suggest the classification as a new PV type designated ChPV2 with a phylogenetic position within the XiPV genus, basal to the XiPV1 species. ChPV2 is not closely related to ChPV1, the other known goat PV isolated from healthy skin, although both of them belong confidently into a clade composed of PVs infecting cervids and bovids. Interestingly, ChPV2 contains an E6 open reading frame whereas all closely related PVs do not CONCLUSION: ChPV2 is a novel goat PV closely related to the Xi-PV1 species infecting bovines. Phylogenetic relationships and genome architecture of ChPV2 and closely related PV types suggest at least two independent E6 losses within the XiPV clade.
Collapse
Affiliation(s)
- Anouk Willemsen
- Centre National de La Recherche Scientifique (CNRS), Laboratory MIVEGEC (CNRS IRD Uni Montpellier), Montpellier, France.,Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Alexander van den Boom
- Chair for Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department for Human Medicine, Faculty of Health, Witten/Herdecke University, Stockumer Strasse 10, 58453, Witten, Germany
| | - Julienne Dietz
- Chair for Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department for Human Medicine, Faculty of Health, Witten/Herdecke University, Stockumer Strasse 10, 58453, Witten, Germany
| | - Seval Bilge Dagalp
- Faculty of Veterinary Medicine, Department of Virology, Ankara University, Ankara, Turkey
| | - Firat Dogan
- Faculty of Veterinary Medicine, Department of Virology, Hatay Mustafa Kemal University, Hatay, Turkey
| | - Ignacio G Bravo
- Centre National de La Recherche Scientifique (CNRS), Laboratory MIVEGEC (CNRS IRD Uni Montpellier), Montpellier, France.,Center for Research on the Ecology and Evolution of Diseases (CREES), Montpellier, France
| | - Anja Ehrhardt
- Chair for Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department for Human Medicine, Faculty of Health, Witten/Herdecke University, Stockumer Strasse 10, 58453, Witten, Germany
| | - Eric Ehrke-Schulz
- Chair for Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department for Human Medicine, Faculty of Health, Witten/Herdecke University, Stockumer Strasse 10, 58453, Witten, Germany.
| |
Collapse
|
24
|
Grossberg AJ, Vichaya EG, Gross PS, Ford BG, Scott KA, Estrada D, Vermeer DW, Vermeer P, Dantzer R. Interleukin 6-independent metabolic reprogramming as a driver of cancer-related fatigue. Brain Behav Immun 2020; 88:230-241. [PMID: 32428555 PMCID: PMC7415540 DOI: 10.1016/j.bbi.2020.05.043] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 05/13/2020] [Accepted: 05/14/2020] [Indexed: 01/08/2023] Open
Abstract
Fatigue is a common and debilitating symptom of cancer with few effective interventions. Cancer-related fatigue (CRF) is often associated with increases in inflammatory cytokines, however inflammation may not be requisite for this symptom, suggesting other biological mediators also play a role. Because tumors are highly metabolically active and can amplify their energetic toll via effects on distant organs, we sought to determine whether CRF could be explained by metabolic competition exacted by the tumor. We used a highly metabolically active murine E6/E7/hRas model of head and neck cancer for this purpose. Mice with or without tumors were submitted to metabolic constraints in the form of voluntary wheel running or acute overnight fasting and their adaptive behavioral (home cage activity and fasting-induced wheel running) and metabolic responses (blood glucose, ketones, and liver metabolic gene expression) were monitored. We found that the addition of running wheel was necessary to measure activity loss, used as a surrogate for fatigue in this study. Tumor-bearing mice engaged in wheel running showed a decrease in blood glucose levels and an increase in lactate accumulation in the skeletal muscle, consistent with inhibition of the Cori cycle. These changes were associated with gene expression changes in the livers consistent with increased glycolysis and suppressed gluconeogenesis. Fasting also decreased blood glucose in tumor-bearing mice, without impairing glucose or insulin tolerance. Fasting-induced increases in wheel running and ketogenesis were suppressed by tumors, which was again associated with a shift from gluconeogenic to glycolytic metabolism in the liver. Blockade of IL-6 signaling with a neutralizing antibody failed to recover any of the behavioral or metabolic outcomes. Taken together, these data indicate that metabolic competition between the tumor and the rest of the organism is an important component of fatigue and support the hypothesis of a central role for IL-6-independent hepatic metabolic reprogramming in the pathophysiology of CRF.
Collapse
Affiliation(s)
- Aaron J Grossberg
- Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Radiation Medicine, Cancer Early Detection Advanced Research Center, Brenden Colson Center for Pancreatic Care, Oregon Health & Science University, Portland, OR, USA.
| | - Elisabeth G Vichaya
- Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Psychology and Neuroscience, Baylor University, Waco, TX, USA
| | - Phillip S Gross
- Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC, USA
| | - Bianca G Ford
- Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kiersten A Scott
- Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Darlene Estrada
- Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Daniel W Vermeer
- Cancer Biology Research Center, Sanford Research, Sioux Falls, SD, USA
| | - Paola Vermeer
- Cancer Biology Research Center, Sanford Research, Sioux Falls, SD, USA
| | - Robert Dantzer
- Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
25
|
Abstract
Human papillomavirus (HPV) is the most common sexually transmitted pathogen, and high-risk HPVs contribute to 5% of human cancers, including 25% of head and neck squamous cell carcinomas (HNSCCs). Despite the significant role played by HPVs in HNSCC, there is currently no available in vivo system to model the process from papillomavirus infection to virus-induced HNSCC. In this paper, we describe an infection-based HNSCC model, utilizing a mouse papillomavirus (MmuPV1), which naturally infects laboratory mice. Infections of the tongue epithelium of two immunodeficient strains with MmuPV1 caused high-grade squamous dysplasia with early signs of invasive carcinoma over the course of 4 months. When combined with the oral carcinogen 4-nitroquinoline-1-oxide (4NQO), MmuPV1 caused invasive squamous cell carcinoma (SCC) on the tongue of both immunodeficient and immunocompetent mice. These tumors expressed markers of papillomavirus infection and HPV-associated carcinogenesis. This novel preclinical model provides a valuable new means to study how natural papillomavirus infections contribute to HNSCC.IMPORTANCE The species specificity of papillomavirus has limited the development of an infection-based animal model to study HPV-associated head and neck carcinogenesis. Our study presents a novel in vivo model using the mouse papillomavirus MmuPV1 to study papillomavirus-associated head and neck cancer. In our model, MmuPV1 infects and causes lesions in both immunodeficient and genetically immunocompetent strains of mice. These virally induced lesions carry features associated with both HPV infections and HPV-associated carcinogenesis. Combined with previously identified cancer cofactors, MmuPV1 causes invasive squamous cell carcinomas in mice. This model provides opportunities for basic and translational studies of papillomavirus infection-based head and neck disease.
Collapse
|
26
|
Heft Neal ME, Haring CT, Mann JE, Brenner JC, Spector ME, Swiecicki PL. Novel Immunotherapeutic Approaches in Head and Neck Cancer. ACTA ACUST UNITED AC 2019; 5. [PMID: 32661502 DOI: 10.20517/2394-4722.2019.32] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Unresectable recurrent or metastatic head and neck cancer is an incurable disease with survival of approximately 12 months. Head and neck tumors exhibit numerous derangements in the tumor microenvironment that aid in immune evasion and may serve as targets for future therapies. Pembrolizumab is now approved as a first line therapy. Despite the promise of currently approved immunotherapies there continues to be low response rates and additional strategies are needed. Here, alterations in the immune microenvironment and current therapeutic strategies are reviewed with a focus on novel immunologic approaches.
