1
|
Maliano MR, Yetming KD, Kalejta RF. Triple lysine and nucleosome-binding motifs of the viral IE19 protein are required for human cytomegalovirus S-phase infections. mBio 2024; 15:e0016224. [PMID: 38695580 PMCID: PMC11237493 DOI: 10.1128/mbio.00162-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 02/29/2024] [Indexed: 06/13/2024] Open
Abstract
Herpesvirus genomes are maintained as extrachromosomal plasmids within the nuclei of infected cells. Some herpesviruses persist within dividing cells, putting the viral genome at risk of being lost to the cytoplasm during mitosis because karyokinesis (nuclear division) requires nuclear envelope breakdown. Oncogenic herpesviruses (and papillomaviruses) avoid genome loss during mitosis by tethering their genomes to cellular chromosomes, thereby ensuring viral genome uptake into newly formed nuclei. These viruses use viral proteins with DNA- and chromatin-binding capabilities to physically link viral and cellular genomes together in a process called tethering. The known viral tethering proteins of human papillomavirus (E2), Epstein-Barr virus (EBNA1), and Kaposi's sarcoma-associated herpesvirus (LANA) each contain two independent domains required for genome tethering, one that binds sequence specifically to the viral genome and another that binds to cellular chromatin. This latter domain is called a chromatin tethering domain (CTD). The human cytomegalovirus UL123 gene encodes a CTD that is required for the virus to productively infect dividing fibroblast cells within the S phase of the cell cycle, presumably by tethering the viral genome to cellular chromosomes during mitosis. The CTD-containing UL123 gene product that supports S-phase infections is the IE19 protein. Here, we define two motifs in IE19 required for S-phase infections: an N-terminal triple lysine motif and a C-terminal nucleosome-binding motif within the CTD.IMPORTANCEThe IE19 protein encoded by human cytomegalovirus (HCMV) is required for S-phase infection of dividing cells, likely because it tethers the viral genome to cellular chromosomes, thereby allowing them to survive mitosis. The mechanism through which IE19 tethers viral genomes to cellular chromosomes is not understood. For human papillomavirus, Epstein-Barr virus, and Kaposi's sarcoma-associated herpesvirus, viral genome tethering is required for persistence (latency) and pathogenesis (oncogenesis). Like these viruses, HCMV also achieves latency, and it modulates the properties of glioblastoma multiforme tumors. Therefore, defining the mechanism through which IE19 tethers viral genomes to cellular chromosomes may help us understand, and ultimately combat or control, HCMV latency and oncomodulation.
Collapse
Affiliation(s)
- Minor R. Maliano
- Institute for Molecular Virology, University of Wisconsin–Madison, Madison, Wisconsin, USA
- McArdle Laboratory for Cancer Research, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Kristen D. Yetming
- Institute for Molecular Virology, University of Wisconsin–Madison, Madison, Wisconsin, USA
- McArdle Laboratory for Cancer Research, University of Wisconsin–Madison, Madison, Wisconsin, USA
- Molecular Biology, Charles River Laboratories, Wayne, Pennsylvania, USA
| | - Robert F. Kalejta
- Institute for Molecular Virology, University of Wisconsin–Madison, Madison, Wisconsin, USA
- McArdle Laboratory for Cancer Research, University of Wisconsin–Madison, Madison, Wisconsin, USA
| |
Collapse
|
2
|
Bromodomain Protein BRD4-Mediated Mutant p53 Transcription Promotes TNBC Progression. Int J Mol Sci 2022; 23:ijms232315163. [PMID: 36499487 PMCID: PMC9738555 DOI: 10.3390/ijms232315163] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/25/2022] [Accepted: 11/30/2022] [Indexed: 12/03/2022] Open
Abstract
TP53 is the most common mutated gene in human cancer. Mutant p53 protein loses its tumor-suppressor properties and gains oncogenic activity. Mutant p53 is a therapeutic target in a broad range of cancer types. However, how mutant p53 is epigenetically regulated during tumor progression remains elusive. In this study, we found that the upregulation of mutant p53 is mediated by bromodomain protein BRD4 in triple-negative breast cancer (TNBC) cells. Inhibition of BRD4 with its inhibitor JQ1 or knockdown of BRD4 suppressed the transcription of mutant p53, which led to the re-expression of p21, the inhibition of S-phase entry, and colony formation in TNBC cells. BRD4 also positively regulated the transcription of wild-type p53, whereas JQ1 treatment and knockdown of BRD4 decreased the expression of p21 in MCF-7 cells. Knockdown of BRD4 resulted in attenuation of TNBC tumor growth in vivo. Taken together, our results uncover a novel regulatory mechanism of mutant p53 via BRD4, and suggest that the bromodomain inhibitor suppresses tumorigenesis through targeting mutant p53 in TNBC.
Collapse
|
3
|
Chen IP, Ott M. Viral Hijacking of BET Proteins. Viruses 2022; 14:2274. [PMID: 36298829 PMCID: PMC9609653 DOI: 10.3390/v14102274] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/09/2022] [Accepted: 10/11/2022] [Indexed: 11/29/2022] Open
Abstract
Proteins of the bromodomain and exterminal domain (BET) family mediate critical host functions such as cell proliferation, transcriptional regulation, and the innate immune response, which makes them preferred targets for viruses. These multidomain proteins are best known as transcriptional effectors able to read acetylated histone and non-histone proteins through their tandem bromodomains. They also contain other short motif-binding domains such as the extraterminal domain, which recognizes transcriptional regulatory proteins. Here, we describe how different viruses have evolved to hijack or disrupt host BET protein function through direct interactions with BET family members to support their own propagation. The network of virus-BET interactions emerges as highly intricate, which may complicate the use of small-molecule BET inhibitors-currently in clinical development for the treatment of cancer and cardiovascular diseases-to treat viral infections.
Collapse
Affiliation(s)
- Irene P. Chen
- Gladstone Institutes, San Francisco, CA 94158, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Melanie Ott
- Gladstone Institutes, San Francisco, CA 94158, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| |
Collapse
|
4
|
Lara-Ureña N, García-Domínguez M. Relevance of BET Family Proteins in SARS-CoV-2 Infection. Biomolecules 2021; 11:1126. [PMID: 34439792 PMCID: PMC8391731 DOI: 10.3390/biom11081126] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/22/2021] [Accepted: 07/27/2021] [Indexed: 12/14/2022] Open
Abstract
The recent pandemic we are experiencing caused by the coronavirus disease 2019 (COVID-19) has put the world's population on the rack, with more than 191 million cases and more than 4.1 million deaths confirmed to date. This disease is caused by a new type of coronavirus, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). A massive proteomic analysis has revealed that one of the structural proteins of the virus, the E protein, interacts with BRD2 and BRD4 proteins of the Bromodomain and Extra Terminal domain (BET) family of proteins. BETs are essential to cell cycle progression, inflammation and immune response and have also been strongly associated with infection by different types of viruses. The fundamental role BET proteins play in transcription makes them appropriate targets for the propagation strategies of some viruses. Recognition of histone acetylation by BET bromodomains is essential for transcription control. The development of drugs mimicking acetyl groups, and thereby able to displace BET proteins from chromatin, has boosted interest on BETs as attractive targets for therapeutic intervention. The success of these drugs against a variety of diseases in cellular and animal models has been recently enlarged with promising results from SARS-CoV-2 infection studies.
