1
|
Ye R, Wei Y, Li J, Zhong Y, Chen X, Li C. Plasma-derived extracellular vesicles prime alveolar macrophages for autophagy and ferroptosis in sepsis-induced acute lung injury. Mol Med 2025; 31:40. [PMID: 39901167 PMCID: PMC11792199 DOI: 10.1186/s10020-025-01111-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 01/30/2025] [Indexed: 02/05/2025] Open
Abstract
Sepsis-induced acute respiratory distress syndrome (ARDS) is a severe complication of sepsis and the leading cause of mortality. Although the role of alveolar macrophages (AMs) in stabilizing pulmonary homeostasis is well established, the effects of circulating extracellular vesicles (EVs) on AMs remain largely unknown. In this study, an investigation was conducted to map the miRNA and protein expression profiles of EVs derived from septic plasma. Notably, EV-based panels (miR-122-5p, miR-125b-5p, miR-223-3p, OLFM4, and LCN2) have been found to be associated with the severity or prognosis of sepsis, with promising AUC values. Moreover, the levels of LCN2, miR-122-5p, and miR-223-3p were identified as independent predictors of septic ARDS. The in vitro coculture results revealed that the effects of LPS-EVs from the plasma of sepsis-induced acute lung injury (ALI), which carry pro-inflammatory EVs, were partly mediated by miR-223-3p, as evidenced by the promotion of inflammation, autophagy and ferroptosis in AMs. Mechanistically, the upregulation of miR-223-3p in LPS-EVs triggers autophagy and ferroptosis in AMs by activating Hippo signaling via the targeting of MEF2C. In vivo, the inhibition of miR-223-3p effectively mitigated LPS-EV-induced inflammation and AM death in the lungs, as well as histological lesions. Overall, miR-223-3p in LPS-EVs contributes to sepsis-induced ALI by priming AMs for autophagy and ferroptosis through the MEF2C/Hippo signaling pathway. These findings suggest a novel mechanism of plasma-AM interaction in sepsis-induced ALI, offering a plausible strategy for assessing septic progression and treating lung injury.
Collapse
Affiliation(s)
- Rongzong Ye
- Department of Emergency Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Yating Wei
- Department of Emergency Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Jingwen Li
- Guangxi Medical University, Nanning, 530021, China
| | - Yu Zhong
- Department of Emergency Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Xiukai Chen
- Department of Critical Care Medicine, The First Affiliated Hospital of Xiamen University, Xiamen, 361000, China.
| | - Chaoqian Li
- Department of Emergency Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.
| |
Collapse
|
2
|
Kesheh MM, Bayat M, Kobravi S, Lotfalizadeh MH, Heydari A, Memar MY, Baghi HB, Kermanshahi AZ, Ravaei F, Taghavi SP, Zarepour F, Nahand JS, Hashemian SMR, Mirzaei H. MicroRNAs and human viral diseases: A focus on the role of microRNA-29. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167500. [PMID: 39260679 DOI: 10.1016/j.bbadis.2024.167500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 06/01/2024] [Accepted: 08/01/2024] [Indexed: 09/13/2024]
Abstract
The viral replication can impress through cellular miRNAs. Indeed, either the antiviral responses or the viral infection changes through cellular miRNAs resulting in affecting many regulatory signaling pathways. One of the microRNA families that is effective in human cancers, diseases, and viral infections is the miR-29 family. Members of miR-29 family are effective in different viral infections as their roles have appeared in regulation of immunity pathways either in innate immunity including interferon and inflammatory pathways or in adaptive immunity including activation of T-cells and antibodies production. Although miR-29a affects viral replication by suppressing antiviral responses, it can inhibit the expression of viral mRNAs via binding to their 3'UTR. In the present work, we discuss the evidence related to miR-29a and viral infection through host immunity regulation. We also review roles of other miR-29 family members by focusing on their role as biomarkers for diagnosing and targets for viral diseases management.
Collapse
Affiliation(s)
- Mina Mobini Kesheh
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mobina Bayat
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sepehr Kobravi
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Tehran Azad University, Tehran, Iran
| | | | - Azhdar Heydari
- Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran; Department of Physiology, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Yousef Memar
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Bannazadeh Baghi
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Atefeh Zamani Kermanshahi
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Ravaei
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Pouya Taghavi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Fatemeh Zarepour
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Javid Sadri Nahand
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Seyed Mohammad Reza Hashemian
- Chronic Respiratory Diseases Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
3
|
Mehta P, Swaminathan A, Yadav A, Chattopadhyay P, Shamim U, Pandey R. Integrative genomics important to understand host-pathogen interactions. Brief Funct Genomics 2024; 23:1-14. [PMID: 35909219 DOI: 10.1093/bfgp/elac021] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/30/2022] [Accepted: 07/11/2022] [Indexed: 01/21/2024] Open
Abstract
Infectious diseases are the leading cause of morbidity and mortality worldwide. Causative pathogenic microbes readily mutate their genome and lead to outbreaks, challenging the healthcare and the medical support. Understanding how certain symptoms manifest clinically is integral for therapeutic decisions and vaccination efficacy/protection. Notably, the interaction between infecting pathogens, host response and co-presence of microbes influence the trajectories of disease progression and clinical outcome. The spectrum of observed symptomatic patients (mild, moderate and severe) and the asymptomatic infections highlight the challenges and the potential for understanding the factors driving protection/susceptibility. With the increasing repertoire of high-throughput tools, such as cutting-edge multi-omics profiling and next-generation sequencing, genetic drivers of factors linked to heterogeneous disease presentations can be investigated in tandem. However, such strategies are not without limits in terms of effectively integrating host-pathogen interactions. Nonetheless, an integrative genomics method (for example, RNA sequencing data) for exploring multiple layers of complexity in host-pathogen interactions could be another way to incorporate findings from high-throughput data. We further propose that a Holo-transcriptome-based technique to capture transcriptionally active microbial units can be used to elucidate functional microbiomes. Thus, we provide holistic perspective on investigative methodologies that can harness the same genomic data to investigate multiple seemingly independent but deeply interconnected functional domains of host-pathogen interaction that modulate disease severity and clinical outcomes.
Collapse
|
4
|
Alshahrani SH, Yuliastanti T, Al-Dolaimy F, Korotkova NL, Rasulova I, Almuala AF, Alsaalamy A, Ali SHJ, Alasheqi MQ, Mustafa YF. A glimpse into let-7e roles in human disorders; friend or foe? Pathol Res Pract 2024; 253:154992. [PMID: 38103367 DOI: 10.1016/j.prp.2023.154992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/17/2023] [Accepted: 11/27/2023] [Indexed: 12/19/2023]
Abstract
MicroRNAs (miRNAs) have been linked to abnormal expression and regulation in a number of diseases, including cancer. Recent studies have concentrated on miRNA Let-7e's significance in precision medicine for cancer screening and diagnosis as well as its prognostic and therapeutic potential. Differential let-7e levels in bodily fluids have the possibility to enable early detection of cancer utilizing less-invasive techniques, reducing biopsy-related risks. Although Let-7e miRNAs have been described as tumor suppressors, it is crucial to note that there exists proof to support their oncogenic activity in vitro and in in vivo. Let-7e's significance in chemo- and radiation treatment decisions has also been demonstrated. Let-7e can also prevent the synthesis of proinflammatory cytokines in a number of degenerative disorders, including musculoskeletal and neurological conditions. For the first time, an overview of the significance of let-7e in the prevention, detection, and therapy of cancer and other conditions has been given in the current review. Additionally, we focused on the specific molecular processes that underlie the actions of let-7e, more particularly, on malignant cells.
Collapse
Affiliation(s)
| | | | | | - Nadezhda L Korotkova
- I.M. Sechenov First Moscow State Medical University, Moscow, Russian Federation; Federal State Budgetary Educational Institution of Higher Education "Privolzhsky Research Medical University" of the Ministry of Health of the Russian Federation, Nizhny Novgorod, Russian Federation
| | - Irodakhon Rasulova
- School of Humanities, Natural & Social Sciences, New Uzbekistan University, 54 Mustaqillik Ave., Tashkent 100007, Uzbekistan; Department of Public Health, Samarkand State Medical University, Amir Temur Street 18, Samarkand, Uzbekistan
| | - Abbas Firras Almuala
- College of Technical Engineering, the Islamic University, Najaf, Iraq; College of Technical Engineering, the Islamic University of Al Diwaniyah, Iraq; College of Technical Engineering, the Islamic University of Babylon, Iraq
| | - Ali Alsaalamy
- College of Technical Engineering, Imam Ja'afar Al-Sadiq University, Al-Muthanna 66002, Iraq
| | - Saad Hayif Jasim Ali
- Department of Medical Laboratory, College of Health and Medical Technololgy, Al-Ayen University, Thi-Qar, Iraq
| | | | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul 41001, Iraq
| |
Collapse
|
5
|
Connors J, Cusimano G, Mege N, Woloszczuk K, Konopka E, Bell M, Joyner D, Marcy J, Tardif V, Kutzler MA, Muir R, Haddad EK. Using the power of innate immunoprofiling to understand vaccine design, infection, and immunity. Hum Vaccin Immunother 2023; 19:2267295. [PMID: 37885158 PMCID: PMC10760375 DOI: 10.1080/21645515.2023.2267295] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/03/2023] [Indexed: 10/28/2023] Open
Abstract
In the field of immunology, a systems biology approach is crucial to understanding the immune response to infection and vaccination considering the complex interplay between genetic, epigenetic, and environmental factors. Significant progress has been made in understanding the innate immune response, including cell players and critical signaling pathways, but many questions remain unanswered, including how the innate immune response dictates host/pathogen responses and responses to vaccines. To complicate things further, it is becoming increasingly clear that the innate immune response is not a linear pathway but is formed from complex networks and interactions. To further our understanding of the crosstalk and complexities, systems-level analyses and expanded experimental technologies are now needed. In this review, we discuss the most recent immunoprofiling techniques and discuss systems approaches to studying the global innate immune landscape which will inform on the development of personalized medicine and innovative vaccine strategies.
Collapse
Affiliation(s)
- Jennifer Connors
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA
- Department of Medicine, Division of Infectious Diseases and HIV Medicine, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Gina Cusimano
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA
- Department of Medicine, Division of Infectious Diseases and HIV Medicine, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Nathan Mege
- Tower Health, Reading Hospital, West Reading, PA, USA
| | - Kyra Woloszczuk
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA
- Department of Medicine, Division of Infectious Diseases and HIV Medicine, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Emily Konopka
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA
- Department of Medicine, Division of Infectious Diseases and HIV Medicine, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Matthew Bell
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA
- Department of Medicine, Division of Infectious Diseases and HIV Medicine, Drexel University College of Medicine, Philadelphia, PA, USA
| | - David Joyner
- Department of Medicine, Division of Infectious Diseases and HIV Medicine, Drexel University College of Medicine, Philadelphia, PA, USA
- Department of Molecular and Cellular Biology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Jennifer Marcy
- Department of Molecular and Cellular Biology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Virginie Tardif
- Department of Medicine, Division of Infectious Diseases and HIV Medicine, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Michele A. Kutzler
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA
- Department of Medicine, Division of Infectious Diseases and HIV Medicine, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Roshell Muir
- Department of Medicine, Division of Infectious Diseases and HIV Medicine, Drexel University College of Medicine, Philadelphia, PA, USA
- Department of Family, Community, and Preventative Medicine, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Elias K. Haddad
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA
- Department of Medicine, Division of Infectious Diseases and HIV Medicine, Drexel University College of Medicine, Philadelphia, PA, USA
| |
Collapse
|
6
|
Yin Y, Qiu Z, Lei Y, Huang J, Sun Y, Liu H, Wu W, Wang X, Shu Y, Zheng Q, Fang S. Screening and identification of specific cluster miRNAs in N2a cells infected by H7N9 virus. Virus Genes 2023; 59:716-722. [PMID: 37395889 DOI: 10.1007/s11262-023-01996-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/10/2023] [Indexed: 07/04/2023]
Abstract
This study aims to screen and identify specific cluster miRNAs of H7N9 virus-infected N2a cells and explore the possible pathogenesis of these miRNAs. The N2a cells are infected with H7N9 and H1N1 influenza viruses, and the cells are collected at 12, 24 and 48 h to extract total RNA. To sequence miRNAs and identify different virus-specific miRNAs, high-throughput sequencing technology is used. Fifteen H7N9 virus-specific cluster miRNAs are screened, and eight of them are included in the miRBase database. These cluster-specific miRNAs regulate many signaling pathways, such as the PI3K-Akt signaling pathway, the RAS signaling pathway, the cAMP signaling pathway, actin cytoskeleton regulation and cancer-related genes. The study provides a scientific basis for the pathogenesis of H7N9 avian influenza, which is regulated by miRNAs.
