1
|
Bagdonaite I, Marinova IN, Rudjord-Levann AM, Pallesen EMH, King-Smith SL, Karlsson R, Rømer TB, Chen YH, Miller RL, Olofsson S, Nordén R, Bergström T, Dabelsteen S, Wandall HH. Glycoengineered keratinocyte library reveals essential functions of specific glycans for all stages of HSV-1 infection. Nat Commun 2023; 14:7000. [PMID: 37919266 PMCID: PMC10622544 DOI: 10.1038/s41467-023-42669-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 10/18/2023] [Indexed: 11/04/2023] Open
Abstract
Viral and host glycans represent an understudied aspect of host-pathogen interactions, despite potential implications for treatment of viral infections. This is due to lack of easily accessible tools for analyzing glycan function in a meaningful context. Here we generate a glycoengineered keratinocyte library delineating human glycosylation pathways to uncover roles of specific glycans at different stages of herpes simplex virus type 1 (HSV-1) infectious cycle. We show the importance of cellular glycosaminoglycans and glycosphingolipids for HSV-1 attachment, N-glycans for entry and spread, and O-glycans for propagation. While altered virion surface structures have minimal effects on the early interactions with wild type cells, mutation of specific O-glycosylation sites affects glycoprotein surface expression and function. In conclusion, the data demonstrates the importance of specific glycans in a clinically relevant human model of HSV-1 infection and highlights the utility of genetic engineering to elucidate the roles of specific viral and cellular carbohydrate structures.
Collapse
Affiliation(s)
- Ieva Bagdonaite
- Copenhagen Center for Glycomics, Institute of Cellular and Molecular Medicine, University of Copenhagen, DK-2200, Copenhagen, Denmark.
| | - Irina N Marinova
- Copenhagen Center for Glycomics, Institute of Cellular and Molecular Medicine, University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - Asha M Rudjord-Levann
- Copenhagen Center for Glycomics, Institute of Cellular and Molecular Medicine, University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - Emil M H Pallesen
- Copenhagen Center for Glycomics, Institute of Cellular and Molecular Medicine, University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - Sarah L King-Smith
- Copenhagen Center for Glycomics, Institute of Cellular and Molecular Medicine, University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - Richard Karlsson
- Copenhagen Center for Glycomics, Institute of Cellular and Molecular Medicine, University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - Troels B Rømer
- Copenhagen Center for Glycomics, Institute of Cellular and Molecular Medicine, University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - Yen-Hsi Chen
- Copenhagen Center for Glycomics, Institute of Cellular and Molecular Medicine, University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - Rebecca L Miller
- Copenhagen Center for Glycomics, Institute of Cellular and Molecular Medicine, University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - Sigvard Olofsson
- Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, SE-41346, Gothenburg, Sweden
| | - Rickard Nordén
- Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, SE-41346, Gothenburg, Sweden
| | - Tomas Bergström
- Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, SE-41346, Gothenburg, Sweden
| | - Sally Dabelsteen
- Department of Odontology, University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - Hans H Wandall
- Copenhagen Center for Glycomics, Institute of Cellular and Molecular Medicine, University of Copenhagen, DK-2200, Copenhagen, Denmark.
| |
Collapse
|
2
|
Feng S, Liu Y, Zhou Y, Shu Z, Cheng Z, Brenner C, Feng P. Mechanistic insights into the role of herpes simplex virus 1 in Alzheimer's disease. Front Aging Neurosci 2023; 15:1245904. [PMID: 37744399 PMCID: PMC10512732 DOI: 10.3389/fnagi.2023.1245904] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/21/2023] [Indexed: 09/26/2023] Open
Abstract
Alzheimer's Disease (AD) is an aging-associated neurodegenerative disorder, threatening millions of people worldwide. The onset and progression of AD can be accelerated by environmental risk factors, such as bacterial and viral infections. Human herpesviruses are ubiquitous infectious agents that underpin numerous inflammatory disorders including neurodegenerative diseases. Published studies concerning human herpesviruses in AD imply an active role HSV-1 in the pathogenesis of AD. This review will summarize the current understanding of HSV-1 infection in AD and highlight some barriers to advance this emerging field.
