1
|
Brar HK, Chen E, Chang F, Lu SA, Longowal DK, Moon KM, Foster LJ, Reiner N, Nandan D. Leishmania regulates host YY1: Comparative proteomic analysis identifies infection modulated YY1 dependent proteins. PLoS One 2025; 20:e0323227. [PMID: 40373059 PMCID: PMC12080872 DOI: 10.1371/journal.pone.0323227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Accepted: 04/04/2025] [Indexed: 05/17/2025] Open
Abstract
The protein Yin-Yang 1 (YY1) is a ubiquitous multifunctional transcription factor. Interestingly, there are several cellular functions controlled by YY1 that could play a role in Leishmania pathogenesis. Leishmaniasis is a human disease caused by protozoan parasites of the genus Leishmania. This study examined the potential role of macrophage YY1 in promoting Leishmania intracellular survival. Deliberate knockdown of YY1 resulted in attenuated survival of Leishmania in infected macrophages, suggesting a role of YY1 in Leishmania persistence. Biochemical fractionation studies revealed Leishmania infection caused redistribution of YY1 to the cytoplasm from the nucleus where it is primarily located. Inhibition of nuclear transport by leptomycin B attenuates infection-mediated YY1 redistribution and reduces Leishmania survival. This suggests that Leishmania induces the translocation of YY1 from the nucleus to the cytoplasm of infected cells, where it may regulate host molecules to favour parasite survival. A label-free quantitative whole proteome approach showed that the expression of a large number of macrophage proteins was dependent on the YY1 level. Interestingly, several of these proteins were modulated in Leishmania-infected cells, revealing YY1-dependent host response and suggesting their potential role in Leishmania pathogenesis. Together, this study identifies YY1 as a novel virulence factor that promotes Leishmania survival inside host macrophages.
Collapse
Affiliation(s)
- Harsimran Kaur Brar
- Division of Infectious Diseases, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Eleanor Chen
- Division of Infectious Diseases, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Fabian Chang
- Division of Infectious Diseases, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Shawna Angel Lu
- Division of Infectious Diseases, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Dilraj Kaur Longowal
- Division of Infectious Diseases, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kyung-Mee Moon
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Leonard J. Foster
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Neil Reiner
- Division of Infectious Diseases, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Devki Nandan
- Division of Infectious Diseases, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
2
|
Newman LE, Weiser Novak S, Rojas GR, Tadepalle N, Schiavon CR, Grotjahn DA, Towers CG, Tremblay MÈ, Donnelly MP, Ghosh S, Medina M, Rocha S, Rodriguez-Enriquez R, Chevez JA, Lemersal I, Manor U, Shadel GS. Mitochondrial DNA replication stress triggers a pro-inflammatory endosomal pathway of nucleoid disposal. Nat Cell Biol 2024; 26:194-206. [PMID: 38332353 PMCID: PMC11026068 DOI: 10.1038/s41556-023-01343-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/20/2023] [Indexed: 02/10/2024]
Abstract
Mitochondrial DNA (mtDNA) encodes essential subunits of the oxidative phosphorylation system, but is also a major damage-associated molecular pattern (DAMP) that engages innate immune sensors when released into the cytoplasm, outside of cells or into circulation. As a DAMP, mtDNA not only contributes to anti-viral resistance, but also causes pathogenic inflammation in many disease contexts. Cells experiencing mtDNA stress caused by depletion of the mtDNA-packaging protein, transcription factor A, mitochondrial (TFAM) or during herpes simplex virus-1 infection exhibit elongated mitochondria, enlargement of nucleoids (mtDNA-protein complexes) and activation of cGAS-STING innate immune signalling via mtDNA released into the cytoplasm. However, the relationship among aberrant mitochondria and nucleoid dynamics, mtDNA release and cGAS-STING activation remains unclear. Here we show that, under a variety of mtDNA replication stress conditions and during herpes simplex virus-1 infection, enlarged nucleoids that remain bound to TFAM exit mitochondria. Enlarged nucleoids arise from mtDNA experiencing replication stress, which causes nucleoid clustering via a block in mitochondrial fission at a stage when endoplasmic reticulum actin polymerization would normally commence, defining a fission checkpoint that ensures mtDNA has completed replication and is competent for segregation into daughter mitochondria. Chronic engagement of this checkpoint results in enlarged nucleoids trafficking into early and then late endosomes for disposal. Endosomal rupture during transit through this endosomal pathway ultimately causes mtDNA-mediated cGAS-STING activation. Thus, we propose that replication-incompetent nucleoids are selectively eliminated by an adaptive mitochondria-endosomal quality control pathway that is prone to innate immune system activation, which might represent a therapeutic target to prevent mtDNA-mediated inflammation during viral infection and other pathogenic states.
Collapse
Affiliation(s)
- Laura E Newman
- Salk Institute for Biological Studies, La Jolla, CA, USA
| | | | - Gladys R Rojas
- Salk Institute for Biological Studies, La Jolla, CA, USA
| | | | | | | | | | | | - Matthew P Donnelly
- Salk Institute for Biological Studies, La Jolla, CA, USA
- Medical Scientist Training Program, University of California, San Diego, La Jolla, CA, USA
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA, USA
| | - Sagnika Ghosh
- Salk Institute for Biological Studies, La Jolla, CA, USA
| | | | - Sienna Rocha
- Salk Institute for Biological Studies, La Jolla, CA, USA
| | | | - Joshua A Chevez
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Ian Lemersal
- La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Uri Manor
- Salk Institute for Biological Studies, La Jolla, CA, USA.
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA.
- Department of Cell & Developmental Biology, University of California, San Diego, La Jolla, CA, USA.
| | | |
Collapse
|
3
|
Tao Y, He C, Lin D, Gu Z, Pu W. Comprehensive Identification of Mitochondrial Pseudogenes (NUMTs) in the Human Telomere-to-Telomere Reference Genome. Genes (Basel) 2023; 14:2092. [PMID: 38003036 PMCID: PMC10671835 DOI: 10.3390/genes14112092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/09/2023] [Accepted: 11/12/2023] [Indexed: 11/26/2023] Open
Abstract
Practices related to mitochondrial research have long been hindered by the presence of mitochondrial pseudogenes within the nuclear genome (NUMTs). Even though partially assembled human reference genomes like hg38 have included NUMTs compilation, the exhaustive NUMTs within the only complete reference genome (T2T-CHR13) remain unknown. Here, we comprehensively identified the fixed NUMTs within the reference genome using human pan-mitogenome (HPMT) from GeneBank. The inclusion of HPMT serves the purpose of establishing an authentic mitochondrial DNA (mtDNA) mutational spectrum for the identification of NUMTs, distinguishing it from the polymorphic variations found in NUMTs. Using HPMT, we identified approximately 10% of additional NUMTs in three human reference genomes under stricter thresholds. And we also observed an approximate 6% increase in NUMTs in T2T-CHR13 compared to hg38, including NUMTs on the short arms of chromosomes 13, 14, and 15 that were not assembled previously. Furthermore, alignments based on 20-mer from mtDNA suggested the presence of more mtDNA-like short segments within the nuclear genome, which should be avoided for short amplicon or cell free mtDNA detection. Finally, through the assay of transposase-accessible chromatin with high-throughput sequencing (ATAC-seq) on cell lines before and after mtDNA elimination, we concluded that NUMTs have a minimal impact on bulk ATAC-seq, even though 16% of sequencing data originated from mtDNA.