Collapse
Affiliation(s)
| | - Mario García-Domínguez
- Andalusian Centre for Molecular Biology and Regenerative Medicine (CABIMER), CSIC-Universidad de Sevilla-Universidad Pablo de Olavide, Av. Américo Vespucio 24, 41092 Seville, Spain;
| |
Collapse
|
5
|
Lotke R, Schneeweiß U, Pietrek M, Günther T, Grundhoff A, Weidner-Glunde M, Schulz TF. Brd/BET Proteins Influence the Genome-Wide Localization of the Kaposi's Sarcoma-Associated Herpesvirus and Murine Gammaherpesvirus Major Latency Proteins. Front Microbiol 2020; 11:591778. [PMID: 33193257 PMCID: PMC7642799 DOI: 10.3389/fmicb.2020.591778] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 09/28/2020] [Indexed: 01/22/2023] Open
Abstract
The rhadinoviruses Kaposi’s Sarcoma-associated herpesvirus (KSHV) and murine gammaherpesvirus (MHV-68) persist in infected hosts in a latent state that is characterized by the absence of virus production and by restricted viral gene expression. Their major latency protein, the latency-associated nuclear antigen (kLANA for KSHV and mLANA for MHV-68), is essential for viral genome maintenance and replication and involved in transcriptional regulation. Both kLANA and mLANA interact with cellular chromatin-associated proteins, among them the Bromodomain and Extra Terminal domain (Brd/BET) proteins, which recruit cellular and viral proteins to acetylated histones through their bromodomains and modulate cellular gene expression. Brd/BET proteins also play a role in the tethering, replication, segregation or integration of a diverse group of viral DNA genomes. In this study we explored if Brd/BET proteins influence the localization of the LANAs to preferential regions in the host chromatin and thereby contribute to kLANA- or mLANA-mediated transcriptional regulation. Using ChIP-Seq, we revealed a genome-wide co-enrichment of kLANA with Brd2/4 near cellular and viral transcriptional start sites (TSS). Treatment with I-BET151, an inhibitor of Brd/BET, displaced kLANA and Brd2/4 from TSS in the viral and host chromatin, but did not affect the direct binding of kLANA to kLANA-binding sites (LBS) in the KSHV latent origin of replication. Similarly, mLANA, but not a mLANA mutant deficient for binding to Brd2/4, also associated with cellular TSS. We compared the transcriptome of KSHV-infected with uninfected and kLANA-expressing human B cell lines, as well as a murine B cell line expressing mLANA or a Brd2/4-binding deficient mLANA mutant. We found that only a minority of cellular genes, whose TSS are occupied by kLANA or mLANA, is transcriptionally regulated by these latency proteins. Our findings extend previous reports on a preferential deposition of kLANA on cellular TSS and show that this characteristic chromatin association pattern is at least partially determined by the interaction of these viral latency proteins with members of the Brd/BET family of chromatin modulators.
Collapse
Affiliation(s)
- Rishikesh Lotke
- Institut für Virologie, Medizinische Hochschule Hannover, Hanover, Germany.,German Center for Infection Research, Hannover-Braunschweig and Hamburg Sites, Hanover, Germany
| | - Ulrike Schneeweiß
- Institut für Virologie, Medizinische Hochschule Hannover, Hanover, Germany
| | - Marcel Pietrek
- Institut für Virologie, Medizinische Hochschule Hannover, Hanover, Germany
| | - Thomas Günther
- Heinrich-Pette-Institut, Leibniz-Institut für Experimentelle Virologie, Hamburg, Germany
| | - Adam Grundhoff
- German Center for Infection Research, Hannover-Braunschweig and Hamburg Sites, Hanover, Germany.,Heinrich-Pette-Institut, Leibniz-Institut für Experimentelle Virologie, Hamburg, Germany
| | - Magdalena Weidner-Glunde
- Institut für Virologie, Medizinische Hochschule Hannover, Hanover, Germany.,German Center for Infection Research, Hannover-Braunschweig and Hamburg Sites, Hanover, Germany
| | - Thomas F Schulz
- Institut für Virologie, Medizinische Hochschule Hannover, Hanover, Germany.,German Center for Infection Research, Hannover-Braunschweig and Hamburg Sites, Hanover, Germany
| |
Collapse
|
6
|
Salinas E, Gupta A, Sifford JM, Oldenburg DG, White DW, Forrest JC. Conditional mutagenesis in vivo reveals cell type- and infection stage-specific requirements for LANA in chronic MHV68 infection. PLoS Pathog 2018; 14:e1006865. [PMID: 29364981 PMCID: PMC5798852 DOI: 10.1371/journal.ppat.1006865] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 02/05/2018] [Accepted: 01/09/2018] [Indexed: 12/14/2022] Open
Abstract
Gammaherpesvirus (GHV) pathogenesis is a complex process that involves productive viral replication, dissemination to tissues that harbor lifelong latent infection, and reactivation from latency back into a productive replication cycle. Traditional loss-of-function mutagenesis approaches in mice using murine gammaherpesvirus 68 (MHV68), a model that allows for examination of GHV pathogenesis in vivo, have been invaluable for defining requirements for specific viral gene products in GHV infection. But these approaches are insufficient to fully reveal how viral gene products contribute when the encoded protein facilitates multiple processes in the infectious cycle and when these functions vary over time and from one host tissue to another. To address this complexity, we developed an MHV68 genetic platform that enables cell-type-specific and inducible viral gene deletion in vivo. We employed this system to re-evaluate functions of the MHV68 latency-associated nuclear antigen (mLANA), a protein with roles in both viral replication and latency. Cre-mediated deletion in mice of loxP-flanked ORF73 demonstrated the necessity of mLANA in B cells for MHV68 latency establishment. Impaired latency during the transition from draining lymph nodes to blood following mLANA deletion also was observed, supporting the hypothesis that B cells are a major conduit for viral dissemination. Ablation of mLANA in infected germinal center (GC) B cells severely impaired viral latency, indicating the importance of viral passage through the GC for latency establishment. Finally, induced ablation of mLANA during latency resulted in complete loss of affected viral genomes, indicating that mLANA is critically important for maintenance of viral genomes during stable latency. Collectively, these experiments provide new insights into LANA homolog functions in GHV colonization of the host and highlight the potential of a new MHV68 genetic platform to foster a more complete understanding of viral gene functions at discrete stages of GHV pathogenesis. Gammaherpesviruses (GHVs), including the human pathogens Epstein-Barr virus and Kaposi sarcoma-associated herpesvirus, establish lifelong infections that can lead to cancer. Defining the functions of viral gene products in acute replication and chronic infection is important for understanding how these viruses cause disease. Infection of mice with the related GHV, murine gammaherpesvirus 68 (MHV68), provides a tractable small animal model for defining how viral gene products function in chronic infection and understanding how host factors limit disease. Here we describe the development of a new viral genetic platform that enables the targeted deletion of specific genes from the viral genome in discrete host cells or at distinct times during infection. We utilize this system to better define requirements for the conserved latency-associated nuclear antigen in MHV68 lytic replication and latency in mice. This work highlights the utility of this MHV68 genetic platform for defining mechanisms of GHV infection and disease.
