1
|
Chen H, Huang M, Hou B, Liu Z, Tan R, Cui L, Wang T, Wang Z. The structural protein VP3 of enterovirus D68 interacts with MAVS to inhibit the NF-κB signaling pathway. J Virol 2025; 99:e0016325. [PMID: 40042308 PMCID: PMC11998529 DOI: 10.1128/jvi.00163-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Accepted: 02/13/2025] [Indexed: 03/26/2025] Open
Abstract
Enterovirus D68 (EV-D68) is an emerging pathogen causing severe respiratory infections, and the immune evasion mediated by EV-D68 structural protein has been under discussion for several years. Our early research has identified that EV-D68 structural protein VP3 targets specifically the interferon regulatory factor 7 to inhibit type I interferon signaling, but not interferon regulatory factor 3, which is indispensable for mitochondrial antiviral signaling protein (MAVS)-activated type I interferon signaling. Interestingly, in this study, we found that VP3 co-localizes and interacts with MAVS. Furthermore, VP3 acts as a negative regulator of MAVS/Sendai virus-activated NF-κB signaling pathway. Overexpression of VP3 can promote EV-D68 replication and reverse MAVS-mediated inhibition of virus replication. The mechanism of the interaction between VP3 and MAVS may be that VP3 not only disrupts the mitochondrial membrane potential but also leads to the release of MAVS from mitochondria. Moreover, VP3 binds to the transmembrane domain of MAVS with mitochondrial membrane localization function, which provides support for the mechanism of action. Finally, in our study, we found that VP3 interaction with MAVS to inhibit NF-κB activation is a mechanism that is prevalent in enteroviruses. Overall, our data demonstrate that the interaction between VP3 and MAVS can be used by enteroviruses to evade host innate immunity as a broad-spectrum strategy.IMPORTANCEEnterovirus D68 (EV-D68), as an emerging pathogen, has resulted in a rising number of pediatric infections worldwide since its initial outbreak in the United States in 2014. This virus can cause severe respiratory illnesses and is linked to acute flaccid myelitis. In this article, we report that the structural protein VP3 of EV-D68 inhibits the activation of the NF-κB signaling pathway by targeting mitochondrial antiviral signaling protein (MAVS). Further studies demonstrate that VP3 can induce mitochondrial damage, resulting in the loss of MAVS localization in mitochondria. These findings suggest that the interaction between VP3 and MAVS may represent a mechanism by which EV-D68 suppresses the activation of the NF-κB signaling pathway, facilitating immune evasion and promoting viral replication. Our study suggests potential therapeutic strategies for enterovirus-related viral diseases and the development of novel antiviral drugs.
Collapse
Affiliation(s)
- Honghua Chen
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Mengqian Huang
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Bei Hou
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Zixiang Liu
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Ruyang Tan
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Luna Cui
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Tao Wang
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Zhiyun Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Pathogenic Microbiology of Infectious Disease, Tianjin Centers for Disease Control and Prevention, Tianjin, China
| |
Collapse
|
2
|
Frick DN, Bavisotto RV, Hopper NC, Tysoe WT. Analogs of NIH Molecular Probe ML283 Are Potent SARS-CoV-2 Helicase Inhibitors. ACS Chem Biol 2025; 20:281-296. [PMID: 39910979 DOI: 10.1021/acschembio.4c00458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Abstract
The National Institutes of Health molecular probe ML283 was synthesized as a potent, selective inhibitor of the helicase encoded by the hepatitis C virus. Because modeling with AutoDock Vina predicted that ML283 might bind the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) nonstructural protein 13 (nsp13) helicase, the effects of a collection of ML283 analogs and other hepatitis C virus (HCV) helicase inhibitors on the SARS-CoV-2 helicase were analyzed. Only modest impacts on nsp13-catalyzed ATP hydrolyses were observed with some compounds, most of which were analogs of the drug ebselen, not ML283. In contrast, a new molecular-beacon-based helicase assay revealed that ML283 and many ML283 analogs are potent SARS-CoV-2 helicase inhibitors. Analog potencies correlate with the binding energies predicted by modeling, which suggests that a pocket surrounded by the carboxy-terminal nsp13 RecA-like helicase motor domain might be exploitable for antiviral drug development.
Collapse
Affiliation(s)
- David N Frick
- Department of Chemistry & Biochemistry, The University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53217, United States
| | - Robert V Bavisotto
- Department of Chemistry & Biochemistry, The University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53217, United States
| | - Nicholas C Hopper
- Department of Chemistry & Biochemistry, The University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53217, United States
| | - Wilfred T Tysoe
- Department of Chemistry & Biochemistry, The University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53217, United States
| |
Collapse
|
3
|
Madsen HB, Navarro C, Gasparini E, Park JH, Li Z, Croteau DL, Bohr VA. Urolithin A and nicotinamide riboside differentially regulate innate immune defenses and metabolism in human microglial cells. Front Aging Neurosci 2024; 16:1503336. [PMID: 39665042 PMCID: PMC11631940 DOI: 10.3389/fnagi.2024.1503336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 11/04/2024] [Indexed: 12/13/2024] Open
Abstract
Introduction During aging, many cellular processes, such as autophagic clearance, DNA repair, mitochondrial health, metabolism, nicotinamide adenine dinucleotide (NAD+) levels, and immunological responses, become compromised. Urolithin A (UA) and Nicotinamide Riboside (NR) are two naturally occurring compounds known for their anti-inflammatory and mitochondrial protective properties, yet the effects of these natural substances on microglia cells have not been thoroughly investigated. As both UA and NR are considered safe dietary supplements, it is equally important to understand their function in normal cells and in disease states. Methods This study investigates the effects of UA and NR on immune signaling, mitochondrial function, and microglial activity in a human microglial cell line (HMC3). Results Both UA and NR were shown to reduce DNA damage-induced cellular senescence. However, they differentially regulated gene expression related to neuroinflammation, with UA enhancing cGAS-STING pathway activation and NR displaying broader anti-inflammatory effects. Furthermore, UA and NR differently influenced mitochondrial dynamics, with both compounds improving mitochondrial respiration but exhibiting distinct effects on production of reactive oxygen species and glycolytic function. Discussion These findings underscore the potential of UA and NR as therapeutic agents in managing neuroinflammation and mitochondrial dysfunction in neurodegenerative diseases.
Collapse
Affiliation(s)
- Helena Borland Madsen
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Claudia Navarro
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Emilie Gasparini
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Jae-Hyeon Park
- Section on DNA Repair, National Institute on Aging, Baltimore, MD, United States
| | - Zhiquan Li
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Deborah L. Croteau
- Section on DNA Repair, National Institute on Aging, Baltimore, MD, United States
- Computational Biology and Genomics Core, Laboratory of Genetics and Genomics, National Institute on Aging, Baltimore, MD, United States
| | - Vilhelm A. Bohr
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
- Section on DNA Repair, National Institute on Aging, Baltimore, MD, United States
| |
Collapse
|
4
|
Martineau CA, Rivard N, Bisaillon M. From viruses to cancer: exploring the role of the hepatitis C virus NS3 protein in carcinogenesis. Infect Agent Cancer 2024; 19:40. [PMID: 39192306 DOI: 10.1186/s13027-024-00606-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 08/21/2024] [Indexed: 08/29/2024] Open
Abstract
Hepatitis C virus (HCV) chronically infects approximately 170 million people worldwide and is a known etiological agent of hepatocellular carcinoma (HCC). The molecular mechanisms of HCV-mediated carcinogenesis are not fully understood. This review article focuses on the oncogenic potential of NS3, a viral protein with transformative effects on cells, although the precise mechanisms remain elusive. Unlike the more extensively studied Core and NS5A proteins, NS3's roles in cancer development are less defined but critical. Research indicates that NS3 is implicated in several carcinogenic processes such as proliferative signaling, cell death resistance, genomic instability and mutations, invasion and metastasis, tumor-related inflammation, immune evasion, and replicative immortality. Understanding the direct impact of viral proteins such as NS3 on cellular transformation is crucial for elucidating HCV's role in HCC development. Overall, this review sheds light on the molecular mechanisms used by NS3 to contribute to hepatocarcinogenesis, and highlights its significance in the context of HCV-associated HCC, underscoring the need for further investigation into its specific molecular and cellular actions.
Collapse
Affiliation(s)
- Carole-Anne Martineau
- Département de Biochimie et de Génomique Fonctionnelle, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, 3201 Rue Jean-Mignault, Sherbrooke, QC, J1E 4K8, Canada
| | - Nathalie Rivard
- Département d'Immunologie et Biologie Cellulaire, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, 3201 Rue Jean-Mignault, Sherbrooke, QC, J1E 4K8, Canada
| | - Martin Bisaillon
- Département de Biochimie et de Génomique Fonctionnelle, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, 3201 Rue Jean-Mignault, Sherbrooke, QC, J1E 4K8, Canada.
| |
Collapse
|
5
|
Al Hamrashdi M, Sanchez Perez C, Haas DA, Vishwakarma J, Pichlmair A, Bowie AG, Brady G. Molluscum contagiosum virus protein MC089 inhibits interferon regulatory factor 3 activation. J Gen Virol 2024; 105:002015. [PMID: 39167082 PMCID: PMC11338640 DOI: 10.1099/jgv.0.002015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/30/2024] [Indexed: 08/23/2024] Open
Abstract
Molluscum contagiosum virus (MCV) is a human-specific poxvirus that causes a highly common but mild infection characterized by distinctive and persistent papular skin lesions. These lesions can persist for long periods without an effective clearance response from the host. MCV, like all poxviruses, encodes multiple known immunosuppressive proteins which target innate immune signalling pathways involved in viral nucleic acid sensing, interferon production and inflammation which should trigger antiviral immunity leading to clearance. Two major families of transcription factors responsible for driving the immune response to viruses are the NF-κB and the interferon regulatory factor (IRF) families. While NF-κB broadly drives pro-inflammatory gene expression and IRFs chiefly drive interferon induction, both collaborate in transactivating many of the same genes in a concerted immune response to viral infection. Here, we report that the MCV protein MC089 specifically inhibits IRF activation from both DNA- and RNA-sensing pathways, making it the first characterized MCV inhibitor to selectively target IRF activation to date. MC089 interacts with proteins required for IRF activation, namely IKKε, TBKBP1 and NAP1. Additionally, MC089 targets RNA sensing by associating with the RNA-sensing adaptor protein mitochondrial antiviral-signalling protein on mitochondria. MC089 displays specificity in its inhibition of IRF3 activation by suppressing immunostimulatory nucleic acid-induced serine 396 phosphorylation without affecting the phosphorylation of serine 386. The selective interaction of MC089 with IRF-regulatory proteins and site-specific inhibition of IRF3 phosphorylation may offer a tool to provide novel insights into the biology of IRF3 regulation.