Collapse
Affiliation(s)
- Yitong Yin
- Jinan University, College of Pharmacy, Guangzhou, 510632, China
| | - Zengzhao Qiu
- National Sun yat-sen University, Public Health Hospital (Shenzhen), Shenzhen, 518107, China
| | - Yuxuan Lei
- National Sun yat-sen University, Public Health Hospital (Shenzhen), Shenzhen, 518107, China
| | - Jia Huang
- Guangdong Pharmaceutical University, Public Health College, Guangzhou, 510006, China
| | - Ying Sun
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Hui Liu
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Weihua Wu
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Xin Wang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Yuelong Shu
- National Sun yat-sen University, Public Health Hospital (Shenzhen), Shenzhen, 518107, China
- Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College CN, Beijing, 102206, China
| | - Qing Zheng
- Jinan University, College of Pharmacy, Guangzhou, 510632, China.
| | - Shisong Fang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China.
| |
Collapse
|
7
|
Fang A, Yuan Y, Sui B, Wang Z, Zhang Y, Zhou M, Chen H, Fu ZF, Zhao L. Inhibition of miR-200b-3p confers broad-spectrum resistance to viral infection by targeting TBK1. mBio 2023; 14:e0086723. [PMID: 37222520 PMCID: PMC10470528 DOI: 10.1128/mbio.00867-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 04/11/2023] [Indexed: 05/25/2023] Open
Abstract
The host innate immune system's defense against viral infections depends heavily on type I interferon (IFN-I) production. Research into the mechanisms of virus-host interactions is essential for developing novel antiviral therapies. In this study, we compared the effect of the five members of the microRNA-200 (miR-200) family on IFN-I production during viral infection and found that miR-200b-3p displayed the most pronounced regulatory effect. During viral infection, we discovered that the transcriptional level of microRNA-200b-3p (miR-200b-3p) increased with the infection of influenza virus (IAV) and vesicular stomatitis virus (VSV), and miR-200b-3p production was modulated by the activation of the ERK and p38 pathways. We identified cAMP response element binding protein (CREB) as a novel transcription factor that binds to the miR-200b-3p promoter. MiR-200b-3p reduces NF-κB and IRF3-mediated IFN-I production by targeting the 3' untranslated region (3' UTR) of TBK1 mRNA. Applying miR-200b-3p inhibitor enhances IFN-I production in IAV and VSV-infected mouse models, thus inhibiting viral replication and improving mouse survival ratio. Importantly, in addition to IAV and VSV, miR-200b-3p inhibitors exhibited potent antiviral effects against multiple pathogenic viruses threatening human health worldwide. Overall, our study suggests that miR-200b-3p might be a potential therapeutic target for broad-spectrum antiviral therapy. IMPORTANCE The innate immune response mediated by type I interferon (IFN-I) is essential for controlling viral replication. MicroRNAs (miRNAs) have been found to regulate the IFN signaling pathway. In this study, we describe a novel function of miRNA-200b-3p in negatively regulating IFN-I production during viral infection. miRNA-200b-3p was upregulated by the MAPK pathway activated by IAV and VSV infection. The binding of miRNA-200b-3p to the 3' UTR of TBK1 mRNA reduced IFN-I activation mediated by IRF3 and NF-κB. Application of miR-200b-3p inhibitors exhibited potent antiviral effects against multiple RNA and DNA viruses. These results provide fresh insight into understanding the impact of miRNAs on host-virus interactions and reveal a potential therapeutic target for common antiviral intervention.
Collapse
Affiliation(s)
- An Fang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yueming Yuan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Baokuen Sui
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Zhihui Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yuan Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Ming Zhou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Zhen F. Fu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Ling Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| |
Collapse
|
8
|
Hicks SD, Zhu D, Sullivan R, Kannikeswaran N, Meert K, Chen W, Suresh S, Sethuraman U. Saliva microRNA Profile in Children with and without Severe SARS-CoV-2 Infection. Int J Mol Sci 2023; 24:8175. [PMID: 37175883 PMCID: PMC10179619 DOI: 10.3390/ijms24098175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/27/2023] [Accepted: 04/29/2023] [Indexed: 05/15/2023] Open
Abstract
Severe acute respiratory syndrome corona virus 2 (SARS-CoV-2) may impair immune modulating host microRNAs, causing severe disease. Our objectives were to determine the salivary miRNA profile in children with SARS-CoV-2 infection at presentation and compare the expression in those with and without severe outcomes. Children <18 years with SARS-CoV-2 infection evaluated at two hospitals between March 2021 and February 2022 were prospectively enrolled. Severe outcomes included respiratory failure, shock or death. Saliva microRNAs were quantified with RNA sequencing. Data on 197 infected children (severe = 45) were analyzed. Of the known human miRNAs, 1606 (60%) were measured and compared across saliva samples. There were 43 miRNAs with ≥2-fold difference between severe and non-severe cases (adjusted p-value < 0.05). The majority (31/43) were downregulated in severe cases. The largest between-group differences involved miR-4495, miR-296-5p, miR-548ao-3p and miR-1273c. These microRNAs displayed enrichment for 32 gene ontology pathways including viral processing and transforming growth factor beta and Fc-gamma receptor signaling. In conclusion, salivary miRNA levels are perturbed in children with severe COVID-19, with the majority of miRNAs being down regulated. Further studies are required to validate and determine the utility of salivary miRNAs as biomarkers of severe COVID-19.
Collapse
Affiliation(s)
- Steven D. Hicks
- Department of Pediatrics, Pennsylvania State University Medical Center, Hershey, PA 17033, USA; (S.D.H.)
| | - Dongxiao Zhu
- Department of Computer Science, Wayne State University, Detroit, MI 48201, USA;
| | - Rhea Sullivan
- Department of Pediatrics, Pennsylvania State University Medical Center, Hershey, PA 17033, USA; (S.D.H.)
| | - Nirupama Kannikeswaran
- Division of Emergency Medicine, Department of Pediatrics, Children’s Hospital of Michigan, Central Michigan University, Detroit, MI 48201, USA
| | - Kathleen Meert
- Division of Critical Care, Department of Pediatrics, Children’s Hospital of Michigan, Central Michigan University, Detroit, MI 48201, USA
| | - Wei Chen
- Population Science, Department of Oncology, School of Medicine, Wayne State University, Detroit, MI 48201, USA
| | - Srinivasan Suresh
- Department of Pediatrics, University of Pittsburgh, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Usha Sethuraman
- Division of Emergency Medicine, Department of Pediatrics, Children’s Hospital of Michigan, Central Michigan University, Detroit, MI 48201, USA
| |
Collapse
|
9
|
Micro-Players of Great Significance-Host microRNA Signature in Viral Infections in Humans and Animals. Int J Mol Sci 2022; 23:ijms231810536. [PMID: 36142450 PMCID: PMC9504570 DOI: 10.3390/ijms231810536] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/04/2022] [Accepted: 09/08/2022] [Indexed: 11/22/2022] Open
Abstract
Over time, more and more is becoming known about micro-players of great significance. This is particularly the case for microRNAs (miRNAs; miR), which have been found to participate in the regulation of many physiological and pathological processes in both humans and animals. One such process is viral infection in humans and animals, in which the host miRNAs—alone or in conjunction with the virus—interact on two levels: viruses may regulate the host’s miRNAs to evade its immune system, while the host miRNAs can play anti- or pro-viral roles. The purpose of this comprehensive review is to present the key miRNAs involved in viral infections in humans and animals. We summarize the data in the available literature, indicating that the signature miRNAs in human viral infections mainly include 12 miRNAs (i.e., miR-155, miR-223, miR-146a, miR-122, miR-125b, miR-132, miR-34a, miR -21, miR-16, miR-181 family, let-7 family, and miR-10a), while 10 miRNAs are commonly found in animals (i.e., miR-155, miR-223, miR-146a, miR-145, miR-21, miR-15a/miR-16 cluster, miR-181 family, let-7 family, and miR-122) in this context. Knowledge of which miRNAs are involved in different viral infections and the biological functions that they play can help in understanding the pathogenesis of viral diseases, facilitating the future development of therapeutic agents for both humans and animals.
Collapse
|
10
|
Ge Y, Liu K, Chi Y, Zhu X, Wu T, Zhao K, Qiao Q, Wu B, Zhu F, Cui L. Exosomal microRNA expression profiles derived from A549 human lung cells in response to influenza A/H1N1pdm09 infection. Virology 2022; 574:9-17. [PMID: 35868217 DOI: 10.1016/j.virol.2022.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/13/2022] [Accepted: 07/13/2022] [Indexed: 11/25/2022]
Abstract
Exosomes participate in intercellular communication by shuttling various small molecules from donor to recipient cells. We aimed to examine the role of exosomes and exosomal miRNAs in influenza virus infection. The results showed that influenza A/H1N1pdm09 infection could promote A549 cells to secrete exosomes, while blocking the generation of exosomes reduced viral RNA production. A total of 97 exosomal miRNAs with significantly altered expression were identified during influenza infection. Of 12 candidate miRNAs chosen for further validation, ten were confirmed by qRT-PCR. Among 5978 predicted target genes,we found 37 interferon pathway-related genes to be the potential targets of 29 differentially expressed miRNAs. Many target genes were annotated to various KEGG signaling pathways, some of which played important roles in influenza infection. These data will help to further understand the mechanism of influenza virus-host interactions, which is important for the development of preventative and therapeutic strategies against influenza virus.
Collapse
Affiliation(s)
- Yiyue Ge
- Institute of Pathogenic Microbiology, NHC Key Laboratories of Enteric Pathogenic Microbiology, Jiangsu Province Engineering Research Center of Health Emergency, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, 210009, China.
| | - Kang Liu
- College of Pharmacy, Nankai University, Tianjin, 300071, China
| | - Ying Chi
- Institute of Pathogenic Microbiology, NHC Key Laboratories of Enteric Pathogenic Microbiology, Jiangsu Province Engineering Research Center of Health Emergency, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, 210009, China
| | - Xiaojuan Zhu
- Institute of Pathogenic Microbiology, NHC Key Laboratories of Enteric Pathogenic Microbiology, Jiangsu Province Engineering Research Center of Health Emergency, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, 210009, China
| | - Tao Wu
- Institute of Pathogenic Microbiology, NHC Key Laboratories of Enteric Pathogenic Microbiology, Jiangsu Province Engineering Research Center of Health Emergency, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, 210009, China
| | - Kangchen Zhao
- Institute of Pathogenic Microbiology, NHC Key Laboratories of Enteric Pathogenic Microbiology, Jiangsu Province Engineering Research Center of Health Emergency, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, 210009, China
| | - Qiao Qiao
- Institute of Pathogenic Microbiology, NHC Key Laboratories of Enteric Pathogenic Microbiology, Jiangsu Province Engineering Research Center of Health Emergency, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, 210009, China
| | - Bin Wu
- Institute of Pathogenic Microbiology, NHC Key Laboratories of Enteric Pathogenic Microbiology, Jiangsu Province Engineering Research Center of Health Emergency, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, 210009, China
| | - Fengcai Zhu
- Institute of Pathogenic Microbiology, NHC Key Laboratories of Enteric Pathogenic Microbiology, Jiangsu Province Engineering Research Center of Health Emergency, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, 210009, China
| | - Lunbiao Cui
- Institute of Pathogenic Microbiology, NHC Key Laboratories of Enteric Pathogenic Microbiology, Jiangsu Province Engineering Research Center of Health Emergency, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, 210009, China.
| |
Collapse
|
11
|
Wu W, Wang C, Xia C, Liu S, Mei Q. MicroRNA let-7 Suppresses Influenza A Virus Infection by Targeting RPS16 and Enhancing Type I Interferon Response. Front Cell Infect Microbiol 2022; 12:904775. [PMID: 35873150 PMCID: PMC9301362 DOI: 10.3389/fcimb.2022.904775] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 06/13/2022] [Indexed: 11/23/2022] Open
Abstract
Given the frequent emergence of drug-resistant influenza virus strains and new highly pathogenic influenza virus strains, there is an urgent need to identify new antiviral drugs and targets. We found that influenza A virus (IAV) infection caused a significant decrease of microRNA let-7 expression in host cells; that overexpression of let-7 increased interferon expression and effectively inhibit IAV infection; and that let-7 targets the 3’-untranslated region (UTR) of the ribosomal protein 16 (RPS16) gene, decreasing its expression. Knocking down the expression of RPS16 increased the expression of type I interferon and inhibited viral replication. The present study uncovered the regulatory effect of let-7b and let-7f on influenza A infection, which is a potential biomarker of IAV infection. In addition, let-7 may be a promising therapeutic agent against influenza A.
Collapse
Affiliation(s)
- Wenjiao Wu
- Department of Pharmacy, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Chao Wang
- Department of Pharmacy, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Changliang Xia
- Department of Pharmacy, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Shuwen Liu
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
- *Correspondence: Qinghua Mei, ; Shuwen Liu,
| | - Qinghua Mei
- Department of Pharmacy, Guangdong Second Provincial General Hospital, Guangzhou, China
- *Correspondence: Qinghua Mei, ; Shuwen Liu,
| |
Collapse
|
12
|
Genome-wide identification of chicken bursae of Fabricius miRNAs in response to very virulent infectious bursal disease virus. Arch Virol 2022; 167:1855-1864. [PMID: 35752686 DOI: 10.1007/s00705-022-05496-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 04/19/2022] [Indexed: 11/02/2022]
Abstract
Infectious bursal disease virus (IBDV) can cause a highly contagious immunosuppressive disease in young chickens. MicroRNAs (miRNAs) are crucial regulators of gene expression and are involved in the pathogenesis of IBDV infection. To investigate the roles of miRNA in chicken bursae of Fabricius in response to very virulent IBDV (vvIBDV) infection, RNA sequencing was performed to compare the small RNA libraries from uninfected and vvIBDV-infected group which was infected for 3 days. A total of 77 differentially expressed (DE) miRNAs were identified in BF, of which 42 DE miRNAs were upregulated and 35 DE miRNAs were downregulated. A gene ontology analysis showed that genes associated with cellular processes, cells, and binding were enriched. Moreover, pathway analyses suggested that apoptosis, T cell receptor signaling pathways, and chemokine signaling pathways may be activated following vvIBDV infection. In addition, we predicted the target genes of DE miRNAs and constructed an miRNA-mRNA regulatory network. In total, 189 pairs of miRNA-target genes were identified, comprising 67 DE miRNAs and 73 mRNAs. In this network, gga-miR-1684b-3p was identified with the highest fold change, as well as gga-miR-1788-3p and gga-miR-3530-5p showed a high degree of change. The above three miRNAs were considered to play vital roles in vvIBDV-host interactions. This study was the first to perform a comprehensive analysis of DE miRNAs in the bursa of Fabricius in response to vvIBDV infection, and it provided new insights into molecular mechanisms underlying vvIBDV infection and pathogenesis.
Collapse
|
13
|
Tian Y, Wang TS, Bu H, Shao G, Zhang W, Zhang L. Role of Exosomal miR-223 in Chronic Skeletal Muscle Inflammation. Orthop Surg 2022; 14:644-651. [PMID: 35293669 PMCID: PMC9002075 DOI: 10.1111/os.13232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 12/30/2021] [Accepted: 01/19/2022] [Indexed: 12/14/2022] Open
Abstract
As skeletal muscle is one of the largest organs in the body, its damage can directly reflect a decline in somatic function, thus, further affecting daily life and health. Inflammation is a prerequisite for the repair of injured skeletal muscles. Chronic inflammation induced by inadequate repair in skeletal muscle aggravates tissue injury. Exosomes regulate inflammatory responses to facilitate the repair of skeletal muscle injury. Moreover, exosomal miR‐223 with high specificity is the most abundant miRNA in peripheral blood and regarded as biomarkers for inflammation post skeletal muscle injury, which warrants further investigation. Available studies have demonstrated that exosomal miR‐223 negatively correlates with TNF‐α levels in serum and regulates the canonical inflammatory NF‐κB signaling pathway. miR‐223 is a negative feedback regulator with great potential for adjusting inflammatory imbalance and promoting skeletal muscle repair. The research on the regulation of negative feedback factors in the inflammatory signaling pathway is essential in biology and medicine. Therefore, this review mainly elaborates the formation, heterogeneity and markers of exosomes and points out exosomal miR‐223 as a beneficial role in chronic skeletal muscle inflammation and can be expected to be a potential therapeutic target for skeletal muscle damage.