Collapse
Affiliation(s)
- Eduardo Salinas
- Department of Microbiology and Immunology and Center for Microbial Pathogenesis and Host Inflammatory Responses, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Arundhati Gupta
- Department of Microbiology and Immunology and Center for Microbial Pathogenesis and Host Inflammatory Responses, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Jeffrey M. Sifford
- Department of Microbiology and Immunology and Center for Microbial Pathogenesis and Host Inflammatory Responses, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | | | - Douglas W. White
- Gundersen Health System, La Crosse, Wisconsin, United States of America
| | - J. Craig Forrest
- Department of Microbiology and Immunology and Center for Microbial Pathogenesis and Host Inflammatory Responses, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
- * E-mail:
| |
Collapse
|
7
|
Murine Gammaherpesvirus 68 Expressing Kaposi Sarcoma-Associated Herpesvirus Latency-Associated Nuclear Antigen (LANA) Reveals both Functional Conservation and Divergence in LANA Homologs. J Virol 2017; 91:JVI.00992-17. [PMID: 28747501 DOI: 10.1128/jvi.00992-17] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 07/18/2017] [Indexed: 12/12/2022] Open
Abstract
Latency-associated nuclear antigen (LANA) is a multifunctional protein encoded by members of the Rhadinovirus genus of gammaherpesviruses. Studies using murine gammaherpesvirus 68 (MHV68) demonstrated that LANA is important for acute replication, latency establishment, and reactivation in vivo Despite structural similarities in their DNA-binding domains (DBDs), LANA homologs from Kaposi sarcoma-associated herpesvirus (KSHV) and MHV68 exhibit considerable sequence divergence. We sought to determine if KSHV and MHV68 LANA homologs are functionally interchangeable. We generated an MHV68 virus that encodes KSHV LANA (kLANA) in place of MHV68 LANA (mLANA) and evaluated the virus's capacity to replicate, establish and maintain latency, and reactivate. kLANA knock-in (KLKI) MHV68 was replication competent in vitro and in vivo but exhibited slower growth kinetics and lower titers than wild-type (WT) MHV68. Following inoculation of mice, KLKI MHV68 established and maintained latency in splenocytes and peritoneal cells but did not reactivate efficiently ex vivo kLANA repressed the MHV68 promoter for ORF50, the gene that encodes the major lytic transactivator protein RTA, while mLANA did not, suggesting a likely mechanism for the KLKI MHV68 phenotypes. Bypassing this repression by providing MHV68 RTA in trans rescued KLKI MHV68 replication in tissue culture and enabled detection of KLKI MHV68 reactivation ex vivo These data demonstrate that kLANA and mLANA are functionally interchangeable for establishment and maintenance of latency and suggest that repression of lytic replication by kLANA, as previously shown with KSHV, is a kLANA-specific function that is transferable to MHV68.IMPORTANCE Kaposi sarcoma-associated herpesvirus (KSHV) and murine gammaherpesvirus 68 (MHV68) are members of the Rhadinovirus genus of gammaherpesviruses. These viruses establish lifelong infections that place their respective human and murine hosts at risk for cancer. Latency-associated nuclear antigen (LANA) is a conserved Rhadinovirus protein that is necessary for long-term chronic infection by these viruses. To better understand the conserved functions performed by LANA homologs, we generated a recombinant MHV68 virus that encodes the KSHV LANA protein in place of the MHV68 LANA homolog. We determined that the KSHV LANA protein is capable of supporting MHV68 latency in a mouse model of chronic infection but also functions to repress viral replication. This work describes an in vivo model system for defining evolutionarily conserved and divergent functions of LANA homologs in Rhadinovirus infection and disease.
Collapse
|
8
|
Padmanabhan B, Mathur S, Manjula R, Tripathi S. Bromodomain and extra-terminal (BET) family proteins: New therapeutic targets in major diseases. J Biosci 2017; 41:295-311. [PMID: 27240990 DOI: 10.1007/s12038-016-9600-6] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The bromodomains and extra-terminal domain (BET) family proteins recognize acetylated chromatin through their bromodomains (BDs) and help in regulating gene expression. BDs are chromatin 'readers': by interacting with acetylated lysines on the histone tails, they recruit chromatin-regulating proteins on the promoter region to regulate gene expression and repression. Extensive efforts have been employed by scientific communities worldwide to identify and develop potential inhibitors of BET family BDs to regulate protein expression by inhibiting acetylated histone (H3/H4) interactions. Several small molecule inhibitors have been reported, which not only have high affinity but also have high specificity to BET BDs. These developments make BET family proteins an important therapeutic targets for major diseases such as cancer, neurological disorders, obesity and inflammation. Here, we review and discuss the structural biology of BET family BDs and their applications in major diseases.
Collapse
Affiliation(s)
- Balasundaram Padmanabhan
- Department of Biophysics, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore 560 029, India
| | | | | | | |
Collapse
|
9
|
Murine Gammaherpesvirus 68 LANA and SOX Homologs Counteract ATM-Driven p53 Activity during Lytic Viral Replication. J Virol 2015; 90:2571-85. [PMID: 26676792 DOI: 10.1128/jvi.02867-15] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 12/11/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Tumor suppressor p53 is activated in response to numerous cellular stresses, including viral infection. However, whether murine gammaherpesvirus 68 (MHV68) provokes p53 during the lytic replication cycle has not been extensively evaluated. Here, we demonstrate that MHV68 lytic infection induces p53 phosphorylation and stabilization in a manner that is dependent on the DNA damage response (DDR) kinase ataxia telangiectasia mutated (ATM). The induction of p53 during MHV68 infection occurred in multiple cell types, including splenocytes of infected mice. ATM and p53 activation required early viral gene expression but occurred independently of viral DNA replication. At early time points during infection, p53-responsive cellular genes were induced, coinciding with p53 stabilization and phosphorylation. However, p53-related gene expression subsided as infection progressed, even though p53 remained stable and phosphorylated. Infected cells also failed to initiate p53-dependent gene expression and undergo apoptosis in response to treatment with exogenous p53 agonists. The inhibition of p53 responses during infection required the expression of the MHV68 homologs of the shutoff and exonuclease protein (muSOX) and latency-associated nuclear antigen (mLANA). Interestingly, mLANA, but not muSOX, was necessary to prevent p53-mediated death in MHV68-infected cells under the conditions tested. This suggests that muSOX and mLANA are differentially required for inhibiting p53 in specific settings. These data reveal that DDR responses triggered by MHV68 infection promote p53 activation. However, MHV68 encodes at least two proteins capable of limiting the potential consequences of p53 function. IMPORTANCE Gammaherpesviruses are oncogenic herpesviruses that establish lifelong chronic infections. Defining how gammaherpesviruses overcome host responses to infection is important for understanding how these viruses infect and cause disease. Here, we establish that murine gammaherpesvirus 68 induces the activation of tumor suppressor p53. p53 activation was dependent on the DNA damage response kinase ataxia telangiectasia mutated. Although active early after infection, p53 became dominantly inhibited as the infection cycle progressed. Viral inhibition of p53 was mediated by the murine gammaherpesvirus 68 homologs of muSOX and mLANA. The inhibition of the p53 pathway enabled infected cells to evade p53-mediated cell death responses. These data demonstrate that a gammaherpesvirus encodes multiple proteins to limit p53-mediated responses to productive viral infection, which likely benefits acute viral replication and the establishment of chronic infection.
Collapse
|
10
|
Identification of Viral and Host Proteins That Interact with Murine Gammaherpesvirus 68 Latency-Associated Nuclear Antigen during Lytic Replication: a Role for Hsc70 in Viral Replication. J Virol 2015; 90:1397-413. [PMID: 26581985 DOI: 10.1128/jvi.02022-15] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 11/10/2015] [Indexed: 12/21/2022] Open
Abstract
UNLABELLED Latency-associated nuclear antigen (LANA) is a conserved, multifunctional protein encoded by members of the rhadinovirus subfamily of gammaherpesviruses, including Kaposi sarcoma-associated herpesvirus (KSHV) and murine gammaherpesvirus 68 (MHV68). We previously demonstrated that MHV68 LANA (mLANA) is required for efficient lytic replication. However, mechanisms by which mLANA facilitates viral replication, including interactions with cellular and viral proteins, are not known. Thus, we performed a mass spectrometry-based interaction screen that defined an mLANA protein-protein interaction network for lytic viral replication consisting of 15 viral proteins and 191 cellular proteins, including 19 interactions previously reported in KSHV LANA interaction studies. We also employed a stable-isotope labeling technique to illuminate high-priority mLANA-interacting host proteins. Among the top prioritized mLANA-binding proteins was a cellular chaperone, heat shock cognate protein 70 (Hsc70). We independently validated the mLANA-Hsc70 interaction through coimmunoprecipitation and in vitro glutathione S-transferase (GST) pulldown assays. Immunofluorescence and cellular fractionation analyses comparing wild-type (WT) to mLANA-null MHV68 infections demonstrated mLANA-dependent recruitment of Hsc70 to nuclei of productively infected cells. Pharmacologic inhibition and small hairpin RNA (shRNA)-mediated knockdown of Hsc70 impaired MHV68 lytic replication, which functionally correlated with impaired viral protein expression, reduced viral DNA replication, and failure to form viral replication complexes. Replication of mLANA-null MHV68 was less affected than that of WT virus by Hsc70 inhibition, which strongly suggests that Hsc70 function in MHV68 lytic replication is at least partially mediated by its interaction with mLANA. Together these experiments identify proteins engaged by mLANA during the MHV68 lytic replication cycle and define a previously unknown role for Hsc70 in facilitating MHV68 lytic replication. IMPORTANCE Latency-associated nuclear antigen (LANA) is a conserved gamma-2-herpesvirus protein important for latency maintenance and pathogenesis. For MHV68, this includes regulating lytic replication and reactivation. While previous studies of KSHV LANA defined interactions with host cell proteins that impact latency, interactions that facilitate productive viral replication are not known. Thus, we performed a differential proteomics analysis to identify and prioritize cellular and viral proteins that interact with the MHV68 LANA homolog during lytic infection. Among the proteins identified was heat shock cognate protein 70 (Hsc70), which we determined is recruited to host cell nuclei in an mLANA-dependent process. Moreover, Hsc70 facilitates MHV68 protein expression and DNA replication, thus contributing to efficient MHV68 lytic replication. These experiments expand the known LANA-binding proteins to include MHV68 lytic replication and demonstrate a previously unappreciated role for Hsc70 in regulating viral replication.