Collapse
Affiliation(s)
- Yichen Tao
- MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai 200438, China; (Y.T.); (D.L.)
| | - Chengpeng He
- Greater Bay Area Institute of Precision Medicine (Guangzhou), Fudan University, Nansha District, Guangzhou 511458, China;
| | - Deng Lin
- MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai 200438, China; (Y.T.); (D.L.)
| | - Zhenglong Gu
- MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai 200438, China; (Y.T.); (D.L.)
- Greater Bay Area Institute of Precision Medicine (Guangzhou), Fudan University, Nansha District, Guangzhou 511458, China;
| | - Weilin Pu
- Greater Bay Area Institute of Precision Medicine (Guangzhou), Fudan University, Nansha District, Guangzhou 511458, China;
| |
Collapse
|
4
|
Abstract
According to the endosymbiotic theory, most of the DNA of the original bacterial endosymbiont has been lost or transferred to the nucleus, leaving a much smaller (∼16 kb in mammals), circular molecule that is the present-day mitochondrial DNA (mtDNA). The ability of mtDNA to escape mitochondria and integrate into the nuclear genome was discovered in budding yeast, along with genes that regulate this process. Mitochondria have emerged as key regulators of innate immunity, and it is now recognized that mtDNA released into the cytoplasm, outside of the cell, or into circulation activates multiple innate immune signaling pathways. Here, we first review the mechanisms through which mtDNA is released into the cytoplasm, including several inducible mitochondrial pores and defective mitophagy or autophagy. Next, we cover how the different forms of released mtDNA activate specific innate immune nucleic acid sensors and inflammasomes. Finally, we discuss how intracellular and extracellular mtDNA release, including circulating cell-free mtDNA that promotes systemic inflammation, are implicated in human diseases, bacterial and viral infections, senescence and aging.
Collapse
Affiliation(s)
- Laura E Newman
- Salk Institute for Biological Studies, La Jolla, California, USA;
| | - Gerald S Shadel
- Salk Institute for Biological Studies, La Jolla, California, USA;
| |
Collapse
|
5
|
Fu C, Cao N, Liu W, Zhang Z, Yang Z, Zhu W, Fan S. Crosstalk between mitophagy and innate immunity in viral infection. Front Microbiol 2022; 13:1064045. [PMID: 36590405 PMCID: PMC9800879 DOI: 10.3389/fmicb.2022.1064045] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
Mitochondria are important organelles involved in cell metabolism and programmed cell death in eukaryotic cells and are closely related to the innate immunity of host cells against viruses. Mitophagy is a process in which phagosomes selectively phagocytize damaged or dysfunctional mitochondria to form autophagosomes and is degraded by lysosomes, which control mitochondrial mass and maintain mitochondrial dynamics and cellular homeostasis. Innate immunity is an important part of the immune system and plays a vital role in eliminating viruses. Viral infection causes many physiological and pathological alterations in host cells, including mitophagy and innate immune pathways. Accumulating evidence suggests that some virus promote self-replication through regulating mitophagy-mediated innate immunity. Clarifying the regulatory relationships among mitochondria, mitophagy, innate immunity, and viral infection will shed new insight for pathogenic mechanisms and antiviral strategies. This review systemically summarizes the activation pathways of mitophagy and the relationship between mitochondria and innate immune signaling pathways, and then discusses the mechanisms of viruses on mitophagy and innate immunity and how viruses promote self-replication by regulating mitophagy-mediated innate immunity.
Collapse
Affiliation(s)
- Cheng Fu
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Nan Cao
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Wenjun Liu
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Zilin Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zihui Yang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Wenhui Zhu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China,*Correspondence: Wenhui Zhu,
| | - Shuangqi Fan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China,Shuangqi Fan,
| |
Collapse
|
6
|
Dahal S, Siddiqua H, Sharma S, Babu RK, Rathore D, Sharma S, Raghavan SC. Unleashing a novel function of Endonuclease G in mitochondrial genome instability. eLife 2022; 11:e69916. [PMID: 36394256 PMCID: PMC9711528 DOI: 10.7554/elife.69916] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 11/16/2022] [Indexed: 11/18/2022] Open
Abstract
Having its genome makes the mitochondrion a unique and semiautonomous organelle within cells. Mammalian mitochondrial DNA (mtDNA) is a double-stranded closed circular molecule of about 16 kb coding for 37 genes. Mutations, including deletions in the mitochondrial genome, can culminate in different human diseases. Mapping the deletion junctions suggests that the breakpoints are generally seen at hotspots. '9 bp deletion' (8271-8281), seen in the intergenic region of cytochrome c oxidase II/tRNALys, is the most common mitochondrial deletion. While it is associated with several diseases like myopathy, dystonia, and hepatocellular carcinoma, it has also been used as an evolutionary marker. However, the mechanism responsible for its fragility is unclear. In the current study, we show that Endonuclease G, a mitochondrial nuclease responsible for nonspecific cleavage of nuclear DNA during apoptosis, can induce breaks at sequences associated with '9 bp deletion' when it is present on a plasmid or in the mitochondrial genome. Through a series of in vitro and intracellular studies, we show that Endonuclease G binds to G-quadruplex structures formed at the hotspot and induces DNA breaks. Therefore, we uncover a new role for Endonuclease G in generating mtDNA deletions, which depends on the formation of G4 DNA within the mitochondrial genome. In summary, we identify a novel property of Endonuclease G, besides its role in apoptosis and the recently described 'elimination of paternal mitochondria during fertilisation.