Collapse
Affiliation(s)
- Shu Feng
- Department of Diabetes and Cancer Metabolism, City of Hope National Medical Center, Duarte, CA, United States
| | - Yongzhen Liu
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, United States
| | - Yu Zhou
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, United States
| | - Zhenfeng Shu
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, United States
| | - Zhuxi Cheng
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, United States
- International Department, Beijing Bayi School, Beijing, China
| | - Charles Brenner
- Department of Diabetes and Cancer Metabolism, City of Hope National Medical Center, Duarte, CA, United States
| | - Pinghui Feng
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, United States
- Department of Molecular Microbiology and Immunology, Norris Comprehensive Cancer Center, Los Angeles, CA, United States
| |
Collapse
|
3
|
Ramos-Martínez IE, Ramos-Martínez E, Segura-Velázquez RÁ, Saavedra-Montañez M, Cervantes-Torres JB, Cerbón M, Papy-Garcia D, Zenteno E, Sánchez-Betancourt JI. Heparan Sulfate and Sialic Acid in Viral Attachment: Two Sides of the Same Coin? Int J Mol Sci 2022; 23:ijms23179842. [PMID: 36077240 PMCID: PMC9456526 DOI: 10.3390/ijms23179842] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 08/26/2022] [Accepted: 08/27/2022] [Indexed: 12/11/2022] Open
Abstract
Sialic acids and heparan sulfates make up the outermost part of the cell membrane and the extracellular matrix. Both structures are characterized by being negatively charged, serving as receptors for various pathogens, and are highly expressed in the respiratory and digestive tracts. Numerous viruses use heparan sulfates as receptors to infect cells; in this group are HSV, HPV, and SARS-CoV-2. Other viruses require the cell to express sialic acids, as is the case in influenza A viruses and adenoviruses. This review aims to present, in a general way, the participation of glycoconjugates in viral entry, and therapeutic strategies focused on inhibiting the interaction between the virus and the glycoconjugates. Interestingly, there are few studies that suggest the participation of both glycoconjugates in the viruses addressed here. Considering the biological redundancy that exists between heparan sulfates and sialic acids, we propose that it is important to jointly evaluate and design strategies that contemplate inhibiting the interactions of both glycoconjugates. This approach will allow identifying new receptors and lead to a deeper understanding of interspecies transmission.
Collapse
Affiliation(s)
- Ivan Emmanuel Ramos-Martínez
- Departamento de Medicina y Zootecnia de Cerdos, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Edgar Ramos-Martínez
- Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - René Álvaro Segura-Velázquez
- Unidad de Investigación, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Manuel Saavedra-Montañez
- Departamento de Microbiología e Inmunología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Jacquelynne Brenda Cervantes-Torres
- Departamento de Microbiología e Inmunología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Marco Cerbón
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Dulce Papy-Garcia
- Glycobiology, Cell Growth ant Tissue Repair Research Unit (Gly-CRRET), Université Paris Est Créteil (UPEC), F-94010 Créteil, France
| | - Edgar Zenteno
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - José Ivan Sánchez-Betancourt
- Departamento de Medicina y Zootecnia de Cerdos, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
- Correspondence:
| |
Collapse
|
4
|
Ruchawapol C, Yuan M, Wang SM, Fu WW, Xu HX. Natural Products and Their Derivatives against Human Herpesvirus Infection. Molecules 2021; 26:6290. [PMID: 34684870 PMCID: PMC8541008 DOI: 10.3390/molecules26206290] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 02/06/2023] Open
Abstract
Herpesviruses establish long-term latent infection for the life of the host and are known to cause numerous diseases. The prevalence of viral infection is significantly increased and causes a worldwide challenge in terms of health issues due to drug resistance. Prolonged treatment with conventional antiviral drugs is more likely to develop drug-resistant strains due to mutations of thymidine nucleoside kinase or DNA polymerase. Hence, the development of alternative treatments is clearly required. Natural products and their derivatives have played a significant role in treating herpesvirus infection rather than nucleoside analogs in drug-resistant strains with minimal undesirable effects and different mechanisms of action. Numerous plants, animals, fungi, and bacteria-derived compounds have been proved to be efficient and safe for treating human herpesvirus infection. This review covers the natural antiherpetic agents with the chemical structural class of alkaloids, flavonoids, terpenoids, polyphenols, anthraquinones, anthracyclines, and miscellaneous compounds, and their antiviral mechanisms have been summarized. This review would be helpful to get a better grasp of anti-herpesvirus activity of natural products and their derivatives, and to evaluate the feasibility of natural compounds as an alternative therapy against herpesvirus infections in humans.
Collapse
Affiliation(s)
- Chattarin Ruchawapol
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Cai Lun Lu 1200, Shanghai 201203, China; (C.R.); (M.Y.); (S.-M.W.)
- Engineering Research Centre of Shanghai Colleges for TCM New Drug Discovery, Shanghai 201203, China
| | - Man Yuan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Cai Lun Lu 1200, Shanghai 201203, China; (C.R.); (M.Y.); (S.-M.W.)
- Engineering Research Centre of Shanghai Colleges for TCM New Drug Discovery, Shanghai 201203, China
| | - Si-Min Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Cai Lun Lu 1200, Shanghai 201203, China; (C.R.); (M.Y.); (S.-M.W.)
| | - Wen-Wei Fu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Cai Lun Lu 1200, Shanghai 201203, China; (C.R.); (M.Y.); (S.-M.W.)
- Engineering Research Centre of Shanghai Colleges for TCM New Drug Discovery, Shanghai 201203, China
| | - Hong-Xi Xu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Cai Lun Lu 1200, Shanghai 201203, China; (C.R.); (M.Y.); (S.-M.W.)