Collapse
|
11
|
Li S, Tan M, Juillard F, Ponnusamy R, Correia B, Simas JP, Carrondo MA, McVey CE, Kaye KM. The Kaposi Sarcoma Herpesvirus Latency-associated Nuclear Antigen DNA Binding Domain Dorsal Positive Electrostatic Patch Facilitates DNA Replication and Episome Persistence. J Biol Chem 2015; 290:28084-28096. [PMID: 26420481 DOI: 10.1074/jbc.m115.674622] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Indexed: 12/15/2022] Open
Abstract
Kaposi sarcoma-associated herpesvirus (KSHV) has a causative role in several human malignancies. KSHV latency-associated nuclear antigen (LANA) mediates persistence of viral episomes in latently infected cells. LANA mediates KSHV DNA replication and segregates episomes to progeny nuclei. The structure of the LANA DNA binding domain was recently solved, revealing a positive electrostatic patch opposite the DNA binding surface, which is the site of BET protein binding. Here we investigate the functional role of the positive patch in LANA-mediated episome persistence. As expected, LANA mutants with alanine or glutamate substitutions in the central, peripheral, or lateral portions of the positive patch maintained the ability to bind DNA by EMSA. However, all of the substitution mutants were deficient for LANA DNA replication and episome maintenance. Mutation of the peripheral region generated the largest deficiencies. Despite these deficiencies, all positive patch mutants concentrated to dots along mitotic chromosomes in cells containing episomes, similar to LANA. The central and peripheral mutants, but not the lateral mutants, were reduced for BET protein interaction as assessed by co-immunoprecipitation. However, defects in BET protein binding were independent of episome maintenance function. Overall, the reductions in episome maintenance closely correlated with DNA replication deficiencies, suggesting that the replication defects account for the reduced episome persistence. Therefore, the electrostatic patch exerts a key role in LANA-mediated DNA replication and episome persistence and may act through a host cell partner(s) other than a BET protein or by inducing specific structures or complexes.
Collapse
Affiliation(s)
- Shijun Li
- Departments of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, 02115
| | - Min Tan
- Departments of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, 02115
| | - Franceline Juillard
- Departments of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, 02115
| | - Rajesh Ponnusamy
- Instituto de Tecnologia Quimica e Biologica, Universidade Nova de Lisboa, 2781-901 Oeiras, Portugal
| | - Bruno Correia
- Instituto de Tecnologia Quimica e Biologica, Universidade Nova de Lisboa, 2781-901 Oeiras, Portugal
| | - J Pedro Simas
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Maria A Carrondo
- Instituto de Tecnologia Quimica e Biologica, Universidade Nova de Lisboa, 2781-901 Oeiras, Portugal
| | - Colin E McVey
- Instituto de Tecnologia Quimica e Biologica, Universidade Nova de Lisboa, 2781-901 Oeiras, Portugal
| | - Kenneth M Kaye
- Departments of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, 02115.
| |
Collapse
|
12
|
Marmorstein R, Zhou MM. Writers and readers of histone acetylation: structure, mechanism, and inhibition. Cold Spring Harb Perspect Biol 2014; 6:a018762. [PMID: 24984779 DOI: 10.1101/cshperspect.a018762] [Citation(s) in RCA: 426] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Histone acetylation marks are written by histone acetyltransferases (HATs) and read by bromodomains (BrDs), and less commonly by other protein modules. These proteins regulate many transcription-mediated biological processes, and their aberrant activities are correlated with several human diseases. Consequently, small molecule HAT and BrD inhibitors with therapeutic potential have been developed. Structural and biochemical studies of HATs and BrDs have revealed that HATs fall into distinct subfamilies containing a structurally related core for cofactor binding, but divergent flanking regions for substrate-specific binding, catalysis, and autoregulation. BrDs adopt a conserved left-handed four-helix bundle to recognize acetyllysine; divergent loop residues contribute to substrate-specific acetyllysine recognition.
Collapse
Affiliation(s)
- Ronen Marmorstein
- Program in Gene Expression and Regulation, Wistar Institute, and Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, 19104
| | - Ming-Ming Zhou
- Department of Structural and Chemical Biology, Icahn School of Medicine at Mount Sinai, New York, New York 10065
| |
Collapse
|
13
|
Gallenkamp D, Gelato KA, Haendler B, Weinmann H. Bromodomains and their pharmacological inhibitors. ChemMedChem 2014; 9:438-64. [PMID: 24497428 DOI: 10.1002/cmdc.201300434] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 12/23/2013] [Indexed: 12/15/2022]
Abstract
Over 60 bromodomains belonging to proteins with very different functions have been identified in humans. Several of them interact with acetylated lysine residues, leading to the recruitment and stabilization of protein complexes. The bromodomain and extra-terminal domain (BET) proteins contain tandem bromodomains which bind to acetylated histones and are thereby implicated in a number of DNA-centered processes, including the regulation of gene expression. The recent identification of inhibitors of BET and non-BET bromodomains is one of the few examples in which effective blockade of a protein-protein interaction can be achieved with a small molecule. This has led to major strides in the understanding of the function of bromodomain-containing proteins and their involvement in diseases such as cancer and inflammation. Indeed, BET bromodomain inhibitors are now being clinically evaluated for the treatment of hematological tumors and have also been tested in clinical trials for the relatively rare BRD-NUT midline carcinoma. This review gives an overview of the newest developments in the field, with a focus on the biology of selected bromodomain proteins on the one hand, and on reported pharmacological inhibitors on the other, including recent examples from the patent literature.
Collapse
|
14
|
Wang JB, Dong DF, Gao K, Wang MDE. Mechanisms underlying the biological changes induced by isocitrate dehydrogenase-1 mutation in glioma cells. Oncol Lett 2014; 7:651-657. [PMID: 24520288 PMCID: PMC3919947 DOI: 10.3892/ol.2014.1806] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2013] [Accepted: 12/13/2013] [Indexed: 12/31/2022] Open
Abstract
Isocitrate dehydrogenase 1 (IDH1) mutation has been reported to be associated with an increased overall survival in patients with glioma in a number of studies. Previous studies have focused on the mutation rate and possible metabolic pathways of the mutated IDH1 gene. However, the effects of IDH1 mutation on the biological behavior of glioma cells and the associated mechanisms, as well as the possible effects they may have on clinical therapy, have not been studied. In the present study, three eukaryotic expression vectors were constructed and transfected into the U87 cell line, specifically, a wild-type form of the IDH1 gene with the enhanced green fluorescent protein (EGFP) gene, a mutated IDH1 gene with the EGFP gene and the EGFP gene only. The three stable cell lines were selected using the G418 antibiotic. The biological behaviors of the cell lines were studied and the mechanisms underlying the biological differences between the cell lines were further investigated. The present study confirmed that IDH1 mutation induced cell cycle arrest in the G1 phase and reduced the proportion of the G2/M phase, by downregulating cell division control protein 2 homolog levels, increasing bromodomain-containing protein 2 levels and markedly limiting cell proliferation. IDH1 mutation had no effect on the apoptosis rate under routine culture conditions. Serum chemotaxis assays showed that IDH1 mutation was markedly associated with a significantly reduced invasion ability, by reducing the levels of matrix metalloproteinase (MMP)-2 and MMP-9. From this study, it may be concluded that IDH1 mutation improves prognosis in glioma patients by altering the cell cycle, inhibiting cell proliferation and downregulating cell invasion ability. The results may provide a partial explanation for the improved prognosis of patients with mutated forms of the IDH1 gene.