Collapse
Affiliation(s)
- Sumedha Dahal
- Department of Biochemistry, Indian Institute of Science BangaloreBangaloreIndia
| | - Humaira Siddiqua
- Department of Biochemistry, Indian Institute of Science BangaloreBangaloreIndia
| | - Shivangi Sharma
- Department of Biochemistry, Indian Institute of Science BangaloreBangaloreIndia
| | - Ravi K Babu
- Department of Biochemistry, Indian Institute of Science BangaloreBangaloreIndia
| | - Diksha Rathore
- Department of Biochemistry, Indian Institute of Science BangaloreBangaloreIndia
| | - Sheetal Sharma
- Department of Experimental Medicine and Biotechnology, Post Graduate Institute of Medical Education and ResearchChandigarhIndia
| | - Sathees C Raghavan
- Department of Biochemistry, Indian Institute of Science BangaloreBangaloreIndia
| |
Collapse
|
7
|
Schreier HK, Wiehe RS, Ricchetti M, Wiesmüller L. Polymerase ζ is Involved in Mitochondrial DNA Maintenance Processes in Concert with APE1 Activity. Genes (Basel) 2022; 13:genes13050879. [PMID: 35627264 PMCID: PMC9141751 DOI: 10.3390/genes13050879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 01/25/2023] Open
Abstract
Mitochondrial DNA (mtDNA) damaged by reactive oxygen species (ROS) triggers so far poorly understood processes of mtDNA maintenance that are coordinated by a complex interplay among DNA repair, DNA degradation, and DNA replication. This study was designed to identify the proteins involved in mtDNA maintenance by applying a special long-range PCR, reflecting mtDNA integrity in the minor arc. A siRNA screening of literature-based candidates was performed under conditions of enforced oxidative phosphorylation revealing the functional group of polymerases and therein polymerase ζ (POLZ) as top hits. Thus, POLZ knockdown caused mtDNA accumulation, which required the activity of the base excision repair (BER) nuclease APE1, and was followed by compensatory mtDNA replication determined by the single-cell mitochondrial in situ hybridization protocol (mTRIP). Quenching reactive oxygen species (ROS) in mitochondria unveiled an additional, ROS-independent involvement of POLZ in the formation of a typical deletion in the minor arc region. Together with data demonstrating the localization of POLZ in mitochondria, we suggest that POLZ plays a significant role in mtDNA turnover, particularly under conditions of oxidative stress.
Collapse
Affiliation(s)
- Heike Katrin Schreier
- Department of Obstetrics and Gynecology, Ulm University, 89075 Ulm, Germany; (H.K.S.); (R.S.W.)
| | - Rahel Stefanie Wiehe
- Department of Obstetrics and Gynecology, Ulm University, 89075 Ulm, Germany; (H.K.S.); (R.S.W.)
| | - Miria Ricchetti
- Department of Developmental and Stem Cell Biology, Institute Pasteur, CEDEX 15, 75724 Paris, France;
| | - Lisa Wiesmüller
- Department of Obstetrics and Gynecology, Ulm University, 89075 Ulm, Germany; (H.K.S.); (R.S.W.)
- Correspondence:
| |
Collapse
|
8
|
Abstract
Mitochondria are dynamic organelles vital for energy production with now appreciated roles in immune defense. During microbial infection, mitochondria serve as signaling hubs to induce immune responses to counteract invading pathogens like viruses. Mitochondrial functions are central to a variety of antiviral responses including apoptosis and type I interferon signaling (IFN-I). While apoptosis and IFN-I mediated by mitochondrial antiviral signaling (MAVS) are well-established defenses, new dimensions of mitochondrial biology are emerging as battlefronts during viral infection. Increasingly, it has become apparent that mitochondria serve as reservoirs for distinct cues that trigger immune responses and that alterations in mitochondrial morphology may also tip infection outcomes. Furthermore, new data are foreshadowing pivotal roles for classic, homeostatic facets of this organelle as host-virus interfaces, namely, the tricarboxylic acid (TCA) cycle and electron transport chain (ETC) complexes like respiratory supercomplexes. Underscoring the importance of "housekeeping" mitochondrial activities in viral infection is the growing list of viral-encoded inhibitors including mimics derived from cellular genes that antagonize these functions. For example, virologs for ETC factors and several enzymes from the TCA cycle have been recently identified in DNA virus genomes and serve to pinpoint new vulnerabilities during infection. Here, we highlight recent advances for known antiviral functions associated with mitochondria as well as where the next battlegrounds may be based on viral effectors. Collectively, new methodology and mechanistic insights over the coming years will strengthen our understanding of how an ancient molecular truce continues to defend cells against viruses.
Collapse
Affiliation(s)
- Mahsa Sorouri
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Tyron Chang
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Genetics, Disease, and Development Graduate Program, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Dustin C Hancks
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
9
|
Berry N, Suspène R, Caval V, Khalfi P, Beauclair G, Rigaud S, Blanc H, Vignuzzi M, Wain-Hobson S, Vartanian JP. Herpes Simplex Virus Type 1 Infection Disturbs the Mitochondrial Network, Leading to Type I Interferon Production through the RNA Polymerase III/RIG-I Pathway. mBio 2021; 12:e0255721. [PMID: 34809467 PMCID: PMC8609356 DOI: 10.1128/mbio.02557-21] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 10/19/2021] [Indexed: 11/20/2022] Open
Abstract
Viruses have evolved a plethora of mechanisms to impair host innate immune responses. Herpes simplex virus type 1 (HSV-1), a double-stranded linear DNA virus, impairs the mitochondrial network and dynamics predominantly through the UL12.5 gene. We demonstrated that HSV-1 infection induced a remodeling of mitochondrial shape, resulting in a fragmentation of the mitochondria associated with a decrease in their volume and an increase in their sphericity. This damage leads to the release of mitochondrial DNA (mtDNA) to the cytosol. By generating a stable THP-1 cell line expressing the DNase I-mCherry fusion protein and a THP-1 cell line specifically depleted of mtDNA upon ethidium bromide treatment, we showed that cytosolic mtDNA contributes to type I interferon and APOBEC3A upregulation. This was confirmed by using an HSV-1 strain (KOS37 UL98-SPA) with a deletion of the UL12.5 gene that impaired its ability to induce mtDNA stress. Furthermore, by using an inhibitor of RNA polymerase III, we demonstrated that upon HSV-1 infection, cytosolic mtDNA enhanced type I interferon induction through the RNA polymerase III/RIG-I pathway. APOBEC3A was in turn induced by interferon. Deep sequencing analyses of cytosolic mtDNA mutations revealed an APOBEC3A signature predominantly in the 5'TpCpG context. These data demonstrate that upon HSV-1 infection, the mitochondrial network is disrupted, leading to the release of mtDNA and ultimately to its catabolism through APOBEC3-induced mutations. IMPORTANCE Herpes simplex virus 1 (HSV-1) impairs the mitochondrial network through the viral protein UL12.5. This leads to the fusion of mitochondria and simultaneous release of mitochondrial DNA (mtDNA) in a mouse model. We have shown that released mtDNA is recognized as a danger signal, capable of stimulating signaling pathways and inducing the production of proinflammatory cytokines. The expression of the human cytidine deaminase APOBEC3A is highly upregulated by interferon responses. This enzyme catalyzes the deamination of cytidine to uridine in single-stranded DNA substrates, resulting in the catabolism of edited DNA. Using human cell lines deprived of mtDNA and viral strains deficient in UL12, we demonstrated the implication of mtDNA in the production of interferon and APOBEC3A expression during viral infection. We have shown that HSV-1 induces mitochondrial network fragmentation in a human model and confirmed the implication of RNA polymerase III/RIG-I signaling in the capture of cytosolic mtDNA.