Collapse
Affiliation(s)
- Yuan Tian
- Department of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China.,Department of Acupuncture-Moxibustion and Tuina, The Second Affiliated Hospital of Baotou Medical College, Baotou, China
| | - Tie-Shan Wang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - He Bu
- Department of Acupuncture-Moxibustion and Tuina, The Second Affiliated Hospital of Baotou Medical College, Baotou, China
| | - Guo Shao
- Center for Translational Medicine and Department of Laboratory Medicine, the Third People's Hospital of Longgang District, Shenzhen, China
| | - Wei Zhang
- Department of Pathology, the First Affiliated Hospital of Baotou Medical College, Baotou, Inner Mongolia, China
| | - Li Zhang
- Department of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
14
|
Abstract
Severe acute respiratory syndrome coronavirus (SARS-CoV) and the closely related SARS-CoV-2 are emergent highly pathogenic human respiratory viruses causing acute lethal disease associated with lung damage and dysregulated inflammatory responses. SARS-CoV envelope protein (E) is a virulence factor involved in the activation of various inflammatory pathways. Here, we study the contribution of host miRNAs to the virulence mediated by E protein. Small RNAseq analysis of infected mouse lungs identified miRNA-223 as a potential regulator of pulmonary inflammation, since it was significantly increased in SARS-CoV-WT virulent infection compared to the attenuated SARS-CoV-ΔE infection. In vivo inhibition of miRNA-223-3p increased mRNA levels of pro-inflammatory cytokines and NLRP3 inflammasome, suggesting that during lung infection, miRNA-223 might contribute to restrict an excessive inflammatory response. Interestingly, miRNA-223-3p inhibition also increased the levels of the CFTR transporter, which is involved in edema resolution and was significantly downregulated in the lungs of mice infected with the virulent SARS-CoV-WT virus. At the histopathological level, a decrease in the pulmonary edema was observed when miR-223-3p was inhibited, suggesting that miRNA-223-3p was involved in the regulation of the SARS-CoV-induced inflammatory pathology. These results indicate that miRNA-223 participates in the regulation of E protein-mediated inflammatory response during SARS-CoV infection by targeting different host mRNAs involved in the pulmonary inflammation, and identify miRNA-223 as a potential therapeutic target in SARS-CoV infection.
Collapse
|
15
|
Letafati A, Najafi S, Mottahedi M, Karimzadeh M, Shahini A, Garousi S, Abbasi-Kolli M, Sadri Nahand J, Tamehri Zadeh SS, Hamblin MR, Rahimian N, Taghizadieh M, Mirzaei H. MicroRNA let-7 and viral infections: focus on mechanisms of action. Cell Mol Biol Lett 2022; 27:14. [PMID: 35164678 PMCID: PMC8853298 DOI: 10.1186/s11658-022-00317-9] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/26/2022] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are fundamental post-transcriptional modulators of several critical cellular processes, a number of which are involved in host defense mechanisms. In particular, miRNA let-7 functions as an essential regulator of the function and differentiation of both innate and adaptive immune cells. Let-7 is involved in several human diseases, including cancer and viral infections. Several viral infections have found ways to dysregulate the expression of miRNAs. Extracellular vesicles (EV) are membrane-bound lipid structures released from many types of human cells that can transport proteins, lipids, mRNAs, and miRNAs, including let-7. After their release, EVs are taken up by the recipient cells and their contents released into the cytoplasm. Let-7-loaded EVs have been suggested to affect cellular pathways and biological targets in the recipient cells, and can modulate viral replication, the host antiviral response, and the action of cancer-related viruses. In the present review, we summarize the available knowledge concerning the expression of let-7 family members, functions, target genes, and mechanistic involvement in viral pathogenesis and host defense. This may provide insight into the development of new therapeutic strategies to manage viral infections.
Collapse
Affiliation(s)
- Arash Letafati
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Sajad Najafi
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehran Mottahedi
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Karimzadeh
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Shahini
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Setareh Garousi
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Abbasi-Kolli
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Javid Sadri Nahand
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028 South Africa
| | - Neda Rahimian
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Department of Internal Medicine, School of Medicine, Firoozgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Taghizadieh
- Department of Pathology, School of Medicine, Center for Women’s Health Research Zahra, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
16
|
Liao Y, Guo S, Liu G, Qiu Z, Wang J, Yang D, Tian X, Qiao Z, Ma Z, Liu Z. Host Non-Coding RNA Regulates Influenza A Virus Replication. Viruses 2021; 14:v14010051. [PMID: 35062254 PMCID: PMC8779696 DOI: 10.3390/v14010051] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/21/2021] [Accepted: 12/21/2021] [Indexed: 12/12/2022] Open
Abstract
Outbreaks of influenza, caused by the influenza A virus (IAV), occur almost every year in various regions worldwide, seriously endangering human health. Studies have shown that host non-coding RNA is an important regulator of host-virus interactions in the process of IAV infection. In this paper, we comprehensively analyzed the research progress on host non-coding RNAs with regard to the regulation of IAV replication. According to the regulation mode of host non-coding RNAs, the signal pathways involved, and the specific target genes, we found that a large number of host non-coding RNAs directly targeted the PB1 and PB2 proteins of IAV. Nonstructural protein 1 and other key genes regulate the replication of IAV and indirectly participate in the regulation of the retinoic acid-induced gene I-like receptor signaling pathway, toll-like receptor signaling pathway, Janus kinase signal transducer and activator of transcription signaling pathway, and other major intracellular viral response signaling pathways to regulate the replication of IAV. Based on the above findings, we mapped the regulatory network of host non-coding RNAs in the innate immune response to the influenza virus. These findings will provide a more comprehensive understanding of the function and mechanism of host non-coding RNAs in the cellular anti-virus response as well as clues to the mechanism of cell-virus interactions and the discovery of antiviral drug targets.
Collapse
Affiliation(s)
- Yuejiao Liao
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China; (Y.L.); (S.G.); (G.L.); (Z.Q.); (J.W.); (D.Y.); (Z.Q.); (Z.M.)
- Life Science and Engineering College, Northwest Minzu University, Lanzhou 730030, China;
| | - Shouqing Guo
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China; (Y.L.); (S.G.); (G.L.); (Z.Q.); (J.W.); (D.Y.); (Z.Q.); (Z.M.)
- Life Science and Engineering College, Northwest Minzu University, Lanzhou 730030, China;
| | - Geng Liu
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China; (Y.L.); (S.G.); (G.L.); (Z.Q.); (J.W.); (D.Y.); (Z.Q.); (Z.M.)
- Life Science and Engineering College, Northwest Minzu University, Lanzhou 730030, China;
| | - Zhenyu Qiu
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China; (Y.L.); (S.G.); (G.L.); (Z.Q.); (J.W.); (D.Y.); (Z.Q.); (Z.M.)
- Life Science and Engineering College, Northwest Minzu University, Lanzhou 730030, China;
| | - Jiamin Wang
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China; (Y.L.); (S.G.); (G.L.); (Z.Q.); (J.W.); (D.Y.); (Z.Q.); (Z.M.)
- Key Laboratory of Biotechnology & Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
| | - Di Yang
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China; (Y.L.); (S.G.); (G.L.); (Z.Q.); (J.W.); (D.Y.); (Z.Q.); (Z.M.)
- Key Laboratory of Biotechnology & Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
| | - Xiaojing Tian
- Life Science and Engineering College, Northwest Minzu University, Lanzhou 730030, China;
- Key Laboratory of Biotechnology & Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
| | - Ziling Qiao
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China; (Y.L.); (S.G.); (G.L.); (Z.Q.); (J.W.); (D.Y.); (Z.Q.); (Z.M.)
- Key Laboratory of Biotechnology & Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
| | - Zhongren Ma
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China; (Y.L.); (S.G.); (G.L.); (Z.Q.); (J.W.); (D.Y.); (Z.Q.); (Z.M.)
- Key Laboratory of Biotechnology & Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
| | - Zhenbin Liu
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China; (Y.L.); (S.G.); (G.L.); (Z.Q.); (J.W.); (D.Y.); (Z.Q.); (Z.M.)
- Key Laboratory of Biotechnology & Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
- Correspondence:
| |
Collapse
|
17
|
Liu Z, Yan J, Tong L, Liu S, Zhang Y. The role of exosomes from BALF in lung disease. J Cell Physiol 2021; 237:161-168. [PMID: 34388259 PMCID: PMC9292261 DOI: 10.1002/jcp.30553] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 07/06/2021] [Accepted: 07/30/2021] [Indexed: 01/03/2023]
Abstract
Exosomes are released from a variety of immune cells and nonimmune cells, the phospholipid vesicle bilayer membrane structure actively secreted into tissues. Recently, exosomes were demonstrated to be effectively delivered proteins, cholesterol, lipids, and amounts of DNA, mRNA, and noncoding RNAs to a target cell or tissue from a host cell. These can be detected in blood, urine, exhaled breath condensates, bronchoalveolar lavage fluid (BALF), ascites, and cerebrospinal fluid. BALF is a clinical examination method for obtaining alveolar cells and biochemical components, reflecting changes in the lungs, so it is also called liquid biopsy. Exosomes from BALF become a new method for intercellular communication and well‐documented in various pulmonary diseases. In chronic obstructive pulmonary disease (COPD), BALF exosomes can predict the degree of COPD damage and serve as an effective monitoring indicator for airflow limitation and airway remodeling. It also mediates antigen presentation in the airways to the adaptive immune system as well as costimulatory effects. Furthermore, BALF exosomes from acute lung injury and infective diseases are closely related to various infections and lack of oxygen status. BALF exosomes play an important role in the diagnosis and prognosis of lung cancer. The effect of immunomodulatory role for BALF exosomes in adaptive and innate immune responses has been studied in sarcoidosis. The intercellular communication in the microenvironment of BALF exosomes in pulmonary fibrosis and lung remodeling have been studied. In this review, we summarize the novel findings of exosomes in BALF, executed function by protein, miRNA, DNA cytokine, and so on in several pulmonary diseases.
Collapse
Affiliation(s)
- Ziyu Liu
- Department of Pediatrics, The First Hospital of Jilin University, Jilin University, Changchun, Jilin, China.,School of Life Science, Jilin University, Changchun, Jilin, China
| | - Jiaqing Yan
- Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| | - Lingling Tong
- Department of Pathology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin, China
| | - Shouyue Liu
- Department of Neurosurgery, Second Hospital, Jilin University, Changchun, China
| | - Ying Zhang
- Department of Pediatrics, The First Hospital of Jilin University, Jilin University, Changchun, Jilin, China
| |
Collapse
|
18
|
Narożna M, Rubiś B. Anti-SARS-CoV-2 Strategies and the Potential Role of miRNA in the Assessment of COVID-19 Morbidity, Recurrence, and Therapy. Int J Mol Sci 2021; 22:8663. [PMID: 34445368 PMCID: PMC8395427 DOI: 10.3390/ijms22168663] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/07/2021] [Accepted: 08/08/2021] [Indexed: 02/06/2023] Open
Abstract
Recently, we have experienced a serious pandemic. Despite significant technological advances in molecular technologies, it is very challenging to slow down the infection spread. It appeared that due to globalization, SARS-CoV-2 spread easily and adapted to new environments or geographical or weather zones. Additionally, new variants are emerging that show different infection potential and clinical outcomes. On the other hand, we have some experience with other pandemics and some solutions in virus elimination that could be adapted. This is of high importance since, as the latest reports demonstrate, vaccine technology might not follow the new, mutated virus outbreaks. Thus, identification of novel strategies and markers or diagnostic methods is highly necessary. For this reason, we present some of the latest views on SARS-CoV-2/COVID-19 therapeutic strategies and raise a solution based on miRNA. We believe that in the face of the rapidly increasing global situation and based on analogical studies of other viruses, the possibility of using the biological potential of miRNA technology is very promising. It could be used as a promising diagnostic and prognostic factor, as well as a therapeutic target and tool.
Collapse
Affiliation(s)
- Maria Narożna
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, 4 Święcickiego St., 60-781 Poznan, Poland;
| | - Błażej Rubiś
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, 49 Przybyszewskiego St., 60-355 Poznan, Poland
| |
Collapse
|
19
|
Non-Coding RNAs and Reactive Oxygen Species–Symmetric Players of the Pathogenesis Associated with Bacterial and Viral Infections. Symmetry (Basel) 2021. [DOI: 10.3390/sym13071307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Infections can be triggered by a wide range of pathogens. However, there are few strains of bacteria that cause illness, but some are quite life-threatening. Likewise, viral infections are responsible for many human diseases, usually characterized by high contagiousness. Hence, as bacterial and viral infections can both cause similar symptoms, it can be difficult to determine the exact cause of a specific infection, and this limitation is critical. However, recent scientific advances have geared us up with the proper tools required for better diagnoses. Recent discoveries have confirmed the involvement of non-coding RNAs (ncRNAs) in regulating the pathogenesis of certain bacterial or viral infections. Moreover, the presence of reactive oxygen species (ROS) is also known as a common infection trait that can be used to achieve a more complete description of such pathogen-driven conditions. Thus, this opens further research opportunities, allowing scientists to explore infection-associated genetic patterns and develop better diagnosis and treatment methods. Therefore, the aim of this review is to summarize the current knowledge of the implication of ncRNAs and ROS in bacterial and viral infections, with great emphasis on their symmetry but, also, on their main differences.