Collapse
Affiliation(s)
- Mariya Al Hamrashdi
- Trinity Health Kidney Centre, Trinity Translational Medicine Institute, Trinity College Dublin, St. James’ Hospital Campus, Dublin, Ireland
| | - Carla Sanchez Perez
- Trinity Health Kidney Centre, Trinity Translational Medicine Institute, Trinity College Dublin, St. James’ Hospital Campus, Dublin, Ireland
| | - Darya A. Haas
- Technical University of Munich, School of Medicine, Institute of Virology, Munich, Germany
| | - Jyoti Vishwakarma
- Technical University of Munich, School of Medicine, Institute of Virology, Munich, Germany
| | - Andreas Pichlmair
- Technical University of Munich, School of Medicine, Institute of Virology, Munich, Germany
- German Centre for Infection Research (DZIF), Munich Partner Site, Munich, Germany
| | - Andrew G. Bowie
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Gareth Brady
- Trinity Health Kidney Centre, Trinity Translational Medicine Institute, Trinity College Dublin, St. James’ Hospital Campus, Dublin, Ireland
| |
Collapse
|
6
|
Solotchi M, Patel SS. Proofreading mechanisms of the innate immune receptor RIG-I: distinguishing self and viral RNA. Biochem Soc Trans 2024; 52:1131-1148. [PMID: 38884803 PMCID: PMC11346460 DOI: 10.1042/bst20230724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/02/2024] [Accepted: 06/04/2024] [Indexed: 06/18/2024]
Abstract
The RIG-I-like receptors (RLRs), comprising retinoic acid-inducible gene I (RIG-I), melanoma differentiation-associated gene 5 (MDA5), and laboratory of genetics and physiology 2 (LGP2), are pattern recognition receptors belonging to the DExD/H-box RNA helicase family of proteins. RLRs detect viral RNAs in the cytoplasm and respond by initiating a robust antiviral response that up-regulates interferon and cytokine production. RIG-I and MDA5 complement each other by recognizing different RNA features, and LGP2 regulates their activation. RIG-I's multilayered RNA recognition and proofreading mechanisms ensure accurate viral RNA detection while averting harmful responses to host RNAs. RIG-I's C-terminal domain targets 5'-triphosphate double-stranded RNA (dsRNA) blunt ends, while an intrinsic gating mechanism prevents the helicase domains from non-specifically engaging with host RNAs. The ATPase and RNA translocation activity of RIG-I adds another layer of selectivity by minimizing the lifetime of RIG-I on non-specific RNAs, preventing off-target activation. The versatility of RIG-I's ATPase function also amplifies downstream signaling by enhancing the signaling domain (CARDs) exposure on 5'-triphosphate dsRNA and promoting oligomerization. In this review, we offer an in-depth understanding of the mechanisms RIG-I uses to facilitate viral RNA sensing and regulate downstream activation of the immune system.
Collapse
Affiliation(s)
- Mihai Solotchi
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, U.S.A
- Graduate School of Biomedical Sciences, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, U.S.A
| | - Smita S. Patel
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, U.S.A
| |
Collapse
|
7
|
Ma D, Zhang M, Feng J. Dietary Peppermint Extract Inhibits Chronic Heat Stress-Induced Activation of Innate Immunity and Inflammatory Response in the Spleen of Broiler Chickens. Animals (Basel) 2024; 14:1157. [PMID: 38672305 PMCID: PMC11047314 DOI: 10.3390/ani14081157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
The aim of this study was to investigate the effect of dietary peppermint extract (PE) on innate immunity and inflammatory responses in the spleen of broiler chickens under chronic heat stress. In order to further study the mechanism of the activation of innate immunity and inflammation induced by chronic heat stress and the regulatory effect of peppermint extract, we examined the spleen's histological change, the mRNA expression of major pattern recognition receptors (PRRs) (TLR2, TLR4, NOD1, MDA5 and DAI) and transcription factors (NF-κB, AP-1 and IRF3) and downstream inflammatory cytokines (IFN-α, IFN-β, IL-1β, IL-6 and TNF-α) of innate immune signaling pathways associated with heat stress in the spleen of broiler chickens. The results indicated that chronic heat stress damaged the spleen tissue. In addition, chronic heat stress induced the activation of innate immunity and inflammatory responses by increasing the mRNA expression of TLR2, TLR4 and DAI, mRNA expression of transcriptional factors (NF-κB, AP-1 and IRF3) and the concentration of downstream inflammatory cytokines in the spleen of broiler chickens. Dietary peppermint extract alleviated the damage of spleen tissue caused by chronic heat stress. In addition, peppermint extract reduced the mRNA expression of DAI, mRNA expression of transcriptional factors NF-κB, AP-1 and IRF3, and the concentration of inflammatory cytokines in the spleen of broiler chickens under chronic heat stress. In conclusion, dietary peppermint extract could have a beneficial effect on regulating inflammatory response and innate immunity via inhibiting the activation of NF-κB, AP-1 and IRF3 signaling pathways mediated by DAI in the spleen of broiler chickens induced by chronic heat stress.
Collapse
Affiliation(s)
| | - Minhong Zhang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (D.M.); (J.F.)
| | | |
Collapse
|
8
|
Barik S. Suppression of Innate Immunity by the Hepatitis C Virus (HCV): Revisiting the Specificity of Host-Virus Interactive Pathways. Int J Mol Sci 2023; 24:16100. [PMID: 38003289 PMCID: PMC10671098 DOI: 10.3390/ijms242216100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 10/31/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
The hepatitis C virus (HCV) is a major causative agent of hepatitis that may also lead to liver cancer and lymphomas. Chronic hepatitis C affects an estimated 2.4 million people in the USA alone. As the sole member of the genus Hepacivirus within the Flaviviridae family, HCV encodes a single-stranded positive-sense RNA genome that is translated into a single large polypeptide, which is then proteolytically processed to yield the individual viral proteins, all of which are necessary for optimal viral infection. However, cellular innate immunity, such as type-I interferon (IFN), promptly thwarts the replication of viruses and other pathogens, which forms the basis of the use of conjugated IFN-alpha in chronic hepatitis C management. As a countermeasure, HCV suppresses this form of immunity by enlisting diverse gene products, such as HCV protease(s), whose primary role is to process the large viral polyprotein into individual proteins of specific function. The exact number of HCV immune suppressors and the specificity and molecular mechanism of their action have remained unclear. Nonetheless, the evasion of host immunity promotes HCV pathogenesis, chronic infection, and carcinogenesis. Here, the known and putative HCV-encoded suppressors of innate immunity have been reviewed and analyzed, with a predominant emphasis on the molecular mechanisms. Clinically, the knowledge should aid in rational interventions and the management of HCV infection, particularly in chronic hepatitis.
Collapse
Affiliation(s)
- Sailen Barik
- EonBio, 3780 Pelham Drive, Mobile, AL 36619, USA
| |
Collapse
|
9
|
Burkart SS, Schweinoch D, Frankish J, Sparn C, Wüst S, Urban C, Merlo M, Magalhães VG, Piras A, Pichlmair A, Willemsen J, Kaderali L, Binder M. High-resolution kinetic characterization of the RIG-I-signaling pathway and the antiviral response. Life Sci Alliance 2023; 6:e202302059. [PMID: 37558422 PMCID: PMC10412806 DOI: 10.26508/lsa.202302059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/24/2023] [Accepted: 07/27/2023] [Indexed: 08/11/2023] Open
Abstract
RIG-I recognizes viral dsRNA and activates a cell-autonomous antiviral response. Upon stimulation, it triggers a signaling cascade leading to the production of type I and III IFNs. IFNs are secreted and signal to elicit the expression of IFN-stimulated genes, establishing an antiviral state of the cell. The topology of this pathway has been studied intensively, however, its exact dynamics are less understood. Here, we employed electroporation to synchronously activate RIG-I, enabling us to characterize cell-intrinsic innate immune signaling at a high temporal resolution. Employing IFNAR1/IFNLR-deficient cells, we could differentiate primary RIG-I signaling from secondary signaling downstream of the IFN receptors. Based on these data, we developed a comprehensive mathematical model capable of simulating signaling downstream of dsRNA recognition by RIG-I and the feedback and signal amplification by IFN. We further investigated the impact of viral antagonists on signaling dynamics. Our work provides a comprehensive insight into the signaling events that occur early upon virus infection and opens new avenues to study and disentangle the complexity of the host-virus interface.