Collapse
Affiliation(s)
- Noémie Berry
- Molecular Retrovirology Unit, Institut Pasteur, Paris, France
- Sorbonne Université, Complexité du Vivant, Paris, France
| | | | - Vincent Caval
- Molecular Retrovirology Unit, Institut Pasteur, Paris, France
| | - Pierre Khalfi
- Molecular Retrovirology Unit, Institut Pasteur, Paris, France
- Sorbonne Université, Complexité du Vivant, Paris, France
| | | | | | - Hervé Blanc
- Viral Populations and Pathogenesis Unit, Institut Pasteur, CNRS UMR 3569, Paris, France
| | - Marco Vignuzzi
- Viral Populations and Pathogenesis Unit, Institut Pasteur, CNRS UMR 3569, Paris, France
| | | | | |
Collapse
|
10
|
Kron NS, Fieber LA. Co-expression analysis identifies neuro-inflammation as a driver of sensory neuron aging in Aplysia californica. PLoS One 2021; 16:e0252647. [PMID: 34116561 PMCID: PMC8195618 DOI: 10.1371/journal.pone.0252647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 05/20/2021] [Indexed: 01/08/2023] Open
Abstract
Aging of the nervous system is typified by depressed metabolism, compromised proteostasis, and increased inflammation that results in cognitive impairment. Differential expression analysis is a popular technique for exploring the molecular underpinnings of neural aging, but technical drawbacks of the methodology often obscure larger expression patterns. Co-expression analysis offers a robust alternative that allows for identification of networks of genes and their putative central regulators. In an effort to expand upon previous work exploring neural aging in the marine model Aplysia californica, we used weighted gene correlation network analysis to identify co-expression networks in a targeted set of aging sensory neurons in these animals. We identified twelve modules, six of which were strongly positively or negatively associated with aging. Kyoto Encyclopedia of Genes analysis and investigation of central module transcripts identified signatures of metabolic impairment, increased reactive oxygen species, compromised proteostasis, disrupted signaling, and increased inflammation. Although modules with immune character were identified, there was no correlation between genes in Aplysia that increased in expression with aging and the orthologous genes in oyster displaying long-term increases in expression after a virus-like challenge. This suggests anti-viral response is not a driver of Aplysia sensory neuron aging.
Collapse
Affiliation(s)
- N. S. Kron
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, United States of America
| | - L. A. Fieber
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, United States of America
| |
Collapse
|
11
|
Dogrammatzis C, Waisner H, Kalamvoki M. "Non-Essential" Proteins of HSV-1 with Essential Roles In Vivo: A Comprehensive Review. Viruses 2020; 13:E17. [PMID: 33374862 PMCID: PMC7824580 DOI: 10.3390/v13010017] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 12/19/2022] Open
Abstract
Viruses encode for structural proteins that participate in virion formation and include capsid and envelope proteins. In addition, viruses encode for an array of non-structural accessory proteins important for replication, spread, and immune evasion in the host and are often linked to virus pathogenesis. Most virus accessory proteins are non-essential for growth in cell culture because of the simplicity of the infection barriers or because they have roles only during a state of the infection that does not exist in cell cultures (i.e., tissue-specific functions), or finally because host factors in cell culture can complement their absence. For these reasons, the study of most nonessential viral factors is more complex and requires development of suitable cell culture systems and in vivo models. Approximately half of the proteins encoded by the herpes simplex virus 1 (HSV-1) genome have been classified as non-essential. These proteins have essential roles in vivo in counteracting antiviral responses, facilitating the spread of the virus from the sites of initial infection to the peripheral nervous system, where it establishes lifelong reservoirs, virus pathogenesis, and other regulatory roles during infection. Understanding the functions of the non-essential proteins of herpesviruses is important to understand mechanisms of viral pathogenesis but also to harness properties of these viruses for therapeutic purposes. Here, we have provided a comprehensive summary of the functions of HSV-1 non-essential proteins.
Collapse
Affiliation(s)
| | | | - Maria Kalamvoki
- Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, Kansas City, KS 66160, USA; (C.D.); (H.W.)
| |
Collapse
|
12
|
Mitochondrial DNA: A Key Regulator of Anti-Microbial Innate Immunity. Genes (Basel) 2020; 11:genes11010086. [PMID: 31940818 PMCID: PMC7017290 DOI: 10.3390/genes11010086] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 12/25/2022] Open
Abstract
During the last few years, mitochondrial DNA has attained much attention as a modulator of immune responses. Due to common evolutionary origin, mitochondrial DNA shares various characteristic features with DNA of bacteria, as it consists of a remarkable number of unmethylated DNA as 2′-deoxyribose cytidine-phosphate-guanosine (CpG) islands. Due to this particular feature, mitochondrial DNA seems to be recognized as a pathogen-associated molecular pattern by the innate immune system. Under the normal physiological situation, mitochondrial DNA is enclosed in the double membrane structure of mitochondria. However, upon pathological conditions, it is usually released into the cytoplasm. Growing evidence suggests that this cytosolic mitochondrial DNA induces various innate immune signaling pathways involving NLRP3, toll-like receptor 9, and stimulator of interferon genes (STING) signaling, which participate in triggering downstream cascade and stimulating to produce effector molecules. Mitochondrial DNA is responsible for inflammatory diseases after stress and cellular damage. In addition, it is also involved in the anti-viral and anti-bacterial innate immunity. Thus, instead of entire mitochondrial importance in cellular metabolism and energy production, mitochondrial DNA seems to be essential in triggering innate anti-microbial immunity. Here, we describe existing knowledge on the involvement of mitochondrial DNA in the anti-microbial immunity by modulating the various immune signaling pathways.
Collapse
|
13
|
Yang C, Wu R, Liu H, Chen Y, Gao Y, Chen X, Li Y, Ma J, Li J, Gan J. Structural insights into DNA degradation by human mitochondrial nuclease MGME1. Nucleic Acids Res 2019; 46:11075-11088. [PMID: 30247721 PMCID: PMC6237815 DOI: 10.1093/nar/gky855] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 09/11/2018] [Indexed: 01/16/2023] Open
Abstract
Mitochondrial nucleases play important roles in accurate maintenance and correct metabolism of mtDNA, the own genetic materials of mitochondria that are passed exclusively from mother to child. MGME1 is a highly conserved DNase that was discovered recently. Mutations in MGME1-coding gene lead to severe mitochondrial syndromes characterized by external ophthalmoplegia, emaciation, and respiratory failure in humans. Unlike many other nucleases that are distributed in multiple cellular organelles, human MGME1 is a mitochondria-specific nuclease; therefore, it can serve as an ideal target for treating related syndromes. Here, we report one HsMGME1-Mn2+ complex and three different HsMGME1-DNA complex structures. In combination with in vitro cleavage assays, our structures reveal the detailed molecular basis for substrate DNA binding and/or unwinding by HsMGME1. Besides the conserved two-cation-assisted catalytic mechanism, structural analysis of HsMGME1 and comparison with homologous proteins also clarified substrate binding and cleavage directionalities of the DNA double-strand break repair complexes RecBCD and AddAB.