Collapse
|
20
|
Rizkita LD, Astuti I. The potential of miRNA-based therapeutics in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection: A review. J Pharm Anal 2021; 11:265-271. [PMID: 33782640 PMCID: PMC7989072 DOI: 10.1016/j.jpha.2021.03.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 03/12/2021] [Accepted: 03/16/2021] [Indexed: 12/12/2022] Open
Abstract
Since the World Health Organization (WHO) declared COVID-19, the disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), as a pandemic in March 2020, and more than 117 million people worldwide have been confirmed to have been infected. Scientists, medical professionals, and other stakeholders are racing against time to find and develop effective medicines for COVID-19. However, no drug with high efficacy to treat SARS-CoV-2 infection has been approved. With the increasing popularity of gene therapy, scientists have explored the utilization of small RNAs such as microRNAs (miRNAs) as therapeutics. miRNAs are non-coding RNAs with high affinity for the 3'-UTRs of targeted messenger RNAs (mRNAs). Interactions between host cells and viral genomes may induce the upregulation or downregulation of various miRNAs. Therefore, understanding the expression patterns of these miRNAs and their functions will provide insights into potential miRNA-based therapies. This review systematically summarizes the potential targets of miRNA-based therapies for SARS-CoV-2 infection and examines the viability of possible transfection methods.
Collapse
Affiliation(s)
- Leonny Dwi Rizkita
- Department of Pharmacology and Therapy, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| | - Indwiani Astuti
- Department of Pharmacology and Therapy, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| |
Collapse
|
21
|
Down-regulation of miR-155 inhibits inflammatory response in human pulmonary microvascular endothelial cells infected with influenza A virus by targeting sphingosine-1-phosphate receptor 1. Chin Med J (Engl) 2021; 133:2429-2436. [PMID: 32889908 PMCID: PMC7575171 DOI: 10.1097/cm9.0000000000001036] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background: Endothelial cells play a key role in the cytokine storm caused by influenza A virus. MicroRNA-155 (miR-155) is an important regulator in inflammation. Its role in the inflammatory response to influenza A infection, however, has yet to be elucidated. In this study, we explored the role as well as the underlying mechanism of miR-155 in the cytokine production in influenza A-infected endothelial cells. Methods: Human pulmonary microvascular endothelial cells (HPMECs) were infected with the influenza A virus strain H1N1. The efficiency of H1N1 infection was confirmed by immunofluorescence. The expression levels of proinflammatory cytokines and miR-155 were determined using real-time polymerase chain reaction. A dual-luciferase reporter assay characterized the interaction between miR-155 and sphingosine-1-phosphate receptor 1 (S1PR1). Changes in the target protein levels were determined using Western blot analysis. Results: MiR-155 was elevated in response to the H1N1 infection in HPMECs (24 h post-infection vs. 0 h post-infection, 3.875 ± 0.062 vs. 1.043 ± 0.013, P = 0.001). Over-expression of miR-155 enhanced inflammatory cytokine production (miR-155 mimic vs. negative control, all P < 0.05 in regard of cytokine levels) and activation of nuclear factor kappa B in infected HPMECs (miR-155 mimic vs. negative control, P = 0.004), and down-regulation of miR-155 had the opposite effect. In addition, S1PR1 was a direct target of miR-155 in the HPMECs. Inhibition of miR-155 enhanced the expression of the S1PR1 protein. Down-regulation of S1PR1 decreased the inhibitory effect of the miR-155 blockade on H1N1-induced cytokine production and nuclear factor kappa B activation in HPMECs. Conclusion: MiR-155 maybe modulate influenza A-induced inflammatory response by targeting S1PR1.
Collapse
|
22
|
Bamunuarachchi G, Pushparaj S, Liu L. Interplay between host non-coding RNAs and influenza viruses. RNA Biol 2021; 18:767-784. [PMID: 33404285 PMCID: PMC8078518 DOI: 10.1080/15476286.2021.1872170] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/28/2020] [Accepted: 01/01/2021] [Indexed: 01/20/2023] Open
Abstract
Influenza virus infection through seasonal epidemics and occasional pandemics has been a major public health concern for decades. Incomplete protection from vaccination and increased antiviral resistance due to frequent mutations of influenza viruses have led to a continuous need for new therapeutic options. The functional significance of host protein and influenza virus interactions has been established, but relatively less is known about the interaction of host noncoding RNAs, including microRNAs and long noncoding RNAs, with influenza viruses. In this review, we summarize host noncoding RNA profiles during influenza virus infection and the regulation of influenza virus infection by host noncoding RNAs. Influenza viral non-coding RNAs are briefly discussed. Increased understanding of the molecular regulation of influenza viral replication will be beneficial in identifying potential therapeutic targets against the influenza virus.
Collapse
Affiliation(s)
- Gayan Bamunuarachchi
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma, USA
- Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, USA
- Department of Physiological Sciences, Oklahoma State University, Stillwater, USA
| | - Samuel Pushparaj
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma, USA
- Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, USA
- Department of Physiological Sciences, Oklahoma State University, Stillwater, USA
| | - Lin Liu
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma, USA
- Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, USA
| |
Collapse
|
23
|
Wang Y, Zhang X, Bi K, Diao H. Critical role of microRNAs in host and influenza A (H1N1) virus interactions. Life Sci 2021; 277:119484. [PMID: 33862119 DOI: 10.1016/j.lfs.2021.119484] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/27/2021] [Accepted: 04/04/2021] [Indexed: 11/29/2022]
Abstract
As a type of non-coding RNA, microRNAs are considered to be a new regulator in viral infections. Influenza A (H1N1) virus infection is a serious threat to human health. There is growing evidence supporting that microRNAs play important roles in various cellular infection stages and host antiviral response during H1N1 infection. Some microRNAs defend against H1N1 invasion, while others may promote viral replication. MicroRNAs are implicated in the host-viral interactions and serve versatile functions in it. In this review, we focus on the innate immune response and virus replication regulated by microRNAs during H1N1 infection. MicroRNAs can influence H1N1 virus replication by directly binding to viral compositions and through host cellular pathways. Moreover, microRNAs are involved in multiple antiviral response, including production of interferons (IFNs), retinoic acid-inducible gene I (RIG-I) signaling pathway, immune cells development and secretion, activation of nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB). Furthermore, these regulatory effects of microRNAs suggest its potential clinical significance. In addition, another non-coding RNA, lncRNA, are also mentioned in the review, which can regulate innate immune response and influence virus replication during H1N1 infection as well.
Collapse
Affiliation(s)
- Yuchong Wang
- State Key Laboratory for Diagnosis & Treatment of Infectious Diseases, National Clinical Research Center for Infectious Disease, Collaborative Innovation Center for Diagnosis & Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Xujun Zhang
- State Key Laboratory for Diagnosis & Treatment of Infectious Diseases, National Clinical Research Center for Infectious Disease, Collaborative Innovation Center for Diagnosis & Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Kefan Bi
- State Key Laboratory for Diagnosis & Treatment of Infectious Diseases, National Clinical Research Center for Infectious Disease, Collaborative Innovation Center for Diagnosis & Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Hongyan Diao
- State Key Laboratory for Diagnosis & Treatment of Infectious Diseases, National Clinical Research Center for Infectious Disease, Collaborative Innovation Center for Diagnosis & Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China.
| |
Collapse
|
24
|
Abstract
Viral infections lead to the death of more than a million people each year around the world, both directly and indirectly. Viruses interfere with many cell functions, particularly critical pathways for cell death, by affecting various intracellular mediators. MicroRNAs (miRNAs) are a major example of these mediators because they are involved in many (if not most) cellular mechanisms. Virus-regulated miRNAs have been implicated in three cell death pathways, namely, apoptosis, autophagy, and anoikis. Several molecules (e.g., BECN1 and B cell lymphoma 2 [BCL2] family members) are involved in both apoptosis and autophagy, while activation of anoikis leads to cell death similar to apoptosis. These mechanistic similarities suggest that common regulators, including some miRNAs (e.g., miR-21 and miR-192), are involved in different cell death pathways. Because the balance between cell proliferation and cell death is pivotal to the homeostasis of the human body, miRNAs that regulate cell death pathways have drawn much attention from researchers. miR-21 is regulated by several viruses and can affect both apoptosis and anoikis via modulating various targets, such as PDCD4, PTEN, interleukin (IL)-12, Maspin, and Fas-L. miR-34 can be downregulated by viral infection and has different effects on apoptosis, depending on the type of virus and/or host cell. The present review summarizes the existing knowledge on virus-regulated miRNAs involved in the modulation of cell death pathways. Understanding the mechanisms for virus-mediated regulation of cell death pathways could provide valuable information to improve the diagnosis and treatment of many viral diseases.
Collapse
|
25
|
Desjarlais M, Wirth M, Lahaie I, Ruknudin P, Hardy P, Rivard A, Chemtob S. Nutraceutical Targeting of Inflammation-Modulating microRNAs in Severe Forms of COVID-19: A Novel Approach to Prevent the Cytokine Storm. Front Pharmacol 2020; 11:602999. [PMID: 33362557 PMCID: PMC7759543 DOI: 10.3389/fphar.2020.602999] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 11/17/2020] [Indexed: 12/13/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has become the number one health problem worldwide. As of August 2020, it has affected more than 18 million humans and caused over 700,000 deaths worldwide. COVID-19 is an infectious disease that can lead to severe acute respiratory syndrome. Under certain circumstances, the viral infection leads to excessive and uncontrolled inflammatory response, which is associated with the massive release of inflammatory cytokines in pulmonary alveolar structures. This phenomenon has been referred to as the “cytokine storm,” and it is closely linked to lung injury, acute respiratory syndrome and mortality. Unfortunately, there is currently no vaccine available to prevent the infection, and no effective treatment is available to reduce the mortality associated with the severe form of the disease. The cytokine storm associate with COVID-19 shows similarities with those observed in other pathologies such as sepsis, acute respiratory distress syndrome, acute lung injury and other viral infection including severe cases of influenza. However, the specific mechanisms that cause and modulate the cytokine storm in the different conditions remain to be determined. micro-RNAs are important regulators of gene expression, including key inflammatory cytokines involved in the massive recruitment of immune cells to the lungs such as IL1β, IL6, and TNFα. In recent years, it has been shown that nutraceutical agents can modulate the expression of miRs involved in the regulation of cytokines in various inflammatory diseases. Here we review the potential role of inflammatory-regulating-miRs in the cytokine storm associated with COVID-19, and propose that nutraceutical agents may represent a supportive therapeutic approach to modulate dysregulated miRs in this condition, providing benefits in severe respiratory diseases.
Collapse
Affiliation(s)
- Michel Desjarlais
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Center, Université de Montréal, Montréal, QC, Canada.,Departments of Pediatrics, Ophthalmology and Pharmacology, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC, Canada
| | - Maëlle Wirth
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Center, Université de Montréal, Montréal, QC, Canada.,Departments of Pediatrics, Ophthalmology and Pharmacology, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC, Canada
| | - Isabelle Lahaie
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Center, Université de Montréal, Montréal, QC, Canada
| | - Pakiza Ruknudin
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Center, Université de Montréal, Montréal, QC, Canada
| | - Pierre Hardy
- Departments of Pediatrics, Ophthalmology and Pharmacology, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC, Canada
| | - Alain Rivard
- Department of Medicine, Centre Hospitalier de l'Université de Montréal (CHUM) Research Center, Montréal, QC, Canada
| | - Sylvain Chemtob
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Center, Université de Montréal, Montréal, QC, Canada.,Departments of Pediatrics, Ophthalmology and Pharmacology, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC, Canada
| |
Collapse
|
26
|
Role of microRNA and Oxidative Stress in Influenza A Virus Pathogenesis. Int J Mol Sci 2020; 21:ijms21238962. [PMID: 33255826 PMCID: PMC7728370 DOI: 10.3390/ijms21238962] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/20/2020] [Accepted: 11/24/2020] [Indexed: 12/26/2022] Open
Abstract
MicroRNAs (miRNAs) are non-coding RNAs that regulate diverse cellular pathways by controlling gene expression. Increasing evidence has revealed their critical involvement in influenza A virus (IAV) pathogenesis. Host–IAV interactions induce different levels of oxidative stress (OS) by disrupting the balance between reactive oxygen species (ROS) and antioxidant factors. It is thought that miRNA may regulate the expression of ROS; conversely, ROS can induce or suppress miRNA expression during IAV infection. Thus, miRNA and OS are the two key factors of IAV infection and pathogenesis. Accordingly, interactions between OS and miRNA during IAV infection might be a critical area for further research. In this review, we discuss the crosstalk between miRNAs and OS during IAV infection. Additionally, we highlight the potential of miRNAs as diagnostic markers and therapeutic targets for IAV infections. This knowledge will help us to study host–virus interactions with novel intervention strategies.
Collapse
|
27
|
Yang X, Liang Y, Bamunuarachchi G, Xu Y, Vaddadi K, Pushparaj S, Xu D, Zhu Z, Blaha R, Huang C, Liu L. miR-29a is a negative regulator of influenza virus infection through targeting of the frizzled 5 receptor. Arch Virol 2020; 166:363-373. [PMID: 33206218 DOI: 10.1007/s00705-020-04877-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 09/29/2020] [Indexed: 12/11/2022]
Abstract
Influenza A virus (IAV) infections result in a large number of deaths and substantial economic losses each year. MicroRNAs repress gene expression and are involved in virus-host interactions. miR-29a is known to have anti-tumor and anti-fibrotic effects. However, the role of miR-29a in IAV infection is unclear. In the present study, we investigated the effect of miR-29a on IAV infection and the mechanisms by which it functions. IAV infection was found to cause decreased miR-29a expression in lung epithelial A549 cells and mouse lungs. Overexpression of miR-29a reduced IAV mRNA and protein levels and progeny virus production in HEK293 and A549 cells. Inhibition of IAV infection by miR-29a was observed with different strains of IAV, including A/PR/8/34, A/WSN/1933, and clinical isolates A/OK/3052/09 and A/OK/309/06 H3N2. Knockout of miR-29a using CRISPR/Cas9 resulted in an increase in viral mRNA and protein levels, confirming that miR-29a suppresses IAV infection. A 3' untranslated region (3'-UTR) reporter assay showed that miR-29a had binding sites in the 3'-UTR of the Wnt-Ca2+ signaling receptor frizzled 5 gene, and overexpression of miR-29a reduced the level of the endogenous frizzled 5 protein. Wnt5a treatment of HEK293 and A549 cells enhanced IAV infection. Our results suggest that miR-29a inhibits IAV infection, probably via the frizzled 5 receptor.