- Engineering Research Centre of Shanghai Colleges for TCM New Drug Discovery, Shanghai 201203, China
| |
Collapse
|
5
|
Wielgat P, Rogowski K, Godlewska K, Car H. Coronaviruses: Is Sialic Acid a Gate to the Eye of Cytokine Storm? From the Entry to the Effects. Cells 2020; 9:E1963. [PMID: 32854433 PMCID: PMC7564400 DOI: 10.3390/cells9091963] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 08/24/2020] [Indexed: 12/16/2022] Open
Abstract
Coronaviruses (CoVs) are a diverse family of the enveloped human and animal viruses reported as causative agents for respiratory and intestinal infections. The high pathogenic potential of human CoVs, including SARS-CoV, MERS-CoV and SARS-CoV-2, is closely related to the invasion mechanisms underlying the attachment and entry of viral particles to the host cells. There is increasing evidence that sialylated compounds of cellular glycocalyx can serve as an important factor in the mechanism of CoVs infection. Additionally, the sialic acid-mediated cross-reactivity with the host immune lectins is known to exert the immune response of different intensity in selected pathological stages. Here, we focus on the last findings in the field of glycobiology in the context of the role of sialic acid in tissue tropism, viral entry kinetics and immune regulation in the CoVs infections.
Collapse
Affiliation(s)
- Przemyslaw Wielgat
- Department of Clinical Pharmacology, Medical University of Bialystok, Waszyngtona 15A, 15274 Bialystok, Poland;
| | - Karol Rogowski
- Department of Experimental Pharmacology, Medical University of Bialystok, Szpitalna 37, 15295 Bialystok, Poland;
| | - Katarzyna Godlewska
- Department of Haematology, Medical University of Bialystok, M. Sklodowskiej-Curie 24A, 15276 Bialystok, Poland;
| | - Halina Car
- Department of Clinical Pharmacology, Medical University of Bialystok, Waszyngtona 15A, 15274 Bialystok, Poland;
- Department of Experimental Pharmacology, Medical University of Bialystok, Szpitalna 37, 15295 Bialystok, Poland;
| |
Collapse
|
6
|
Vollmer B, Grünewald K. Herpesvirus membrane fusion - a team effort. Curr Opin Struct Biol 2020; 62:112-120. [PMID: 31935542 DOI: 10.1016/j.sbi.2019.12.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/18/2019] [Accepted: 12/02/2019] [Indexed: 12/01/2022]
Abstract
One of the essential steps in every viral 'life' cycle is entry into the host cell. Membrane-enveloped viruses carry dedicated proteins to catalyse the fusion of the viral and cellular membrane. Herpesviruses feature a set of essential, structurally diverse glycoproteins on the viral surface that form a multicomponent fusion machinery, necessary for the entry mechanism. For Herpes simplex virus 1, these essential glycoproteins are gD, gH, gL and gB. In this review we describe the functions of the individual components, the potential interactions between them as well as the influence of post-translational modifications on the fusion mechanism.
Collapse
Affiliation(s)
- Benjamin Vollmer
- Centre for Structural Systems Biology, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, University of Hamburg, Hamburg, Germany; Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Kay Grünewald
- Centre for Structural Systems Biology, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, University of Hamburg, Hamburg, Germany; Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK.
| |
Collapse
|
7
|
Bagdonaite I, Wandall HH. Global aspects of viral glycosylation. Glycobiology 2018; 28:443-467. [PMID: 29579213 PMCID: PMC7108637 DOI: 10.1093/glycob/cwy021] [Citation(s) in RCA: 175] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 02/10/2018] [Accepted: 03/21/2018] [Indexed: 12/15/2022] Open
Abstract
Enveloped viruses encompass some of the most common human pathogens causing infections of different severity, ranging from no or very few symptoms to lethal disease as seen with the viral hemorrhagic fevers. All enveloped viruses possess an envelope membrane derived from the host cell, modified with often heavily glycosylated virally encoded glycoproteins important for infectivity, viral particle formation and immune evasion. While N-linked glycosylation of viral envelope proteins is well characterized with respect to location, structure and site occupancy, information on mucin-type O-glycosylation of these proteins is less comprehensive. Studies on viral glycosylation are often limited to analysis of recombinant proteins that in most cases are produced in cell lines with a glycosylation capacity different from the capacity of the host cells. The glycosylation pattern of the produced recombinant glycoproteins might therefore be different from the pattern on native viral proteins. In this review, we provide a historical perspective on analysis of viral glycosylation, and summarize known roles of glycans in the biology of enveloped human viruses. In addition, we describe how to overcome the analytical limitations by using a global approach based on mass spectrometry to identify viral O-glycosylation in virus-infected cell lysates using the complex enveloped virus herpes simplex virus type 1 as a model. We underscore that glycans often pay important contributions to overall protein structure, function and immune recognition, and that glycans represent a crucial determinant for vaccine design. High throughput analysis of glycosylation on relevant glycoprotein formulations, as well as data compilation and sharing is therefore important to identify consensus glycosylation patterns for translational applications.