Collapse
Affiliation(s)
- Ju-Bo Wang
- Department of Neurosurgery, First Affiliated Hospital of the Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Dan-Feng Dong
- Department of Oncology, First Affiliated Hospital of the Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Ke Gao
- Department of Neurosurgery, First Affiliated Hospital of the Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Mao-DE Wang
- Department of Neurosurgery, First Affiliated Hospital of the Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
15
|
Gupta SS, Maetzig T, Maertens GN, Sharif A, Rothe M, Weidner-Glunde M, Galla M, Schambach A, Cherepanov P, Schulz TF. Bromo- and extraterminal domain chromatin regulators serve as cofactors for murine leukemia virus integration. J Virol 2013; 87:12721-36. [PMID: 24049186 PMCID: PMC3838128 DOI: 10.1128/jvi.01942-13] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 09/09/2013] [Indexed: 01/03/2023] Open
Abstract
Retroviral integrase (IN) proteins catalyze the permanent integration of proviral genomes into host DNA with the help of cellular cofactors. Lens epithelium-derived growth factor (LEDGF) is a cofactor for lentiviruses, including human immunodeficiency virus type 1 (HIV-1), and targets lentiviral integration toward active transcription units in the host genome. In contrast to lentiviruses, murine leukemia virus (MLV), a gammaretrovirus, tends to integrate near transcription start sites. Here, we show that the bromodomain and extraterminal domain (BET) proteins BRD2, BRD3, and BRD4 interact with gammaretroviral INs and stimulate the catalytic activity of MLV IN in vitro. We mapped the interaction site to a characteristic structural feature within the BET protein extraterminal (ET) domain and to three amino acids in MLV IN. The ET domains of different BET proteins stimulate MLV integration in vitro and, in the case of BRD2, also in vivo. Furthermore, two small-molecule BET inhibitors, JQ1 and I-BET, decrease MLV integration and shift it away from transcription start sites. Our data suggest that BET proteins might act as chromatin-bound acceptors for the MLV preintegration complex. These results could pave a way to redirecting MLV DNA integration as a basis for creating safer retroviral vectors.
Collapse
Affiliation(s)
| | - Tobias Maetzig
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Goedele N. Maertens
- Division of Medicine, St. Mary's Campus, Imperial College London, London, United Kingdom
| | - Azar Sharif
- Division of Medicine, St. Mary's Campus, Imperial College London, London, United Kingdom
| | - Michael Rothe
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | | | - Melanie Galla
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- Division of Hematology/Oncology, Children's Hospital Boston, Harvard Medical School, Boston, Massachusetts, USA
| | - Peter Cherepanov
- Division of Medicine, St. Mary's Campus, Imperial College London, London, United Kingdom
- Chromatin Structure and Mobile DNA Laboratory, Cancer Research UK, Herts, United Kingdom
| | - Thomas F. Schulz
- Institute of Virology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
16
|
Abstract
INTRODUCTION The bromodomain (BRD) and extra-C terminal domain (BET) protein family consists of four members (BRD2, BRD3, BRD4 and BRDT). These "epigenetic readers" bind to acetyllysine (KAc) residues on the tails of histones H3 and H4, and regulate chromatin structure and gene expression. There is increasing evidence of their role in human disease, and recently a number of small-molecule inhibitors have been reported. There is increasing interest in the inhibition of BET proteins for a variety of therapeutic applications that have resulted in considerable patent activity from academia and biotechnology and pharmaceutical companies. AREAS COVERED Data supporting the use of BET inhibitors in treating disease are outlined, and the current patent literature is discussed. The survey is focused on patents claiming compounds as BET inhibitors and additional patents covering compounds now reported as BET inhibitors have been included. EXPERT OPINION There is now compelling preclinical data demonstrating BET inhibition as a strategy to target processes known to be involved in disease development and progression with clinical trials of two bona fide BET inhibitors now underway. Patent activity in this area is increasing with initial activity focused on variations to reported BET inhibitors and more recent patents disclosing novel chemotypes as BET inhibitors.
Collapse
Affiliation(s)
- Jean-Marc Garnier
- The Walter and Eliza Hall Institute of Medical Research , 1G Royal Pde, Parkville, VIC, 3052 , Australia +61 3 9345 2957 ; +61 3 9347 0852 ;
| | | | | |
Collapse
|
17
|
Correia B, Cerqueira SA, Beauchemin C, Pires de Miranda M, Li S, Ponnusamy R, Rodrigues L, Schneider TR, Carrondo MA, Kaye KM, Simas JP, McVey CE. Crystal structure of the gamma-2 herpesvirus LANA DNA binding domain identifies charged surface residues which impact viral latency. PLoS Pathog 2013; 9:e1003673. [PMID: 24146618 PMCID: PMC3798461 DOI: 10.1371/journal.ppat.1003673] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 08/16/2013] [Indexed: 01/12/2023] Open
Abstract
Latency-associated nuclear antigen (LANA) mediates γ2-herpesvirus genome persistence and regulates transcription. We describe the crystal structure of the murine gammaherpesvirus-68 LANA C-terminal domain at 2.2 Å resolution. The structure reveals an alpha-beta fold that assembles as a dimer, reminiscent of Epstein-Barr virus EBNA1. A predicted DNA binding surface is present and opposite this interface is a positive electrostatic patch. Targeted DNA recognition substitutions eliminated DNA binding, while certain charged patch mutations reduced bromodomain protein, BRD4, binding. Virus containing LANA abolished for DNA binding was incapable of viable latent infection in mice. Virus with mutations at the charged patch periphery exhibited substantial deficiency in expansion of latent infection, while central region substitutions had little effect. This deficiency was independent of BRD4. These results elucidate the LANA DNA binding domain structure and reveal a unique charged region that exerts a critical role in viral latent infection, likely acting through a host cell protein(s). Herpesviruses establish life-long latent infections. During latency, gammaherpesviruses, such as Kaposi's sarcoma-associated herpesvirus (KSHV), persist as multicopy, circularized genomes in the cell nucleus and express a small subset of viral genes. KSHV latency-associated nuclear antigen (LANA) is the predominant gene expressed during latent infection. C-terminal LANA binds KSHV terminal repeat (TR) DNA to mediate DNA replication. TR DNA binding also allows tethering of the viral genome to mitotic chromosomes to mediate DNA segregation to daughter nuclei. We describe here the crystal structure of the murine gammaherpesvirus 68 LANA DNA binding domain, which is homologous to that of KSHV LANA. The structure revealed a dimer and we identified residues involved in the interaction with viral DNA. Mutation of these residues abolished DNA binding and viable latency establishment in a mouse model of infection. We also identified a positively charged patch on the dimer surface opposite to the DNA binding region and found this patch exerts an important role in the virus's ability to expand latent infection in vivo. This work elucidates the structure of the LANA DNA binding domain and identifies a novel surface feature that is critical for viral latent infection, likely by acting through a host cell protein.