Collapse
Affiliation(s)
- Sandy S Burkart
- Research Group "Dynamics of Early Viral Infection and the Innate Antiviral Response", Division Virus-Associated Carcinogenesis (F170), German Cancer Research Center, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Darius Schweinoch
- Institute of Bioinformatics & Center for Functional Genomics of Microbes, University Medicine Greifswald, Greifswald, Germany
| | - Jamie Frankish
- Research Group "Dynamics of Early Viral Infection and the Innate Antiviral Response", Division Virus-Associated Carcinogenesis (F170), German Cancer Research Center, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Carola Sparn
- Research Group "Dynamics of Early Viral Infection and the Innate Antiviral Response", Division Virus-Associated Carcinogenesis (F170), German Cancer Research Center, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Sandra Wüst
- Research Group "Dynamics of Early Viral Infection and the Innate Antiviral Response", Division Virus-Associated Carcinogenesis (F170), German Cancer Research Center, Heidelberg, Germany
| | - Christian Urban
- Technical University of Munich, School of Medicine, Institute of Virology, Munich, Germany
| | - Marta Merlo
- Research Group "Dynamics of Early Viral Infection and the Innate Antiviral Response", Division Virus-Associated Carcinogenesis (F170), German Cancer Research Center, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Vladimir G Magalhães
- Research Group "Dynamics of Early Viral Infection and the Innate Antiviral Response", Division Virus-Associated Carcinogenesis (F170), German Cancer Research Center, Heidelberg, Germany
| | - Antonio Piras
- Technical University of Munich, School of Medicine, Institute of Virology, Munich, Germany
| | - Andreas Pichlmair
- Technical University of Munich, School of Medicine, Institute of Virology, Munich, Germany
- German Center for Infection Research (DZIF), Munich Partner Site, Munich, Germany
| | - Joschka Willemsen
- Research Group "Dynamics of Early Viral Infection and the Innate Antiviral Response", Division Virus-Associated Carcinogenesis (F170), German Cancer Research Center, Heidelberg, Germany
| | - Lars Kaderali
- Institute of Bioinformatics & Center for Functional Genomics of Microbes, University Medicine Greifswald, Greifswald, Germany
| | - Marco Binder
- Research Group "Dynamics of Early Viral Infection and the Innate Antiviral Response", Division Virus-Associated Carcinogenesis (F170), German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
10
|
Guo Y, Pan L, Wang L, Wang S, Fu J, Luo W, Wang K, Li X, Huang C, Liu Y, Kang H, Zeng Q, Fu X, Huang Z, Li W, He Y, Li L, Peng T, Yang H, Li M, Xiao B, Cai M. Epstein-Barr Virus Envelope Glycoprotein gp110 Inhibits IKKi-Mediated Activation of NF-κB and Promotes the Degradation of β-Catenin. Microbiol Spectr 2023; 11:e0032623. [PMID: 37022262 PMCID: PMC10269791 DOI: 10.1128/spectrum.00326-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 03/10/2023] [Indexed: 04/07/2023] Open
Abstract
Epstein-Barr virus (EBV) infects host cells and establishes a latent infection that requires evasion of host innate immunity. A variety of EBV-encoded proteins that manipulate the innate immune system have been reported, but whether other EBV proteins participate in this process is unclear. EBV-encoded envelope glycoprotein gp110 is a late protein involved in virus entry into target cells and enhancement of infectivity. Here, we reported that gp110 inhibits RIG-I-like receptor pathway-mediated promoter activity of interferon-β (IFN-β) as well as the transcription of downstream antiviral genes to promote viral proliferation. Mechanistically, gp110 interacts with the inhibitor of NF-κB kinase (IKKi) and restrains its K63-linked polyubiquitination, leading to attenuation of IKKi-mediated activation of NF-κB and repression of the phosphorylation and nuclear translocation of p65. Additionally, gp110 interacts with an important regulator of the Wnt signaling pathway, β-catenin, and induces its K48-linked polyubiquitination degradation via the proteasome system, resulting in the suppression of β-catenin-mediated IFN-β production. Taken together, these results suggest that gp110 is a negative regulator of antiviral immunity, revealing a novel mechanism of EBV immune evasion during lytic infection. IMPORTANCE Epstein-Barr virus (EBV) is a ubiquitous pathogen that infects almost all human beings, and the persistence of EBV in the host is largely due to immune escape mediated by its encoded products. Thus, elucidation of EBV's immune escape mechanisms will provide a new direction for the design of novel antiviral strategies and vaccine development. Here, we report that EBV-encoded gp110 serves as a novel viral immune evasion factor, which inhibits RIG-I-like receptor pathway-mediated interferon-β (IFN-β) production. Furthermore, we found that gp110 targeted two key proteins, inhibitor of NF-κB kinase (IKKi) and β-catenin, which mediate antiviral activity and the production of IFN-β. gp110 inhibited K63-linked polyubiquitination of IKKi and induced β-catenin degradation via the proteasome, resulting in decreased IFN-β production. In summary, our data provide new insights into the EBV-mediated immune evasion surveillance strategy.
Collapse
Affiliation(s)
- Yingjie Guo
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Qingyuan, China
- Department of Clinical Laboratory, Fifth Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Lingxia Pan
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Qingyuan, China
| | - Liding Wang
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Qingyuan, China
| | - Shuai Wang
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Jiangqin Fu
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Qingyuan, China
| | - Wenqi Luo
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Qingyuan, China
| | - Kezhen Wang
- School of Life Sciences, Anhui Medical University, Hefei, China
| | - Xiaoqing Li
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Qingyuan, China
| | - Chen Huang
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Qingyuan, China
| | - Yintao Liu
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Qingyuan, China
| | - Haoran Kang
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Qingyuan, China
| | - Qiyuan Zeng
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Qingyuan, China
| | - Xiuxia Fu
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Qingyuan, China
| | - Zejin Huang
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Qingyuan, China
| | - Wanying Li
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Qingyuan, China
| | - Yingxin He
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Qingyuan, China
| | - Linhai Li
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Qingyuan, China
| | - Tao Peng
- State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
- Guangdong South China Vaccine, Guangzhou, China
| | - Haidi Yang
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Institute of Hearing and Speech-Language Science, Guangzhou Xinhua University, Guangzhou, China
| | - Meili Li
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Qingyuan, China
- Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Bin Xiao
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Qingyuan, China
| | - Mingsheng Cai
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Qingyuan, China
- Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
11
|
Latanova A, Starodubova E, Karpov V. Flaviviridae Nonstructural Proteins: The Role in Molecular Mechanisms of Triggering Inflammation. Viruses 2022; 14:v14081808. [PMID: 36016430 PMCID: PMC9414172 DOI: 10.3390/v14081808] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/13/2022] [Accepted: 08/15/2022] [Indexed: 12/24/2022] Open
Abstract
Members of the Flaviviridae family are posing a significant threat to human health worldwide. Many flaviviruses are capable of inducing severe inflammation in humans. Flaviviridae nonstructural proteins, apart from their canonical roles in viral replication, have noncanonical functions strongly affecting antiviral innate immunity. Among these functions, antagonism of type I IFN is the most investigated; meanwhile, more data are accumulated on their role in the other pathways of innate response. This review systematizes the last known data on the role of Flaviviridae nonstructural proteins in molecular mechanisms of triggering inflammation, with an emphasis on their interactions with TLRs and RLRs, interference with NF-κB and cGAS-STING signaling, and activation of inflammasomes.
Collapse
|
12
|
Zhu H, Zhang R, Yi L, Tang YD, Zheng C. UNC93B1 attenuates the cGAS-STING signaling pathway by targeting STING for autophagy-lysosome degradation. J Med Virol 2022; 94:4490-4501. [PMID: 35577759 DOI: 10.1002/jmv.27860] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/09/2022] [Accepted: 05/12/2022] [Indexed: 11/07/2022]
Abstract
STING (stimulator of interferon genes) is a pivotal innate immune adaptor, and its functions during DNA virus infections have been extensively documented. However, its homeostatic regulation is not well understood. Our study demonstrates that UNC93B1 is a crucial checker for STING to prevent hyperactivation. Ectopic expression of UNC93B1 attenuates IFN-β promoter activity and the transcriptions of IFN-β, ISG54, and ISG56 genes. Moreover, UNC93B1 also blocks the IRF3 nuclear translocation induced by ectopic expression of both cGAS and STING and reduces the stability of STING by facilitating its autophagy-lysosome degradation, which can be reversed by lysosome inhibitors. Mechanistically, UNC93B1 interacts with STING and suppresses STING-activated downstream signaling by delivering STING to the lysosomes for degradation depending on its trafficking capability. UNC93B1 knockout (KO) in human embryonic kidney 293T (HEK293T) cells facilitates IFN-β promoter activity, IFN-β, ISG54, and ISG56 transcriptions IRF3 nuclear translocation induced by ectopic expression of cGAS and STING. Infected with herpes simplex virus-1 (HSV-1), UNC93B1 knockdown BJ cells or primary peritoneal macrophages from Unc93b1-deficient (Unc93b1-/- ) mice show enhanced IFN-β, ISG54, and ISG56 transcriptions, TBK1 phosphorylation, and reduced STING degradation and viral replication. In addition, Unc93b1-/- mice exhibit higher IFN-β, ISG54, and ISG56 transcriptions and lower mortality upon HSV-1 infection in vivo. Collectively, these findings demonstrate that UNC93B1 attenuates the cGAS-STING signaling pathway by targeting STING for autophagy-lysosome degradation and provide novel insights into the function of UNC93B1 in antiviral innate immunity. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Huifang Zhu
- Neonatal/Pediatric Intensive Care Unit, Children's Medical Center, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Rongzhao Zhang
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Li Yi
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Yan-Dong Tang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Chunfu Zheng
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.,Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
13
|
Surgical Strikes on Host Defenses: Role of the Viral Protease Activity in Innate Immune Antagonism. Pathogens 2022; 11:pathogens11050522. [PMID: 35631043 PMCID: PMC9145062 DOI: 10.3390/pathogens11050522] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 04/22/2022] [Accepted: 04/26/2022] [Indexed: 02/05/2023] Open
Abstract
As a frontline defense mechanism against viral infections, the innate immune system is the primary target of viral antagonism. A number of virulence factors encoded by viruses play roles in circumventing host defenses and augmenting viral replication. Among these factors are viral proteases, which are primarily responsible for maturation of viral proteins, but in addition cause proteolytic cleavage of cellular proteins involved in innate immune signaling. The study of these viral protease-mediated host cleavages has illuminated the intricacies of innate immune networks and yielded valuable insights into viral pathogenesis. In this review, we will provide a brief summary of how proteases of positive-strand RNA viruses, mainly from the Picornaviridae, Flaviviridae and Coronaviridae families, proteolytically process innate immune components and blunt their functions.
Collapse
|
14
|
Snider DL, Park M, Murphy KA, Beachboard DC, Horner SM. Signaling from the RNA sensor RIG-I is regulated by ufmylation. Proc Natl Acad Sci U S A 2022; 119:e2119531119. [PMID: 35394863 PMCID: PMC9169834 DOI: 10.1073/pnas.2119531119] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 02/28/2022] [Indexed: 01/23/2023] Open
Abstract
The RNA-binding protein RIG-I is a key initiator of the antiviral innate immune response. The signaling that mediates the antiviral response downstream of RIG-I is transduced through the adaptor protein MAVS and results in the induction of type I and III interferons (IFNs). This signal transduction occurs at endoplasmic reticulum (ER)–mitochondrial contact sites, to which RIG-I and other signaling proteins are recruited following their activation. RIG-I signaling is highly regulated to prevent aberrant activation of this pathway and dysregulated induction of IFN. Previously, we identified UFL1, the E3 ligase of the ubiquitin-like modifier conjugation system called ufmylation, as one of the proteins recruited to membranes at ER–mitochondrial contact sites in response to RIG-I activation. Here, we show that UFL1, as well as the process of ufmylation, promote IFN induction in response to RIG-I activation. We found that following RNA virus infection, UFL1 is recruited to the membrane-targeting protein 14–3-3ε and that this complex is then recruited to activated RIG-I to promote downstream innate immune signaling. Importantly, we found that 14–3-3ε has an increase in UFM1 conjugation following RIG-I activation. Additionally, loss of cellular ufmylation prevents the interaction of 14–3-3ε with RIG-I, which abrogates the interaction of RIG-I with MAVS and thus the downstream signal transduction that induces IFN. Our results define ufmylation as an integral regulatory component of the RIG-I signaling pathway and as a posttranslational control for IFN induction.