Collapse
Affiliation(s)
- Chun Yang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Physiology and Biophysics, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Ruiqi Wu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Physiology and Biophysics, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Hehua Liu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Physiology and Biophysics, School of Life Sciences, Fudan University, Shanghai 200433, China.,State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Yiqing Chen
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Physiology and Biophysics, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Yanqing Gao
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Physiology and Biophysics, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Xi Chen
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Physiology and Biophysics, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Yangyang Li
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Physiology and Biophysics, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Jinbiao Ma
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Jixi Li
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Physiology and Biophysics, School of Life Sciences, Fudan University, Shanghai 200433, China.,Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Jianhua Gan
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Physiology and Biophysics, School of Life Sciences, Fudan University, Shanghai 200433, China
| |
Collapse
|
14
|
Mechanisms of Blood-Brain Barrier Disruption in Herpes Simplex Encephalitis. J Neuroimmune Pharmacol 2018; 14:157-172. [PMID: 30456443 DOI: 10.1007/s11481-018-9821-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 11/02/2018] [Indexed: 12/12/2022]
Abstract
Herpes simplex encephalitis (HSE) is often caused by infection with herpes simplex virus 1 (HSV-1), a neurotropic double-stranded DNA virus. HSE infection always impacts the temporal and frontal lobes or limbic system, leading to edema, hemorrhage, and necrotic changes in the brain parenchyma. Additionally, patients often exhibit severe complications following antiviral treatment, including dementia and epilepsy. HSE is further associated with disruptions to the blood-brain barrier (BBB), which consists of microvascular endothelial cells, tight junctions, astrocytes, pericytes, and basement membranes. Following an HSV-1 infection, changes in BBB integrity and permeability can result in increased movement of viruses, immune cells, and/or cytokines into the brain parenchyma. This leads to an enhanced inflammatory response in the central nervous system and further damage to the brain. Thus, it is important to protect the BBB from pathogens to reduce brain damage from HSE. Here, we discuss HSE and the normal structure and function of the BBB. We also discuss growing evidence indicating an association between BBB breakdown and the pathogenesis of HSE, as well as future research directions and potential new therapeutic targets. Graphical Abstract During herpes simplex encephalitis, the functions and structures of each composition of BBB have been altered by different factors, thus the permeability and integrity of BBB have been broken. The review aim to explore the potential mechanisms and factors in the process, probe the next research targets and new therapeutic targets.
Collapse
|
15
|
Díaz-Carballo D, Klein J, Acikelli AH, Wilk C, Saka S, Jastrow H, Wennemuth G, Dammann P, Giger-Pabst U, Khosrawipour V, Rassow J, Nienen M, Strumberg D. Cytotoxic stress induces transfer of mitochondria-associated human endogenous retroviral RNA and proteins between cancer cells. Oncotarget 2017; 8:95945-95964. [PMID: 29221178 PMCID: PMC5707072 DOI: 10.18632/oncotarget.21606] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 08/25/2017] [Indexed: 12/24/2022] Open
Abstract
About 8 % of the human genome consists of human endogenous retroviruses (HERVs), which are relicts of ancient exogenous retroviral infections incurred during evolution. Although the majority of HERVs have functional gene defects or epigenetic modifications, many of them are still able to produce retroviral proteins that have been proposed to be involved in cellular transformation and cancer development. We found that, in chemo-resistant U87RETO glioblastoma cells, cytotoxic stress induced by etoposide promotes accumulation and large-scale fission of mitochondria, associated with the detection of HERV-WE1 (syncytin-1) and HERV-FRD1 (syncytin-2) in these organelles. In addition, mitochondrial preparations also contained the corresponding receptors, i.e. ASCT2 and MFSD2. We clearly demonstrated that mitochondria associated with HERV-proteins were shuttled between adjacent cancer cells not only via tunneling tubes, but also by direct cellular uptake across the cell membrane. Furthermore, anti-syncytin-1 and anti-syncytin-2 antibodies were able to specifically block this direct cellular uptake of mitochondria even more than antibodies targeting the cognate receptors. Here, we suggest that the association of mitochondria with syncytin-1/syncytin-2 together with their respective receptors could represent a novel mechanism of cell-to-cell transfer. In chemotherapy-refractory cancer cells, this might open up attractive avenues to novel mitochondria-targeting therapies.
Collapse
Affiliation(s)
- David Díaz-Carballo
- Institute for Molecular Oncology and Experimental Therapeutics, Department of Hematology and Medical Oncology, Marienhospital Herne, Ruhr-University of Bochum, Bochum, Germany
| | - Jacqueline Klein
- Institute for Molecular Oncology and Experimental Therapeutics, Department of Hematology and Medical Oncology, Marienhospital Herne, Ruhr-University of Bochum, Bochum, Germany
| | - Ali H Acikelli
- Institute for Molecular Oncology and Experimental Therapeutics, Department of Hematology and Medical Oncology, Marienhospital Herne, Ruhr-University of Bochum, Bochum, Germany
| | - Camilla Wilk
- Institute for Molecular Oncology and Experimental Therapeutics, Department of Hematology and Medical Oncology, Marienhospital Herne, Ruhr-University of Bochum, Bochum, Germany
| | - Sahitya Saka
- Institute for Molecular Oncology and Experimental Therapeutics, Department of Hematology and Medical Oncology, Marienhospital Herne, Ruhr-University of Bochum, Bochum, Germany
| | - Holger Jastrow
- Institute of Anatomy and Experimental Morphology, University of Duisburg-Essen, Essen, Germany
| | - Gunther Wennemuth
- Institute of Anatomy and Experimental Morphology, University of Duisburg-Essen, Essen, Germany
| | - Phillip Dammann
- Central Animal Laboratory, University of Duisburg-Essen, Essen, Germany
| | - Urs Giger-Pabst
- Department of Surgery, Marienhospital Herne, Ruhr-University of Bochum, Bochum, Germany
| | - Veria Khosrawipour
- Department of Surgery, Marienhospital Herne, Ruhr-University of Bochum, Bochum, Germany
| | - Joachim Rassow
- Institute of Biochemistry and Pathobiochemistry, Department of Cellular Biochemistry, Ruhr-University of Bochum, Bochum, Germany
| | - Mikalai Nienen
- Department of Nephrology, Marienhospital Herne, Ruhr-University of Bochum, Bochum, Germany
| | - Dirk Strumberg
- Institute for Molecular Oncology and Experimental Therapeutics, Department of Hematology and Medical Oncology, Marienhospital Herne, Ruhr-University of Bochum, Bochum, Germany
| |
Collapse
|
16
|
Moretton A, Morel F, Macao B, Lachaume P, Ishak L, Lefebvre M, Garreau-Balandier I, Vernet P, Falkenberg M, Farge G. Selective mitochondrial DNA degradation following double-strand breaks. PLoS One 2017; 12:e0176795. [PMID: 28453550 PMCID: PMC5409072 DOI: 10.1371/journal.pone.0176795] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Accepted: 04/17/2017] [Indexed: 12/22/2022] Open
Abstract
Mitochondrial DNA (mtDNA) can undergo double-strand breaks (DSBs), caused by defective replication, or by various endogenous or exogenous sources, such as reactive oxygen species, chemotherapeutic agents or ionizing radiations. MtDNA encodes for proteins involved in ATP production, and maintenance of genome integrity following DSBs is thus of crucial importance. However, the mechanisms involved in mtDNA maintenance after DSBs remain unknown. In this study, we investigated the consequences of the production of mtDNA DSBs using a human inducible cell system expressing the restriction enzyme PstI targeted to mitochondria. Using this system, we could not find any support for DSB repair of mtDNA. Instead we observed a loss of the damaged mtDNA molecules and a severe decrease in mtDNA content. We demonstrate that none of the known mitochondrial nucleases are involved in the mtDNA degradation and that the DNA loss is not due to autophagy, mitophagy or apoptosis. Our study suggests that a still uncharacterized pathway for the targeted degradation of damaged mtDNA in a mitophagy/autophagy-independent manner is present in mitochondria, and might provide the main mechanism used by the cells to deal with DSBs.