Collapse
Affiliation(s)
- Xiaoyun Yang
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma, USA
- Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, 264 McElroy Hall, Stillwater, OK, 74078, USA
| | - Yurong Liang
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma, USA
- Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, 264 McElroy Hall, Stillwater, OK, 74078, USA
| | - Gayan Bamunuarachchi
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma, USA
- Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, 264 McElroy Hall, Stillwater, OK, 74078, USA
| | - Yanzhao Xu
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma, USA
- Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, 264 McElroy Hall, Stillwater, OK, 74078, USA
| | - Kishore Vaddadi
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma, USA
- Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, 264 McElroy Hall, Stillwater, OK, 74078, USA
| | - Samuel Pushparaj
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma, USA
- Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, 264 McElroy Hall, Stillwater, OK, 74078, USA
| | - Dao Xu
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma, USA
- Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, 264 McElroy Hall, Stillwater, OK, 74078, USA
| | - Zhengyu Zhu
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma, USA
- Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, 264 McElroy Hall, Stillwater, OK, 74078, USA
| | - Rachel Blaha
- Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, 264 McElroy Hall, Stillwater, OK, 74078, USA
| | - Chaoqun Huang
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma, USA
- Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, 264 McElroy Hall, Stillwater, OK, 74078, USA
| | - Lin Liu
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma, USA.
- Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, 264 McElroy Hall, Stillwater, OK, 74078, USA.
| |
Collapse
|
28
|
Yang J, Huang X, Liu Y, Zhao D, Han K, Zhang L, Li Y, Liu Q. Analysis of the microRNA expression profiles of chicken dendritic cells in response to H9N2 avian influenza virus infection. Vet Res 2020; 51:132. [PMID: 33069243 PMCID: PMC7568386 DOI: 10.1186/s13567-020-00856-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 09/30/2020] [Indexed: 12/26/2022] Open
Abstract
MicroRNA (miRNA) plays a key role in virus-host interactions. Here, we employed deep sequencing technology to determine cellular miRNA expression profiles in chicken dendritic cells infected with H9N2 avian influenza virus (AIV). A total of 66 known and 36 novel miRNAs were differently expressed upon H9N2 infection, including 72 up-regulated and 30 down-regulated miRNAs. Functional analysis showed that the predicted targets of these miRNAs were significantly enriched in several pathways including endocytosis, notch, lysosome, p53, RIG-I-like and NOD-like receptor signaling pathways. These data provide valuable information for further investigating the roles of miRNA in AIV pathogenesis and host defense response.
Collapse
Affiliation(s)
- Jing Yang
- Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing, 210014, Jiangsu, China
| | - Xinmei Huang
- Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing, 210014, Jiangsu, China.,Jiangsu University, Zhenjiang, China
| | - Yuzhuo Liu
- Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing, 210014, Jiangsu, China
| | - Dongmin Zhao
- Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing, 210014, Jiangsu, China.,Jiangsu University, Zhenjiang, China
| | - Kaikai Han
- Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing, 210014, Jiangsu, China.,Jiangsu University, Zhenjiang, China
| | - Lijiao Zhang
- Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing, 210014, Jiangsu, China
| | - Yin Li
- Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing, 210014, Jiangsu, China.,Jiangsu University, Zhenjiang, China
| | - Qingtao Liu
- Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing, 210014, Jiangsu, China.
| |
Collapse
|
29
|
Li K, Chen X, Zhong J, Ye H, Zhang S, Ge D, Wang X, Wu Y. The effects of the Xijiao Dihuang decoction combined with Yinqiao powder on miRNA-mRNA profiles in mice infected with influenza a virus. BMC Complement Med Ther 2020; 20:286. [PMID: 32957919 PMCID: PMC7507722 DOI: 10.1186/s12906-020-03074-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 09/08/2020] [Indexed: 01/12/2023] Open
Abstract
Background MicroRNAs (miRNAs) play vital roles in acute inflammatory and antiviral responses during influenza A virus (IAV) infection. The Xijiao Dihuang decoction combined with Yinqiao powder (XDY) is applied to remedy viral pneumonia in China and its therapeutic efficacy in pneumonic mice challenged with IAV was demonstrated; however, the underlying mechanisms remain elusive. Thus, this study aimed to explore the miRNA-mRNA profiles in the lungs of IAV-infected mice and investigate the therapeutic mechanisms of XDY involving miRNAs and associated pathways. Methods We detected the cellular miRNA contents in the lungs of mice treated with XDY (23 g/kg/d) for A/FM/1/47 (H1N1) (FM1) infection at 4 days postinoculation (dpi) and 7 dpi. MiRNA and mRNA high-throughput sequencing analyses, and miRNA and mRNA qRT-PCR analyses were used to detect and verify the relevant miRNAs and mRNAs. Conjoint analysis, GO enrichment analysis, and KEGG database analysis were applied to identify the miRNA-mRNA regulatory relationships. Results The quantities of differentially expressed miRNAs and mRNAs were upregulated over time. The data showed that 104 miRNAs and 3485 mRNAs were differentially expressed after challenge with FM1 on day 4, while 191 miRNAs and 6126 mRNAs were differentially expressed on day 7. The GO enrichment analysis and KEGG database data showed that the differentially expressed miRNAs and mRNAs were mainly enriched in JNK activity, MAPK phosphatase activity, and the TLR, Jak-STAT and TNF signalling pathways after treatment of FM1 infection with XDY. Generally, the expression trends of differentially expressed miRNAs and mRNAs based on the qRT-PCR results exhibited good consistency with the results of the high-throughput sequencing analysis. Conclusions MiRNAs and mRNAs were differentially expressed during FM1 infection. The therapeutic mechanisms of XDY in FM1-infected mice, might be related to regulating antiviral immunity and ameliorating excessive inflammatory responses by modulating the expression of dysregulated miRNAs and mRNAs involved in the ERK/JNK-AP-1, and IFN-β/STAT signalling pathways.
Collapse
Affiliation(s)
- Ke Li
- Department of Microbiology and Immunology, School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102400, China
| | - Xiaoming Chen
- Department of Microbiology and Immunology, School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102400, China
| | - Jing Zhong
- Department of Microbiology and Immunology, School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102400, China
| | - Hehe Ye
- Department of Microbiology and Immunology, School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102400, China
| | - Shujing Zhang
- Center of Research and Experiments, Institute of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102400, China
| | - Dongyu Ge
- Center of Research and Experiments, Institute of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102400, China
| | - Xudan Wang
- Department of Microbiology and Immunology, School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102400, China
| | - Ying Wu
- Clinical Medicine Research Centre, Liuzhou People's Hospital, Guangxi Medical University, Liuzhou, 545001, China.
| |
Collapse
|
30
|
Guo Y, Huang N, Tian M, Fan M, Liu Q, Liu Z, Sun T, Huang J, Xia H, Zhao Y, Ping J. Integrated Analysis of microRNA-mRNA Expression in Mouse Lungs Infected With H7N9 Influenza Virus: A Direct Comparison of Host-Adapting PB2 Mutants. Front Microbiol 2020; 11:1762. [PMID: 32849388 PMCID: PMC7399063 DOI: 10.3389/fmicb.2020.01762] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 07/06/2020] [Indexed: 12/15/2022] Open
Abstract
MicroRNAs (miRNAs) are important regulators involved in the antiviral response to influenza virus infection, however, an analytical comparison of miRNA and mRNA expression changes induced by several H7N9 host-adapting PB2 mutants remains undone. Here, miRNA microarray and transcriptome sequencing of BALB/c mouse lungs infected with A/Anhui/1/2013 (H7N9) [hereafter referred to as H7N9/AH1-PB2-627K(WT)] and mutant variants with PB2 amino acid substitutions (avian-like H7N9/AH1-PB2-627E and mammalian-adapted H7N9/AH1-PB2-627E/701N) were directly compared. The results showed that influenza virus infection induced dysregulation of numerous host cell processes. In a miRNA-mRNA network associated with immunity, changes in the expression of 38 miRNAs and 58 mRNAs were detected following influenza virus infection. Notably, the miRNAs of mmu-miR-188-5p, mmu-miR-511-5p, mmu-miR-483-5p, and mmu-miR-690 were specifically associated with the replication of the avian-like virus H7N9/AH1-PB2-627E. Likewise, the miRNAs of mmu-miR-691, mmu-miR-329-3p, and mmu-miR-144-3p were specifically associated with the mammalian-adapted virus H7N9/AH1-PB2-627E/701N. Finally, the miRNAs of mmu-miR-98-5p, mmu-miR-103-3p, mmu-miR-199a-5p, and mmu-miR-378a-3p were specifically associated with H7N9/AH1-PB2-627K(WT) virus replication. This is the first report of comparative integration analysis of miRNA-mRNA expression of these three H7N9 influenza viruses with different host-adapting PB2 mutations. Our results highlight potential miRNAs of importance in influenza virus pathogenesis.
Collapse
Affiliation(s)
- Yanna Guo
- MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, Institute of Immunology, Nanjing Agricultural University, Nanjing, China
| | - Nan Huang
- MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, Institute of Immunology, Nanjing Agricultural University, Nanjing, China
| | - Miao Tian
- MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, Institute of Immunology, Nanjing Agricultural University, Nanjing, China
| | - Menglu Fan
- MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, Institute of Immunology, Nanjing Agricultural University, Nanjing, China
| | - Qingzheng Liu
- MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, Institute of Immunology, Nanjing Agricultural University, Nanjing, China
| | - Zhiyuan Liu
- MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, Institute of Immunology, Nanjing Agricultural University, Nanjing, China
| | - Tongtong Sun
- MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, Institute of Immunology, Nanjing Agricultural University, Nanjing, China
| | - Jingjin Huang
- MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, Institute of Immunology, Nanjing Agricultural University, Nanjing, China
| | - Huizhi Xia
- MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, Institute of Immunology, Nanjing Agricultural University, Nanjing, China
| | - Yongzhen Zhao
- MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, Institute of Immunology, Nanjing Agricultural University, Nanjing, China
| | - Jihui Ping
- MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, Institute of Immunology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
31
|
Woods PS, Doolittle LM, Rosas LE, Nana-Sinkam SP, Tili E, Davis IC. Increased expression of microRNA-155-5p by alveolar type II cells contributes to development of lethal ARDS in H1N1 influenza A virus-infected mice. Virology 2020; 545:40-52. [PMID: 32308197 DOI: 10.1016/j.virol.2020.03.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 03/14/2020] [Accepted: 03/19/2020] [Indexed: 12/26/2022]
Abstract
Alveolar type II (ATII) cells are essential to lung function and a primary site of influenza A virus (IAV) replication. Effects of IAV infection on ATII cell microRNA (miR) expression have not been comprehensively investigated. Infection of C57BL/6 mice with 10,000 or 100 pfu/mouse of IAV A/WSN/33 (H1N1) significantly altered expression of 73 out of 1908 mature murine miRs in ATII cells at 2 days post-infection (d.p.i.) and 253 miRs at 6 d.p.i. miR-155-5p (miR-155) showed the greatest increase in expression within ATII cells at both timepoints and the magnitude of this increase correlated with inoculum size and pulmonary edema severity. Influenza-induced lung injury was attenuated in C57BL/6-congenic miR-155-knockout mice without affecting viral replication. Attenuation of lung injury was dependent on deletion of miR-155 from stromal cells and was recapitulated in ATII cell-specific miR-155-knockout mice. These data suggest that ATII cell miR-155 is a potential therapeutic target for IAV-induced ARDS.
Collapse
Affiliation(s)
- Parker S Woods
- Department of Veterinary Biosciences, College of Veterinary Medicine, Columbus, OH, USA
| | - Lauren M Doolittle
- Department of Veterinary Biosciences, College of Veterinary Medicine, Columbus, OH, USA
| | - Lucia E Rosas
- Department of Veterinary Biosciences, College of Veterinary Medicine, Columbus, OH, USA
| | - S Patrick Nana-Sinkam
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Wexner Medical Center, Columbus, OH, USA
| | - Esmerina Tili
- Department of Cancer Biology and Genetics, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Ian C Davis
- Department of Veterinary Biosciences, College of Veterinary Medicine, Columbus, OH, USA.
| |
Collapse
|
32
|
Maemura T, Fukuyama S, Kawaoka Y. High Levels of miR-483-3p Are Present in Serum Exosomes Upon Infection of Mice With Highly Pathogenic Avian Influenza Virus. Front Microbiol 2020; 11:144. [PMID: 32117163 PMCID: PMC7026002 DOI: 10.3389/fmicb.2020.00144] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 01/21/2020] [Indexed: 11/13/2022] Open
Abstract
Exosomes, the extracellular vesicles that contain functional proteins and RNAs, regulate cell-cell communication. Recently, our group reported that levels of various microRNAs (miRNAs) in bronchoalveolar lavage fluid exosomes were highly increased in influenza virus-infected mice and that one of those miRNAs, miR-483-3p, was involved in the potentiation of the innate immune responses to influenza virus infection in mouse type II pneumocytes. Here, we evaluated exosomal miR-483-3p levels in the serum of influenza virus-infected mice and found that miR-483-3p levels were significantly increased during infection with a highly pathogenic avian H5N1 influenza virus. Moreover, miR-483-3p-enriched exosomes derived from type II pneumocytes potentiated the expression of proinflammatory cytokine genes in vascular endothelial cells. Our findings suggest that serum exosomal transfer of miR-483-3p might be involved in the inflammatory pathogenesis of H5N1 influenza virus infection.