Collapse
Affiliation(s)
- Daltry L. Snider
- Department of Molecular Genetics & Microbiology, Duke University Medical Center, Durham, NC 27710
| | - Moonhee Park
- Department of Molecular Genetics & Microbiology, Duke University Medical Center, Durham, NC 27710
| | - Kristen A. Murphy
- Department of Molecular Genetics & Microbiology, Duke University Medical Center, Durham, NC 27710
| | - Dia C. Beachboard
- Department of Molecular Genetics & Microbiology, Duke University Medical Center, Durham, NC 27710
| | - Stacy M. Horner
- Department of Molecular Genetics & Microbiology, Duke University Medical Center, Durham, NC 27710
- Department of Medicine, Duke University Medical Center, Durham, NC 27710
| |
Collapse
|
15
|
Liu H, Li K, Chen W, Yang F, Cao W, Zhang K, Li P, Tang L, Zhu Z, Zheng H. Senecavirus A 2B protein suppresses type I interferon production by inducing the degradation of MAVS. Mol Immunol 2021; 142:11-21. [PMID: 34959069 DOI: 10.1016/j.molimm.2021.12.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 01/07/2023]
Abstract
Senecavirus A (SVA) is an oncolytic virus, which can propagate in human tumor cells and has been used as an oncolytic virotherapy candidate in humans. Besides, SVA circulates in pigs and causes vesicles and coalescing erosions on the snouts and coronary bands in infected pigs and results in neonatal morbidity. SVA has evolved the ability to suppress host innate immune response to benefit viral replication. SVA 3Cpro and 2C protein inhibit the production of host type I interferon (IFN) by degradation of several components of innate immune pathway. In this study, for the first time, we determined that SVA 2B antagonized host innate immune response in both human and porcine cells. SVA 2B protein degraded mitochondrial antiviral-signaling protein (MAVS), a key host molecule in the innate immune pathway, and a colocalization and interaction between 2B and MAVS was observed in the context of viral infection. Further study showed that the 1-48 and 100-128 regions of 2B were essential for inhibition of type I IFN expression. In addition, we determined that 2B degraded MAVS depending on caspase-9 and caspase-3. In conclusion, our results revealed a novel strategy for SVA 2B protein to antagonize host innate immune response, which will help for clarification of the pathogenesis of SVA and provide an insight for oncolytic virotherapy of SVA.
Collapse
Affiliation(s)
- Huanan Liu
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, PR China; Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Kangli Li
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, PR China
| | - Wenzhe Chen
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, PR China
| | - Fan Yang
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, PR China
| | - Weijun Cao
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, PR China
| | - Keshan Zhang
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, PR China
| | - Pengfei Li
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, PR China.
| | - Lijie Tang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Zixiang Zhu
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, PR China
| | - Haixue Zheng
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, PR China
| |
Collapse
|
16
|
Ekanayaka P, Lee BH, Weerawardhana A, Chathuranga K, Park JH, Lee JS. Inhibition of MAVS Aggregation-Mediated Type-I Interferon Signaling by Foot-and-Mouth Disease Virus VP3. Viruses 2021; 13:v13091776. [PMID: 34578357 PMCID: PMC8473216 DOI: 10.3390/v13091776] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/30/2021] [Accepted: 08/30/2021] [Indexed: 01/19/2023] Open
Abstract
As a structural protein of the Foot-and-mouth disease virus (FMDV), VP3 plays a vital role in virus assembly and inhibiting the interferon (IFN) signal transduction to promote FMDV replication. Previous studies demonstrated that FMDV VP3 blocks the type-I IFN response by inhibiting the mRNA expression of the mitochondrial antiviral-signaling protein (MAVS); however, the underlying mechanism is poorly understood. Here, we describe the specificity of FMDV VP3 interaction with the transmembrane (TM) domain of MAVS as FMDV driven type-I IFN inhibitory mechanism for its effective replication. The TM domain of MAVS governs the mitochondria localization of MAVS, and it is a key factor in type-I IFN signaling transduction via MAVS aggregation. Thereby, the interaction of FMDV VP3 with the TM domain of MAVS leads to the inhibition of MAVS mitochondria localization, self-association, and aggregation, resulting in the suppression of type-I IFN response. Collectively, these results provide a clear understanding of a key molecular mechanism used by the FMDV VP3 for the suppression of IFN responses via targeting MAVS.
Collapse
Affiliation(s)
- Pathum Ekanayaka
- College of Veterinary Medicine, Chungnam National University, 220 Gung-dong, Yuseong-gu, Daejeon 34134, Korea; (P.E.); (B.-H.L.); (A.W.); (K.C.)
| | - Byeong-Hoon Lee
- College of Veterinary Medicine, Chungnam National University, 220 Gung-dong, Yuseong-gu, Daejeon 34134, Korea; (P.E.); (B.-H.L.); (A.W.); (K.C.)
| | - Asela Weerawardhana
- College of Veterinary Medicine, Chungnam National University, 220 Gung-dong, Yuseong-gu, Daejeon 34134, Korea; (P.E.); (B.-H.L.); (A.W.); (K.C.)
| | - Kiramage Chathuranga
- College of Veterinary Medicine, Chungnam National University, 220 Gung-dong, Yuseong-gu, Daejeon 34134, Korea; (P.E.); (B.-H.L.); (A.W.); (K.C.)
| | - Jong-Hyeon Park
- Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gyeongsangbuk-do, Gimcheon-si 39660, Korea;
| | - Jong-Soo Lee
- College of Veterinary Medicine, Chungnam National University, 220 Gung-dong, Yuseong-gu, Daejeon 34134, Korea; (P.E.); (B.-H.L.); (A.W.); (K.C.)
- Correspondence: ; Tel.: +82-(42)-821-6753; Fax: +82-(42)-825-7910
| |
Collapse
|
17
|
Wang P, Deng Y, Guo Y, Xu Z, Li Y, Ou X, Xie L, Lu M, Zhong J, Li B, Hu L, Deng S, Peng T, Cai M, Li M. Epstein-Barr Virus Early Protein BFRF1 Suppresses IFN-β Activity by Inhibiting the Activation of IRF3. Front Immunol 2020; 11:513383. [PMID: 33391252 PMCID: PMC7774019 DOI: 10.3389/fimmu.2020.513383] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 09/15/2020] [Indexed: 12/13/2022] Open
Abstract
Epstein-Barr virus (EBV) is the causative agent of infectious mononucleosis that is closely associated with several human malignant diseases, while type I interferon (IFN-I) plays an important role against EBV infection. As we all know, EBV can encode some proteins to inhibit the production of IFN-I, but it’s not clear whether other proteins also take part in this progress. EBV early lytic protein BFRF1 is shown to be involved in viral maturation, however, whether BFRF1 participates in the host innate immune response is still not well known. In this study, we found BFRF1 could down-regulate sendai virus-induced IFN-β promoter activity and mRNA expression of IFN-β and ISG54 during BFRF1 plasmid transfection and EBV lytic infection, but BFRF1 could not affect the promoter activity of NF-κB or IRF7. Specifically, BFRF1 could co-localize and interact with IKKi. Although BFRF1 did not interfere the interaction between IKKi and IRF3, it could block the kinase activity of IKKi, which finally inhibited the phosphorylation, dimerization, and nuclear translocation of IRF3. Taken together, BFRF1 may play a critical role in disrupting the host innate immunity by suppressing IFN-β activity during EBV lytic cycle.
Collapse
Affiliation(s)
- Ping Wang
- The Second Affiliated Hospital, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Yangxi Deng
- The Second Affiliated Hospital, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Yingjie Guo
- The Second Affiliated Hospital, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Zuo Xu
- The Second Affiliated Hospital, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Yiwen Li
- The Second Affiliated Hospital, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Xiaowen Ou
- The Second Affiliated Hospital, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Li Xie
- Centralab, Shenzhen Center for Chronic Disease Control, Shenzhen, China
| | - Manjiao Lu
- The Second Affiliated Hospital, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Jiayi Zhong
- The Second Affiliated Hospital, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Bolin Li
- The Second Affiliated Hospital, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Li Hu
- The Second Affiliated Hospital, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Shenyu Deng
- The Second Affiliated Hospital, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Tao Peng
- State Key Laboratory of Respiratory Diseases, Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China.,South China Vaccine Corporation Limited, Guangzhou, China
| | - Mingsheng Cai
- The Second Affiliated Hospital, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Meili Li
- The Second Affiliated Hospital, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
18
|
Xu L, Yu D, Yao YL, Gu T, Zheng X, Wu Y, Luo RH, Zheng YT, Zhong J, Yao YG. Tupaia MAVS Is a Dual Target during Hepatitis C Virus Infection for Innate Immune Evasion and Viral Replication via NF-κB. THE JOURNAL OF IMMUNOLOGY 2020; 205:2091-2099. [PMID: 32907995 DOI: 10.4049/jimmunol.2000376] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 08/07/2020] [Indexed: 01/02/2023]
Abstract
Hepatitis C virus (HCV) infection is the cause of severe liver disease in many people. The restricted species tropism of HCV hinders the research and development of drugs and vaccines. The Chinese tree shrew (Tupaia belangeri chinensis) is a close relative of primates and can be infected by HCV, but the underlying mechanisms are unknown. In this study, we have characterized the functions of tree shrew MAVS (tMAVS) in response to HCV infection and defined the capacity of HCV replication. HCV was shown to be colocalized with tMAVS in primary tree shrew hepatocytes and cleaved tMAVS at site Cys508 via its NS3/4A protease, with a modulating effect by site Glu506 of tMAVS. The tMAVS cleavage by HCV NS3/4A impaired the IRF3-mediated induction of IFN-β but maintained the activated NF-κB signaling in the tree shrew primary cells. Activation of the tMAVS-dependent NF-κB signaling inversely inhibited HCV replication and might limit the establishment of persistent infection. Overall, our study has revealed an elegant example of the balance between the host defenses and HCV infection via the MAVS-mediated antiviral signaling and has provided an insight into the mechanisms underpinning HCV infection in the Chinese tree shrew.