Collapse
Affiliation(s)
- Amandine Moretton
- Université Clermont Auvergne, CNRS/IN2P3, Laboratoire de Physique de Clermont, BP 10448, F-63000 Clermont-Ferrand, France
| | - Frédéric Morel
- Université Clermont Auvergne, CNRS/IN2P3, Laboratoire de Physique de Clermont, BP 10448, F-63000 Clermont-Ferrand, France
| | - Bertil Macao
- Institute of Biomedicine, University of Gothenburg, P.O. Box 440, SE-405 30, Gothenburg, Sweden
| | - Philippe Lachaume
- Université Clermont Auvergne, CNRS/IN2P3, Laboratoire de Physique de Clermont, BP 10448, F-63000 Clermont-Ferrand, France
| | - Layal Ishak
- Université Clermont Auvergne, CNRS/IN2P3, Laboratoire de Physique de Clermont, BP 10448, F-63000 Clermont-Ferrand, France
| | - Mathilde Lefebvre
- Université Clermont Auvergne, CNRS/IN2P3, Laboratoire de Physique de Clermont, BP 10448, F-63000 Clermont-Ferrand, France
| | - Isabelle Garreau-Balandier
- Université Clermont Auvergne, CNRS/IN2P3, Laboratoire de Physique de Clermont, BP 10448, F-63000 Clermont-Ferrand, France
| | - Patrick Vernet
- Université Clermont Auvergne, CNRS/IN2P3, Laboratoire de Physique de Clermont, BP 10448, F-63000 Clermont-Ferrand, France
| | - Maria Falkenberg
- Institute of Biomedicine, University of Gothenburg, P.O. Box 440, SE-405 30, Gothenburg, Sweden
| | - Géraldine Farge
- Université Clermont Auvergne, CNRS/IN2P3, Laboratoire de Physique de Clermont, BP 10448, F-63000 Clermont-Ferrand, France
- * E-mail:
| |
Collapse
|
17
|
Sunitha B, Gayathri N, Kumar M, Keshava Prasad TS, Nalini A, Padmanabhan B, Srinivas Bharath MM. Muscle biopsies from human muscle diseases with myopathic pathology reveal common alterations in mitochondrial function. J Neurochem 2016; 138:174-91. [PMID: 27015874 DOI: 10.1111/jnc.13626] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 03/16/2016] [Accepted: 03/20/2016] [Indexed: 01/17/2023]
Abstract
Muscle diseases are clinically and genetically heterogeneous and manifest as dystrophic, inflammatory and myopathic pathologies, among others. Our previous study on the cardiotoxin mouse model of myodegeneration and inflammation linked muscle pathology with mitochondrial damage and oxidative stress. In this study, we investigated whether human muscle diseases display mitochondrial changes. Muscle biopsies from muscle disease patients, represented by dysferlinopathy (dysfy) (dystrophic pathology; n = 43), polymyositis (PM) (inflammatory pathology; n = 24), and distal myopathy with rimmed vacuoles (DMRV) (distal myopathy; n = 31) were analyzed. Mitochondrial damage (ragged blue and COX-deficient fibers) was revealed in dysfy, PM, and DMRV cases by enzyme histochemistry (SDH and COX-SDH), electron microscopy (vacuolation and altered cristae) and biochemical assays (significantly increased ADP/ATP ratio). Proteomic analysis of muscle mitochondria from all three muscle diseases by isobaric tag for relative and absolute quantitation labeling and liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis demonstrated down-regulation of electron transport chain (ETC) complex subunits, assembly factors and Krebs cycle enzymes. Interestingly, 80 of the under-expressed proteins were common among the three pathologies. Assay of ETC and Krebs cycle enzyme activities validated the MS data. Mitochondrial proteins from muscle pathologies also displayed higher tryptophan (Trp) oxidation and the same was corroborated in the cardiotoxin model. Molecular modeling predicted Trp oxidation to alter the local structure of mitochondrial proteins. Our data highlight mitochondrial alterations in muscle pathologies, represented by morphological changes, altered mitochondrial proteome and protein oxidation, thereby establishing the role of mitochondrial damage in human muscle diseases. We investigated whether human muscle diseases display mitochondrial changes. Muscle biopsies from dysferlinopathy (Dysfy), polymyositis (PM), and distal myopathy with rimmed vacuoles (DMRV) displayed morphological and biochemical evidences of mitochondrial dysfunction. Proteomic analysis revealed down-regulation of electron transport chain (ETC) subunits, assembly factors, and tricarboxylic acid (TCA) cycle enzymes, with 80 proteins common among the three pathologies. Mitochondrial proteins from muscle pathologies also displayed higher Trp oxidation that could alter the local structure. Cover image for this issue: doi: 10.1111/jnc.13324.