Collapse
Affiliation(s)
- M E Heft Neal
- Department of Otolaryngology Head and Neck Surgery, University of Michigan, Ann Arbor, MI
| | - C T Haring
- Department of Otolaryngology Head and Neck Surgery, University of Michigan, Ann Arbor, MI
| | - J E Mann
- Department of Otolaryngology Head and Neck Surgery, University of Michigan, Ann Arbor, MI
| | - J C Brenner
- Department of Otolaryngology Head and Neck Surgery, University of Michigan, Ann Arbor, MI.,Department of Pharmacology, University of Michigan.,Rogel Cancer Center, University of Michigan
| | - M E Spector
- Department of Otolaryngology Head and Neck Surgery, University of Michigan, Ann Arbor, MI
| | - P L Swiecicki
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan Medical School, Ann Arbor, Michigan
| |
Collapse
|
27
|
Vichaya EG, Vermeer DW, Budac D, Lee A, Grossberg A, Vermeer PD, Lee JH, Dantzer R. Inhibition of Indoleamine 2,3 Dioxygenase Does Not Improve Cancer-Related Symptoms in a Murine Model of Human Papilloma Virus-Related Head and Neck Cancer. Int J Tryptophan Res 2019; 12:1178646919872508. [PMID: 31496720 PMCID: PMC6716175 DOI: 10.1177/1178646919872508] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 08/02/2019] [Indexed: 11/15/2022] Open
Abstract
The expression of indoleamine 2,3 dioxygenase (IDO) by tumors can contribute to immunotolerance, and IDO induced by inflammation can also increase risk for the development of behavioral alterations. Thus, this study was initiated to determine whether IDO inhibition, intended to facilitate tumor clearance in response to treatment, attenuates behavioral alterations associated with tumor growth and treatment. We used a murine model of human papilloma virus-related head and neck cancer. We confirmed that tumor cells express IDO and expression was increased by radiotherapy. Interestingly, inhibition of IDO activation by the competitive inhibitor 1-methyl tryptophan mildly exacerbated treatment-associated burrowing deficits (burrowing is a sensitive index of sickness in tumor-bearing mice). Genetic deletion of IDO worsened tumor outcomes and had no effect on the behavioral response as by decreased burrowing or reduced voluntary wheel running. In contrast, oral administration of a specific inhibitor of IDO1 provided no apparent benefit on the tumor response to cancer therapy, yet decreased voluntary wheel-running activity independent of treatment. These results indicate that, independent of its potential effect on tumor clearance, inhibition of IDO does not improve cancer-related symptoms.
Collapse
Affiliation(s)
- Elisabeth G Vichaya
- Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Daniel W Vermeer
- Cancer Biology Research Center, Sanford Research, Sioux Falls, SD, USA
| | - David Budac
- Neuroinflammation Disease Biology Unit, Lundbeck Research USA, Paramus, NJ, USA
| | - Anna Lee
- Neuroinflammation Disease Biology Unit, Lundbeck Research USA, Paramus, NJ, USA
| | - Aaron Grossberg
- Department of Radiation Medicine, School of Medicine, Oregon Health & Sciences University, Portland, OR, USA
| | - Paola D Vermeer
- Cancer Biology Research Center, Sanford Research, Sioux Falls, SD, USA
| | - John H Lee
- Chan Soon-Shiong Institute for Medicine, El Segundo, CA, USA
| | - Robert Dantzer
- Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
28
|
Chauhan N, Maher DM, Yallapu MM, B Hafeez B, Singh MM, Chauhan SC, Jaggi M. A triphenylethylene nonsteroidal SERM attenuates cervical cancer growth. Sci Rep 2019; 9:10917. [PMID: 31358785 PMCID: PMC6662837 DOI: 10.1038/s41598-019-46680-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 06/28/2019] [Indexed: 11/09/2022] Open
Abstract
Selective estrogen receptor modulator drug molecules of triphenylethylene family have gained considerable attention as anti-cancer agents. Despite recent advances in screening and development of HPV vaccines, cervical cancer remains one of the deadliest malignancies as advanced stage metastatic disease is mostly untreatable, thus warrants newer therapeutic strategies. Ormeloxifene (ORM) is a well-known SERM of triphenylethylene family that has been approved for human use, thus represents an ideal molecule for repurposing. In this study, we for the first time have demonstrated the anti-cancerous properties of ormeloxifene in cervical cancer. Ormeloxifene efficiently attenuated tumorigenic and metastatic properties of cervical cancer cells via arresting cell cycle at G1-S transition, inducing apoptosis, decreasing PI3K and Akt phosphorylation, mitochondrial membrane potential, and modulating G1-S transition related proteins (p21, cyclin E and Cdk2). Moreover, ORM repressed the expression of HPV E6/ E7 oncoproteins and restored the expression of their downstream target tumor suppressor proteins (p53, Rb and PTPN 13). As a result, ormeloxifene induces radio-sensitization in cervical cancer cells and caused potent tumor growth inhibition in orthotopic mouse model. Taken together, ormeloxifene represents an alternative therapeutic modality for cervical cancer which may have rapid clinical translation as it is already proven safe for human use.
Collapse
Affiliation(s)
- Neeraj Chauhan
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, 38163, Memphis, TN, USA.,Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, 78504, McAllen, TX, USA
| | - Diane M Maher
- Sanford Research Center, USD, 57104, Sioux Falls, SD, USA
| | - Murali M Yallapu
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, 38163, Memphis, TN, USA.,Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, 78504, McAllen, TX, USA
| | - Bilal B Hafeez
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, 38163, Memphis, TN, USA.,Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, 78504, McAllen, TX, USA
| | - Man M Singh
- Saraswati Dental College, Lucknow, Uttar Pradesh, India
| | - Subhash C Chauhan
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, 38163, Memphis, TN, USA. .,Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, 78504, McAllen, TX, USA.
| | - Meena Jaggi
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, 38163, Memphis, TN, USA. .,Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, 78504, McAllen, TX, USA.
| |
Collapse
|
29
|
Protein Phosphatases-A Touchy Enemy in the Battle Against Glioblastomas: A Review. Cancers (Basel) 2019; 11:cancers11020241. [PMID: 30791455 PMCID: PMC6406705 DOI: 10.3390/cancers11020241] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 02/15/2019] [Accepted: 02/16/2019] [Indexed: 12/19/2022] Open
Abstract
Glioblastoma (GBM) is the most common malignant tumor arising from brain parenchyma. Although many efforts have been made to develop therapies for GBM, the prognosis still remains poor, mainly because of the difficulty in total resection of the tumor mass from brain tissue and the resistance of the residual tumor against standard chemoradiotherapy. Therefore, novel adjuvant therapies are urgently needed. Recent genome-wide analyses of GBM cases have clarified molecular signaling mechanisms underlying GBM biology. However, results of clinical trials targeting phosphorylation-mediated signaling have been unsatisfactory to date. Protein phosphatases are enzymes that antagonize phosphorylation signaling by dephosphorylating phosphorylated signaling molecules. Recently, the critical roles of phosphatases in the regulation of oncogenic signaling in malignant tumor cells have been reported, and tumorigenic roles of deregulated phosphatases have been demonstrated in GBM. However, a detailed mechanism underlying phosphatase-mediated signaling transduction in the regulation of GBM has not been elucidated, and such information is necessary to apply phosphatases as a therapeutic target for GBM. This review highlights and summarizes the phosphatases that have crucial roles in the regulation of oncogenic signaling in GBM cells.
Collapse
|
30
|
Propranolol Promotes Glucose Dependence and Synergizes with Dichloroacetate for Anti-Cancer Activity in HNSCC. Cancers (Basel) 2018; 10:cancers10120476. [PMID: 30513596 PMCID: PMC6316475 DOI: 10.3390/cancers10120476] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/23/2018] [Accepted: 11/23/2018] [Indexed: 01/14/2023] Open
Abstract
Tumor cell metabolism differs from that of normal cells, conferring tumors with metabolic advantages but affording opportunities for therapeutic intervention. Accordingly, metabolism-targeting therapies have shown promise. However, drugs targeting singular metabolic pathways display limited efficacy, in part due to the tumor’s ability to compensate by using other metabolic pathways to meet energy and growth demands. Thus, it is critical to identify novel combinations of metabolism-targeting drugs to improve therapeutic efficacy in the face of compensatory cellular response mechanisms. Our lab has previously identified that the anti-cancer activity of propranolol, a non-selective beta-blocker, is associated with inhibition of mitochondrial metabolism in head and neck squamous cell carcinoma (HNSCC). In response to propranolol, however, HNSCC exhibits heightened glycolytic activity, which may limit the effectiveness of propranolol as a single agent. Thus, we hypothesized that propranolol’s metabolic effects promote a state of enhanced glucose dependence, and that propranolol together with glycolytic inhibition would provide a highly effective therapeutic combination in HNSCC. Here, we show that glucose deprivation synergizes with propranolol for anti-cancer activity, and that the rational combination of propranolol and dichloroacetate (DCA), a clinically available glycolytic inhibitor, dramatically attenuates tumor cell metabolism and mTOR signaling, inhibits proliferation and colony formation, and induces apoptosis. This therapeutic combination displays efficacy in both human papillomavirus-positive (HPV(+)) and HPV(−) HNSCC cell lines, as well as a recurrent/metastatic model, while leaving normal tonsil epithelial cells relatively unaffected. Importantly, the combination significantly delays tumor growth in vivo with no evidence of toxicity. Additionally, the combination of propranolol and DCA enhances the effects of chemoradiation and sensitizes resistant cells to cisplatin and radiation. This novel therapeutic combination represents a promising treatment strategy which may overcome some of the limitations of targeting individual metabolic pathways in cancer.