Collapse
Affiliation(s)
- Tadashi Maemura
- Division of Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Satoshi Fukuyama
- Division of Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yoshihiro Kawaoka
- Division of Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States.,Department of Special Pathogens, International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
33
|
Lin X, Yu S, Ren P, Sun X, Jin M. Human microRNA-30 inhibits influenza virus infection by suppressing the expression of SOCS1, SOCS3, and NEDD4. Cell Microbiol 2019; 22:e13150. [PMID: 31876380 PMCID: PMC7162240 DOI: 10.1111/cmi.13150] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 10/27/2019] [Accepted: 11/12/2019] [Indexed: 12/17/2022]
Abstract
Influenza A virus (IAV) has evolved multiple mechanisms to compromise type I interferon (IFN) responses. The antiviral function of IFN is mainly exerted by activating the JAK/STAT signalling and subsequently inducing IFN‐stimulated gene (ISG) production. However, the mechanism by which IAV combat the type I IFN signalling pathway is not fully elucidated. In this study, we explored the roles of human microRNAs modulated by IAV infection in type I IFN responses. We demonstrated that microRNA‐30 (miR‐30) family members were downregulated by IAV infection. Our data showed that the forced expression of miR‐30 family members inhibited IAV proliferation, while miR‐30 family member inhibitors promoted IAV proliferation. Mechanistically, we found that miR‐30 family members targeted and reduced SOCS1 and SOCS3 expression, and thus relieved their inhibiting effects on IFN/JAK/STAT signalling pathway. In addition, miR‐30 family members inhibited the expression of NEDD4, a negative regulator of IFITM3, which is important for host defence against influenza viruses. Our findings suggest that IAV utilises a novel strategy to restrain host type I IFN‐mediated antiviral immune responses by decreasing the expression of miR‐30 family members, and add a new way to understand the mechanism of immune escape caused by influenza viruses.
Collapse
Affiliation(s)
- Xian Lin
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,Department of Preventive Veterinary Medicine, College of Animal Medicine, Huazhong Agricultural University, Wuhan, China.,Department of Biotechnology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Shiman Yu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,Department of Preventive Veterinary Medicine, College of Animal Medicine, Huazhong Agricultural University, Wuhan, China
| | - Peilei Ren
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,Department of Preventive Veterinary Medicine, College of Animal Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xiaomei Sun
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,Department of Preventive Veterinary Medicine, College of Animal Medicine, Huazhong Agricultural University, Wuhan, China
| | - Meilin Jin
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,Department of Preventive Veterinary Medicine, College of Animal Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| |
Collapse
|
34
|
Goraya MU, Zaighum F, Sajjad N, Anjum FR, Sakhawat I, Rahman SU. Web of interferon stimulated antiviral factors to control the influenza A viruses replication. Microb Pathog 2019; 139:103919. [PMID: 31830579 DOI: 10.1016/j.micpath.2019.103919] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/25/2019] [Accepted: 12/09/2019] [Indexed: 01/20/2023]
Abstract
Influenza viruses cause mild to severe infections in animals and humans worldwide with significant morbidity and mortality. Infection of eukaryotic cells with influenza A viruses triggers the induction of innate immune system through the interaction between pattern recognition receptors (PRRs) and pathogen associated molecular patterns (PAMPs), which culminate in the induction of interferons (IFNs). Consequently, IFNs bind to their cognate receptors on the cellular membrane and activate the signaling pathway for transcriptional regulation of interferon-stimulated genes (ISGs) through Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway. Cumulative actions of these ISGs establish an antiviral state of the host. Several ISGs have been described, which play critical roles to inhibit the infection and replication of influenza A viruses at multiple steps of virus life cycle. In this review, the dynamics and redundancy of these ISGs against influenza A viruses are discussed. Additionally, current understanding and molecular mechanisms that are underlying the roles of ISGs in pathogenesis of influenza virus are critically reviewed.
Collapse
Affiliation(s)
- Mohsan Ullah Goraya
- Institute of Microbiology, University of Agriculture Faisalabad, 38000, Pakistan.
| | | | - Nelam Sajjad
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Faisal Rasheed Anjum
- Institute of Microbiology, University of Agriculture Faisalabad, 38000, Pakistan
| | - Irfan Sakhawat
- School of Science and Technology, Orebro University, SE-70182, Orebro, Sweden
| | - Sajjad Ur Rahman
- Institute of Microbiology, University of Agriculture Faisalabad, 38000, Pakistan.
| |
Collapse
|
35
|
Samir M, Vidal RO, Abdallah F, Capece V, Seehusen F, Geffers R, Hussein A, Ali AAH, Bonn S, Pessler F. Organ-specific small non-coding RNA responses in domestic (Sudani) ducks experimentally infected with highly pathogenic avian influenza virus (H5N1). RNA Biol 2019; 17:112-124. [PMID: 31538530 DOI: 10.1080/15476286.2019.1669879] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The duck represents an important reservoir of influenza viruses for transmission to other avian and mammalian hosts, including humans. The increased pathogenicity of the recently emerging clades of highly pathogenic avian influenza (HPAI) viruses of the H5N1 subtype in ducks features systemic viral spread and organ-to-organ variation in viral transcription and tissue damage. We previously reported that experimental infection of Sudani ducks (Cairina moschata) with an Egyptian HPAI (H5N1) virus (clade 2.2.1.2) features high viral replication and severe tissue damage in lung, but lower viral replication and only mild histological changes in brain. Little is known about the involvement of miRNA in organ-specific responses to H5N1 viruses in ducks, and involvement of the other classes of small noncoding RNA (sncRNA) has not been investigated so far. Following RNA sequencing, we have annotated the duck sncRNome and compared global expression changes of the four major sncRNA classes (miRNAs, piRNAs, snoRNAs, snRNAs) between duck lung and brain during a 120 h time course of infection with this HPAI strain. We find major organ-specific differences in miRNA, piRNA and snoRNA populations even before infection and substantial reprogramming of all sncRNA classes throughout infection, which was less pronounced in brain. Pathway prediction analysis of miRNA targets revealed enrichment of inflammation-, infection- and apoptosis-related pathways in lung, but enrichment of metabolism-related pathways (including tryptophan metabolism) in brain. Thus, organ-specific differences in sncRNA responses may contribute to differences in viral replication and organ damage in ducks infected with isolates from this emerging HPAI clade, and likely other strains.
Collapse
Affiliation(s)
- Mohamed Samir
- Department of Zoonoses, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt.,Research Group Biomarkers for Infectious Diseases, TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, Germany
| | - Ramon O Vidal
- Group of Computational Systems Biology, German Center for Neurodegenerative Diseases, Goettingen, Germany.,Department of Genomics, Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany
| | - Fatma Abdallah
- Department of Virology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Vincenzo Capece
- Group of Computational Systems Biology, German Center for Neurodegenerative Diseases, Goettingen, Germany.,ID Research IT Platforms, Swiss Federal Institute of Technology (ETH), Zurich, Switzerland
| | - Frauke Seehusen
- Department of Pathology, University of Veterinary Medicine (TiHo), Hannover, Germany
| | - Robert Geffers
- Genome Analytics, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Ashraf Hussein
- Department of Avian and Rabbit Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Ahmed A H Ali
- Department of Virology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Stefan Bonn
- Group of Computational Systems Biology, German Center for Neurodegenerative Diseases, Goettingen, Germany.,Institute of Medical Systems Biology, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,German Center for Neurodegenerative Diseases, Tuebingen, Germany
| | - Frank Pessler
- Research Group Biomarkers for Infectious Diseases, TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, Germany.,Research Group Biomarkers for Infectious Diseases, Helmholtz Centre for Infection Research, Braunschweig, Germany.,Centre for Individualized Infection Medicine, Hannover, Germany
| |
Collapse
|
36
|
Lim J, Byun J, Guk K, Hwang SG, Bae PK, Jung J, Kang T, Lim EK. Highly Sensitive in Vitro Diagnostic System of Pandemic Influenza A (H1N1) Virus Infection with Specific MicroRNA as a Biomarker. ACS OMEGA 2019; 4:14560-14568. [PMID: 31528810 PMCID: PMC6740188 DOI: 10.1021/acsomega.9b01790] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 07/31/2019] [Indexed: 05/12/2023]
Abstract
Several microRNAs (miRNAs) have been reported to be closely related to influenza A virus infection, replication, and immune response. Therefore, the development of the infectious-disease detection system using miRNAs as biomarkers is actively underway. Herein, we identified two miRNAs (miR-181c-5p and miR-1254) as biomarkers for detection of pandemic influenza A H1N1 virus infection and proposed the catalytic hairpin assembly-based in vitro diagnostic (CIVD) system for a highly sensitive diagnosis; this system is composed of two sets of cascade hairpin probes enabling to detect miR-181c-5p and miR-1254. We demonstrated that CIVD kits could not only detect subnanomolar levels of target miRNAs but also distinguish even single-base mismatches. Moreover, this CIVD kit has shown excellent detection performance in real intracellular RNA samples and confirmed results similar to those of conventional methods (microarray and quantitative real-time polymerase chain reaction).
Collapse
Affiliation(s)
- Jaewoo Lim
- BioNanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Department of Nanobiotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Jihyun Byun
- BioNanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Kyeonghye Guk
- BioNanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Department of Nanobiotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Seul Gee Hwang
- BioNanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Department of Nanobiotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Pan Kee Bae
- BioNano Health Guard Research Center, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Juyeon Jung
- BioNanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Department of Nanobiotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Taejoon Kang
- BioNanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Department of Nanobiotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Eun-Kyung Lim
- BioNanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Department of Nanobiotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| |
Collapse
|
37
|
Maemura T, Fukuyama S, Sugita Y, Lopes TJS, Nakao T, Noda T, Kawaoka Y. Lung-Derived Exosomal miR-483-3p Regulates the Innate Immune Response to Influenza Virus Infection. J Infect Dis 2019; 217:1372-1382. [PMID: 29373693 DOI: 10.1093/infdis/jiy035] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Accepted: 01/18/2018] [Indexed: 01/21/2023] Open
Abstract
Exosomes regulate cell-cell communication by transferring functional proteins and RNAs between cells. Here, to clarify the function of exosomes during influenza virus infection, we characterized lung-derived exosomal microRNAs (miRNAs). Among the detected miRNAs, miR-483-3p was present at high levels in bronchoalveolar lavage fluid (BALF) exosomes during infection of mice with various strains of influenza virus, and miR-483-3p transfection potentiated gene expression of type I interferon and proinflammatory cytokine upon viral infection of MLE-12 cells. RNF5, a regulator of the RIG-I signaling pathway, was identified as a target gene of miR-483-3p. Moreover, we found that CD81, another miR-483-3p target, functions as a negative regulator of RIG-I signaling in MLE-12 cells. Taken together, this study indicates that BALF exosomal miRNAs may mediate the antiviral and inflammatory response to influenza virus infection.
Collapse
Affiliation(s)
- Tadashi Maemura
- Division of Virology, Department of Microbiology and Immunology, Japan.,Department of Special Pathogens, International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Japan
| | - Satoshi Fukuyama
- Division of Virology, Department of Microbiology and Immunology, Japan
| | - Yukihiko Sugita
- Molecular Cryo-Electron Microscopy Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Japan
| | - Tiago J S Lopes
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Japan
| | - Tomomi Nakao
- Division of Virology, Department of Microbiology and Immunology, Japan
| | - Takeshi Noda
- Laboratory of Ultrastructural Virology, Institute for Frontier Life and Medical Sciences, Kyoto University, Japan
| | - Yoshihiro Kawaoka
- Division of Virology, Department of Microbiology and Immunology, Japan.,Department of Special Pathogens, International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Japan.,Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Japan
| |
Collapse
|
38
|
Jadideslam G, Ansarin K, Sakhinia E, Babaloo Z, Abhari A, Ghahremanzadeh K, Khalili M, Radmehr R, Kabbazi A. Diagnostic biomarker and therapeutic target applications of miR-326 in cancers: A systematic review. J Cell Physiol 2019; 234:21560-21574. [PMID: 31069801 DOI: 10.1002/jcp.28782] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 04/14/2019] [Accepted: 04/17/2019] [Indexed: 12/11/2022]
Abstract
MicroRNAs (miRNAs) are endogenous mediators of RNA interference and have key roles in the modulation of gene expression under healthy, inflamed, stimulated, carcinogenic, or other cells, and tissues of a pathological state. Many studies have proved the association between miRNAs and cancer. The role of miR-326 as a tumor suppressor miRNA in much human cancer confirmed. We will explain the history and the role of miRNAs changes, especially miR-326 in cancers and other pathological conditions. Attuned with these facts, this review highlights recent preclinical and clinical research performed on miRNAs as novel promising diagnostic biomarkers of patients at early stages, prediction of prognosis, and monitoring of the patients in response to treatment. All related publications retrieved from the PubMed database, with keywords such as epigenetic, miRNA, microRNA, miR-326, cancer, diagnostic biomarker, and therapeutic target similar terms from 1899 to 2018 with limitations in the English language. Recently, researchers have focused on the impacts of miRNAs and their association in inflammatory, autoinflammatory, and cancerous conditions. Recent studies have suggested a major pathogenic role in cancers and autoinflammatory diseases. Investigations have explained the role of miRNAs in cancers, autoimmunity, and autoinflammatory diseases, and so on. The miRNA-326 expression has an important role in cancer conditions and other diseases.