Collapse
Affiliation(s)
- Ieva Bagdonaite
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, Copenhagen N, Denmark
| | - Hans H Wandall
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, Copenhagen N, Denmark
| |
Collapse
|
8
|
Raza S, Alvisi G, Shahin F, Husain U, Rabbani M, Yaqub T, Anjum AA, Sheikh AA, Nawaz M, Ali MA. Role of Rab GTPases in HSV-1 infection: Molecular understanding of viral maturation and egress. Microb Pathog 2018; 118:146-153. [PMID: 29551438 DOI: 10.1016/j.micpath.2018.03.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 03/14/2018] [Accepted: 03/15/2018] [Indexed: 12/17/2022]
Abstract
Most enveloped viruses exploit complex cellular pathways for assembly and egress from the host cell, and the large DNA virus Herpes simplex virus 1 (HSV-1) makes no exception, hijacking several cellular transport pathways for its glycoprotein trafficking and maturation, as well as for viral morphogenesis and egress according to the envelopment, de-envelopment and re-envelopment model. Importantly Rab GTPases, widely distributed master regulators of intracellular membrane trafficking pathways, have recently being tightly implicated in such process. Indeed, siRNA-mediated genetic ablation of specific Rab proteins differently affected HSV-1 production, suggesting a complex role of different Rab proteins in HSV-1 life cycle. In this review, we discuss how different Rabs can regulate HSV-1 assembly/egress and the potential therapeutic applications of such findings for the management of HSV-1 infections.
Collapse
Affiliation(s)
- Sohail Raza
- Department of Microbiology, University of Veterinary and Animal Sciences Lahore 54000, Pakistan.
| | - Gualtiero Alvisi
- Department of Molecular Medicine, University of Padua, 35121, Italy
| | - Farzana Shahin
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Urooj Husain
- Postgraduate Medical Institute Lahore 54000, Pakistan
| | - Masood Rabbani
- Department of Microbiology, University of Veterinary and Animal Sciences Lahore 54000, Pakistan
| | - Tahir Yaqub
- Department of Microbiology, University of Veterinary and Animal Sciences Lahore 54000, Pakistan
| | - Aftab Ahmad Anjum
- Department of Microbiology, University of Veterinary and Animal Sciences Lahore 54000, Pakistan
| | - Ali Ahmad Sheikh
- Department of Microbiology, University of Veterinary and Animal Sciences Lahore 54000, Pakistan
| | - Muhammad Nawaz
- Department of Microbiology, University of Veterinary and Animal Sciences Lahore 54000, Pakistan
| | - Muhammad Asad Ali
- Department of Microbiology, University of Veterinary and Animal Sciences Lahore 54000, Pakistan
| |
Collapse
|
9
|
Sialic acid-modified antigens impose tolerance via inhibition of T-cell proliferation and de novo induction of regulatory T cells. Proc Natl Acad Sci U S A 2016; 113:3329-34. [PMID: 26941238 DOI: 10.1073/pnas.1507706113] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Sialic acids are negatively charged nine-carbon carboxylated monosaccharides that often cap glycans on glycosylated proteins and lipids. Because of their strategic location at the cell surface, sialic acids contribute to interactions that are critical for immune homeostasis via interactions with sialic acid-binding Ig-type lectins (siglecs). In particular, these interactions may be of importance in cases where sialic acids may be overexpressed, such as on certain pathogens and tumors. We now demonstrate that modification of antigens with sialic acids (Sia-antigens) regulates the generation of antigen-specific regulatory T (Treg) cells via dendritic cells (DCs). Additionally, DCs that take up Sia-antigen prevent formation of effector CD4(+) and CD8(+)T cells. Importantly, the regulatory properties endowed on DCs upon Sia-antigen uptake are antigen-specific: only T cells responsive to the sialylated antigen become tolerized. In vivo, injection of Sia-antigen-loaded DCs increased de novo Treg-cell numbers and dampened effector T-cell expansion and IFN-γ production. The dual tolerogenic features that Sia-antigen imposed on DCs are Siglec-E-mediated and maintained under inflammatory conditions. Moreover, loading DCs with Sia-antigens not only inhibited the function of in vitro-established Th1 and Th17 effector T cells but also significantly dampened ex vivo myelin-reactive T cells, present in the circulation of mice with experimental autoimmune encephalomyelitis. These data indicate that sialic acid-modified antigens instruct DCs in an antigen-specific tolerogenic programming, enhancing Treg cells and reducing the generation and propagation of inflammatory T cells. Our data suggest that sialylation of antigens provides an attractive way to induce antigen-specific immune tolerance.