Collapse
|
31
|
Nasal administration of mesenchymal stem cells restores cisplatin-induced cognitive impairment and brain damage in mice. Oncotarget 2018; 9:35581-35597. [PMID: 30473752 PMCID: PMC6238972 DOI: 10.18632/oncotarget.26272] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 10/06/2018] [Indexed: 12/13/2022] Open
Abstract
Cognitive impairments are a common side effect of chemotherapy that often persists long after treatment completion. There are no FDA-approved interventions to treat these cognitive deficits also called ‘chemobrain’. We hypothesized that nasal administration of mesenchymal stem cells (MSC) reverses chemobrain. To test this hypothesis, we used a mouse model of cognitive deficits induced by cisplatin that we recently developed. Mice were treated with two cycles of cisplatin followed by nasal administration of MSC. Cisplatin treatment induced deficits in the puzzle box, novel object/place recognition and Y-maze tests, indicating cognitive impairment. Nasal MSC treatment fully reversed these cognitive deficits in males and females. MSC also reversed the cisplatin-induced damage to cortical myelin. Resting state functional MRI and connectome analysis revealed a decrease in characteristic path length after cisplatin, while MSC treatment increased path length in cisplatin-treated mice. MSCs enter the brain but did not survive longer than 12-72 hrs, indicating that they do not replace damaged tissue. RNA-sequencing analysis identified mitochondrial oxidative phosphorylation as a top pathway activated by MSC administration to cisplatin-treated mice. Consistently, MSC treatment restored the cisplatin-induced mitochondrial dysfunction and structural abnormalities in brain synaptosomes. Nasal administration of MSC did not interfere with the peripheral anti-tumor effect of cisplatin. In conclusion, nasal administration of MSC may represent a powerful, non-invasive, and safe regenerative treatment for resolution of chemobrain.
Collapse
|
32
|
Madeo M, Colbert PL, Vermeer DW, Lucido CT, Cain JT, Vichaya EG, Grossberg AJ, Muirhead D, Rickel AP, Hong Z, Zhao J, Weimer JM, Spanos WC, Lee JH, Dantzer R, Vermeer PD. Cancer exosomes induce tumor innervation. Nat Commun 2018; 9:4284. [PMID: 30327461 PMCID: PMC6191452 DOI: 10.1038/s41467-018-06640-0] [Citation(s) in RCA: 188] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 09/18/2018] [Indexed: 12/16/2022] Open
Abstract
Patients with densely innervated tumors suffer with increased metastasis and decreased survival as compared to those with less innervated tumors. We hypothesize that in some tumors, nerves are acquired by a tumor-induced process, called axonogenesis. Here, we use PC12 cells as an in vitro neuronal model, human tumor samples and murine in vivo models to test this hypothesis. When appropriately stimulated, PC12 cells extend processes, called neurites. We show that patient tumors release vesicles, called exosomes, which induce PC12 neurite outgrowth. Using a cancer mouse model, we show that tumors compromised in exosome release are less innervated than controls. Moreover, in vivo pharmacological blockade of exosome release similarly attenuates tumor innervation. We characterize these nerves as sensory in nature and demonstrate that axonogenesis is potentiated by the exosome-packaged axonal guidance molecule, EphrinB1. These findings indicate that tumor released exosomes induce tumor innervation and exosomes containing EphrinB1 potentiate this activity.
Collapse
Affiliation(s)
- Marianna Madeo
- Cancer Biology and Immunotherapies Group, Sanford Research, 2301 East 60th St north, Sioux Falls, SD, 57104, USA
| | - Paul L Colbert
- Cancer Biology and Immunotherapies Group, Sanford Research, 2301 East 60th St north, Sioux Falls, SD, 57104, USA
| | - Daniel W Vermeer
- Cancer Biology and Immunotherapies Group, Sanford Research, 2301 East 60th St north, Sioux Falls, SD, 57104, USA
| | - Christopher T Lucido
- Cancer Biology and Immunotherapies Group, Sanford Research, 2301 East 60th St north, Sioux Falls, SD, 57104, USA
| | - Jacob T Cain
- Pediatrics and Rare Diseases Group, Sanford Research, 2301 East 60th St north, Sioux Falls, SD, 57104, USA
| | - Elisabeth G Vichaya
- Department of Symptom Research, MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 384, Houston, TX, 77030, USA
| | - Aaron J Grossberg
- Department of Symptom Research, MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 384, Houston, TX, 77030, USA
- Department of Radiation Medicine, Cancer Early Detection Advanced Research Center, Oregon Health and Science University, 2720 SW Moody Ave KR-CEDR, Portland, OR, 97201, USA
| | - DesiRae Muirhead
- Sanford Health Pathology Clinic, Sanford Health, 1305 West 18th St, Sioux Falls, SD, 57105, USA
| | - Alex P Rickel
- Biomedical Engineering Program, University of South Dakota, 4800 North Career Ave, Sioux Falls, SD, 57107, USA
| | - Zhongkui Hong
- Biomedical Engineering Program, University of South Dakota, 4800 North Career Ave, Sioux Falls, SD, 57107, USA
| | - Jing Zhao
- Population Health Group, Sanford Research, 2301 East 60th St north, Sioux Falls, SD, 57104, USA
| | - Jill M Weimer
- Pediatrics and Rare Diseases Group, Sanford Research, 2301 East 60th St north, Sioux Falls, SD, 57104, USA
| | - William C Spanos
- Cancer Biology and Immunotherapies Group, Sanford Research, 2301 East 60th St north, Sioux Falls, SD, 57104, USA
- Sanford Ears, Nose and Throat, 1310 West 22nd St, Sioux Falls, SD, 57105, USA
| | - John H Lee
- NantKwest, 9920 Jefferson Blvd, Culver City, CA, 90232, USA
| | - Robert Dantzer
- Department of Symptom Research, MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 384, Houston, TX, 77030, USA
| | - Paola D Vermeer
- Cancer Biology and Immunotherapies Group, Sanford Research, 2301 East 60th St north, Sioux Falls, SD, 57104, USA.
| |
Collapse
|
33
|
Lucido CT, Callejas-Valera JL, Colbert PL, Vermeer DW, Miskimins WK, Spanos WC, Vermeer PD. β 2-Adrenergic receptor modulates mitochondrial metabolism and disease progression in recurrent/metastatic HPV(+) HNSCC. Oncogenesis 2018; 7:81. [PMID: 30297705 PMCID: PMC6175933 DOI: 10.1038/s41389-018-0090-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 08/03/2018] [Accepted: 09/04/2018] [Indexed: 12/23/2022] Open
Abstract
The incidence of human papillomavirus-associated head and neck squamous cell carcinoma (HPV[ + ] HNSCC) is rapidly increasing. Although clinical management of primary HPV( + ) HNSCC is relatively successful, disease progression, including recurrence and metastasis, is often fatal. Moreover, patients with progressive disease face limited treatment options and significant treatment-associated morbidity. These clinical data highlight the need to identify targetable mechanisms that drive disease progression in HPV( + ) HNSCC to prevent and/or treat progressive disease. Interestingly, β-adrenergic signaling has recently been associated with pro-tumor processes in several disease types. Here we show that an aggressive murine model of recurrent/metastatic HPV( + ) HNSCC upregulates β2-adrenergic receptor (β2AR) expression, concordant with significantly heightened mitochondrial metabolism, as compared with the parental model from which it spontaneously derived. β-Adrenergic blockade effectively inhibits in vitro proliferation and migratory capacity in this model, effects associated with an attenuation of hyperactive mitochondrial respiration. Importantly, propranolol, a clinically available nonselective β-blocker, significantly slows primary tumor growth, inhibits metastatic development, and shows additive benefit alongside standard-of-care modalities in vivo. Further, via CRISPR/Cas9 technology, we show that the hyperactive mitochondrial metabolic profile and aggressive in vivo phenotype of this recurrent/metastatic model are dependent on β2AR expression. These data implicate β2AR as a modulator of mitochondrial metabolism and disease progression in HPV( + ) HNSCC, and warrant further investigation into the use of β-blockers as low cost, relatively tolerable, complementary treatment options in the clinical management of this disease.