Collapse
Affiliation(s)
- Ling Xu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.,Kunming Institute of Zoology - Chinese University of Hong Kong Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Dandan Yu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.,Kunming Institute of Zoology - Chinese University of Hong Kong Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Yu-Lin Yao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.,Kunming Institute of Zoology - Chinese University of Hong Kong Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Tianle Gu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.,Kunming Institute of Zoology - Chinese University of Hong Kong Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Xiao Zheng
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.,Kunming Institute of Zoology - Chinese University of Hong Kong Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.,School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yong Wu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.,Kunming Institute of Zoology - Chinese University of Hong Kong Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Rong-Hua Luo
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.,Kunming Institute of Zoology - Chinese University of Hong Kong Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Yong-Tang Zheng
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.,Kunming Institute of Zoology - Chinese University of Hong Kong Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Jin Zhong
- Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yong-Gang Yao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; .,Kunming Institute of Zoology - Chinese University of Hong Kong Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China.,National Resource Center for Non-Human Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China; and.,National Research Facility for Phenotypic and Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China
| |
Collapse
|
19
|
Fang P, Fang L, Xia S, Ren J, Zhang J, Bai D, Zhou Y, Peng G, Zhao S, Xiao S. Porcine Deltacoronavirus Accessory Protein NS7a Antagonizes IFN-β Production by Competing With TRAF3 and IRF3 for Binding to IKKε. Front Cell Infect Microbiol 2020; 10:257. [PMID: 32656094 PMCID: PMC7326017 DOI: 10.3389/fcimb.2020.00257] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 05/04/2020] [Indexed: 12/24/2022] Open
Abstract
As an emerging swine enteropathogenic coronavirus, porcine deltacoronavirus (PDCoV) not only causes serious diarrhea in suckling piglets but also possesses the potential for cross-species transmission, which has sparked growing interest when studying this emerging virus. We previously identified a novel accessory protein NS7a encoded by PDCoV; however, the function of NS7a was not resolved. In this study, we demonstrated that PDCoV NS7a is an interferon antagonist. Overexpression of NS7a notably inhibited Sendai virus (SeV)-induced interferon-β (IFN-β) production and the activation of IRF3 rather than NF-κB. NS7a also inhibited IFN-β promoter activity induced by RIG-I, MDA5, MAVS, TBK1, and IKKε, which are key components of the RIG-I-like receptor (RLR) signaling pathway but not IRF3, the transcription factor downstream of TBK1/IKKε. Surprisingly, NS7a specifically interacts with IKKε but not with the closely related TBK1. Furthermore, NS7a interacts simultaneously with the kinase domain (KD) and the scaffold dimerization domain (SDD) of IKKε, competing with TRAF3, and IRF3 for binding to IKKε, leading to the reduction of RLR-mediated IFN-β production. The interactions of TRAF3-IKKε and IKKε-IRF3 are also attenuated in PDCoV-infected cells. Taken together, our results demonstrate that PDCoV NS7a inhibits IFN-β production by disrupting the association of IKKε with both TRAF3 and IRF3, revealing a new mechanism utilized by a PDCoV accessory protein to evade the host antiviral innate immune response.
Collapse
Affiliation(s)
- Puxian Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Liurong Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Sijin Xia
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Jie Ren
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Jiansong Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Dongcheng Bai
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Yanrong Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Guiqing Peng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Shuhong Zhao
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Shaobo Xiao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| |
Collapse
|
20
|
You H, Lin Y, Lin F, Yang M, Li J, Zhang R, Huang Z, Shen Q, Tang R, Zheng C. β-Catenin Is Required for the cGAS/STING Signaling Pathway but Antagonized by the Herpes Simplex Virus 1 US3 Protein. J Virol 2020; 94:e01847-19. [PMID: 31801859 PMCID: PMC7022340 DOI: 10.1128/jvi.01847-19] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 11/26/2019] [Indexed: 12/14/2022] Open
Abstract
The cGAS/STING-mediated DNA-sensing signaling pathway is crucial for interferon (IFN) production and host antiviral responses. Herpes simplex virus I (HSV-1) is a DNA virus that has evolved multiple strategies to evade host immune responses. Here, we demonstrate that the highly conserved β-catenin protein in the Wnt signaling pathway is an important factor to enhance the transcription of type I interferon (IFN-I) in the cGAS/STING signaling pathway, and the production of IFN-I mediated by β-catenin was antagonized by HSV-1 US3 protein via its kinase activity. Infection by US3-deficienct HSV-1 and its kinase-dead variants failed to downregulate IFN-I and IFN-stimulated gene (ISG) production induced by β-catenin. Consistent with this, absence of β-catenin enhanced the replication of US3-deficienct HSV-1, but not wild-type HSV-1. The underlying mechanism was the interaction of US3 with β-catenin and its hyperphosphorylation of β-catenin at Thr556 to block its nuclear translocation. For the first time, HSV-1 US3 has been shown to inhibit IFN-I production through hyperphosphorylation of β-catenin and to subvert host antiviral innate immunity.IMPORTANCE Although increasing evidence has demonstrated that HSV-1 subverts host immune responses and establishes lifelong latent infection, the molecular mechanisms by which HSV-1 interrupts antiviral innate immunity, especially the cGAS/STING-mediated cellular DNA-sensing signaling pathway, have not been fully explored. Here, we show that β-catenin promotes cGAS/STING-mediated activation of the IFN pathway, which is important for cellular innate immune responses and intrinsic resistance to DNA virus infection. The protein kinase US3 antagonizes the production of IFN by targeting β-catenin via its kinase activity. The findings in this study reveal a novel mechanism for HSV-1 to evade host antiviral immunity and add new knowledge to help in understanding the interaction between the host and HSV-1 infection.
Collapse
Affiliation(s)
- Hongjuan You
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yingying Lin
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Feng Lin
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Mingyue Yang
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Jiahui Li
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Rongzhao Zhang
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Zhiming Huang
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Qingtang Shen
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Renxian Tang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Chunfu Zheng
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
21
|
Chang X, Shi X, Zhang X, Chen J, Fan X, Yang Y, Wang L, Wang A, Deng R, Zhou E, Zhang G. miR-382-5p promotes porcine reproductive and respiratory syndrome virus (PRRSV) replication by negatively regulating the induction of type I interferon. FASEB J 2020; 34:4497-4511. [PMID: 32037657 DOI: 10.1096/fj.201902031rrr] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 01/14/2020] [Accepted: 01/14/2020] [Indexed: 12/12/2022]
Abstract
Previous studies have indicated that inhibition of type I interferon production may be an important reason for porcine reproductive and respiratory syndrome virus (PRRSV) to achieve immune escape, revealing the mechanism of inhibiting the production of type I interferon will help design novel strategies for controlling PRRS. Here, we found that PRRSV infection upregulated the expression of miR-382-5p, which in turn inhibited polyI:C-induced the production of type I interferon by targeting heat shock protein 60 (HSP60), thus facilitating PRRSV replication in MARC-145 cells. Furthermore, we found that HSP60 could interact with mitochondrial antiviral signaling protein (MAVS), an important signal transduction protein for inducing production of type I interferon, and promote polyI:C-mediated the production of type I interferon in a MAVS-dependent manner. Finally, we also found that HSP60 could inhibit PRRSV replication in a MAVS-dependent manner, which indicated that HSP60 was a novel antiviral protein against PRRSV replication. In conclusion, the study demonstrated that miR-382-5p was upregulated during PRRSV infection and may promote PRRSV replication by negatively regulating the production of type I interferon, which also indicated that miR-382-5p and HSP60 might be the potential therapeutic targets for anti-PRRSV.
Collapse
Affiliation(s)
- Xiaobo Chang
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China.,College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Xibao Shi
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China.,College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Xiaozhuan Zhang
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Jing Chen
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Xiaomin Fan
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Yuanhao Yang
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Li Wang
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Aiping Wang
- Department of Bioengineering, Zhengzhou University, Zhengzhou, China
| | - Ruiguang Deng
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Enmin Zhou
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Gaiping Zhang
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China.,College of Veterinary Medicine, Northwest A&F University, Yangling, China.,College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China.,Department of Bioengineering, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
22
|
Chen H, Muhammad I, Zhang Y, Ren Y, Zhang R, Huang X, Diao L, Liu H, Li X, Sun X, Abbas G, Li G. Antiviral Activity Against Infectious Bronchitis Virus and Bioactive Components of Hypericum perforatum L. Front Pharmacol 2019; 10:1272. [PMID: 31736754 PMCID: PMC6830131 DOI: 10.3389/fphar.2019.01272] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 10/04/2019] [Indexed: 12/21/2022] Open
Abstract
Hypericum perforatum L., also known as Saint John’s Wort, has been well studied for its chemical composition and pharmacological activity. In this study, the antiviral activities of H. perforatum on infectious bronchitis virus (IBV) were evaluated in vitro and in vivo for the first time. The results of in vitro experiments confirmed that the antiviral component of H. perforatum was ethyl acetate extraction section (HPE), and results showed that treatment with HPE significantly reduced the relative messenger ribonucleic acid (mRNA) expression and virus titer of IBV, and reduced positive green immunofluorescence signal of IBV in chicken embryo kidney (CEK) cells. HPE treatment at doses of 480–120 mg/kg for 5 days, reduced IBV induced injury in the trachea and kidney, moreover, reduced the mRNA expression level of IBV in the trachea and kidney in vivo. The mRNA expression levels of IL-6, tumor necrosis factor alpha (TNF-α), and nuclear factor kappa beta (NF-κB) significantly decreased, but melanoma differentiation-associated protein 5 (MDA5), mitochondrial antiviral signaling gene, interferon alpha (IFN-α), and interferon beta (IFN-β) mRNA levels significantly increased in vitro and in vivo. Our findings demonstrated that HPE had significant anti-IBV effects in vitro and in vivo, respectively. In addition, it is possible owing to up-regulate mRNA expression of type I interferon through the MDA5 signaling pathway and down-regulate mRNA expression of IL-6 and TNF-α via the NF-κB signaling pathway. Moreover, the mainly active compositions of HPE analyzed by high-performance liquid chromatography/electrospray ionization–mass spectroscopy (ESI-MS) are hyperoside, quercitrin, quercetin, pseudohypericin, and hypericin, and a combination of these compounds could mediate the antiviral activities. This might accelerate our understanding of the antiviral effect of H. perforatum and provide new insights into the development of effective therapeutic strategies.
Collapse
Affiliation(s)
- Huijie Chen
- Key Laboratory for Laboratory Animals and Comparative Medicine of Heilongjiang Province, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.,College of Biological and Pharmaceutical Engineering, Jilin Agricultural Science and Technology University, Jilin, China
| | - Ishfaq Muhammad
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Heilongjiang Province, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yue Zhang
- Key Laboratory for Laboratory Animals and Comparative Medicine of Heilongjiang Province, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yudong Ren
- Key Laboratory for Laboratory Animals and Comparative Medicine of Heilongjiang Province, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Ruili Zhang
- Key Laboratory for Laboratory Animals and Comparative Medicine of Heilongjiang Province, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xiaodan Huang
- Key Laboratory for Laboratory Animals and Comparative Medicine of Heilongjiang Province, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Lei Diao
- College of Biological and Pharmaceutical Engineering, Jilin Agricultural Science and Technology University, Jilin, China
| | - Haixin Liu
- Key Laboratory for Laboratory Animals and Comparative Medicine of Heilongjiang Province, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xunliang Li
- Key Laboratory for Laboratory Animals and Comparative Medicine of Heilongjiang Province, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xiaoqi Sun
- Key Laboratory for Laboratory Animals and Comparative Medicine of Heilongjiang Province, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Ghulam Abbas
- Key Laboratory for Laboratory Animals and Comparative Medicine of Heilongjiang Province, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Guangxing Li
- Key Laboratory for Laboratory Animals and Comparative Medicine of Heilongjiang Province, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| |
Collapse
|
23
|
Takaoka A, Yamada T. Regulation of signaling mediated by nucleic acid sensors for innate interferon-mediated responses during viral infection. Int Immunol 2019; 31:477-488. [PMID: 30985869 PMCID: PMC7110195 DOI: 10.1093/intimm/dxz034] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 04/12/2019] [Indexed: 12/17/2022] Open
Abstract
Type I and type III interferons are important anti-viral cytokines that are massively induced during viral infection. This dynamic process is regulated by many executors and regulators for efficient eradication of invading viruses and protection from harmful, excessive responses. An array of innate sensors recognizes virus-derived nucleic acids to activate their downstream signaling to evoke cytokine responses including interferons. In particular, a cytoplasmic RNA sensor RIG-I (retinoic acid-inducible gene I) is involved in the detection of multiple types of not only RNA viruses but also DNA viruses. Accumulating findings have revealed that activation of nucleic acid sensors and the related signaling mediators is regulated on the basis of post-translational modification such as ubiquitination, phosphorylation and ADP-ribosylation. In addition, long non-coding RNAs (lncRNAs) have been implicated as a new class of regulators in innate signaling. A comprehensive understanding of the regulatory mechanisms of innate sensor activation and its signaling in host-virus interaction will provide a better therapeutic strategy to efficiently control viral infection and maintain immune homeostasis.