Collapse
Affiliation(s)
- Bruno Correia
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Sofia A. Cerqueira
- Instituto de Microbiologia e Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Chantal Beauchemin
- Departments of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Marta Pires de Miranda
- Instituto de Microbiologia e Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Shijun Li
- Departments of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Rajesh Ponnusamy
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Lénia Rodrigues
- Instituto de Microbiologia e Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | | | - Maria A. Carrondo
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
- * E-mail: (MAC); (KMK); (JPS); (CEM)
| | - Kenneth M. Kaye
- Departments of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail: (MAC); (KMK); (JPS); (CEM)
| | - J. Pedro Simas
- Instituto de Microbiologia e Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- * E-mail: (MAC); (KMK); (JPS); (CEM)
| | - Colin E. McVey
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
- * E-mail: (MAC); (KMK); (JPS); (CEM)
| |
Collapse
|
18
|
A structural basis for BRD2/4-mediated host chromatin interaction and oligomer assembly of Kaposi sarcoma-associated herpesvirus and murine gammaherpesvirus LANA proteins. PLoS Pathog 2013; 9:e1003640. [PMID: 24146614 PMCID: PMC3798688 DOI: 10.1371/journal.ppat.1003640] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2013] [Accepted: 08/03/2013] [Indexed: 12/31/2022] Open
Abstract
Kaposi sarcoma-associated herpesvirus (KSHV) establishes a lifelong latent infection and causes several malignancies in humans. Murine herpesvirus 68 (MHV-68) is a related γ2-herpesvirus frequently used as a model to study the biology of γ-herpesviruses in vivo. The KSHV latency-associated nuclear antigen (kLANA) and the MHV68 mLANA (orf73) protein are required for latent viral replication and persistence. Latent episomal KSHV genomes and kLANA form nuclear microdomains, termed ‘LANA speckles’, which also contain cellular chromatin proteins, including BRD2 and BRD4, members of the BRD/BET family of chromatin modulators. We solved the X-ray crystal structure of the C-terminal DNA binding domains (CTD) of kLANA and MHV-68 mLANA. While these structures share the overall fold with the EBNA1 protein of Epstein-Barr virus, they differ substantially in their surface characteristics. Opposite to the DNA binding site, both kLANA and mLANA CTD contain a characteristic lysine-rich positively charged surface patch, which appears to be a unique feature of γ2-herpesviral LANA proteins. Importantly, kLANA and mLANA CTD dimers undergo higher order oligomerization. Using NMR spectroscopy we identified a specific binding site for the ET domains of BRD2/4 on kLANA. Functional studies employing multiple kLANA mutants indicate that the oligomerization of native kLANA CTD dimers, the characteristic basic patch and the ET binding site on the kLANA surface are required for the formation of kLANA ‘nuclear speckles’ and latent replication. Similarly, the basic patch on mLANA contributes to the establishment of MHV-68 latency in spleen cells in vivo. In summary, our data provide a structural basis for the formation of higher order LANA oligomers, which is required for nuclear speckle formation, latent replication and viral persistence. Kaposi sarcoma-associated herpesvirus (KSHV) causes Kaposi Sarcoma, Primary Effusion lymphoma and the plasma cell variant of Multicentric Castleman's Disease. Its oncogenic effect is linked to its ability to persist in a latent form for the life time of infected individuals. During latency viral genomes are replicated and passed to daughter cells in synchrony with the infected cell without the formation of new virions. A key viral protein in this process is the latency-associated nuclear antigen, LANA. In latently infected cells, viral genomes and LANA form characteristic nuclear microdomains, termed ‘LANA speckles’, which also contain cellular chromatin components. We have solved the crystal structure of the c-terminal, DNA-binding, domain (CTD) of KSHV LANA (kLANA) and its homologue mLANA of a related murine γ2-herpesvirus, which is frequently used as a model to study latent persistence in vivo. We also identified the binding site for two chromatin proteins, BRD2/4, by NMR spectroscopy. We demonstrate the functional importance of these structural features, and their contribution to latent replication and ‘LANA speckle’ formation, in cell culture and in vivo experiments. Our results provide a structural basis for the assembly of LANA-containing nuclear structures that are required for latent viral replication and persistence.
Collapse
|
19
|
Stahl JA, Chavan SS, Sifford JM, MacLeod V, Voth DE, Edmondson RD, Forrest JC. Phosphoproteomic analyses reveal signaling pathways that facilitate lytic gammaherpesvirus replication. PLoS Pathog 2013; 9:e1003583. [PMID: 24068923 PMCID: PMC3777873 DOI: 10.1371/journal.ppat.1003583] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 07/15/2013] [Indexed: 12/27/2022] Open
Abstract
Lytic gammaherpesvirus (GHV) replication facilitates the establishment of lifelong latent infection, which places the infected host at risk for numerous cancers. As obligate intracellular parasites, GHVs must control and usurp cellular signaling pathways in order to successfully replicate, disseminate to stable latency reservoirs in the host, and prevent immune-mediated clearance. To facilitate a systems-level understanding of phosphorylation-dependent signaling events directed by GHVs during lytic replication, we utilized label-free quantitative mass spectrometry to interrogate the lytic replication cycle of murine gammaherpesvirus-68 (MHV68). Compared to controls, MHV68 infection regulated by 2-fold or greater ca. 86% of identified phosphopeptides - a regulatory scale not previously observed in phosphoproteomic evaluations of discrete signal-inducing stimuli. Network analyses demonstrated that the infection-associated induction or repression of specific cellular proteins globally altered the flow of information through the host phosphoprotein network, yielding major changes to functional protein clusters and ontologically associated proteins. A series of orthogonal bioinformatics analyses revealed that MAPK and CDK-related signaling events were overrepresented in the infection-associated phosphoproteome and identified 155 host proteins, such as the transcription factor c-Jun, as putative downstream targets. Importantly, functional tests of bioinformatics-based predictions confirmed ERK1/2 and CDK1/2 as kinases that facilitate MHV68 replication and also demonstrated the importance of c-Jun. Finally, a transposon-mutant virus screen identified the MHV68 cyclin D ortholog as a viral protein that contributes to the prominent MAPK/CDK signature of the infection-associated phosphoproteome. Together, these analyses enhance an understanding of how GHVs reorganize and usurp intracellular signaling networks to facilitate infection and replication.
Collapse
Affiliation(s)
- James A. Stahl
- Dept. of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Shweta S. Chavan
- Myeloma Institute for Research and Therapy, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
- UALR/UAMS Joint Program in Bioinformatics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Jeffrey M. Sifford
- Dept. of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Veronica MacLeod
- Myeloma Institute for Research and Therapy, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Daniel E. Voth
- Dept. of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Ricky D. Edmondson
- Myeloma Institute for Research and Therapy, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - J. Craig Forrest
- Dept. of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
- * E-mail:
| |
Collapse
|
20
|
Tang X, Peng R, Ren Y, Apparsundaram S, Deguzman J, Bauer CM, Hoffman AF, Hamilton S, Liang Z, Zeng H, Fuentes ME, Demartino JA, Kitson C, Stevenson CS, Budd DC. BET bromodomain proteins mediate downstream signaling events following growth factor stimulation in human lung fibroblasts and are involved in bleomycin-induced pulmonary fibrosis. Mol Pharmacol 2013; 83:283-93. [PMID: 23115324 DOI: 10.1124/mol.112.081661] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Epigenetic alterations, such as histone acetylation, regulate the signaling outcomes and phenotypic responses of fibroblasts after growth factor stimulation. The bromodomain and extra-terminal domain-containing proteins (Brd) bind to acetylated histone residues, resulting in recruitment of components of the transcriptional machinery and subsequent gene transcription. Given the central importance of fibroblasts in tissue fibrosis, this study sought to determine the role of Brd proteins in human lung fibroblasts (LFs) after growth factor stimulation and in the murine bleomycin model of lung fibrosis. Using small interfering RNA against human Brd2 and Brd4 and pharmacologic Brd inhibitors, this study found that Brd2 and Brd4 are essential in mediating the phenotypic responses of LFs downstream of multiple growth factor pathways. Growth factor stimulation of LFs causes increased histone acetylation, association of Brd4 with growth factor-responsive genes, and enhanced transcription of these genes that could be attenuated with pharmacologic Brd inhibitors. Of note, lung fibrosis induced after intratracheal bleomycin challenge in mice could be prevented by pretreatment of animals with pharmacologic inhibitors of Brd proteins. This study is the first demonstration of a role for Brd2 and Brd4 proteins in mediating the responses of LFs after growth factor stimulation and in driving the induction of lung fibrosis in mice in response to bleomycin challenge.