Collapse
Affiliation(s)
- Christopher T Lucido
- Cancer Biology and Immunotherapies Group, Sanford Research, 2301 East 60th St North, Sioux Falls, SD, 57104, USA
| | - Juan L Callejas-Valera
- Cancer Biology and Immunotherapies Group, Sanford Research, 2301 East 60th St North, Sioux Falls, SD, 57104, USA
| | - Paul L Colbert
- Cancer Biology and Immunotherapies Group, Sanford Research, 2301 East 60th St North, Sioux Falls, SD, 57104, USA
| | - Daniel W Vermeer
- Cancer Biology and Immunotherapies Group, Sanford Research, 2301 East 60th St North, Sioux Falls, SD, 57104, USA
| | - W Keith Miskimins
- Cancer Biology and Immunotherapies Group, Sanford Research, 2301 East 60th St North, Sioux Falls, SD, 57104, USA
| | - William C Spanos
- Cancer Biology and Immunotherapies Group, Sanford Research, 2301 East 60th St North, Sioux Falls, SD, 57104, USA
| | - Paola D Vermeer
- Cancer Biology and Immunotherapies Group, Sanford Research, 2301 East 60th St North, Sioux Falls, SD, 57104, USA.
| |
Collapse
|
34
|
Brand TM, Hartmann S, Bhola NE, Li H, Zeng Y, O'Keefe RA, Ranall MV, Bandyopadhyay S, Soucheray M, Krogan NJ, Kemp C, Duvvuri U, LaVallee T, Johnson DE, Ozbun MA, Bauman JE, Grandis JR. Cross-talk Signaling between HER3 and HPV16 E6 and E7 Mediates Resistance to PI3K Inhibitors in Head and Neck Cancer. Cancer Res 2018; 78:2383-2395. [PMID: 29440171 PMCID: PMC6537867 DOI: 10.1158/0008-5472.can-17-1672] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 08/01/2017] [Accepted: 02/06/2018] [Indexed: 11/16/2022]
Abstract
Human papillomavirus (HPV) type 16 is implicated in approximately 75% of head and neck squamous cell carcinomas (HNSCC) that arise in the oropharynx, where viral expression of the E6 and E7 oncoproteins promote cellular transformation, tumor growth, and maintenance. An important oncogenic signaling pathway activated by E6 and E7 is the PI3K pathway, a key driver of carcinogenesis. The PI3K pathway is also activated by mutation or amplification of PIK3CA in over half of HPV(+) HNSCC. In this study, we investigated the efficacy of PI3K-targeted therapies in HPV(+) HNSCC preclinical models and report that HPV(+) cell line- and patient-derived xenografts are resistant to PI3K inhibitors due to feedback signaling emanating from E6 and E7. Receptor tyrosine kinase profiling indicated that PI3K inhibition led to elevated expression of the HER3 receptor, which in turn increased the abundance of E6 and E7 to promote PI3K inhibitor resistance. Targeting HER3 with siRNA or the mAb CDX-3379 reduced E6 and E7 abundance and enhanced the efficacy of PI3K-targeted therapies. Together, these findings suggest that cross-talk between HER3 and HPV oncoproteins promotes resistance to PI3K inhibitors and that cotargeting HER3 and PI3K may be an effective therapeutic strategy in HPV(+) tumors.Significance: These findings suggest a new therapeutic combination that may improve outcomes in HPV(+) head and neck cancer patients. Cancer Res; 78(9); 2383-95. ©2018 AACR.
Collapse
Affiliation(s)
- Toni M Brand
- Department of Otolaryngology - Head and Neck Surgery, University of California San Francisco, San Francisco, California
| | - Stefan Hartmann
- Department of Otolaryngology - Head and Neck Surgery, University of California San Francisco, San Francisco, California
- Department of Oral and Maxillofacial Plastic Surgery, University Hospital Würzburg, Würzburg, Germany
| | - Neil E Bhola
- Department of Otolaryngology - Head and Neck Surgery, University of California San Francisco, San Francisco, California
| | - Hua Li
- Department of Otolaryngology - Head and Neck Surgery, University of California San Francisco, San Francisco, California
| | - Yan Zeng
- Department of Otolaryngology - Head and Neck Surgery, University of California San Francisco, San Francisco, California
| | - Rachel A O'Keefe
- Department of Otolaryngology - Head and Neck Surgery, University of California San Francisco, San Francisco, California
| | - Max V Ranall
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California
| | - Sourav Bandyopadhyay
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California
| | - Margaret Soucheray
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California
| | - Nevan J Krogan
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California
| | - Carolyn Kemp
- Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Umamaheswar Duvvuri
- Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | | | - Daniel E Johnson
- Department of Otolaryngology - Head and Neck Surgery, University of California San Francisco, San Francisco, California
| | - Michelle A Ozbun
- Department of Molecular Genetics & Microbiology, University of New Mexico School of Medicine, Albuquerque, New Mexico
| | - Julie E Bauman
- Division of Hematology/Oncology, University of Arizona Cancer Center, Tucson, Arizona
| | - Jennifer R Grandis
- Department of Otolaryngology - Head and Neck Surgery, University of California San Francisco, San Francisco, California.
| |
Collapse
|
35
|
Hendriks W, Bourgonje A, Leenders W, Pulido R. Proteinaceous Regulators and Inhibitors of Protein Tyrosine Phosphatases. Molecules 2018; 23:molecules23020395. [PMID: 29439552 PMCID: PMC6016963 DOI: 10.3390/molecules23020395] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 02/09/2018] [Accepted: 02/09/2018] [Indexed: 12/18/2022] Open
Abstract
Proper control of the phosphotyrosine content in signal transduction proteins is essential for normal cell behavior and is lost in many pathologies. Attempts to normalize aberrant tyrosine phosphorylation levels in disease states currently involve either the application of small compounds that inhibit tyrosine kinases (TKs) or the addition of growth factors or their mimetics to boost receptor-type TK activity. Therapies that target the TK enzymatic counterparts, the multi-enzyme family of protein tyrosine phosphatases (PTPs), are still lacking despite their undisputed involvement in human diseases. Efforts to pharmacologically modulate PTP activity have been frustrated by the conserved structure of the PTP catalytic core, providing a daunting problem with respect to target specificity. Over the years, however, many different protein interaction-based regulatory mechanisms that control PTP activity have been uncovered, providing alternative possibilities to control PTPs individually. Here, we review these regulatory principles, discuss existing biologics and proteinaceous compounds that affect PTP activity, and mention future opportunities to drug PTPs via these regulatory concepts.
Collapse
Affiliation(s)
- Wiljan Hendriks
- Department of Cell Biology, Radboud University Medical Center, Geert Grooteplein 26, 6525 GA Nijmegen, The Netherlands.
| | - Annika Bourgonje
- Department of Cell Biology, Radboud University Medical Center, Geert Grooteplein 26, 6525 GA Nijmegen, The Netherlands.
| | - William Leenders
- Department of Biochemistry, Radboud University Medical Center, Geert Grooteplein 26, 6525 GA Nijmegen, The Netherlands.
| | - Rafael Pulido
- Biomarkers in Cancer Unit, Biocruces Health Research Institute, 48903 Barakaldo, Spain.
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
36
|
Metastatic model of HPV+ oropharyngeal squamous cell carcinoma demonstrates heterogeneity in tumor metastasis. Oncotarget 2018; 7:24194-207. [PMID: 27013584 PMCID: PMC5029694 DOI: 10.18632/oncotarget.8254] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 03/06/2016] [Indexed: 11/25/2022] Open
Abstract
Human papillomavirus induced (HPV+) cancer incidence is rapidly rising, comprising 60–80% of oropharyngeal squamous cell carcinomas (OPSCCs); while rare, recurrent/metastatic disease accounts for nearly all related deaths. An in vivo pre-clinical model for these invasive cancers is necessary for testing new therapies. We characterize an immune competent recurrent/metastatic HPV+ murine model of OPSSC which consists of four lung metastatic (MLM) cell lines isolated from an animal with HPV+ OPSCC that failed cisplatin/radiation treatment. These individual metastatic clonal cell lines were tested to verify their origin (parental transgene expression and define their physiological properties: proliferation, metastatic potential, heterogeneity and sensitivity/resistance to cisplatin and radiation. All MLMs retain expression of parental HPV16 E6 and E7 and degrade P53 yet are heterogeneous from one another and from the parental cell line as defined by Illumina expression microarray. Consistent with this, reverse phase protein array defines differences in protein expression/activation between MLMs as well as the parental line. While in vitro growth rates of MLMs are slower than the parental line, in vivo growth of MLM clones is greatly enhanced. Moreover, in vivo resistance to standard therapies is dramatically increased in 3 of the 4 MLMs. Lymphatic and/or lung metastasis occurs 100% of the time in one MLM line. This recurrent/metastatic model of HPV+ OPSCC retains the characteristics evident in refractory human disease (heterogeneity, resistance to therapy, metastasis in lymph nodes/lungs) thus serving as an ideal translational system to test novel therapeutics. Moreover, this system may provide insights into the molecular mechanisms of metastasis.