Collapse
Affiliation(s)
- Golamreza Jadideslam
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Internal Medicine Department, Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Molecular Medicine, Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Faculty of Medicine, Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Internal Medicine, Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khalil Ansarin
- Department of Internal Medicine, Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ebrahim Sakhinia
- Internal Medicine Department, Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medical Genetics, Faculty of Medicine and Tabriz Genetic Analysis Centre (TGAC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zohreh Babaloo
- Department of Immunology Medicine Faculty, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Abhari
- Division of Clinical Biochemistry, Department of Biochemistry and Clinical Laboratory, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Kazem Ghahremanzadeh
- Labratory Medicine, Central laboratory of East Azerbaijan, Tabriz University of Medical Science, Tabriz, Iran
| | - Mohamadreza Khalili
- Labratory Medicine, Central laboratory of East Azerbaijan, Tabriz University of Medical Science, Tabriz, Iran
| | - Rahman Radmehr
- Labratory Medicine, Central laboratory of East Azerbaijan, Tabriz University of Medical Science, Tabriz, Iran
| | - Alireza Kabbazi
- Internal Medicine Department, Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
39
|
Hou P, Zhao M, He W, He H, Wang H. Cellular microRNA bta-miR-2361 inhibits bovine herpesvirus 1 replication by directly targeting EGR1 gene. Vet Microbiol 2019; 233:174-183. [PMID: 31176405 DOI: 10.1016/j.vetmic.2019.05.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/30/2019] [Accepted: 05/03/2019] [Indexed: 01/20/2023]
Abstract
Bovine herpesvirus 1 (BHV-1) is an economically important pathogen of cattle and has led to significant consequences on the cattle industry worldwide. MicroRNAs (miRNAs) are a class of regulators that play critical roles in virus and host interaction. However, the roles of host miRNAs in BHV-1 infection remain largely unclear. In this study, a set of differentially expressed miRNAs by small RNA deep sequencing were analyzed in the Madin-Darby Bovine Kidney Cells (MDBK) infected with BHV-1 after 12 h, 24 h and 48 h post-infection compared to mock infection, and it was confirmed that bta-miR-2361 was significantly down-regulated. Moreover, bta-miR-2361 mimics transfection could inhibit BHV-1 replication. Combined with up-regulated genes from BHV-1-infected MDBK cells by deep RNA-sequencing and predicted by bioinformatics tools, early growth response 1 (EGR1) was putative target of bta-miR-2361. Furthermore, EGR1 was up-regulated during BHV-1 infection, and overexpression of EGR1 promoted BHV-1 replication whereas knockdown of EGR1 had the opposite effects. Subsequently, the target association between bta-miR-2361 and 3'UTR of EGR1 was further validated using a dual-luciferase reporter assay. In addition, overexpression of bta-miR-2361 resulted in decreased EGR1 mRNA and protein levels. Further mechanistic study showed that EGR1 stimulated BHV-1 UL46 promoter activity, but overexpression of bta-miR-2361 suppressed the production of UL46 gene. Collectively, this is the first study to reveal that bta-miR-2361 as a novel host factor regulates BHV-1 replication via directly targeting the EGR1 gene, which is a transcription factor that regulates viral UL46 gene of BHV-1. These results provide further insight into the study of BHV-1 pathogenesis.
Collapse
Affiliation(s)
- Peili Hou
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan 250014, China.
| | - Min Zhao
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan 250014, China.
| | - Wenqi He
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| | - Hongbin He
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan 250014, China.
| | - Hongmei Wang
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan 250014, China.
| |
Collapse
|
40
|
Li X, Qiao R, Ye J, Wang M, Zhang C, Lv G, Wang K, Li X, Han X. Integrated miRNA and mRNA transcriptomes of spleen profiles between Yorkshire and Queshan black pigs. Gene 2018; 688:204-214. [PMID: 30529098 DOI: 10.1016/j.gene.2018.11.077] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 10/31/2018] [Accepted: 11/22/2018] [Indexed: 12/13/2022]
Abstract
Disease causes large economic losses to the pig industry worldwidely, immunity plays an important role in the process of resistance to disease. In the present study, to elucidate the molecular mechanisms underlying different levels of disease resistance, we obtained the miRNA and mRNA expression profiles from the spleens of three groups of sows, including 180-day-old Queshan Black (Q-F), 3-day-old Yorkshire (Y-N) and 180-day-old Yorkshire (Y-F) pigs. The results showed that 85 miRNAs and 5093 genes were differentially expressed in Y-F vs Y-N, and 20 miRNAs and 1283 genes were differentially expressed in Q-F vs Y-F. Gene ontology analysis of these differentially expressed genes revealed their critical roles in response to immune response-related signaling pathways. To investigate the molecular mechanisms underlying immune diversity based on differentially expressed miRNAs and genes, the regulatory network between the node miRNAs and genes were established using Cytoscape. The results showed that the identified candidate miRNAs and genes were associated with immune response, and also indicated their potential roles in disease resistance variance between different pig breeds and stages. From the above, this research detected the key factors that were involved in disease resistance, and provide useful information for disease resistance breeding.
Collapse
Affiliation(s)
- Xinjian Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002), China
| | - Ruimin Qiao
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002), China
| | - Jianwei Ye
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002), China
| | - Mingyu Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002), China
| | - Chen Zhang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002), China
| | - Gang Lv
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002), China
| | - Kejun Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002), China
| | - Xiuling Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002), China
| | - Xuelei Han
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002), China.
| |
Collapse
|
41
|
Monsanto-Hearne V, Johnson KN. miRNAs in Insects Infected by Animal and Plant Viruses. Viruses 2018; 10:E354. [PMID: 29970868 PMCID: PMC6071220 DOI: 10.3390/v10070354] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 06/29/2018] [Accepted: 06/29/2018] [Indexed: 12/13/2022] Open
Abstract
Viruses vectored by insects cause severe medical and agricultural burdens. The process of virus infection of insects regulates and is regulated by a complex interplay of biomolecules including the small, non-coding microRNAs (miRNAs). Considered an anomaly upon its discovery only around 25 years ago, miRNAs as a class have challenged the molecular central dogma which essentially typifies RNAs as just intermediaries in the flow of information from DNA to protein. miRNAs are now known to be common modulators or fine-tuners of gene expression. While recent years has seen an increased emphasis on understanding the role of miRNAs in host-virus associations, existing literature on the interaction between insects and their arthropod-borne viruses (arboviruses) is largely restricted to miRNA abundance profiling. Here we analyse the commonalities and contrasts between miRNA abundance profiles with different host-arbovirus combinations and outline a suggested pipeline and criteria for functional analysis of the contribution of miRNAs to the insect vector-virus interaction. Finally, we discuss the potential use of the model organism, Drosophila melanogaster, in complementing research on the role of miRNAs in insect vector-virus interaction.
Collapse
Affiliation(s)
- Verna Monsanto-Hearne
- School of Biological Sciences, The University of Queensland, Brisbane 4072, Australia.
| | - Karyn N Johnson
- School of Biological Sciences, The University of Queensland, Brisbane 4072, Australia.
| |
Collapse
|
42
|
Parashar D, Paingankar MS, More A, Patil P, Amdekar S. Altered microRNA expression signature in Chikungunya-infected mammalian fibroblast cells. Virus Genes 2018; 54:502-513. [PMID: 29872954 DOI: 10.1007/s11262-018-1578-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 05/30/2018] [Indexed: 11/30/2022]
Abstract
Chikungunya virus (CHIKV) infection can cause severe arthralgia and chronic arthritis in humans. MicroRNAs (miRNA) have demonstrated their potential use as biomarker in variety of human pathologies and infections. This study was conducted to understand the miRNA signature in early CHIKV infection stages. In the current study, we used TaqMan-based quantitative PCR method to identify the miRNA signature of host response upon CHIKV infection in human and mouse fibroblast cells. The GO enrichment analysis suggests that the putative target genes of these differentially expressed miRNAs are to be involved in RIG-I pathway, TGF-beta-signaling pathway, JAK-STAT-signaling pathway, MAPK-signaling pathway, cytokine-cytokine receptor interactions, and Fc gamma R-mediated phagocytosis. The results obtained in the current study and earlier studies indicate the potential use of miR15, miR-16, miR-17, let-7e, miR-125, miR-99, and miR-23a as a biomarker in CHIKV infection. miRNAs such as miR-15a, miR-16, miR-140, miR-146a, miR-155, miR203, miR223, miR-499, and miR-363 which are implicated in rheumatoid arthritis showed differential regulation in CHIKV infection. The data obtained in this study provide valuable information on CHIKV-induced miRNA expression in mammalian fibroblast cells, and suggest that CHIKV may establish infection by regulating miRNA expression profile.
Collapse
Affiliation(s)
- Deepti Parashar
- National Institute of Virology, 20-A, Ambedkar Road, Pune, 411001, India.
| | - Mandar S Paingankar
- National Institute of Virology, 20-A, Ambedkar Road, Pune, 411001, India.,Government Science College, Chamorshi Road, Gadchiroli, Maharashtra, 442605, India
| | - Ashwini More
- National Institute of Virology, 20-A, Ambedkar Road, Pune, 411001, India
| | - Poonam Patil
- National Institute of Virology, 20-A, Ambedkar Road, Pune, 411001, India
| | - Sarika Amdekar
- National Institute of Virology, 20-A, Ambedkar Road, Pune, 411001, India
| |
Collapse
|
43
|
Xia B, Lu J, Wang R, Yang Z, Zhou X, Huang P. miR-21-3p Regulates Influenza A Virus Replication by Targeting Histone Deacetylase-8. Front Cell Infect Microbiol 2018; 8:175. [PMID: 29888214 PMCID: PMC5981164 DOI: 10.3389/fcimb.2018.00175] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 05/08/2018] [Indexed: 12/20/2022] Open
Abstract
Influenza A virus (IAV) is responsible for severe morbidity and mortality in animals and humans worldwide. miRNAs are a class of small noncoding single-stranded RNA molecules that can negatively regulate gene expression and play important roles in virus-host interaction. However, the roles of miRNAs in IAV infection are still not fully understood. Here, we profiled the cellular miRNAs of A549 cells infected with A/goose/Jilin/hb/2003 (H5N1) and a comparison A/Beijing/501/2009 (H1N1). miRNA microarray and quantitative PCR analysis showed that several miRNAs were differentially expressed in A549 cells during IAV infection. Subsequently, we demonstrated that IAV replication was essential for the regulation of these miRNAs, and bioinformatic analysis revealed that the targets of these miRNAs affected biological processes relevant to IAV replication. Specifically, miR-21-3p was found to be down-regulated in IAV-infected A549 cells and selected for further detailed analysis. Target prediction and functional study illustrated that miR-21-3p repressed the expression of HDAC8 by targeting its 3′UTR. Furthermore, we confirmed miR-21-3p could promote virus replication, which was similar to the result of knocking down HDAC8, indicating that miR-21-3p promoted IAV replication by suppressing HDAC8 expression. Altogether, our results suggest a potential host defense against IAV through down-regulation of miR-21-3p.
Collapse
Affiliation(s)
- Binghui Xia
- Laboratory of Protein Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Jiansheng Lu
- Laboratory of Protein Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Rong Wang
- Laboratory of Protein Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Zhixin Yang
- Laboratory of Protein Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Xiaowei Zhou
- Laboratory of Protein Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Peitang Huang
- Laboratory of Protein Engineering, Beijing Institute of Biotechnology, Beijing, China
| |
Collapse
|
44
|
Zheng Y, Fu X, Wang L, Zhang W, Zhou P, Zhang X, Zeng W, Chen J, Cao Z, Jia K, Li S. Comparative analysis of MicroRNA expression in dog lungs infected with the H3N2 and H5N1 canine influenza viruses. Microb Pathog 2018; 121:252-261. [PMID: 29772263 DOI: 10.1016/j.micpath.2018.05.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 05/10/2018] [Accepted: 05/11/2018] [Indexed: 11/16/2022]
Abstract
MicroRNAs, a class of noncoding RNAs 18 to 23 nucleotides (nt) in length, play critical roles in a wide variety of biological processes. The objective of this study was to examine differences in microRNA expression profiles derived from the lungs of beagle dogs infected with the avian-origin H3N2 canine influenza virus (CIV) or the highly pathogenic avian influenza (HPAI) H5N1 virus (canine-origin isolation strain). After dogs were infected with H3N2 or H5N1, microRNA expression in the lungs was assessed using a deep-sequencing approach. To identify the roles of microRNAs in viral pathogenicity and the host immune response, microRNA target genes were predicted, and their functions were analyzed using bioinformatics software. A total of 229 microRNAs were upregulated in the H5N1 infection group compared with those in the H3N2 infection group, and 166 microRNAs were downregulated. MicroRNA target genes in the H5N1 group were more significantly involved in metabolic pathways, such as glycerolipid metabolism and glycerophospholipid metabolism, than those in the H3N2 group. The inhibition of metabolic pathways may lead to appetite loss, weight loss and weakened immunity. Moreover, miR-485, miR-144, miR-133b, miR-4859-5p, miR-6902-3p, miR-7638, miR-1307-3p and miR-1346 were significantly altered microRNAs that potentially led to the inhibition of innate immune pathways and the heightened pathogenicity of H5N1 compared with that of H3N2 in dogs. This study deepens our understanding of the complex relationships among microRNAs, the influenza virus-mediated immune response and immune injury in dogs.
Collapse
Affiliation(s)
- Yun Zheng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province 510642, People's Republic of China; Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, Guangdong Province 510642, People's Republic of China; Guangdong Provincial Pet Engineering Technology Research Center, Guangzhou, Guangdong Province 510642, People's Republic of China
| | - Xinliang Fu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province 510642, People's Republic of China; Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, Guangdong Province 510642, People's Republic of China
| | - Lifang Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province 510642, People's Republic of China; Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, Guangdong Province 510642, People's Republic of China; Guangdong Provincial Pet Engineering Technology Research Center, Guangzhou, Guangdong Province 510642, People's Republic of China
| | - Wenyan Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province 510642, People's Republic of China
| | - Pei Zhou
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province 510642, People's Republic of China; Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, Guangdong Province 510642, People's Republic of China; Guangdong Provincial Pet Engineering Technology Research Center, Guangzhou, Guangdong Province 510642, People's Republic of China
| | - Xin Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province 510642, People's Republic of China; Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, Guangdong Province 510642, People's Republic of China; Guangdong Provincial Pet Engineering Technology Research Center, Guangzhou, Guangdong Province 510642, People's Republic of China
| | - Weijie Zeng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province 510642, People's Republic of China; Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, Guangdong Province 510642, People's Republic of China; Guangdong Provincial Pet Engineering Technology Research Center, Guangzhou, Guangdong Province 510642, People's Republic of China
| | - Jidang Chen
- School of Life Science and Engineering, Foshan University, Guangzhou, People's Republic of China
| | - Zongxi Cao
- Hainan Academy of Agricultural Science, Hainan, People's Republic of China
| | - Kun Jia
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province 510642, People's Republic of China; Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, Guangdong Province 510642, People's Republic of China; Guangdong Provincial Pet Engineering Technology Research Center, Guangzhou, Guangdong Province 510642, People's Republic of China.
| | - Shoujun Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province 510642, People's Republic of China; Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, Guangdong Province 510642, People's Republic of China; Guangdong Provincial Pet Engineering Technology Research Center, Guangzhou, Guangdong Province 510642, People's Republic of China.
| |
Collapse
|
45
|
Brogaard L, Larsen LE, Heegaard PMH, Anthon C, Gorodkin J, Dürrwald R, Skovgaard K. IFN-λ and microRNAs are important modulators of the pulmonary innate immune response against influenza A (H1N2) infection in pigs. PLoS One 2018; 13:e0194765. [PMID: 29677213 PMCID: PMC5909910 DOI: 10.1371/journal.pone.0194765] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 02/02/2018] [Indexed: 11/19/2022] Open
Abstract
The innate immune system is paramount in the response to and clearance of influenza A virus (IAV) infection in non-immune individuals. Known factors include type I and III interferons and antiviral pathogen recognition receptors, and the cascades of antiviral and pro- and anti-inflammatory gene expression they induce. MicroRNAs (miRNAs) are increasingly recognized to participate in post-transcriptional modulation of these responses, but the temporal dynamics of how these players of the antiviral innate immune response collaborate to combat infection remain poorly characterized. We quantified the expression of miRNAs and protein coding genes in the lungs of pigs 1, 3, and 14 days after challenge with swine IAV (H1N2). Through RT-qPCR we observed a 400-fold relative increase in IFN-λ3 gene expression on day 1 after challenge, and a strong interferon-mediated antiviral response was observed on days 1 and 3 accompanied by up-regulation of genes related to the pro-inflammatory response and apoptosis. Using small RNA sequencing and qPCR validation we found 27 miRNAs that were differentially expressed after challenge, with the highest number of regulated miRNAs observed on day 3. In contrast, the number of protein coding genes found to be regulated due to IAV infection peaked on day 1. Pulmonary miRNAs may thus be aimed at fine-tuning the initial rapid inflammatory response after IAV infection. Specifically, we found five miRNAs (ssc-miR-15a, ssc-miR-18a, ssc-miR-21, ssc-miR-29b, and hsa-miR-590-3p)-four known porcine miRNAs and one novel porcine miRNA candidate-to be potential modulators of viral pathogen recognition and apoptosis. A total of 11 miRNAs remained differentially expressed 14 days after challenge, at which point the infection had cleared. In conclusion, the results suggested a role for miRNAs both during acute infection as well as later, with the potential to influence lung homeostasis and susceptibility to secondary infections in the lungs of pigs after IAV infection.