Collapse
Affiliation(s)
- Akinori Takaoka
- Division of Signaling in Cancer and Immunology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Taisho Yamada
- Division of Signaling in Cancer and Immunology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|
24
|
You H, Zheng S, Huang Z, Lin Y, Shen Q, Zheng C. Herpes Simplex Virus 1 Tegument Protein UL46 Inhibits TANK-Binding Kinase 1-Mediated Signaling. mBio 2019; 10:e00919-19. [PMID: 31113902 PMCID: PMC6529639 DOI: 10.1128/mbio.00919-19] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 04/15/2019] [Indexed: 12/15/2022] Open
Abstract
TANK-binding kinase 1 (TBK1) is a key component of the antiviral immunity signaling pathway. It activates downstream interferon regulatory factor 3 (IRF3) and subsequent type I interferon (IFN-I) production. Herpes simplex virus type 1 (HSV-1) can antagonize host antiviral immune responses and lead to latent infection. Here, HSV-1 tegument protein UL46 was demonstrated to downregulate TBK1-dependent antiviral innate immunity. UL46 interacted with TBK1 and reduced TBK1 activation and its downstream signaling. Our results showed that UL46 impaired the interaction of TBK1 and IRF3 and downregulated the activation of IRF3 by inhibiting the dimerization of TBK1 to reduce the IFN-I production induced by TBK1 and immunostimulatory DNA. The IFN-I and its downstream antiviral genes induced by UL46-deficient HSV-1 (ΔUL46 HSV-1) were higher than those of wild-type HSV-1 (WT HSV-1). In addition, the stable knockdown of TBK1 facilitated the replication of ΔUL46 HSV-1, but not WT HSV-1. Together, these findings reveal a novel mechanism of immune evasion by HSV-1.IMPORTANCE HSV-1 has evolved multiple strategies to evade host antiviral responses and establish a lifelong latent infection, but the molecular mechanisms by which HSV-1 interrupts antiviral innate immunity are not completely understood. As TBK1 is very critical for antiviral innate immunity, it is of great interest to reveal the immune evasion mechanism of HSV-1 by targeting TBK1. In the present study, HSV-1 UL46 was found to inhibit the activation of IFN-I by targeting TBK1, suggesting that the evasion of TBK1 mediated antiviral innate immunity by HSV-1 UL46. Findings in this study will provide new insights into the host-virus interaction and help develop new approaches against HSV-1 infection.
Collapse
Affiliation(s)
- Hongjuan You
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Sisilia Zheng
- Department of Psychology, University of Calgary, Calgary, Alberta, Canada
| | - Zhiming Huang
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Yingying Lin
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Qingtang Shen
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Chunfu Zheng
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
25
|
McGuire PJ. Mitochondrial Dysfunction and the Aging Immune System. BIOLOGY 2019; 8:biology8020026. [PMID: 31083529 PMCID: PMC6627503 DOI: 10.3390/biology8020026] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 01/04/2019] [Accepted: 01/16/2019] [Indexed: 01/28/2023]
Abstract
Mitochondria are ancient organelles that have co-evolved with their cellular hosts, developing a mutually beneficial arrangement. In addition to making energy, mitochondria are multifaceted, being involved in heat production, calcium storage, apoptosis, cell signaling, biosynthesis, and aging. Many of these mitochondrial functions decline with age, and are the basis for many diseases of aging. Despite the vast amount of research dedicated to this subject, the relationship between aging mitochondria and immune function is largely absent from the literature. In this review, three main issues facing the aging immune system are discussed: (1) inflamm-aging; (2) susceptibility to infection and (3) declining T-cell function. These issues are re-evaluated using the lens of mitochondrial dysfunction with aging. With the recent expansion of numerous profiling technologies, there has been a resurgence of interest in the role of metabolism in immunity, with mitochondria taking center stage. Building upon this recent accumulation of knowledge in immunometabolism, this review will advance the hypothesis that the decline in immunity and associated pathologies are partially related to the natural progression of mitochondrial dysfunction with aging.
Collapse
Affiliation(s)
- Peter J McGuire
- Metabolism, Infection and Immunity Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
26
|
Liu K, Chen L, Zhao G, Cao Z, Li F, Lin L, Zhu C, Xie Q, Xu Y, Bao S, Wang H. IPS-1 polymorphisms in regulating interferon response in HBV infection. Biosci Trends 2019; 13:130-135. [PMID: 30930359 DOI: 10.5582/bst.2018.01304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Single nucleotide polymorphisms (SNP) influence the outcome of antiviral therapy in chronic hepatitis B patients. Interferon β promoter stimulator 1 polymorphisms (IPS-1) regulate interferon (IFN) mediated viral clearance in hepatitis B virus (HBV) infection. In our study, HepG2 and HepG2.2.15 were transfected with different SNP genotype expression vectors of IPS-1 (wild-type, rs17857295, rs7262903 and rs7269320). The production of IPS-1 and IFN were evaluated in these transfected cells. IPS-1 in the HepG2.2.15 cells transfected with rs17857295 or rs7262903 was 37% or 31% lower than that with wild-type transfection (p < 0.001). IFN-β in rs17857295 or rs7262903 transfected HepG2.2.15 cells was 5.4 or 3.7 fold higher than that of wild-type transfection (p < 0.0001). IPS-1 in rs7269320 SNP transfected HepG2.2.15 cells was 40% lower than that of wild-type transfection (p < 0.0001); no significantly different IFN-β was observed between rs7269320 SNP and wild-type transfections. IFN-β expression was > 2 fold higher in rs17857295 transfected HepG2.2.15 cells than HepG2 cells (p < 0.001). The data suggests that host HBV viral clearance is stronger in IPS-1 rs17857295 or rs7262903 SNP genotype patients than wild-type patients. Relatively weak inducible IFN-β production in HBV infected patients with IPS-1 rs7269320 SNP or wild-type may contribute to chronic virus infection.
Collapse
Affiliation(s)
- Kehui Liu
- Department of Infectious Diseases, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine.,Department of Infectious Diseases, Rui Jin Hospital North, Shanghai Jiao Tong University School of Medicine
| | - Liwen Chen
- Department of Infectious Diseases, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine
| | - Gangde Zhao
- Department of Infectious Diseases, Rui Jin Hospital North, Shanghai Jiao Tong University School of Medicine
| | - Zhujun Cao
- Department of Infectious Diseases, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine
| | - Fengdi Li
- Department of Infectious Diseases, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine
| | - Lanyi Lin
- Department of Infectious Diseases, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine
| | - Chuanwu Zhu
- Department of infectious Diseases, The Fifth People's Hospital of Suzhou, The Affiliated Infectious Diseases of Soochou University
| | - Qing Xie
- Department of Infectious Diseases, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine
| | - Yumin Xu
- Department of Infectious Diseases, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine
| | - Shisan Bao
- Discipline of Pathology, School of Medical Sciences and The Bosch Institute, The University of Sydney
| | - Hui Wang
- Department of Infectious Diseases, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine
| |
Collapse
|
27
|
Hwang MS, Boulanger J, Howe JD, Albecka A, Pasche M, Mureşan L, Modis Y. MAVS polymers smaller than 80 nm induce mitochondrial membrane remodeling and interferon signaling. FEBS J 2019; 286:1543-1560. [PMID: 30715798 PMCID: PMC6513760 DOI: 10.1111/febs.14772] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 11/29/2018] [Accepted: 01/31/2019] [Indexed: 12/24/2022]
Abstract
Double‐stranded RNA (dsRNA) is a potent proinflammatory signature of viral infection and is sensed primarily by RIG‐I‐like receptors (RLRs). Oligomerization of RLRs following binding to cytosolic dsRNA activates and nucleates self‐assembly of the mitochondrial antiviral‐signaling protein (MAVS). In the current signaling model, the caspase recruitment domains of MAVS form helical fibrils that self‐propagate like prions to promote signaling complex assembly. However, there is no conclusive evidence that MAVS forms fibrils in cells or with the transmembrane anchor present. We show here with super‐resolution light microscopy that MAVS activation by dsRNA induces mitochondrial membrane remodeling. Quantitative image analysis at imaging resolutions as high as 32 nm shows that in the cellular context, MAVS signaling complexes and the fibrils within them are smaller than 80 nm. The transmembrane domain of MAVS is required for its membrane remodeling, interferon signaling, and proapoptotic activities. We conclude that membrane tethering of MAVS restrains its polymerization and contributes to mitochondrial remodeling and apoptosis upon dsRNA sensing.