Collapse
|
37
|
Webb Strickland S, Brimer N, Lyons C, Vande Pol SB. Human Papillomavirus E6 interaction with cellular PDZ domain proteins modulates YAP nuclear localization. Virology 2018; 516:127-138. [PMID: 29346075 DOI: 10.1016/j.virol.2018.01.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 12/19/2017] [Accepted: 01/02/2018] [Indexed: 01/28/2023]
Abstract
HPV E6 oncoproteins associate with cellular PDZ proteins. In addition to previously identified cellular PDZ proteins, we found association of the HPV16 E6 PBM with the Dystrophin Glycoprotein Complex, LRCC1, and SLC9A3R2. HPV18 E6 had additional associations when lysates from adenomatous cell lines were used including LRPPRC, RLGAPB, EIF3A, SMC2 and 3, AMOT, AMOTL1, and ARHGEF1; some of these cellular PDZ proteins are implicated in the regulation of the YAP1 transcriptional co-activator. In keratinocytes, nuclear translocation of YAP1 was promoted by the complete HPV-16 genome, or by expression of the individual E6 or E7 oncoproteins; the activity of E6 required an intact PBM at the carboxy-terminus. This work demonstrates that E6 association with cellular PDZ proteins promotes the nuclear localization of YAP1. The ability of E6 to promote the nuclear transport of YAP1 thus identifies an E6 activity that could contribute to the transformation of cells by E6.
Collapse
Affiliation(s)
- Sydney Webb Strickland
- Department of Pathology, University of Virginia, Charlottesville, VA 22901, United States
| | - Nicole Brimer
- Department of Pathology, University of Virginia, Charlottesville, VA 22901, United States
| | - Charles Lyons
- Department of Pathology, University of Virginia, Charlottesville, VA 22901, United States
| | - Scott B Vande Pol
- Department of Pathology, University of Virginia, Charlottesville, VA 22901, United States.
| |
Collapse
|
38
|
Tamarozzi ER, Giuliatti S. Understanding the Role of Intrinsic Disorder of Viral Proteins in the Oncogenicity of Different Types of HPV. Int J Mol Sci 2018; 19:ijms19010198. [PMID: 29315236 PMCID: PMC5796147 DOI: 10.3390/ijms19010198] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 01/06/2018] [Accepted: 01/07/2018] [Indexed: 12/21/2022] Open
Abstract
Intrinsic disorder is very important in the biological function of several proteins, and is directly linked to their foldability during interaction with their targets. There is a close relationship between the intrinsically disordered proteins and the process of carcinogenesis involving viral pathogens. Among these pathogens, we have highlighted the human papillomavirus (HPV) in this study. HPV is currently among the most common sexually transmitted infections, besides being the cause of several types of cancer. HPVs are divided into two groups, called high- and low-risk, based on their oncogenic potential. The high-risk HPV E6 protein has been the target of much research, in seeking treatments against HPV, due to its direct involvement in the process of cell cycle control. To understand the role of intrinsic disorder of the viral proteins in the oncogenic potential of different HPV types, the structural characteristics of intrinsically disordered regions of high and low-risk HPV E6 proteins were analyzed. In silico analyses of primary sequences, prediction of tertiary structures, and analyses of molecular dynamics allowed the observation of the behavior of such disordered regions in these proteins, thereby proving a direct relationship of structural variation with the degree of oncogenicity of HPVs. The results obtained may contribute to the development of new therapies, targeting the E6 oncoprotein, for the treatment of HPV-associated diseases.
Collapse
Affiliation(s)
- Elvira Regina Tamarozzi
- Department of Genetics, School of Medicine of Ribeirão Preto, University of São Paulo, Sao Paulo 14049-900, Brazil.
| | - Silvana Giuliatti
- Department of Genetics, School of Medicine of Ribeirão Preto, University of São Paulo, Sao Paulo 14049-900, Brazil.
| |
Collapse
|
39
|
Grayson AK, Hearnden V, Bolt R, Jebreel A, Colley HE, Murdoch C. Use of a Rho kinase inhibitor to increase human tonsil keratinocyte longevity for three-dimensional, tissue engineered tonsil epithelium equivalents. J Tissue Eng Regen Med 2017; 12:e1636-e1646. [PMID: 29048773 DOI: 10.1002/term.2590] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 09/18/2017] [Accepted: 10/09/2017] [Indexed: 12/25/2022]
Abstract
The generation of tissue-engineered epithelial models is often hampered by the limited proliferative capacity of primary epithelial cells. This study aimed to isolate normal tonsillar keratinocytes (NTK) from human tonsils, increase the lifespan of these cells using the Rho kinase inhibitor Y-27632 and to develop tissue-engineered equivalents of healthy and infected tonsil epithelium. The proliferation rate of isolated NTK and expression of c-MYC and p16INK4A were measured in the absence or presence of the inhibitor. Y-27632-treated NTK were used to generate tissue-engineered tonsil epithelium equivalents using de-epidermised dermis that were then incubated with Streptococcus pyogenes to model bacterial tonsillitis, and the expression of pro-inflammatory cytokines was measured by cytokine array and ELISA. NTK cultured in the absence of Y-27632 rapidly senesced whereas cells cultured in the presence of this inhibitor proliferated for over 30 population doublings without changing their phenotype. Y-27632-treated NTK produced a multi-layered differentiated epithelium that histologically resembled normal tonsillar surface epithelium and responded to S. pyogenes infection by increased expression of pro-inflammatory cytokines including CXCL5 and IL-6. NTK can be isolated and successfully cultured in vitro with Y-27632 leading to a markedly prolonged lifespan without any deleterious consequences to cell morphology. This functional tissue-engineered equivalent of tonsil epithelium will provide a valuable tool for studying tonsil biology and host-pathogen interactions in a more physiologically relevant manner.
Collapse
Affiliation(s)
- Amy K Grayson
- School of Clinical Dentistry, Claremont Crescent, University of Sheffield, UK
| | - Vanessa Hearnden
- Department of Materials Science and Engineering, University of Sheffield, UK
| | - Robert Bolt
- School of Clinical Dentistry, Claremont Crescent, University of Sheffield, UK
| | - Ala Jebreel
- Sheffield Teaching Hospitals NHS Foundation Trust, Royal Hallamshire Hospital, Sheffield, UK
| | - Helen E Colley
- School of Clinical Dentistry, Claremont Crescent, University of Sheffield, UK
| | - Craig Murdoch
- School of Clinical Dentistry, Claremont Crescent, University of Sheffield, UK
| |
Collapse
|
40
|
Mitotic control of human papillomavirus genome-containing cells is regulated by the function of the PDZ-binding motif of the E6 oncoprotein. Oncotarget 2017; 8:19491-19506. [PMID: 28061478 PMCID: PMC5386700 DOI: 10.18632/oncotarget.14469] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 12/18/2016] [Indexed: 01/04/2023] Open
Abstract
The function of a conserved PDS95/DLG1/ZO1 (PDZ) binding motif (E6 PBM) at the C-termini of E6 oncoproteins of high-risk human papillomavirus (HPV) types contributes to the development of HPV-associated malignancies. Here, using a primary human keratinocyte-based model of the high-risk HPV18 life cycle, we identify a novel link between the E6 PBM and mitotic stability. In cultures containing a mutant genome in which the E6 PBM was deleted there was an increase in the frequency of abnormal mitoses, including multinucleation, compared to cells harboring the wild type HPV18 genome. The loss of the E6 PBM was associated with a significant increase in the frequency of mitotic spindle defects associated with anaphase and telophase. Furthermore, cells carrying this mutant genome had increased chromosome segregation defects and they also exhibited greater levels of genomic instability, as shown by an elevated level of centromere-positive micronuclei. In wild type HPV18 genome-containing organotypic cultures, the majority of mitotic cells reside in the suprabasal layers, in keeping with the hyperplastic morphology of the structures. However, in mutant genome-containing structures a greater proportion of mitotic cells were retained in the basal layer, which were often of undefined polarity, thus correlating with their reduced thickness. We conclude that the ability of E6 to target cellular PDZ proteins plays a critical role in maintaining mitotic stability of HPV infected cells, ensuring stable episome persistence and vegetative amplification.