Collapse
Affiliation(s)
- Balaraju Sunitha
- Department of Neurochemistry, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, Karnataka, India.,Department of Neuropathology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, Karnataka, India
| | - Narayanappa Gayathri
- Department of Neuropathology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, Karnataka, India
| | - Manish Kumar
- Institute of Bioinformatics, Whitefield, Bangalore, Karnataka, India
| | - Thottethodi Subrahmanya Keshava Prasad
- Institute of Bioinformatics, Whitefield, Bangalore, Karnataka, India.,NIMHANS-IOB Proteomics and Bioinformatics Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, Karnataka, India.,YU-IOB Center for Systems Biology and Molecular Medicine, Yenepoya University, Mangalore, India
| | - Atchayaram Nalini
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, Karnataka, India
| | - Balasundaram Padmanabhan
- Department of Biophysics, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, Karnataka, India
| | | |
Collapse
|
18
|
Spadafora D, Kozhukhar N, Chouljenko VN, Kousoulas KG, Alexeyev MF. Methods for Efficient Elimination of Mitochondrial DNA from Cultured Cells. PLoS One 2016; 11:e0154684. [PMID: 27136098 PMCID: PMC4852919 DOI: 10.1371/journal.pone.0154684] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Accepted: 04/18/2016] [Indexed: 12/17/2022] Open
Abstract
Here, we document that persistent mitochondria DNA (mtDNA) damage due to mitochondrial overexpression of the Y147A mutant uracil-N-glycosylase as well as mitochondrial overexpression of bacterial Exonuclease III or Herpes Simplex Virus protein UL12.5M185 can induce a complete loss of mtDNA (ρ0 phenotype) without compromising the viability of cells cultured in media supplemented with uridine and pyruvate. Furthermore, we use these observations to develop rapid, sequence-independent methods for the elimination of mtDNA, and demonstrate utility of these methods for generating ρ0 cells of human, mouse and rat origin. We also demonstrate that ρ0 cells generated by each of these three methods can serve as recipients of mtDNA in fusions with enucleated cells.
Collapse
Affiliation(s)
- Domenico Spadafora
- Department of Pharmacology, University of South Alabama, Mobile, Alabama, United States of America
| | - Nataliya Kozhukhar
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama, United States of America
| | - Vladimir N. Chouljenko
- Division of Biotechnology & Molecular Medicine and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Konstantin G. Kousoulas
- Division of Biotechnology & Molecular Medicine and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Mikhail F. Alexeyev
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama, United States of America
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States of America
- * E-mail:
| |
Collapse
|
19
|
Shutoff of Host Gene Expression in Influenza A Virus and Herpesviruses: Similar Mechanisms and Common Themes. Viruses 2016; 8:102. [PMID: 27092522 PMCID: PMC4848596 DOI: 10.3390/v8040102] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 04/04/2016] [Accepted: 04/09/2016] [Indexed: 12/14/2022] Open
Abstract
The ability to shut off host gene expression is a shared feature of many viral infections, and it is thought to promote viral replication by freeing host cell machinery and blocking immune responses. Despite the molecular differences between viruses, an emerging theme in the study of host shutoff is that divergent viruses use similar mechanisms to enact host shutoff. Moreover, even viruses that encode few proteins often have multiple mechanisms to affect host gene expression, and we are only starting to understand how these mechanisms are integrated. In this review we discuss the multiplicity of host shutoff mechanisms used by the orthomyxovirus influenza A virus and members of the alpha- and gamma-herpesvirus subfamilies. We highlight the surprising similarities in their mechanisms of host shutoff and discuss how the different mechanisms they use may play a coordinated role in gene regulation.
Collapse
|
20
|
Milani L, Ghiselli F, Passamonti M. Mitochondrial selfish elements and the evolution of biological novelties. Curr Zool 2016; 62:687-697. [PMID: 29491956 PMCID: PMC5804245 DOI: 10.1093/cz/zow044] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Accepted: 03/18/2016] [Indexed: 12/25/2022] Open
Abstract
We report the present knowledge about RPHM21, a novel male-specific mitochondrial protein with a putative role in the paternal inheritance of sperm mitochondria in the Manila clam Ruditapes philippinarum, a species with doubly uniparental inheritance of mitochondria (DUI). We review all the available data on rphm21 transcription and translation, analyze in detail its female counterpart, RPHF22, discuss the homology with RPHM21, the putative function and origin, and analyze their polymorphism. The available evidence is compatible with a viral origin of RPHM21 and supports its activity during spermatogenesis. RPHM21 is progressively accumulated in mitochondria and nuclei of spermatogenic cells, and we hypothesize it can influence mitochondrial inheritance and sexual differentiation. We propose a testable model that describes how the acquisition of selfish features by a mitochondrial lineage might have been responsible for the emergence of DUI, and for the evolution of separate sexes (gonochorism) from hermaphroditism. The appearance of DUI most likely entailed the invasion of at least 1 selfish element, and the extant DUI systems can be seen as resolved conflicts. It was proposed that hermaphroditism was the ancestral condition of bivalves, and a correlation between DUI and gonochorism was documented. We hypothesize that DUI might have driven the shift from hermaphroditism to gonochorism, with androdioecy as transition state. The invasion of sex-ratio distorters and the evolution of suppressors can prompt rapid changes among sex-determination mechanisms, and DUI might have been responsible for one of such changes in some bivalve species. If true, DUI would represent the first animal sex-determination system involving mtDNA-encoded proteins.
Collapse
Affiliation(s)
- Liliana Milani
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Via Selmi 3, 40126, Bologna, Italy
| | - Fabrizio Ghiselli
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Via Selmi 3, 40126, Bologna, Italy
| | - Marco Passamonti
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Via Selmi 3, 40126, Bologna, Italy
| |
Collapse
|
21
|
Kong GM, Tao WH, Diao YL, Fang PH, Wang JJ, Bo P, Qian F. Melittin induces human gastric cancer cell apoptosis via activation of mitochondrial pathway. World J Gastroenterol 2016; 22:3186-3195. [PMID: 27003995 PMCID: PMC4789993 DOI: 10.3748/wjg.v22.i11.3186] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Revised: 11/17/2015] [Accepted: 12/12/2015] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the apoptotic effects of melittin on SGC-7901 cells via activation of the mitochondrial signaling pathway in vitro. METHODS SGC-7901 cells were stimulated by melittin, and its effect on proliferation and apoptosis of was investigated by methyl thiazolyl tetrazolium assay, morphologic structure with transmission electron microscopy, annexin-V/propidium iodide double-staining assay, measuring mitochondrial membrane potential (MMP) levels, and analyzing reactive oxygen species (ROS) concentrations were analyzed by flow cytometry. Cytochrome C (Cyt C), apoptosis-inducing factor (AIF), endonuclease G (Endo G), second mitochondria-derived activator of caspases (Smac)/direct IAP binding protein with low isoelectric point (Diablo), and FAS were analyzed by western blot. The expression of caspase-3 and caspase-8 was measured using activity assay kits. RESULTS Melittin was incubated at 1.0, 2.0, 4.0, or 6.0 μg/mL for 1, 2, 4, 6, or 8 h and showed a time- and concentration-dependent inhibition of SGC-7901 cell growth. Melittin induced SGC-7901 cell apoptosis, which was confirmed by typical morphological changes. Treatment with 4 μg/mL melittin induced early apoptosis of SGC-7901 cells, and the early apoptosis rates were 39.97% ± 3.19%, 59.27% ± 3.94%, and 71.50% ± 2.87% vs 32.63% ± 2.75% for 1, 2, and 4 h vs 0 h (n = 3, P < 0.05); the ROS levels were 616.53% ± 79.78%, 974.81% ± 102.40%, and 1330.94% ± 93.09% vs 603.74% ± 71.99% (n = 3, P < 0.05); the MMP values were 2.07 ± 0.05, 1.78 ± 0.29, and 1.16 ± 0.25 vs 2.55 ± 0.42 (n = 3, P < 0.05); caspase-3 activity was significantly higher compared to the control (5492.3 ± 321.1, 6562.0 ± 381.3, and 8695.7 ± 449.1 vs 2330.0 ± 121.9), but the caspase activity of the non-tumor cell line L-O2 was not different from that of the control. With the addition of the caspase-3 inhibitor (Ac-DEVD-CHO), caspase-3 activity was significantly decreased compared to the control group (1067.0 ± 132.5 U/g vs 8695.7 ± 449.1 U/g). The expression of the Cyt C, Endo G, and AIF proteins in SGC-7901 cells was significantly higher than those in the control (P < 0.05), while the expression of the Smac/Diablo protein was significantly lower than the control group after melittin exposure (P < 0.01). Ac-DEVD-CHO did not, however, have any effect on the expression of caspase-8 and FAS in the SGC-7901 cells. CONCLUSION Melittin can induce apoptosis of human gastric cancer (GC) cells through the mitochondria pathways, and it may be a potent agent in the treatment of human GC.