Collapse
|
10
|
Laval K, Favoreel HW, Van Cleemput J, Poelaert KCK, Brown IK, Verhasselt B, Nauwynck HJ. Entry of equid herpesvirus 1 into CD172a+ monocytic cells. J Gen Virol 2015; 97:733-746. [PMID: 26684016 DOI: 10.1099/jgv.0.000375] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Equid herpesvirus 1 (EHV-1) causes respiratory disease, abortion and neurological disorders in horses. Cells from the myeloid lineage (CD172a+) are one of the main target cells of EHV-1 during primary infection. Recently, we showed that EHV-1 restricts and delays its replication in CD172a+ cells as part of an immune-evasive strategy to disseminate to target organs. Here, we hypothesize that a low efficiency of EHV-1 binding to and entry in CD172a+ cells is responsible for this restriction. Thus, we characterized EHV-1 binding and entry into CD172a+ cells, and showed that EHV-1 only bound to 15-20 % of CD172a+ cells compared with 70 % of RK-13 control cells. Enzymic removal of heparan sulphate did not reduce EHV-1 infection, suggesting that EHV-1 does not use heparan sulphate to bind and enter CD172a+ cells. In contrast, we found that treatment of cells with neuraminidase (NA) reduced infection by 85-100 % compared with untreated cells, whilst NA treatment of virus had no effect on infection. This shows that sialic acid residues present on CD172a+ cells are essential in the initiation of EHV-1 infection. We found that αVβ3 integrins are involved in the post-binding stage of CD172a+ cell infection. Using pharmacological inhibitors, we showed that EHV-1 does not enter CD172a+ cells via a clathrin- or caveolae-dependent endocytic pathway, nor by macropinocytosis, but requires cholesterol, tyrosine kinase, actin, dynamin and endosomal acidification, pointing towards a phagocytic mechanism. Overall, these results show that the narrow tropism of EHV-1 amongst CD172a+ cells is determined by the presence of specific cellular receptors.
Collapse
Affiliation(s)
- Kathlyn Laval
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Herman W Favoreel
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Jolien Van Cleemput
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Katrien C K Poelaert
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Ivy K Brown
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Bruno Verhasselt
- Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, De Pintelaan 185, 9000 Gent, Belgium
| | - Hans J Nauwynck
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| |
Collapse
|
11
|
Suenaga T, Matsumoto M, Arisawa F, Kohyama M, Hirayasu K, Mori Y, Arase H. Sialic Acids on Varicella-Zoster Virus Glycoprotein B Are Required for Cell-Cell Fusion. J Biol Chem 2015; 290:19833-43. [PMID: 26105052 DOI: 10.1074/jbc.m114.635508] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Indexed: 12/28/2022] Open
Abstract
Varicella-zoster virus (VZV) is a member of the human Herpesvirus family that causes varicella (chicken pox) and zoster (shingles). VZV latently infects sensory ganglia and is also responsible for encephalomyelitis. Myelin-associated glycoprotein (MAG), a member of the sialic acid (SA)-binding immunoglobulin-like lectin family, is mainly expressed in neural tissues. VZV glycoprotein B (gB) associates with MAG and mediates membrane fusion during VZV entry into host cells. The SA requirements of MAG when associating with its ligands vary depending on the specific ligand, but it is unclear whether the SAs on gB are involved in the association with MAG. In this study, we found that SAs on gB are essential for the association with MAG as well as for membrane fusion during VZV infection. MAG with a point mutation in the SA-binding site did not bind to gB and did not mediate cell-cell fusion or VZV entry. Cell-cell fusion and VZV entry mediated by the gB-MAG interaction were blocked by sialidase treatment. N-glycosylation or O-glycosylation inhibitors also inhibited the fusion and entry mediated by gB-MAG interaction. Furthermore, gB with mutations in N-glycosylation sites, i.e. asparagine residues 557 and 686, did not associate with MAG, and the cell-cell fusion efficiency was low. Fusion between the viral envelope and cellular membrane is essential for host cell entry by herpesviruses. Therefore, these results suggest that SAs on gB play important roles in MAG-mediated VZV infection.
Collapse
Affiliation(s)
- Tadahiro Suenaga
- From the Department of Immunochemistry, Research Institute for Microbial Diseases and Laboratory of Immunochemistry, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan, and
| | - Maki Matsumoto
- From the Department of Immunochemistry, Research Institute for Microbial Diseases and Laboratory of Immunochemistry, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan, and
| | - Fuminori Arisawa
- From the Department of Immunochemistry, Research Institute for Microbial Diseases and
| | - Masako Kohyama
- From the Department of Immunochemistry, Research Institute for Microbial Diseases and Laboratory of Immunochemistry, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan, and
| | - Kouyuki Hirayasu
- From the Department of Immunochemistry, Research Institute for Microbial Diseases and Laboratory of Immunochemistry, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan, and
| | - Yasuko Mori
- the Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan
| | - Hisashi Arase
- From the Department of Immunochemistry, Research Institute for Microbial Diseases and Laboratory of Immunochemistry, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan, and
| |
Collapse
|
12
|
A virulent bioluminescent and fluorescent dual-reporter Marek's disease virus unveils an alternative spreading pathway in addition to cell-to-cell contact. J Virol 2014; 88:11617-23. [PMID: 25031355 DOI: 10.1128/jvi.01482-14] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Marek's disease virus (MDV) is a growing threat for the poultry industry. Unfortunately, despite successful vaccination against the disease, MDV remains in circulation within vaccinated flocks, leading to the selection of increasingly virulent pathotypes. Detailed knowledge of the virus biology and the host-virus interaction is required to improve the vaccine efficiency. In the present study, I engineered an original, dual-reporter MDV to track and quantify virus replication in vitro and in vivo.