Collapse
|
41
|
Dunn LA, Fury MG, Sherman EJ, Ho AA, Katabi N, Haque SS, Pfister DG. Phase I study of induction chemotherapy with afatinib, ribavirin, and weekly carboplatin and paclitaxel for stage IVA/IVB human papillomavirus-associated oropharyngeal squamous cell cancer. Head Neck 2017; 40:233-241. [PMID: 28963790 DOI: 10.1002/hed.24938] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 07/12/2017] [Accepted: 07/27/2017] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND The human papillomavirus (HPV) E6 oncoprotein enhances the oncogenic potential of ErbB proteins in HPV-related malignancies. This phase I study evaluates the addition of afatinib, an ErbB family inhibitor, and ribavirin to paclitaxel and carboplatin induction chemotherapy in HPV-associated, locally advanced oropharyngeal squamous cell carcinoma (SCC). METHODS This dose escalation study included 2 doses of oral afatinib: 30 and 40 mg daily. Ribavirin dosing was weight based. Paclitaxel (80 mg/m2 ) and carboplatin (area under the curve [AUC] 1.5) were administered on days 1 and 8 of each 21-day cycle. After 3 cycles, patients were removed from protocol to receive definitive treatment. RESULTS Among 10 patients, there were no dose-limiting toxicities. Six patients (67%) had unconfirmed objective partial responses. The 2-year progression-free survival rate was 75%. CONCLUSION Afatinib, ribavirin, paclitaxel, and carboplatin induction chemotherapy is safe and well tolerated. The phase II recommended dose of afatinib is 40 mg oral daily in this combination regimen.
Collapse
Affiliation(s)
- Lara A Dunn
- Department of Medicine, Head and Neck Medical Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Matthew G Fury
- Department of Medicine, Head and Neck Medical Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Eric J Sherman
- Department of Medicine, Head and Neck Medical Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Alan A Ho
- Department of Medicine, Head and Neck Medical Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Nora Katabi
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Sofia S Haque
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - David G Pfister
- Department of Medicine, Head and Neck Medical Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
42
|
Kakavandi E, Shahbahrami R, Goudarzi H, Eslami G, Faghihloo E. Anoikis resistance and oncoviruses. J Cell Biochem 2017; 119:2484-2491. [DOI: 10.1002/jcb.26363] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 08/15/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Ehsan Kakavandi
- Department of VirologySchool of Public HealthTehran University of Medical SciencesTehranIran
- Students’ Scientific Research CenterTehran University of Medical SciencesTehranIran
| | - Ramin Shahbahrami
- Department of VirologySchool of Public HealthTehran University of Medical SciencesTehranIran
| | - Hossein Goudarzi
- Department of MicrobiologySchool of MedicineShahid Beheshti University of Medical SciencesTehranIran
| | - Gita Eslami
- Department of MicrobiologySchool of MedicineShahid Beheshti University of Medical SciencesTehranIran
| | - Ebrahim Faghihloo
- Department of MicrobiologySchool of MedicineShahid Beheshti University of Medical SciencesTehranIran
| |
Collapse
|
43
|
Hang D, Jia M, Ma H, Zhou J, Feng X, Lyu Z, Yin J, Cui H, Yin Y, Jin G, Hu Z, Shen H, Zhang K, Li N, Dai M. Independent prognostic role of human papillomavirus genotype in cervical cancer. BMC Infect Dis 2017; 17:391. [PMID: 28583086 PMCID: PMC5460478 DOI: 10.1186/s12879-017-2465-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Accepted: 05/15/2017] [Indexed: 01/08/2023] Open
Abstract
Background Although the correlation of HPV genotype with cervical precursor lesions and invasive cancer has been confirmed, the role of HPV genotype in cervical cancer prognosis is less conclusive. This study aims to systematically investigate the independent prognostic role of HPV genotype in cervical cancer. Methods A total of 306 eligible patients provided cervical cell specimens for HPV genotyping before therapy and had a median follow-up time of 54 months after diagnosis. Survival times were measured from the date of diagnosis to the date of cervical cancer-related death (overall survival, OS) and from the date of diagnosis to the date of recurrence or metastasis (disease free survival, DFS). Log-rank tests and Cox proportional hazard models were performed to evaluate the association between HPV genotype and survival times. Results A total of 12 types of high-risk HPV were detected and the leading ten types belong to two species: alpha-9 and alpha-7. HPV16 and 18 were the two most common types, with the prevalence of 60.8% and 8.8%, respectively. In the univariate analysis, HPV16-positive cases were associated with better OS (P = 0.037) and HPV16-related species alpha-9 predicted better OS and DFS (both P < 0.01). After adjusting for age, FIGO stage, and therapy, HPV16 showed a hazard ratio (HR) of 0.36 (95% CI: 0.18, 0.74; P = 0.005) for OS, and alpha-9 resulted in a HR of 0.17 (95% CI: 0.08, 0.37; P < 0.001) for OS and 0.32 (95% CI: 0.17, 0.59; P < 0.001) for DFS. Conclusions HPV genotype poses differential prognoses for cervical cancer patients. The presence of HPV16 and its related species alpha-9 indicates an improved survival. Electronic supplementary material The online version of this article (doi:10.1186/s12879-017-2465-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dong Hang
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Meiqun Jia
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Hongxia Ma
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Jing Zhou
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Xiaoshuang Feng
- Program Office for Cancer Screening in Urban China, National Cancer Centre/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Zhangyan Lyu
- Program Office for Cancer Screening in Urban China, National Cancer Centre/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jian Yin
- Program Office for Cancer Screening in Urban China, National Cancer Centre/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Hong Cui
- Program Office for Cancer Screening in Urban China, National Cancer Centre/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yin Yin
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Guangfu Jin
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Zhibin Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Hongbing Shen
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Kai Zhang
- Department of Cancer Prevention, National Cancer Centre/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Ni Li
- Program Office for Cancer Screening in Urban China, National Cancer Centre/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Min Dai
- Program Office for Cancer Screening in Urban China, National Cancer Centre/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
44
|
Yoshimatsu Y, Nakahara T, Tanaka K, Inagawa Y, Narisawa-Saito M, Yugawa T, Ohno SI, Fujita M, Nakagama H, Kiyono T. Roles of the PDZ-binding motif of HPV 16 E6 protein in oncogenic transformation of human cervical keratinocytes. Cancer Sci 2017; 108:1303-1309. [PMID: 28440909 PMCID: PMC5497797 DOI: 10.1111/cas.13264] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 04/17/2017] [Accepted: 04/19/2017] [Indexed: 01/08/2023] Open
Abstract
The high-risk human papillomavirus E6 proteins have been shown to interact with and lead to degradation of PDZ-domain-containing proteins through its carboxy-terminal motif. This PDZ-binding motif plays important roles in transformation of cultured cells and carcinogenesis of E6-transgenic mice. However, its biological effects on the natural host cells have not been elucidated. We have examined its roles in an in vitro carcinogenesis model for cervical cancer, in which E6 and E7 together with activated HRAS (HRASG12V ) can induce tumorigenic transformation of normal human cervical keratinocytes. In this model, E6Δ151 mutant, which is defective in binding to PDZ domains, almost lost tumorigenic ability, whereas E6SAT mutant, which is defective in p53 degradation showed activity close to wild-type E6. Interestingly, we found decreased expression of PAR3 in E6-expressing cells independently of E6AP, which has not been previously recognized. Therefore, we knocked down several PDZ-domain containing proteins including PAR3 in human cervical keratinocytes expressing E7, HRASG12V and E6Δ151 to examine whether depletion of these proteins can restore the tumorigenic ability. Single knockdown of SCRIB, MAGI1 or PAR3 significantly but partially restored the tumorigenic ability. The combinatorial knockdown of SCRIB and MAGI1 cooperatively restored the tumorigenic ability, and additional depletion of PAR3 further enhanced the tumorigenic ability surpassing that induced by wild-type E6. These data highlight the importance of the carboxy-terminal motif of the E6 protein and downregulation of PAR3 in tumorigenic transformation of human cervical keratinocytes.