Collapse
|
22
|
West AP, Khoury-Hanold W, Staron M, Tal MC, Pineda CM, Lang SM, Bestwick M, Duguay BA, Raimundo N, MacDuff DA, Kaech SM, Smiley JR, Means RE, Iwasaki A, Shadel GS. Mitochondrial DNA stress primes the antiviral innate immune response. Nature 2015; 520:553-7. [PMID: 25642965 PMCID: PMC4409480 DOI: 10.1038/nature14156] [Citation(s) in RCA: 1323] [Impact Index Per Article: 132.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 12/15/2014] [Indexed: 12/18/2022]
Abstract
Mitochondrial DNA (mtDNA) is normally present at thousands of copies per cell and is packaged into several hundred higher-order structures termed nucleoids1. The abundant mtDNA-binding protein, transcription factor A mitochondrial (TFAM), regulates nucleoid architecture, abundance, and segregation2. Complete mtDNA depletion profoundly impairs oxidative phosphorylation (OXPHOS), triggering calcium-dependent stress signaling and adaptive metabolic responses3. However, the cellular responses to mtDNA instability, a physiologically relevant stress observed in many human diseases and aging, remain ill-defined4. Here we show that moderate mtDNA stress elicited by TFAM deficiency engages cytosolic antiviral signaling to enhance the expression of a subset of interferon-stimulated genes (ISG). Mechanistically, we have found that aberrant mtDNA packaging promotes escape of mtDNA into the cytosol, where it engages the DNA sensor cGAS and promotes STING-IRF3-dependent signaling to elevate ISG expression, potentiate type I interferon responses, and confer broad viral resistance. Furthermore, we demonstrate that herpesviruses induce mtDNA stress, which potentiates antiviral signaling and type I interferon responses during infection. Our results further demonstrate that mitochondria are central participants in innate immunity, identify mtDNA stress as a cell-intrinsic trigger of antiviral signaling, and suggest that cellular monitoring of mtDNA homeostasis cooperates with canonical virus sensing mechanisms to fully license antiviral innate immunity.
Collapse
Affiliation(s)
- A Phillip West
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut 06520, USA
| | - William Khoury-Hanold
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut 06520, USA
| | - Matthew Staron
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut 06520, USA
| | - Michal C Tal
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut 06520, USA
| | - Cristiana M Pineda
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut 06520, USA
| | - Sabine M Lang
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut 06520, USA
| | - Megan Bestwick
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut 06520, USA
| | - Brett A Duguay
- Li Ka Shing Institute of Virology, Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| | - Nuno Raimundo
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut 06520, USA
| | - Donna A MacDuff
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | - Susan M Kaech
- 1] Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut 06520, USA [2] Howard Hughes Medical Institute, Chevy Chase, Maryland 20815-6789, USA
| | - James R Smiley
- Li Ka Shing Institute of Virology, Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| | - Robert E Means
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut 06520, USA
| | - Akiko Iwasaki
- 1] Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut 06520, USA [2] Howard Hughes Medical Institute, Chevy Chase, Maryland 20815-6789, USA
| | - Gerald S Shadel
- 1] Department of Pathology, Yale School of Medicine, New Haven, Connecticut 06520, USA [2] Department of Genetics, Yale School of Medicine, New Haven, Connecticut 06520, USA
| |
Collapse
|
23
|
Elimination of mitochondrial DNA is not required for herpes simplex virus 1 replication. J Virol 2013; 88:2967-76. [PMID: 24371054 DOI: 10.1128/jvi.03129-13] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
UNLABELLED Infection with herpes simplex virus type 1 (HSV-1) results in the rapid elimination of mitochondrial DNA (mtDNA) from host cells. It is known that a mitochondrial isoform of the viral alkaline nuclease (UL12) called UL12.5 triggers this process. However, very little is known about the impact of mtDNA depletion on viral replication or the biology of HSV-1 infections. These questions have been difficult to address because UL12.5 and UL12 are encoded by overlapping transcripts that share the same open reading frame. As a result, mutations that alter UL12.5 also affect UL12, and UL12 null mutations severely impair viral growth by interfering with the intranuclear processing of progeny viral genomes. Therefore, to specifically assess the impact of mtDNA depletion on viral replication, it is necessary to eliminate the activity of UL12.5 while preserving the nuclear functions of UL12. Previous work has shown that the human cytomegalovirus alkaline nuclease UL98 can functionally substitute for UL12 during HSV-1 replication. We found that UL98 is unable to deplete mtDNA in transfected cells and therefore generated an HSV-1 variant in which UL98 coding sequences replace the UL12/UL12.5 open reading frame. The resulting virus was severely impaired in its ability to trigger mtDNA loss but reached titers comparable to those of wild-type HSV-1 in one-step and multistep growth experiments. Together, these observations demonstrate that the elimination of mtDNA is not required for HSV-1 replication in cell culture. IMPORTANCE Herpes simplex virus types 1 and 2 destroy the DNA of host cell mitochondria, the powerhouses of cells. Epstein-Barr virus, a distantly related herpesvirus, has a similar effect, indicating that mitochondrial DNA destruction is under positive selection and thus confers a benefit to the virus. The present work shows that mitochondrial DNA destruction is not required for efficient replication of herpes simplex virus type 1 in cultured Vero kidney epithelial cells, suggesting that this activity likely benefits the virus in other cell types or in the intact human host.
Collapse
|