Collapse
|
13
|
Structural basis for simultaneous recognition of an O-glycan and its attached peptide of mucin family by immune receptor PILRα. Proc Natl Acad Sci U S A 2014; 111:8877-82. [PMID: 24889612 DOI: 10.1073/pnas.1324105111] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Paired Ig-like type 2 receptor α (PILRα) recognizes a wide range of O-glycosylated mucin and related proteins to regulate broad immune responses. However, the molecular characteristics of these recognitions are largely unknown. Here we show that sialylated O-linked sugar T antigen (sTn) and its attached peptide region are both required for ligand recognition by PILRα. Furthermore, we determined the crystal structures of PILRα and its complex with an sTn and its attached peptide region. The structures show that PILRα exhibits large conformational change to recognize simultaneously both the sTn O-glycan and the compact peptide structure constrained by proline residues. Binding and functional assays support this binding mode. These findings provide significant insight into the binding motif and molecular mechanism (which is distinct from sugar-recognition receptors) by which O-glycosylated mucin proteins with sTn modifications are recognized in the immune system as well as during viral entry.
Collapse
|
14
|
Hong W, Li T, Song Y, Zhang R, Zeng Z, Han S, Zhang X, Wu Y, Li W, Cao Z. Inhibitory activity and mechanism of two scorpion venom peptides against herpes simplex virus type 1. Antiviral Res 2013; 102:1-10. [PMID: 24315793 PMCID: PMC7113736 DOI: 10.1016/j.antiviral.2013.11.013] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 11/12/2013] [Accepted: 11/27/2013] [Indexed: 02/08/2023]
Abstract
Hp1036 and Hp1239 are two new cationic host defense peptides from scorpion venom. They inhibitory effect on multiple steps of HSV-1 life cycle. They adopted α-helix structure in approximate membrane environment. They are virucidal of HSV-1 and destroyed the morphology of HSV-1. They easily entered Vero cells and reduced the intracellular viral infectivity.
Herpes simplex virus type 1 (HSV-1) is a widespread human pathogen that causes severe diseases, but there are not effective and safe drugs in clinical therapy besides acyclovir (ACV) and related nucleoside analogs. In this study, two new venom peptides from the scorpion Heterometrus petersii were identified with effective inhibitory effect on HSV-1 infection in vitro. Both Hp1036 and Hp1239 peptides exhibited potent virucidal activities against HSV-1 (EC50 = 0.43 ± 0.09 and 0.41 ± 0.06 μM, respectively) and effective inhibitory effects when added at the viral attachment (EC50 = 2.87 ± 0.16 and 5.73 ± 0.61 μM, respectively), entry (EC50 = 4.29 ± 0.35 and 4.32 ± 0.47 μM, respectively) and postentry (EC50 = 7.86 ± 0.80 and 8.41 ± 0.73 μM, respectively) steps. Both Hp1036 and Hp1239 peptides adopted α-helix structure in approximate membrane environment and resulted in the destruction of the viral morphology. Moreover, Hp1036 and Hp1239 peptides entered Vero cells and reduced the intracellular viral infectivity. Taken together, Hp1036 and Hp1239 peptides are two anti-viral peptides with effective inhibitory effect on multiple steps of HSV-1 life cycle and therefore are good candidate for development as virucides.
Collapse
Affiliation(s)
- Wei Hong
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, PR China
| | - Tian Li
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, PR China
| | - Yu Song
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, PR China
| | - Runhong Zhang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, PR China
| | - Zhengyang Zeng
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, PR China
| | - Shisong Han
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan, Hubei 430072, PR China
| | - Xianzheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan, Hubei 430072, PR China
| | - Yingliang Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, PR China
| | - Wenxin Li
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, PR China
| | - Zhijian Cao
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, PR China.
| |
Collapse
|
15
|
Carter CJ. Susceptibility genes are enriched in those of the herpes simplex virus 1/host interactome in psychiatric and neurological disorders. Pathog Dis 2013; 69:240-61. [PMID: 23913659 DOI: 10.1111/2049-632x.12077] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2013] [Revised: 07/11/2013] [Accepted: 07/24/2013] [Indexed: 12/22/2022] Open
Abstract
Herpes simplex virus 1 (HSV-1) can promote beta-amyloid deposition and tau phosphorylation, demyelination or cognitive deficits relevant to Alzheimer's disease or multiple sclerosis and to many neuropsychiatric disorders with which it has been implicated. A seroprevalence much higher than disease incidence has called into question any primary causal role. However, as also the case with risk-promoting polymorphisms (also present in control populations), any causal effects are likely to be conditional. During its life cycle, the virus binds to many proteins and modifies the expression of multiple genes creating a host/pathogen interactome involving 1347 host genes. This data set is heavily enriched in the susceptibility genes for multiple sclerosis (P = 1.3E-99) > Alzheimer's disease > schizophrenia > Parkinsonism > depression > bipolar disorder > childhood obesity > chronic fatigue > autism > and anorexia (P = 0.047) but not attention deficit hyperactivity disorder, a relationship maintained for genome-wide association study data sets in multiple sclerosis and Alzheimer's disease. Overlapping susceptibility gene/interactome data sets disrupt signalling networks relevant to each disease, suggesting that disease susceptibility genes may filter the attentions of the pathogen towards particular pathways and pathologies. In this way, the same pathogen could contribute to multiple diseases in a gene-dependent manner and condition the risk-promoting effects of the genes whose function it disrupts.