Collapse
Affiliation(s)
- Xiaoyan Tang
- Inflammation Discovery Therapeutic Area, Hoffmann-La Roche Inc., 340 Kingsland Street, Nutley, NJ 07110-1199, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Stevens HC, Cham KSW, Hughes DJ, Sun R, Sample JT, Bubb VJ, Stewart JP, Quinn JP. CTCF and Sp1 interact with the Murine gammaherpesvirus 68 internal repeat elements. Virus Genes 2012; 45:265-73. [DOI: 10.1007/s11262-012-0769-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 05/29/2012] [Indexed: 01/08/2023]
|
22
|
Ballestas ME, Kaye KM. The latency-associated nuclear antigen, a multifunctional protein central to Kaposi's sarcoma-associated herpesvirus latency. Future Microbiol 2012; 6:1399-413. [PMID: 22122438 DOI: 10.2217/fmb.11.137] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Latency-associated nuclear antigen (LANA) is encoded by the Kaposi's sarcoma (KS)-associated herpesvirus (KSHV) open reading frame 73. LANA is expressed during latent KSHV infection of cells, including tumor cells, such as primary effusion lymphoma, KS and multicentric Castleman's disease. Latently infected cells have multiple extrachromosomal copies of covalently closed circular KSHV genomes (episomes) that are stably maintained in proliferating cells. LANA's best characterized function is that of mediating episome persistence. It does so by binding terminal repeat sequences to the chromosomal matrix, thus ensuring episome replication with each cell division and efficient DNA segregation to daughter nuclei after mitosis. To achieve these functions, LANA associates with different host cell proteins, including chromatin-associated proteins and proteins involved in DNA replication. In addition to episome maintenance, LANA has transcriptional regulatory effects and affects cell growth. LANA exerts these functions through interactions with different cell proteins.
Collapse
Affiliation(s)
- Mary E Ballestas
- Department of Pediatrics, Division of Infectious Diseases, University of Alabama in Birmingham, School of Medicine, Children's Harbor Building, Room 148, 1600 6th Ave South, Birmingham, AL 35233, USA
| | | |
Collapse
|
23
|
Palermo RD, Webb HM, West MJ. RNA polymerase II stalling promotes nucleosome occlusion and pTEFb recruitment to drive immortalization by Epstein-Barr virus. PLoS Pathog 2011; 7:e1002334. [PMID: 22046134 PMCID: PMC3203192 DOI: 10.1371/journal.ppat.1002334] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Accepted: 09/08/2011] [Indexed: 12/12/2022] Open
Abstract
Epstein-Barr virus (EBV) immortalizes resting B-cells and is a key etiologic agent in the development of numerous cancers. The essential EBV-encoded protein EBNA 2 activates the viral C promoter (Cp) producing a message of ~120 kb that is differentially spliced to encode all EBNAs required for immortalization. We have previously shown that EBNA 2-activated transcription is dependent on the activity of the RNA polymerase II (pol II) C-terminal domain (CTD) kinase pTEFb (CDK9/cyclin T1). We now demonstrate that Cp, in contrast to two shorter EBNA 2-activated viral genes (LMP 1 and 2A), displays high levels of promoter-proximally stalled pol II despite being constitutively active. Consistent with pol II stalling, we detect considerable pausing complex (NELF/DSIF) association with Cp. Significantly, we observe substantial Cp-specific pTEFb recruitment that stimulates high-level pol II CTD serine 2 phosphorylation at distal regions (up to +75 kb), promoting elongation. We reveal that Cp-specific pol II accumulation is directed by DNA sequences unfavourable for nucleosome assembly that increase TBP access and pol II recruitment. Stalled pol II then maintains Cp nucleosome depletion. Our data indicate that pTEFb is recruited to Cp by the bromodomain protein Brd4, with polymerase stalling facilitating stable association of pTEFb. The Brd4 inhibitor JQ1 and the pTEFb inhibitors DRB and Flavopiridol significantly reduce Cp, but not LMP1 transcript production indicating that Brd4 and pTEFb are required for Cp transcription. Taken together our data indicate that pol II stalling at Cp promotes transcription of essential immortalizing genes during EBV infection by (i) preventing promoter-proximal nucleosome assembly and ii) necessitating the recruitment of pTEFb thereby maintaining serine 2 CTD phosphorylation at distal regions.
Collapse
Affiliation(s)
- Richard D. Palermo
- School of Life Sciences, University of Sussex, Falmer, Brighton, United Kingdom
| | - Helen M. Webb
- School of Life Sciences, University of Sussex, Falmer, Brighton, United Kingdom
| | - Michelle J. West
- School of Life Sciences, University of Sussex, Falmer, Brighton, United Kingdom
| |
Collapse
|
24
|
The Brd4 extraterminal domain confers transcription activation independent of pTEFb by recruiting multiple proteins, including NSD3. Mol Cell Biol 2011; 31:2641-52. [PMID: 21555454 DOI: 10.1128/mcb.01341-10] [Citation(s) in RCA: 417] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Bromodomain protein 4 (Brd4) plays critical roles in development, cancer progression, and virus-host pathogenesis. To gain mechanistic insight into the various biological functions of Brd4, we performed a proteomic analysis to identify and characterize Brd4-associated cellular proteins. We found that the extraterminal (ET) domain, whose function has to date not been determined, interacts with NSD3, JMJD6, CHD4, GLTSCR1, and ATAD5. These ET-domain interactions were also conserved for Brd2 and Brd3, the other human BET proteins tested. We demonstrated that GLTSCR1, NSD3, and JMJD6 impart a pTEFb-independent transcriptional activation function on Brd4. NSD3 as well as JMJD6 is recruited to regulated genes in a Brd4-dependent manner. Moreover, we found that depletion of Brd4 or NSD3 reduces H3K36 methylation, demonstrating that the Brd4/NSD3 complex regulates this specific histone modification. Our results indicate that the Brd4 ET domain through the recruitment of the specific effectors regulates transcriptional activity. In particular, we show that one of these effectors, NSD3, regulates transcription by modifying the chromatin microenvironment at Brd4 target genes. Our study thus identifies the ET domain as a second important transcriptional regulatory domain for Brd4 in addition to the carboxyl-terminal domain (CTD) that interacts with pTEFb.
Collapse
|
25
|
Use of a virus-encoded enzymatic marker reveals that a stable fraction of memory B cells expresses latency-associated nuclear antigen throughout chronic gammaherpesvirus infection. J Virol 2010; 84:7523-34. [PMID: 20484501 DOI: 10.1128/jvi.02572-09] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
An integral feature of gammaherpesvirus infections is the ability to establish lifelong latency in B cells. During latency, the viral genome is maintained as an extrachomosomal episome, with stable maintenance in dividing cells mediated by the viral proteins Epstein-Barr nuclear antigen 1 (EBNA-1) for Epstein-Barr virus and latency-associated nuclear antigen (LANA) for Kaposi's sarcoma-associated herpesvirus. It is believed that the expression of episome maintenance proteins is turned off in the predominant long-term latency reservoir of resting memory B cells, suggesting that chronic gammaherpesvirus infection is primarily dormant. However, the kinetics of LANA/EBNA-1 expression in individual B-cell subsets throughout a course of infection has not been examined. The infection of mice with murine gammaherpesvirus 68 (MHV68, gammaHV68) provides a model to determine the specific cellular and molecular events that occur in vivo during lifelong gammaherpesvirus latency. In work described here, we make use of a heterologously expressed enzymatic marker to define the types of B cells that express the LANA homolog (mLANA) during chronic MHV68 infection. Our data demonstrate that mLANA is expressed in a stable fraction of B cells throughout chronic infection, with a prominent peak at 28 days. The expression of mLANA was detected in naïve follicular B cells, germinal-center B cells, and memory B cells throughout infection, with germinal-center and memory B cells accounting for more than 80% of the mLANA-expressing cells during the maintenance phase of latency. These findings suggest that the maintenance phase of latency is an active process that involves the ongoing proliferation or reseeding of latently infected memory B cells.