Collapse
Affiliation(s)
- Ming-Shih Hwang
- Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, UK
| | | | | | - Anna Albecka
- Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, UK
| | | | - Leila Mureşan
- Cambridge Advanced Imaging Centre, University of Cambridge, UK.,Department of Physiology, Development and Neuroscience, University of Cambridge, UK
| | - Yorgo Modis
- Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, UK
| |
Collapse
|
28
|
Morazzani EM, Compton JR, Leary DH, Berry AV, Hu X, Marugan JJ, Glass PJ, Legler PM. Proteolytic cleavage of host proteins by the Group IV viral proteases of Venezuelan equine encephalitis virus and Zika virus. Antiviral Res 2019; 164:106-122. [PMID: 30742841 DOI: 10.1016/j.antiviral.2019.02.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 01/13/2019] [Accepted: 02/01/2019] [Indexed: 12/12/2022]
Abstract
The alphaviral nonstructural protein 2 (nsP2) cysteine proteases (EC 3.4.22.-) are essential for the proteolytic processing of the nonstructural (ns) polyprotein and are validated drug targets. A common secondary role of these proteases is to antagonize the effects of interferon (IFN). After delineating the cleavage site motif of the Venezuelan equine encephalitis virus (VEEV) nsP2 cysteine protease, we searched the human genome to identify host protein substrates. Here we identify a new host substrate of the VEEV nsP2 protease, human TRIM14, a component of the mitochondrial antiviral-signaling protein (MAVS) signalosome. Short stretches of homologous host-pathogen protein sequences (SSHHPS) are present in the nonstructural polyprotein and TRIM14. A 25-residue cyan-yellow fluorescent protein TRIM14 substrate was cleaved in vitro by the VEEV nsP2 protease and the cleavage site was confirmed by tandem mass spectrometry. A TRIM14 cleavage product also was found in VEEV-infected cell lysates. At least ten other Group IV (+)ssRNA viral proteases have been shown to cleave host proteins involved in generating the innate immune responses against viruses, suggesting that the integration of these short host protein sequences into the viral protease cleavage sites may represent an embedded mechanism of IFN antagonism. This interference mechanism shows several parallels with those of CRISPR/Cas9 and RNAi/RISC, but with a protease recognizing a protein sequence common to both the host and pathogen. The short host sequences embedded within the viral genome appear to be analogous to the short phage sequences found in a host's CRISPR spacer sequences. To test this algorithm, we applied it to another Group IV virus, Zika virus (ZIKV), and identified cleavage sites within human SFRP1 (secreted frizzled related protein 1), a retinal Gs alpha subunit, NT5M, and Forkhead box protein G1 (FOXG1) in vitro. Proteolytic cleavage of these proteins suggests a possible link between the protease and the virus-induced phenotype of ZIKV. The algorithm may have value for selecting cell lines and animal models that recapitulate virus-induced phenotypes, predicting host-range and susceptibility, selecting oncolytic viruses, identifying biomarkers, and de-risking live virus vaccines. Inhibitors of the proteases that utilize this mechanism may both inhibit viral replication and alleviate suppression of the innate immune responses.
Collapse
Affiliation(s)
- Elaine M Morazzani
- United States Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA
| | - Jaimee R Compton
- Center for Bio/molecular Science and Engineering, U.S. Naval Research Laboratory, Washington, DC 20375, USA
| | - Dagmar H Leary
- Center for Bio/molecular Science and Engineering, U.S. Naval Research Laboratory, Washington, DC 20375, USA
| | | | - Xin Hu
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, Rockville, MD 20850, USA
| | - Juan J Marugan
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, Rockville, MD 20850, USA
| | - Pamela J Glass
- United States Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA
| | - Patricia M Legler
- Center for Bio/molecular Science and Engineering, U.S. Naval Research Laboratory, Washington, DC 20375, USA.
| |
Collapse
|
29
|
Unterholzner L, Almine JF. Camouflage and interception: how pathogens evade detection by intracellular nucleic acid sensors. Immunology 2018; 156:217-227. [PMID: 30499584 PMCID: PMC6376273 DOI: 10.1111/imm.13030] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/24/2018] [Accepted: 11/26/2018] [Indexed: 12/16/2022] Open
Abstract
Intracellular DNA and RNA sensors play a vital part in the innate immune response to viruses and other intracellular pathogens, causing the secretion of type I interferons, cytokines and chemokines from infected cells. Pathogen RNA can be detected by retinoic-acid inducible gene I-like receptors in the cytosol, whereas cytosolic DNA is recognized by DNA sensors such as cyclic GMP-AMP synthase (cGAS). The resulting local immune response, which is initiated within hours of infection, is able to eliminate many pathogens before they are able to establish an infection in the host. For this reason, all viruses, and some intracellular bacteria and protozoa, need to evade detection by nucleic acid sensors. Immune evasion strategies include the sequestration and modification of nucleic acids, and the inhibition or degradation of host factors involved in innate immune signalling. Large DNA viruses, such as herpesviruses, often use multiple viral proteins to inhibit signalling cascades at several different points; for instance herpes simplex virus 1 targets both DNA sensors cGAS and interferon-γ-inducible protein 16, as well as the adaptor protein STING (stimulator of interferon genes) and other signalling factors in the pathway. Viruses with a small genome encode only a few immunomodulatory proteins, but these are often multifunctional, such as the NS1 protein from influenza A virus, which inhibits RNA sensing in multiple ways. Intracellular bacteria and protozoa can also be detected by nucleic acid sensors. However, as the type I interferon response is not always beneficial for the host under these circumstances, some bacteria subvert, rather than evade, these signalling cascades for their own gain.
Collapse
Affiliation(s)
- Leonie Unterholzner
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, UK
| | - Jessica F Almine
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, UK
| |
Collapse
|
30
|
Provazzi PJS, Rossi LMG, Carneiro BM, Miura VC, Rosa PCR, de Carvalho LR, de Andrade STQ, Fachini RM, Grotto RMT, Silva GF, Valêncio CR, Neto PS, Cordeiro JA, Nogueira ML, Rahal P. Hierarchical assessment of host factors influencing the spontaneous resolution of hepatitis C infection. Braz J Microbiol 2018; 50:147-155. [PMID: 30637644 DOI: 10.1007/s42770-018-0008-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 04/06/2018] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Hepatitis C virus (HCV) infection is associated with chronic liver disease, resulting in cirrhosis and hepatocellular carcinoma. Approximately 20% of HCV infections are spontaneously resolved. Here, we assessed the hierarchical relevance of host factors contributing to viral clearance. METHODS DNA samples from 40 resolved infections and 40 chronic HCV patients paired by age were analyzed. Bivariate analysis was performed to rank the importance of each contributing factor in spontaneous HCV clearance. RESULTS Interestingly, 63.6% of patients with resolved infections exhibited the protective genotype CC for SNP rs12979860. Additionally, 59.3% of patients with resolved infections displayed the protective genotype TT/TT for SNP ss469415590. Moreover, a ranking of clearance factors was estimated. In order of importance, the IL28B CC genotype (OR 0.197, 95% CI 0.072-0.541) followed by the INFL4 TT/TT genotype (OR 0.237, 95% CI 0.083-0.679), and female gender (OR 0.394, 95% CI 0.159-0.977) were the main predictors for clearance of HCV infection. CONCLUSIONS HCV clearance is multifactorial and the contributing factors display a hierarchical order. Identifying all elements playing role in HCV clearance is of the most importance for HCV-related disease management. Dissecting the relevance of each contributing factor will certainly improve our understanding of the pathogenesis of HCV infection.
Collapse
Affiliation(s)
| | | | - Bruno Moreira Carneiro
- Department of Biology, São Paulo State University - UNESP, São José do Rio Preto, SP, 15054-000, Brazil
| | - Valeria Chamas Miura
- Department of Biology, São Paulo State University - UNESP, São José do Rio Preto, SP, 15054-000, Brazil
| | | | | | | | - Roberta Maria Fachini
- Department of Hepatology, São José do Rio Preto Medical School, São José do Rio Preto, SP, 15090-000, Brazil
| | | | - Giovanni Faria Silva
- Department of Internal Medicine, São Paulo State University - UNESP, Botucatu, SP, 18618-970, Brazil
| | - Carlos Roberto Valêncio
- Department of Computer Science and Statistics, São Paulo State University - UNESP, São José do Rio Preto, SP, 15054-000, Brazil
| | - Paulo Scarpelini Neto
- Department of Computer Science and Statistics, São Paulo State University - UNESP, São José do Rio Preto, SP, 15054-000, Brazil
| | - José Antonio Cordeiro
- Department of Computer Science and Statistics, São Paulo State University - UNESP, São José do Rio Preto, SP, 15054-000, Brazil
| | - Mauricio Lacerda Nogueira
- Laboratory of Virology, São José do Rio Preto Medical School, São José do Rio Preto, SP, 15090-000, Brazil
| | - Paula Rahal
- Department of Biology, São Paulo State University - UNESP, São José do Rio Preto, SP, 15054-000, Brazil.
| |
Collapse
|
31
|
Zhang M, Fu Z, Chen J, Zhu B, Cheng Y, Fu L. Low level expression of the Mitochondrial Antiviral Signaling protein (MAVS) associated with long-term nonprogression in SIV-infected rhesus macaques. Virol J 2018; 15:159. [PMID: 30326919 PMCID: PMC6192151 DOI: 10.1186/s12985-018-1069-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 09/26/2018] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Abnormally increased immune activation is one of the main pathological features of acquired immunodeficiency syndrome (AIDS). This study aimed to determine whether long-term nonprogression (LTNP) suppresses the upregulation of immune activation and to elucidate the mechanisms whereby the LTNP state is maintained. METHODS For this study we selected 4 rhesus macaques(RMs) infected with simian immunodeficiency virus (SIV) that were long-term nonprogressors (LTNP); for comparison we chose 4 healthy RMs that were seronegative for SIV (hereafter referred to as the Control group), and 4 progressing infection (Progressive group) SIV RMs. We observed these animals for 6 months without intervention and explored the immunological and pathological differences among the 3 groups. A series of immune activation and inflammation markers-such as C- C chemokine receptor type 5 (CCR5), beta 2- microglobulin (β2-MG), Human Leukocyte Antigen - antigen D Related (HLA-DR), CD38, the levels of microbial translocation (LPS -binding protein), and MAVS-and histological features were monitored during this period. RESULTS Both SIV RNA and SIV DNA in the plasma and lymph nodes (LNs) of the LTNP group were at significantly lower levels than those of the Progressive group (P < 0.05). The CD4/CD8 ratio and CD4 cell count and proportion in the LTNP group were between those of the Progressive and Control groups (P < 0.05): that is, they were higher than in the Progressive group and lower than in the Control group. The LTNP macaques manifested slow progression and decreased immune activation and inflammation; they also had lower levels of CCR5, LPS-binding protein, and β2-MG than the Progressive RMs (P < 0.05). Activation of LTNP in both CD4+ and CD8+ T cells was significantly lower than in the Progressive group and closer to that in the Control group. The histological features of the LTNP macaques were also closer to those of the Control group, even though they had been infected with SIV 4 years earlier. These data point to low viral replication in the LTNP macaques but it is not static. The expression of MAVS in peripheral blood and LNs was lower in the LTNP group than that in the Progressive group (P < 0.01), and MAVS was positively correlated with SIV DNA in LNs (P < 0.05). This may reflect the low activation of T lymphocytes. It was speculated that MAVS may be the link between innate and acquired antiviral immunity in SIV infection. CONCLUSIONS The LTNP RMs in our study were in a relatively stable state of low activation and inflammation, some biological progression with no disease events. This may have been associated with their low levels of the mitochondrial antiviral signaling protein (MAVS).