Collapse
|
16
|
Fan Q, Bohannon KP, Longnecker R. Drosophila Schneider 2 (S2) cells: a novel tool for studying HSV-induced membrane fusion. Virology 2013; 437:100-9. [PMID: 23399037 DOI: 10.1016/j.virol.2013.01.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 12/31/2012] [Accepted: 01/04/2013] [Indexed: 12/17/2022]
Abstract
Drosophila S2 cells and mammalian CHO-K1 cells were used to investigate the requirements for HSV-1 cell fusion. Infection assays indicated S2 cells were not permissive for HSV-1. HVEM and nectin-1 mediated cell fusion between CHO-K1 cells and S2 cells when either CHO-K1 or S2 cells were used as target cells. Interestingly, PILRα did not mediate fusion between CHO-K1 or S2 cells due to a glycosylation defect of PILRα and gB in S2 cells. Fusion activity was not detected for any receptor tested when S2 cells were used both as target cells and effector cells indicating S2 cells may lack a key cellular factor present in mammalian cells that is required for cell fusion. Thus, insect cells may provide a novel tool to study the interaction of HSV-1 glycoproteins and cellular factors required for fusion, as well as a means to identify unknown cellular factors required for HSV replication.
Collapse
Affiliation(s)
- Qing Fan
- Northwestern University, Department of Microbiology-Immunology, Ward 6-241, 303 East Chicago Avenue, Chicago, IL 60611, United States
| | | | | |
Collapse
|
17
|
Carter C. Alzheimer's Disease: APP, Gamma Secretase, APOE, CLU, CR1, PICALM, ABCA7, BIN1, CD2AP, CD33, EPHA1, and MS4A2, and Their Relationships with Herpes Simplex, C. Pneumoniae, Other Suspect Pathogens, and the Immune System. Int J Alzheimers Dis 2011; 2011:501862. [PMID: 22254144 PMCID: PMC3255168 DOI: 10.4061/2011/501862] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Accepted: 09/02/2011] [Indexed: 12/26/2022] Open
Abstract
Alzheimer's disease susceptibility genes, APP and gamma-secretase, are involved in the herpes simplex life cycle, and that of other suspect pathogens (C. pneumoniae, H. pylori, C. neoformans, B. burgdorferri, P. gingivalis) or immune defence. Such pathogens promote beta-amyloid deposition and tau phosphorylation and may thus be causative agents, whose effects are conditioned by genes. The antimicrobial effects of beta-amyloid, the localisation of APP/gamma-secretase in immunocompetent dendritic cells, and gamma secretase cleavage of numerous pathogen receptors suggest that this network is concerned with pathogen disposal, effects which may be abrogated by the presence of beta-amyloid autoantibodies in the elderly. These autoantibodies, as well as those to nerve growth factor and tau, also observed in Alzheimer's disease, may well be antibodies to pathogens, due to homology between human autoantigens and pathogen proteins. NGF or tau antibodies promote beta-amyloid deposition, neurofibrillary tangles, or cholinergic neuronal loss, and, with other autoantibodies, such as anti-ATPase, are potential agents of destruction, whose formation is dictated by sequence homology between pathogen and human proteins, and thus by pathogen strain and human genes. Pathogen elimination in the ageing population and removal of culpable autoantibodies might reduce the incidence and offer hope for a cure in this affliction.
Collapse
Affiliation(s)
- Chris Carter
- PolygenicPathways, Flat 2, 40 Baldslow Road, Hastings, East Sussex TN34 2EY, UK
| |
Collapse
|
18
|
A single-amino-acid substitution in herpes simplex virus 1 envelope glycoprotein B at a site required for binding to the paired immunoglobulin-like type 2 receptor alpha (PILRalpha) abrogates PILRalpha-dependent viral entry and reduces pathogenesis. J Virol 2010; 84:10773-83. [PMID: 20686018 DOI: 10.1128/jvi.01166-10] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Paired immunoglobulin-like type 2 receptor α (PILRα) is a herpes simplex virus 1 (HSV-1) entry receptor that associates with O-glycans on HSV-1 envelope glycoprotein B (gB). Two threonine residues (Thr-53 and Thr-480) in gB, which are required for the addition of the principal gB O-glycans, are essential for binding to soluble PILRα. However, the role of the two threonines in PILRα-dependent viral entry remains to be elucidated. Therefore, we constructed a recombinant HSV-1 carrying an alanine replacement of gB Thr-53 alone (gB-T53A) or of both gB Thr-53 and Thr-480 (gB-T53/480A) and demonstrated that these mutations abrogated viral entry in CHO cells expressing PILRα. In contrast, the mutations had no effect on viral entry in CHO cells expressing known host cell receptors for HSV-1 gD, viral entry in HL60 cells expressing myelin-associated glycoprotein (MAG) (another HSV-1 gB receptor), viral attachment to heparan sulfate, and viral replication in PILRα-negative cells. These results support the hypothesis that gB Thr-53 and Thr-480 as well as gB O-glycosylation, probably at these sites, are critical for PILRα-dependent viral entry. Interestingly, following corneal inoculation in mice, the gB-T53A and gB-T53/480A mutations significantly reduced viral replication in the cornea, the development of herpes stroma keratitis, and neuroinvasiveness. The abilities of HSV-1 to enter cells in a PILRα-dependent manner and to acquire specific carbohydrates on gB are therefore linked to an increase in viral replication and virulence in the experimental murine model.