Collapse
|
26
|
Hughes DJ, Kipar A, Milligan SG, Cunningham C, Sanders M, Quail MA, Rajandream MA, Efstathiou S, Bowden RJ, Chastel C, Bennett M, Sample JT, Barrell B, Davison AJ, Stewart JP. Characterization of a novel wood mouse virus related to murid herpesvirus 4. J Gen Virol 2010; 91:867-79. [PMID: 19940063 PMCID: PMC2888160 DOI: 10.1099/vir.0.017327-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Accepted: 11/19/2009] [Indexed: 11/18/2022] Open
Abstract
Two novel gammaherpesviruses were isolated, one from a field vole (Microtus agrestis) and the other from wood mice (Apodemus sylvaticus). The genome of the latter, designated wood mouse herpesvirus (WMHV), was completely sequenced. WMHV had the same genome structure and predicted gene content as murid herpesvirus 4 (MuHV4; murine gammaherpesvirus 68). Overall nucleotide sequence identity between WMHV and MuHV4 was 85 % and most of the 10 kb region at the left end of the unique region was particularly highly conserved, especially the viral tRNA-like sequences and the coding regions of genes M1 and M4. The partial sequence (71 913 bp) of another gammaherpesvirus, Brest herpesvirus (BRHV), which was isolated ostensibly from a white-toothed shrew (Crocidura russula), was also determined. The BRHV sequence was 99.2 % identical to the corresponding portion of the WMHV genome. Thus, WMHV and BRHV appeared to be strains of a new virus species. Biological characterization of WMHV indicated that it grew with similar kinetics to MuHV4 in cell culture. The pathogenesis of WMHV in wood mice was also extremely similar to that of MuHV4, except for the absence of inducible bronchus-associated lymphoid tissue at day 14 post-infection and a higher load of latently infected cells at 21 days post-infection.
Collapse
Affiliation(s)
- David J. Hughes
- School of Infection and Host Defence, University of Liverpool, Liverpool L69 3GA, UK
| | - Anja Kipar
- Department of Veterinary Pathology, University of Liverpool, Liverpool, L69 7ZJ, UK
| | - Steven G. Milligan
- MRC Virology Unit, Institute of Virology, University of Glasgow, Church Street, Glasgow G11 5JR, UK
| | - Charles Cunningham
- MRC Virology Unit, Institute of Virology, University of Glasgow, Church Street, Glasgow G11 5JR, UK
| | - Mandy Sanders
- The Wellcome Trust Sanger Institute, The Wellcome Trust Genome Campus, Cambridge CB10 1SA, UK
| | - Michael A. Quail
- The Wellcome Trust Sanger Institute, The Wellcome Trust Genome Campus, Cambridge CB10 1SA, UK
| | - Marie-Adele Rajandream
- The Wellcome Trust Sanger Institute, The Wellcome Trust Genome Campus, Cambridge CB10 1SA, UK
| | - Stacey Efstathiou
- Division of Virology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | - Rory J. Bowden
- MRC Virology Unit, Institute of Virology, University of Glasgow, Church Street, Glasgow G11 5JR, UK
| | - Claude Chastel
- Laboratoire de Virologie, Faculté de Médecine, 29285 Brest, France
| | - Malcolm Bennett
- Department of Veterinary Pathology, University of Liverpool, Liverpool, L69 7ZJ, UK
| | - Jeffery T. Sample
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Bart Barrell
- The Wellcome Trust Sanger Institute, The Wellcome Trust Genome Campus, Cambridge CB10 1SA, UK
| | - Andrew J. Davison
- MRC Virology Unit, Institute of Virology, University of Glasgow, Church Street, Glasgow G11 5JR, UK
| | - James P. Stewart
- School of Infection and Host Defence, University of Liverpool, Liverpool L69 3GA, UK
| |
Collapse
|
27
|
Ottinger M, Smith JA, Schweiger MR, Robbins D, Powell MLC, You J, Howley PM. Cell-type specific transcriptional activities among different papillomavirus long control regions and their regulation by E2. Virology 2009; 395:161-71. [PMID: 19836046 DOI: 10.1016/j.virol.2009.09.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2008] [Revised: 12/26/2008] [Accepted: 09/23/2009] [Indexed: 10/20/2022]
Abstract
This study systematically examined the viral long control region (LCR) activities and their responses to E2 for human papillomavirus (HPV) types 11, 16, and 18 as well as bovine papillomavirus 1 (BPV1) in a number of different cell types, including human cervical cancer cell lines, human oral keratinocytes, BJ fibroblasts, as well as CV1 cells. The study revealed cell- and virus-type specific differences among the individual LCRs and their regulation by E2. In addition, the integration of the LCR into the host genome was identified as a critical determinant for LCR activity and its response to E2. Collectively, these data indicate a more complex level of transcriptional regulation of the LCR by cellular and viral factors than previously appreciated, including a comparatively low LCR activity and poor E2 responsiveness for HPV16 in most human cells. This study should provide a valuable framework for future transcriptional studies in the papillomavirus field.
Collapse
Affiliation(s)
- Matthias Ottinger
- Department of Pathology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Chiang CM. Brd4 engagement from chromatin targeting to transcriptional regulation: selective contact with acetylated histone H3 and H4. F1000 BIOLOGY REPORTS 2009; 1:98. [PMID: 20495683 PMCID: PMC2873783 DOI: 10.3410/b1-98] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bromodomain-containing protein 4 (Brd4) contains two tandem bromodomains (BD1 and BD2) that bind preferentially to acetylated lysine residues found in histones and nonhistone proteins. This molecular recognition allows Brd4 to associate with acetylated chromatin throughout the cell cycle and regulates transcription at targeted loci. Recruitment of positive transcription elongation factor b, and possibly the general initiation cofactor Mediator as well, plays an important role in Brd4-regulated transcription. Selective contacts with acetyl-lysines in nucleosomal histones and chromatin-binding factors likely provide a molecular switch modulating the steps from chromatin targeting to transcriptional regulation, thus further expanding the 'acetylation code' for combinatorial regulation in eukaryotes.
Collapse
Affiliation(s)
- Cheng-Ming Chiang
- Simmons Comprehensive Cancer Center, Department of Biochemistry, and Department of Pharmacology, University of Texas Southwestern Medical Center5323 Harry Hines Boulevard, Dallas, Texas 75390USA
| |
Collapse
|
29
|
Sanchez R, Zhou MM. The role of human bromodomains in chromatin biology and gene transcription. CURRENT OPINION IN DRUG DISCOVERY & DEVELOPMENT 2009; 12:659-65. [PMID: 19736624 PMCID: PMC2921942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The acetylation of histone lysine is central to providing the dynamic regulation of chromatin-based gene transcription. The bromodomain (BRD), which is the conserved structural module in chromatin-associated proteins and histone acetyltranferases, is the sole protein domain known to recognize acetyl-lysine residues on proteins. Structural analyses of the recognition of lysine-acetylated peptides derived from histones and cellular proteins by BRDs have provided new insights into the differences between and unifying features of the selectivity that BRDs exhibit in binding biological ligands. Recent research has highlighted the importance of BRD/acetyl-lysine binding in orchestrating molecular interactions in chromatin biology and regulating gene transcription. These studies suggest that modulating BRD/acetyl-lysine interactions with small molecules may provide new opportunities for the control of gene expression in human health and disease.
Collapse
Affiliation(s)
- Roberto Sanchez
- Mount Sinai School of Medicine, Department of Structural and Chemical Biology, New York, NY 10029, USA.
| | | |
Collapse
|
30
|
Regulation of aurora B expression by the bromodomain protein Brd4. Mol Cell Biol 2009; 29:5094-103. [PMID: 19596781 DOI: 10.1128/mcb.00299-09] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The bromodomain protein Brd4 plays critical roles in cellular proliferation and cell cycle progression. In this study, we investigated the involvement of Brd4 in cell cycle regulation and observed aberrant chromosome segregation and failures in cytokinesis in cancer cells as well as in primary keratinocytes in which Brd4 has been knocked down by RNA interference. Suppression of Brd4 protein levels in proliferating cells decreased Aurora B protein and transcript levels and abolished its chromosomal distribution. In contrast, exogenous Brd4 expression stimulated Aurora B promoter reporter activity and upregulated endogenous Aurora B expression. Aurora B kinase is a chromosomal passenger protein that is essential for chromosome segregation and cytokinesis. Either overexpression of Aurora B or its inactivation can induce defects in centrosome function, spindle assembly, chromosome alignment, and cytokinesis in various cancer cells. The impaired regulation of Aurora B expression in human cells by Brd4 knockdown or overexpression coincided with mitotic catastrophe and multinucleation that are typically observed when Aurora B is inactivated or overexpressed. Overall, our data suggest that Brd4 is essential for the maintenance of the cell cycle progression mediated at least in part through the control of transcription of the Aurora B kinase cell cycle regulatory gene.
Collapse
|