Collapse
Affiliation(s)
- Yuki Yoshimatsu
- Division of Carcinogenesis and Cancer Prevention, National Cancer Center Research Institute, Tokyo, Japan.,Department of Pathology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Tomomi Nakahara
- Division of Carcinogenesis and Cancer Prevention, National Cancer Center Research Institute, Tokyo, Japan
| | - Katsuyuki Tanaka
- Division of Carcinogenesis and Cancer Prevention, National Cancer Center Research Institute, Tokyo, Japan
| | - Yuki Inagawa
- Division of Carcinogenesis and Cancer Prevention, National Cancer Center Research Institute, Tokyo, Japan
| | - Mako Narisawa-Saito
- Division of Carcinogenesis and Cancer Prevention, National Cancer Center Research Institute, Tokyo, Japan
| | - Takashi Yugawa
- Division of Carcinogenesis and Cancer Prevention, National Cancer Center Research Institute, Tokyo, Japan
| | - Shin-Ichi Ohno
- Division of Carcinogenesis and Cancer Prevention, National Cancer Center Research Institute, Tokyo, Japan
| | - Masatoshi Fujita
- Division of Carcinogenesis and Cancer Prevention, National Cancer Center Research Institute, Tokyo, Japan.,Department of Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Hitoshi Nakagama
- Department of Pathology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan.,National Cancer Center, Tokyo, Japan
| | - Tohru Kiyono
- Division of Carcinogenesis and Cancer Prevention, National Cancer Center Research Institute, Tokyo, Japan
| |
Collapse
|
45
|
Vichaya EG, Vermeer DW, Christian DL, Molkentine JM, Mason KA, Lee JH, Dantzer R. Neuroimmune mechanisms of behavioral alterations in a syngeneic murine model of human papilloma virus-related head and neck cancer. Psychoneuroendocrinology 2017; 79:59-66. [PMID: 28259044 PMCID: PMC5402618 DOI: 10.1016/j.psyneuen.2017.02.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 01/10/2017] [Accepted: 02/07/2017] [Indexed: 12/30/2022]
Abstract
Patients with cancer often experience a high symptom burden prior to the start of treatment. As disease- and treatment-related neurotoxicities appear to be additive, targeting disease-related symptoms may attenuate overall symptom burden for cancer patients and improve the tolerability of treatment. It has been hypothesized that disease-related symptoms are a consequence of tumor-induced inflammation. We tested this hypothesis using a syngeneic heterotopic murine model of human papilloma virus (HPV)-related head and neck cancer. This model has the advantage of being mildly aggressive and not causing cachexia or weight loss. We previously showed that this tumor leads to increased IL-6, IL-1β, and TNF-α expression in the liver and increased IL-1β expression in the brain. The current study confirmed these features and demonstrated that the tumor itself exhibits high inflammatory cytokine expression (e.g., IL-6, IL-1β, and TNF-α) compared to healthy tissue. While there is a clear relationship between cytokine levels and behavioral deficits in this model, the behavioral changes are surprisingly mild. Therefore, we sought to confirm the relationship between behavior and inflammation by amplifying the effect using a low dose of lipopolysaccharide (LPS, 0.1mg/kg). In tumor-bearing mice LPS induced deficits in nest building, tail suspension, and locomotor activity approximately 24h after LPS. However, these mice did not display an exacerbation of LPS-induced weight loss, anorexia, or anhedonia. Further, while heightened serum IL-6 was observed there was minimal priming of liver or brain cytokine expression. Next we sought to inhibit tumor-induced burrowing deficits by reducing inflammation using minocycline. Minocycline (∼50mg/kg/day in drinking water) was able to attenuate tumor-induced inflammation and burrowing deficits. These data provide evidence in favor of an inflammatory-like mechanism for the behavioral alterations associated with tumor growth in a syngeneic murine model of HPV-related head and neck cancer. However, the inflammatory state and behavioral changes induced by this tumor clearly differ from other forms of inflammation-induced sickness behavior.
Collapse
Affiliation(s)
- Elisabeth G. Vichaya
- Department of Symptom Research, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 384, Houston, TX, 77030, USA,Corresponding author: Elisabeth G. Vichaya, Department of Symptom Research, The University of Texas MD Anderson Cancer Center, 1515 Hoclomb Blvd, Unit 384, Houston, TX 77030, Phone: 832-750-1557,
| | - Daniel W. Vermeer
- Cancer Biology Research Center, Sanford Research, 2301 E. 60th St N, Sioux Falls, SD, 57104, USA
| | - Diana L. Christian
- Department of Symptom Research, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 384, Houston, TX, 77030, USA
| | - Jessica M. Molkentine
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 66, Houston, TX, 77030, USA
| | - Kathy A. Mason
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 66, Houston, TX, 77030, USA
| | - John H. Lee
- Cancer Biology Research Center, Sanford Research, 2301 E. 60th St N, Sioux Falls, SD, 57104, USA,Chan Soon Shiong Institute of Molecular Medicine, 9920 Jefferson Blvd, Culver City, CA 90230, USA
| | - Robert Dantzer
- Department of Symptom Research, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 384, Houston, TX, 77030, USA
| |
Collapse
|
46
|
Mann JE, Hoesli R, Michmerhuizen NL, Devenport SN, Ludwig ML, Vandenberg TR, Matovina C, Jawad N, Mierzwa M, Shuman AG, Spector ME, Brenner JC. Surveilling the Potential for Precision Medicine-driven PD-1/PD-L1-targeted Therapy in HNSCC. J Cancer 2017; 8:332-344. [PMID: 28261333 PMCID: PMC5332883 DOI: 10.7150/jca.17547] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 11/14/2016] [Indexed: 12/20/2022] Open
Abstract
Immunotherapy is becoming an accepted treatment modality for many patients with cancer and is now approved for use in platinum-refractory recurrent or metastatic head and neck squamous cell carcinoma (HNSCC). Despite these successes, a minority of patients with HNSCC receiving immunotherapy respond to treatment, and few undergo a complete response. Thus, there is a critical need to identify mechanisms regulating immune checkpoints in HNSCC such that one can predict who will benefit, and so novel combination strategies can be developed for non-responders. Here, we review the immunotherapy and molecular genetics literature to describe what is known about immune checkpoints in common genetic subsets of HNSCC. We highlight several highly recurrent genetic lesions that may serve as biomarkers or targets for combination immunotherapy in HNSCC.
Collapse
Affiliation(s)
- J E Mann
- Department of Otolaryngology - Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, MI.; Department of Pathology, University of Michigan Medical School, Ann Arbor, MI
| | - R Hoesli
- Department of Otolaryngology - Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, MI
| | - N L Michmerhuizen
- Department of Otolaryngology - Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, MI.; Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI
| | - S N Devenport
- Department of Otolaryngology - Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, MI.; Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI
| | - M L Ludwig
- Department of Otolaryngology - Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, MI.; Program in Cellular and Molecular Biology, University of Michigan Medical School, Ann Arbor, MI
| | - T R Vandenberg
- Department of Otolaryngology - Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, MI
| | - C Matovina
- Department of Otolaryngology - Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, MI
| | - N Jawad
- Department of Otolaryngology - Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, MI
| | - M Mierzwa
- Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, MI.; Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI
| | - A G Shuman
- Department of Otolaryngology - Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, MI.; Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI
| | - M E Spector
- Department of Otolaryngology - Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, MI.; Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI
| | - J C Brenner
- Department of Otolaryngology - Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, MI.; Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI
| |
Collapse
|
47
|
Chiu GS, Maj MA, Rizvi S, Dantzer R, Vichaya EG, Laumet G, Kavelaars A, Heijnen CJ. Pifithrin-μ Prevents Cisplatin-Induced Chemobrain by Preserving Neuronal Mitochondrial Function. Cancer Res 2016; 77:742-752. [PMID: 27879267 DOI: 10.1158/0008-5472.can-16-1817] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 10/06/2016] [Accepted: 11/04/2016] [Indexed: 01/21/2023]
Abstract
Cognitive impairment, termed chemobrain, is a common neurotoxicity associated with chemotherapy treatment, affecting an estimated 78% of patients. Prompted by the hypothesis that neuronal mitochondrial dysfunction underlies chemotherapy-induced cognitive impairment (CICI), we explored the efficacy of administering the small-molecule pifithrin (PFT)-μ, an inhibitor of mitochondrial p53 accumulation, in preventing CICI. Male C57BL/6J mice injected with cisplatin ± PFT-μ for two 5-day cycles were assessed for cognitive function using novel object/place recognition and alternation in a Y-maze. Cisplatin impaired performance in the novel object/place recognition and Y-maze tests. PFT-μ treatment prevented CICI and associated cisplatin-induced changes in coherency of myelin basic protein fibers in the cingular cortex and loss of doublecortin+ cells in the subventricular zone and hippocampal dentate gyrus. Mechanistically, cisplatin decreased spare respirator capacity of brain synaptosomes and caused abnormal mitochondrial morphology, which was counteracted by PFT-μ administration. Notably, increased mitochondrial p53 did not lead to cerebral caspase-3 activation or cytochrome-c release. Furthermore, PFT-μ administration did not impair the anticancer efficacy of cisplatin and radiotherapy in tumor-bearing mice. Our results supported the hypothesis that neuronal mitochondrial dysfunction induced by mitochondrial p53 accumulation is an underlying cause of CICI and that PFT-μ may offer a tractable therapeutic strategy to limit this common side-effect of many types of chemotherapy. Cancer Res; 77(3); 742-52. ©2016 AACR.