Collapse
|
19
|
Binding of herpes simplex virus glycoprotein B (gB) to paired immunoglobulin-like type 2 receptor alpha depends on specific sialylated O-linked glycans on gB. J Virol 2009; 83:13042-5. [PMID: 19812165 DOI: 10.1128/jvi.00792-09] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Paired immunoglobulin-like type 2 receptor alpha (PILRalpha) is an inhibitory receptor expressed on both hematopoietic and nonhematopoietic cells. Its binding to a cellular ligand, CD99, depends on the presence of sialylated O-linked glycans on CD99. Glycoprotein B (gB) of herpes simplex virus type 1 (HSV-1) binds to PILRalpha, and this association is involved in HSV-1 infection. Here, we found that the presence of sialylated O-glycans on gB is required for gB to associate with PILRalpha. Furthermore, we identified two threonine residues on gB that are essential for the addition of the principal O-glycans acquired by gB and that are also essential for the binding of PILRalpha to gB.
Collapse
|
20
|
Differential effects on cell fusion activity of mutations in herpes simplex virus 1 glycoprotein B (gB) dependent on whether a gD receptor or a gB receptor is overexpressed. J Virol 2009; 83:7384-90. [PMID: 19457990 DOI: 10.1128/jvi.00087-09] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Glycoprotein B (gB) of herpes simplex virus (HSV) is one of four glycoproteins essential for viral entry and cell fusion. Recently, paired immunoglobulin-like type 2 receptor (PILRalpha) was identified as a receptor for HSV type 1 (HSV-1) gB. Both PILRalpha and a gD receptor were shown to participate in HSV-1 entry into certain cell types. The purpose of this study was to determine whether insertional mutations in gB had differential effects on its function with PILRalpha and the gD receptor, nectin-1. Previously described gB mutants and additional newly characterized mutants were used in this study. We found that insertional mutations near the N terminus and C terminus of gB and especially in the central region of the ectodomain reduced cell fusion activity when PILRalpha was overexpressed much more than when nectin-1 was overexpressed. Most of the insertions reduced the binding of gB to PILRalpha, for at least some forms of gB, but this reduction did not necessarily correlate with the selective reduction in cell fusion activity with PILRalpha. These results suggest that the regions targeted by the relevant mutations are critical for functional activity with PILRalpha. They also suggest that, although both the binding of gB to a gB receptor and the binding of gD to a gD receptor may be required for HSV-induced cell fusion, the two receptor-binding activities may have unequal weights in triggering fusogenic activity, depending on the ratios of gB and gD receptors or other factors.
Collapse
|
21
|
|
22
|
Akkarawongsa R, Potocky TB, English EP, Gellman SH, Brandt CR. Inhibition of herpes simplex virus type 1 infection by cationic beta-peptides. Antimicrob Agents Chemother 2008; 52:2120-9. [PMID: 18391029 PMCID: PMC2415802 DOI: 10.1128/aac.01424-07] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2007] [Revised: 12/17/2007] [Accepted: 03/28/2008] [Indexed: 11/20/2022] Open
Abstract
Previously, it was shown that cationic alpha-peptides derived from the human immunodeficiency virus TAT protein transduction domain blocked herpes simplex virus type 1 (HSV-1) entry. We now show that cationic oligomers of beta-amino acids ("beta-peptides") inhibit HSV-1 infection. Among three cationic beta-peptides tested, the most effective inhibition was observed for the one with a strong propensity to adopt a helical conformation in which cationic and hydrophobic residues are segregated from one another ("globally amphiphilic helix"). The antiviral effect was not cell type specific. Inhibition of virus infection by the beta-peptides occurred at the postattachment penetration step, with a 50% effective concentration of 3 muM for the most-effective beta-peptide. The beta-peptides did not inactivate virions in solution, nor did they induce resistance to infection when cells were pretreated with the beta-peptides. The beta-peptides showed little if any toxicity toward Vero cells. These results raise the possibility that cationic beta-peptides may be useful antiviral agents for HSV-1 and demonstrate the potential of beta-peptides as novel antiviral drugs.
Collapse
Affiliation(s)
- Radeekorn Akkarawongsa
- Program in Cell and Molecular Biology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | | | | | | |
Collapse
|