Collapse
Affiliation(s)
- Louise Brogaard
- Section for Protein Science and Signaling Biology, Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
- * E-mail:
| | - Lars E. Larsen
- Division of Diagnostics and Scientific Advice–Virology, National Veterinary Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Peter M. H. Heegaard
- Section for Protein Science and Signaling Biology, Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Christian Anthon
- Center for non-coding RNA in Technology and Health (RTH), Department of Veterinary and Animal Science, University of Copenhagen, Frederiksberg, Denmark
| | - Jan Gorodkin
- Center for non-coding RNA in Technology and Health (RTH), Department of Veterinary and Animal Science, University of Copenhagen, Frederiksberg, Denmark
| | - Ralf Dürrwald
- Department of Infectious Diseases, Robert Koch Institute, Berlin, Germany
| | - Kerstin Skovgaard
- Section for Protein Science and Signaling Biology, Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
46
|
Jiang L, Sun Q. The expression profile of human peripheral blood mononuclear cell miRNA is altered by antibody-dependent enhancement of infection with dengue virus serotype 3. Virol J 2018; 15:50. [PMID: 29566761 PMCID: PMC5863830 DOI: 10.1186/s12985-018-0963-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 03/12/2018] [Indexed: 12/19/2022] Open
Abstract
Background Antibody-dependent enhancement (ADE) of dengue virus (DENV) infection has been identified as the main risk factor for severe dengue disease, although the underlying mechanisms leading to severe dengue fever remain unclear. MicroRNAs (miRNAs) participate in numerous pathological and biological processes, including host responses to viral infections. Method Here, we aimed to investigate the differences in miRNA expression patterns in human peripheral blood mononuclear cells (PBMCs) infected with DENV-3 and DENV-3-ADE at various time points employing high-throughput sequencing. Results According to miRNAs high-throughput sequencing, a total of 50 known miRNAs exhibited significant differences. GO (Gene Ontology) and pathway analysis of the predicted targets showed enrichment in the regulation of transcription, including multicellular organismal development, DNA-dependent transcription, negative regulation of cell differentiation and transcription. Afterwards, regulatory networks of miRNA predicted targets, miRNA transcription factors, miRNA pathways and miRNA GOs were formulated to expose the complex regulatory mechanisms of miRNAs during the infection phase. Finally, we analyzed hierarchical GO categories of the predicted targets involved in the MAPK signaling pathway, the cGMP-PKG signaling pathway, the cAMP signaling pathway, the endocytosis effect, and our analyses indicated that innate and adaptive immunity following DENV-3 and DENV-3-ADE infections may be signally distinct. Conclusion Our results demonstrate a novel describing miRNA expression profiles in human PBMCs with DENV-3 and DENV-3-ADE infections using high-throughput sequencing. Our findings could provide a beneficial basis for further studies on the regulatory roles of miRNAs relevant to the different immune responses caused by DENV-3 and DENV-3-ADE infections. Electronic supplementary material The online version of this article (10.1186/s12985-018-0963-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Liming Jiang
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, 935 Jiao Ling Road, Kunming, Yunnan Province, 650118, People's Republic of China.,Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Kunming, 650118, People's Republic of China
| | - Qiangming Sun
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, 935 Jiao Ling Road, Kunming, Yunnan Province, 650118, People's Republic of China. .,Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Kunming, 650118, People's Republic of China.
| |
Collapse
|
47
|
Cui L, Markou A, Stratton CW, Lianidou E. Diagnosis and Assessment of Microbial Infections with Host and Microbial MicroRNA Profiles. ADVANCED TECHNIQUES IN DIAGNOSTIC MICROBIOLOGY 2018. [PMCID: PMC7119978 DOI: 10.1007/978-3-319-95111-9_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
MicroRNAs (miRNAs) encoded by viral genome or host have been found participating in host-microbe interactions. Differential expression profiles of miRNAs were shown linking to specific disease pathologies which indicated its potency as diagnostic/prognostic biomarkers of infectious disease. This was emphasized by the discovery of circulating miRNAs which were found to be remarkably stable in mammalian biofluids. Standardized methods of miRNA quantification including RNA isolation should be established before they will be ready for use in clinical practice.
Collapse
|
48
|
Zhou P, Tu L, Lin X, Hao X, Zheng Q, Zeng W, Zhang X, Zheng Y, Wang L, Li S. cfa-miR-143 Promotes Apoptosis via the p53 Pathway in Canine Influenza Virus H3N2-Infected Cells. Viruses 2017; 9:v9120360. [PMID: 29186842 PMCID: PMC5744135 DOI: 10.3390/v9120360] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 11/16/2017] [Accepted: 11/21/2017] [Indexed: 12/25/2022] Open
Abstract
MicroRNAs regulate multiple aspects of the host response to viral infection. This study verified that the expression of cfa-miR-143 was upregulated in vivo and in vitro by canine influenza virus (CIV) H3N2 infection. To understand the role of cfa-miR-143 in CIV-infected cells, the target gene of cfa-miR-143 was identified and assessed for correlations with proteins involved in the apoptosis pathway. A dual luciferase reporter assay showed that cfa-miR-143 targets insulin-like growth factor binding protein 5 (Igfbp5). Furthermore, a miRNA agomir and antagomir of cfa-miR-143 caused the downregulation and upregulation of Igfbp5, respectively, in CIV-infected madin-darby canine kidney (MDCK) cells. This study demonstrated that cfa-miR-143 stimulated p53 and caspase3 activation and induced apoptosis via the p53 pathway in CIV H3N2-infected cells. In conclusion, CIV H3N2 induced the upregulation of cfa-miR-143, which contributes to apoptosis via indirectly activating the p53-caspase3 pathway.
Collapse
Affiliation(s)
- Pei Zhou
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou 510642, China.
- Guangdong Provincial Pet Engineering Technology Research Center, Guangzhou 510642, China.
| | - Liqing Tu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou 510642, China.
- Guangdong Provincial Pet Engineering Technology Research Center, Guangzhou 510642, China.
| | - Xi Lin
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou 510642, China.
- Guangdong Provincial Pet Engineering Technology Research Center, Guangzhou 510642, China.
| | - Xiangqi Hao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou 510642, China.
- Guangdong Provincial Pet Engineering Technology Research Center, Guangzhou 510642, China.
| | - Qingxu Zheng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou 510642, China.
- Guangdong Provincial Pet Engineering Technology Research Center, Guangzhou 510642, China.
| | - Weijie Zeng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou 510642, China.
- Guangdong Provincial Pet Engineering Technology Research Center, Guangzhou 510642, China.
| | - Xin Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou 510642, China.
- Guangdong Provincial Pet Engineering Technology Research Center, Guangzhou 510642, China.
| | - Yun Zheng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou 510642, China.
- Guangdong Provincial Pet Engineering Technology Research Center, Guangzhou 510642, China.
| | - Lifang Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou 510642, China.
- Guangdong Provincial Pet Engineering Technology Research Center, Guangzhou 510642, China.
| | - Shoujun Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou 510642, China.
- Guangdong Provincial Pet Engineering Technology Research Center, Guangzhou 510642, China.
| |
Collapse
|
49
|
Yang X, Gao W, Liu H, Li J, Chen D, Yuan F, Zhang Z, Wang H. MicroRNA transcriptome analysis in chicken kidneys in response to differing virulent infectious bronchitis virus infections. Arch Virol 2017; 162:3397-3405. [PMID: 28779232 DOI: 10.1007/s00705-017-3502-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 06/19/2017] [Indexed: 10/19/2022]
Abstract
Infectious bronchitis virus (IBV) can cause a highly contagious and acute respiratory disease in poultry. MicroRNAs (miRNAs) have emerged as a class of crucial regulators for gene expression and are involved in the regulation of virus defence and immunological processes. To understand miRNA regulation in chickens in response to IBV infection, high-throughput sequencing was performed to compare the small RNA libraries from the kidneys of chicken infected with SCK2, SCDY2 and LDT3-A. By comparing these data to healthy chickens, a total of 58 differentially expressed (DE) miRNAs were identified. The DE miRNAs were further classified into five miRNA expression patterns (up or down regulation compared to control). Using Gene Ontology (GO) enrichment prediction, the DE miRNAs were shown to be mostly associated with metabolic processes, catalytic activities, gene expression, binding activities and immune responses. Seven highly expressed miRNAs (gga-miR-30d, gga-miR-1454, gga-miR-7b, gga-miR-215-5p, gga-miR-1a-3p, gga-miR-3538 and gga-miR-2954) were selected for miRNA-mRNA conjoint analysis. Furthermore, the miRNAs inversely correlated with the corresponding target gene mRNAs. These seven miRNAs were considered to play an important role in IBV-host interactions and the differing virulence of IBV strains. This is the first demonstration that infection with different virulent IBVs elicits different expression of miRNAs in chicken kidneys; this expression also seems to be associated with the virulence of IBV. These results are significant for the study of immune responses to infection with different virulent IBVs mediated by miRNAs as well as the interaction between the chicken host and IBV.
Collapse
Affiliation(s)
- Xin Yang
- School of Life Science, Sichuan University, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, Chengdu, 610065, Sichuan, China
| | - Wenqian Gao
- School of Life Science, Sichuan University, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, Chengdu, 610065, Sichuan, China
| | - Hui Liu
- School of Life Science, Sichuan University, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, Chengdu, 610065, Sichuan, China
| | - Jianan Li
- School of Life Science, Sichuan University, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, Chengdu, 610065, Sichuan, China
| | - Danyu Chen
- School of Life Science, Sichuan University, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, Chengdu, 610065, Sichuan, China
| | - Feng Yuan
- School of Life Science, Sichuan University, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, Chengdu, 610065, Sichuan, China
| | - Zhikun Zhang
- School of Life Science, Sichuan University, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, Chengdu, 610065, Sichuan, China
| | - Hongning Wang
- School of Life Science, Sichuan University, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, Chengdu, 610065, Sichuan, China.
| |
Collapse
|
50
|
Wang R, Zhang YY, Lu JS, Xia BH, Yang ZX, Zhu XD, Zhou XW, Huang PT. The highly pathogenic H5N1 influenza A virus down-regulated several cellular MicroRNAs which target viral genome. J Cell Mol Med 2017; 21:3076-3086. [PMID: 28609011 PMCID: PMC5661113 DOI: 10.1111/jcmm.13219] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 04/03/2017] [Indexed: 01/09/2023] Open
Abstract
Higher and prolonged viral replication is critical for the increased pathogenesis of the highly pathogenic avian influenza (HPAI) subtype of H5N1 influenza A virus (IAV) over the lowly pathogenic H1N1 IAV strain. Recent studies highlighted the considerable roles of cellular miRNAs in host defence against viral infection. In this report, using a 3'UTR reporter system, we identified several putative miRNA target sites buried in the H5N1 virus genome. We found two miRNAs, miR-584-5p and miR-1249, that matched with the PB2 binding sequence. Moreover, we showed that these miRNAs dramatically down-regulated PB2 expression, and inhibited replication of H5N1 and H1N1 IAVs in A549 cells. Intriguingly, these miRNAs expression was differently regulated in A549 cells infected with the H5N1 and H1N1 viruses. Furthermore, transfection of miR-1249 inhibitor enhanced the PB2 expression and promoted the replication of H5N1 and H1N1 IAVs. These results suggest that H5N1 virus may have evolved a mechanism to escape host-mediated inhibition of viral replication through down-regulation of cellular miRNAs, which target its viral genome.
Collapse
Affiliation(s)
- Rong Wang
- Laboratory of Protein Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Ying-Ying Zhang
- Laboratory of Protein Engineering, Beijing Institute of Biotechnology, Beijing, China.,The General Hospital of the PLA Rocket Force, Beijing, China
| | - Jian-Sheng Lu
- Laboratory of Protein Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Bing-Hui Xia
- Laboratory of Protein Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Zhi-Xin Yang
- Laboratory of Protein Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Xu-Dong Zhu
- Laboratory of Protein Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Xiao-Wei Zhou
- Laboratory of Protein Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Pei-Tang Huang
- Laboratory of Protein Engineering, Beijing Institute of Biotechnology, Beijing, China
| |
Collapse
|