Collapse
Affiliation(s)
- Gabriel S Chiu
- Laboratory of Neuroimmunology, Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Magdalena A Maj
- Laboratory of Neuroimmunology, Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sahar Rizvi
- Laboratory of Neuroimmunology, Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Robert Dantzer
- Laboratory of Neuroimmunology, Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Elisabeth G Vichaya
- Laboratory of Neuroimmunology, Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Geoffroy Laumet
- Laboratory of Neuroimmunology, Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Annemieke Kavelaars
- Laboratory of Neuroimmunology, Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Cobi J Heijnen
- Laboratory of Neuroimmunology, Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
48
|
Padash Barmchi M, Gilbert M, Thomas M, Banks L, Zhang B, Auld VJ. A Drosophila Model of HPV E6-Induced Malignancy Reveals Essential Roles for Magi and the Insulin Receptor. PLoS Pathog 2016; 12:e1005789. [PMID: 27537218 PMCID: PMC4990329 DOI: 10.1371/journal.ppat.1005789] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 07/06/2016] [Indexed: 02/06/2023] Open
Abstract
Cervical cancer is one of the leading causes of cancer death in women worldwide. The causative agents of cervical cancers, high-risk human papillomaviruses (HPVs), cause cancer through the action of two oncoproteins, E6 and E7. The E6 oncoprotein cooperates with an E3 ubiquitin ligase (UBE3A) to target the p53 tumour suppressor and important polarity and junctional PDZ proteins for proteasomal degradation, activities that are believed to contribute towards malignancy. However, the causative link between degradation of PDZ proteins and E6-mediated malignancy is largely unknown. We have developed an in vivo model of HPV E6-mediated cellular transformation using the genetic model organism, Drosophila melanogaster. Co-expression of E6 and human UBE3A in wing and eye epithelia results in severe morphological abnormalities. Furthermore, E6, via its PDZ-binding motif and in cooperation with UBE3A, targets a suite of PDZ proteins that are conserved in human and Drosophila, including Magi, Dlg and Scribble. Similar to human epithelia, Drosophila Magi is a major degradation target. Magi overexpression rescues the cellular abnormalities caused by E6+UBE3A coexpression and this activity of Magi is PDZ domain-dependent. Drosophila p53 was not targeted by E6+UBE3A, and E6+UBE3A activity alone is not sufficient to induce tumorigenesis, which only occurs when E6+UBE3A are expressed in conjunction with activated/oncogenic forms of Ras or Notch. Finally, through a genetic screen we have identified the insulin receptor signaling pathway as being required for E6+UBE3A induced hyperplasia. Our results suggest a highly conserved mechanism of HPV E6 mediated cellular transformation, and establish a powerful genetic model to identify and understand the cellular mechanisms that underlie HPV E6-induced malignancy. Human papillomaviruses (HPV) are the causative agents of cervical cancer, one of the leading causes of cancer death in women worldwide. The E6 oncoprotein encoded by HPV has been implicated in the progression of primary tumors to metastatic disease and we have developed a new model in the fruit fly (Drosophila melanogaster) to study the cellular effects of E6. The E6 protein recruits an E3 ubiquitin ligase (UBE3A) to induce the degradation of a number of cellular proteins, including members of the MAGUK family of scaffolding proteins that control the structure and polarity of epithelial cells: Dlg, Scribble and Magi. Expression of E6 and human UBE3A in the wing and eye of Drosophila disrupted these tissues. Similar to human cells we found that Drosophila Magi was a major E6 degradation target and that overexpression of Magi rescued the tissue disruption. However, Drosophila p53 was not degraded by E6/UBE3A, making our fly model potentially useful for studying the p53-independent activities of the E6+UBE3A complex. When we paired E6 expression with oncogenic proteins, including activated Ras, we observed that epithelia were transformed into mesechymal-like cells that left the epithelium and spread through the body. As a test of the potential of our system, we carried out a pilot genetic screen and identified the insulin receptor as a strong modulator of the E6-mediated disruption of Drosophila tissues. Therefore, we have developed a new system and approach to help us better understand the mechanisms that underlie how HPV infection leads to cell transformation and cancer.
Collapse
Affiliation(s)
- Mojgan Padash Barmchi
- Department of Zoology, University of British Columbia, Vancouver, Canada
- Department of Biology, University of Oklahoma, Norman, Oklahoma, United States of America
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, United States of America
- * E-mail: (MPB); (BZ); (VJA)
| | - Mary Gilbert
- Department of Zoology, University of British Columbia, Vancouver, Canada
| | - Miranda Thomas
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Lawrence Banks
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Bing Zhang
- Department of Biology, University of Oklahoma, Norman, Oklahoma, United States of America
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, United States of America
- * E-mail: (MPB); (BZ); (VJA)
| | - Vanessa J. Auld
- Department of Zoology, University of British Columbia, Vancouver, Canada
- * E-mail: (MPB); (BZ); (VJA)
| |
Collapse
|
49
|
Divergent viral presentation among human tumors and adjacent normal tissues. Sci Rep 2016; 6:28294. [PMID: 27339696 PMCID: PMC4919655 DOI: 10.1038/srep28294] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 05/26/2016] [Indexed: 12/13/2022] Open
Abstract
We applied a newly developed bioinformatics system called VirusScan to investigate the viral basis of 6,813 human tumors and 559 adjacent normal samples across 23 cancer types and identified 505 virus positive samples with distinctive, organ system- and cancer type-specific distributions. We found that herpes viruses (e.g., subtypes HHV4, HHV5, and HHV6) that are highly prevalent across cancers of the digestive tract showed significantly higher abundances in tumor versus adjacent normal samples, supporting their association with these cancers. We also found three HPV16-positive samples in brain lower grade glioma (LGG). Further, recurrent HBV integration at the KMT2B locus is present in three liver tumors, but absent in their matched adjacent normal samples, indicating that viral integration induced host driver genetic alterations are required on top of viral oncogene expression for initiation and progression of liver hepatocellular carcinoma. Notably, viral integrations were found in many genes, including novel recurrent HPV integrations at PTPN13 in cervical cancer. Finally, we observed a set of HHV4 and HBV variants strongly associated with ethnic groups, likely due to viral sequence evolution under environmental influences. These findings provide important new insights into viral roles of tumor initiation and progression and potential new therapeutic targets.
Collapse
|
50
|
Bauml JM, Cohen RB, Aggarwal C. Immunotherapy for head and neck cancer: latest developments and clinical potential. Ther Adv Med Oncol 2016; 8:168-75. [PMID: 27239235 PMCID: PMC4872249 DOI: 10.1177/1758834016631529] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Head and neck squamous cell cancer (HNSCC) is a malignancy with a rapidly changing demographic profile, given the recent epidemic of human papilloma virus related cancers. Most patients present with locally advanced disease and receive combination therapeutic approaches with curative potential, albeit with significant toxicity. Up to a third of patients, however, will eventually develop recurrent or metastatic disease. The prognosis of such patients is dismal, as palliative treatment options remain limited. Immune-directed therapies offer a novel therapeutic strategy beyond cytotoxic chemotherapy and are currently being evaluated in a wide variety of malignancies. HNSCC is a particularly favorable disease for immunotherapy, as immune evasion and dysregulation have been shown to play a key role in the initiation and progression of HNSCC. This review focuses on the latest developments in immunotherapy in HNSCC, with a particular focus on checkpoint inhibitors, adoptive cellular therapies, and vaccines.
Collapse
Affiliation(s)
- Joshua M. Bauml
- Division of Hematology–Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Roger B. Cohen
- Division of Hematology–Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Charu Aggarwal
- Department of Medicine, Division of Hematology–Oncology, University of Pennsylvania, 624 South Pavilion, Perelman Center for Advanced Medicine, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA
| |
Collapse
|