Collapse
Affiliation(s)
- Miaomiao Zhang
- College of Traditional Chinese medicine, Hebei University, Baoding, 071000, China. .,Tropical Medicine Institute, Guangzhou University of Chinese medicine, Guangzhou, 510405, China.
| | - Zhuotao Fu
- The first Affiliated Hospital, Guangzhou University of Chinese medicine, Guangzhou, China
| | - Jiantao Chen
- Tropical Medicine Institute, Guangzhou University of Chinese medicine, Guangzhou, 510405, China
| | - Boqiang Zhu
- Tropical Medicine Institute, Guangzhou University of Chinese medicine, Guangzhou, 510405, China
| | - Ye Cheng
- Tropical Medicine Institute, Guangzhou University of Chinese medicine, Guangzhou, 510405, China
| | - Linchun Fu
- Tropical Medicine Institute, Guangzhou University of Chinese medicine, Guangzhou, 510405, China.
| |
Collapse
|
32
|
Liu G, Lu Y, Thulasi Raman SN, Xu F, Wu Q, Li Z, Brownlie R, Liu Q, Zhou Y. Nuclear-resident RIG-I senses viral replication inducing antiviral immunity. Nat Commun 2018; 9:3199. [PMID: 30097581 PMCID: PMC6086882 DOI: 10.1038/s41467-018-05745-w] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 07/24/2018] [Indexed: 12/28/2022] Open
Abstract
The nucleus represents a cellular compartment where the discrimination of self from non-self nucleic acids is vital. While emerging evidence establishes a nuclear non-self DNA sensing paradigm, the nuclear sensing of non-self RNA, such as that from nuclear-replicating RNA viruses, remains unexplored. Here, we report the identification of nuclear-resident RIG-I actively involved in nuclear viral RNA sensing. The nuclear RIG-I, along with its cytoplasmic counterpart, senses influenza A virus (IAV) nuclear replication leading to a cooperative induction of type I interferon response. Its activation signals through the canonical signaling axis and establishes an effective antiviral state restricting IAV replication. The exclusive signaling specificity conferred by nuclear RIG-I is reinforced by its inability to sense cytoplasmic-replicating Sendai virus and appreciable sensing of hepatitis B virus pregenomic RNA in the nucleus. These results refine the RNA sensing paradigm for nuclear-replicating viruses and reveal a previously unrecognized subcellular milieu for RIG-I-like receptor sensing.
Collapse
Affiliation(s)
- GuanQun Liu
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, SK, S7N 5E3, Canada
- Vaccinology & Immunotherapeutics Program, School of Public Health, University of Saskatchewan, Saskatoon, SK, S7N 5E3, Canada
| | - Yao Lu
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, SK, S7N 5E3, Canada
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5E3, Canada
| | - Sathya N Thulasi Raman
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, SK, S7N 5E3, Canada
| | - Fang Xu
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, SK, S7N 5E3, Canada
| | - Qi Wu
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, SK, S7N 5E3, Canada
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5E3, Canada
| | - Zhubing Li
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, SK, S7N 5E3, Canada
- Vaccinology & Immunotherapeutics Program, School of Public Health, University of Saskatchewan, Saskatoon, SK, S7N 5E3, Canada
| | - Robert Brownlie
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, SK, S7N 5E3, Canada
| | - Qiang Liu
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, SK, S7N 5E3, Canada
- Vaccinology & Immunotherapeutics Program, School of Public Health, University of Saskatchewan, Saskatoon, SK, S7N 5E3, Canada
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5E3, Canada
| | - Yan Zhou
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, SK, S7N 5E3, Canada.
- Vaccinology & Immunotherapeutics Program, School of Public Health, University of Saskatchewan, Saskatoon, SK, S7N 5E3, Canada.
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5E3, Canada.
| |
Collapse
|
33
|
Duan X, Anwar MI, Xu Z, Ma L, Yuan G, Chen Y, Liu X, Xia J, Zhou Y, Li YP. Adaptive mutation F772S-enhanced p7-NS4A cooperation facilitates the assembly and release of hepatitis C virus and is associated with lipid droplet enlargement. Emerg Microbes Infect 2018; 7:143. [PMID: 30087320 PMCID: PMC6081454 DOI: 10.1038/s41426-018-0140-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 06/17/2018] [Accepted: 06/23/2018] [Indexed: 12/20/2022]
Abstract
Hepatitis C virus (HCV) infection is a major cause of chronic hepatitis and liver cancer worldwide. Adaptive mutations play important roles in the development of the HCV replicon and its infectious clones. We and others have previously identified the p7 mutation F772S and the co-presence of NS4A mutations in infectious HCV full-length clones and chimeric recombinants. However, the underlying mechanism of F772S function remains incompletely understood. Here, we investigated the functional role of F772S using an efficient JFH1-based reporter virus with Core-NS2 from genotype 2a strain J6, and we designated J6-p7/JFH1-4A according to the strain origin of the p7 and NS4A sequences. We found that replacing JFH1-4A with J6-4A (wild-type or mutated NS4A) or genotype 2b J8-4A severely attenuated the viability of J6-p7/JFH1-4A. However, passage-recovered viruses that contained J6-p7 all acquired F772S. Introduction of F772S efficiently rescued the viral spread and infectivity titers of J6-p7/J6-4A, which reached the levels of the original J6-p7/JFH1-4A and led to a concomitant increase in RNA replication, assembly and release of viruses with J6-specific p7 and NS4A. These data suggest that an isolate-specific cooperation existed between p7 and NS4A. NS4A exchange- or substitution-mediated viral attenuation was attributed to the RNA sequence, and no p7-NS4A protein interaction was detected. Moreover, we found that F772S-enhanced p7-NS4A cooperation was associated with the enlargement of intracellular lipid droplets. This study therefore provides new insights into the mechanisms of adaptive mutations and facilitates studies on the HCV life cycle and virus–host interaction.
Collapse
Affiliation(s)
- Xiaobing Duan
- Institute of Human Virology and Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 501180, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-Sen University, Guangzhou, 501180, China.,Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Muhammad Ikram Anwar
- Institute of Human Virology and Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 501180, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-Sen University, Guangzhou, 501180, China.,Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Zhanxue Xu
- Institute of Human Virology and Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 501180, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-Sen University, Guangzhou, 501180, China.,Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Ling Ma
- Institute of Human Virology and Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 501180, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-Sen University, Guangzhou, 501180, China.,Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Guosheng Yuan
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yiyi Chen
- Institute of Human Virology and Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 501180, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-Sen University, Guangzhou, 501180, China.,Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Xi Liu
- Department of Infectious Diseases, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, China
| | - Jinyu Xia
- Department of Infectious Diseases, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, China
| | - Yuanping Zhou
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yi-Ping Li
- Institute of Human Virology and Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 501180, China. .,Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-Sen University, Guangzhou, 501180, China. .,Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Sun Yat-Sen University, Guangzhou, 510080, China. .,Program in Pathobiology, The Fifth Affiliated Hospital and Zhongshan School of Medicine, Sun Yat-sen University, Zhuhai, 519000, China.
| |
Collapse
|
34
|
Huang J, You H, Su C, Li Y, Chen S, Zheng C. Herpes Simplex Virus 1 Tegument Protein VP22 Abrogates cGAS/STING-Mediated Antiviral Innate Immunity. J Virol 2018; 92:e00841-18. [PMID: 29793952 PMCID: PMC6052299 DOI: 10.1128/jvi.00841-18] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Accepted: 05/16/2018] [Indexed: 11/20/2022] Open
Abstract
Cytosolic DNA arising from intracellular pathogens is sensed by cyclic GMP-AMP synthase (cGAS) and triggers a powerful innate immune response. However, herpes simplex virus 1 (HSV-1), a double-stranded DNA virus, has developed multiple mechanisms to attenuate host antiviral machinery and facilitate viral infection and replication. In the present study, we found that HSV-1 tegument protein VP22 acts as an inhibitor of cGAS/stimulator of interferon genes (cGAS/STING)-mediated production of interferon (IFN) and its downstream antiviral genes. Our results showed that ectopic expression of VP22 decreased cGAS/STING-mediated IFN-β promoter activation and IFN-β production. Infection with wild-type (WT) HSV-1, but not VP22-deficient virus (ΔVP22), inhibited immunostimulatory DNA (ISD)-induced activation of the IFN signaling pathway. Further study showed that VP22 interacted with cGAS and inhibited the enzymatic activity of cGAS. In addition, stable knockdown of cGAS facilitated the replication of ΔVP22 virus but not the WT. In summary, our findings indicate that HSV-1 VP22 acts as an antagonist of IFN signaling to persistently evade host innate antiviral responses.IMPORTANCE cGAS is very important for host defense against viral infection, and many viruses have evolved ways to target cGAS and successfully evade the attack by the immune system of their susceptible host. This study demonstrated that HSV-1 tegument protein VP22 counteracts the cGAS/STING-mediated DNA-sensing antiviral innate immunity signaling pathway by inhibiting the enzymatic activity of cGAS. The findings in this study will expand our understanding of the interaction between HSV-1 replication and the host DNA-sensing signaling pathway.
Collapse
Affiliation(s)
- Jian Huang
- Soochow University, Institutes of Biology and Medical Sciences, Suzhou, China
| | - Hongjuan You
- Soochow University, Institutes of Biology and Medical Sciences, Suzhou, China
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Chenhe Su
- Lady Davis Institute-Jewish General Hospital, McGill University, Montreal, Quebec, Canada
| | - Yangxin Li
- Institute for Cardiovascular Science and Department of Cardiovascular Surgery, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Shunhua Chen
- Microbiology and Immunology College of Medicine, National Cheng Kung University, Tainan, Taiwan, Republic of China
| | - Chunfu Zheng
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Minhou, Fuzhou, China
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
35
|
Yu L, Zhang X, Wu T, Su J, Wang Y, Wang Y, Ruan B, Niu X, Wu Y. Avian infectious bronchitis virus disrupts the melanoma differentiation associated gene 5 (MDA5) signaling pathway by cleavage of the adaptor protein MAVS. BMC Vet Res 2017; 13:332. [PMID: 29132350 PMCID: PMC5683607 DOI: 10.1186/s12917-017-1253-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 10/31/2017] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Melanoma differentiation associated gene 5 (MDA5) and retinoic acid-inducible gene-I (RIG-I) selectively sense cytoplasmic viral RNA to induce an antiviral immune response. Infectious bronchitis virus (IBV) is one of the most important infectious agents in chickens, and in chicken cells, it can be recognized by MDA5 to activate interferon production. RIG-I is considered to be absent in chickens. However, the absence of RIG-I in chickens raises the question of whether this protein influences the antiviral immune response against IBV infection. RESULTS Here, we showed that chicken cells transfected with domestic goose RIG-I (dgRIG-I) exhibited increased IFN-β activity after IBV infection. We also found that IBV can cleave MAVS, an adaptor protein downstream of RIG-I and MDA5 that acts as a platform for antiviral innate immunity at an early stage of infection. CONCLUSIONS Although chicken MDA5 (chMDA5) is functionally active during IBV infection, the absence of RIG-I may increase the susceptibility of chickens to IBV infection, and IBV may disrupt the activation of the host antiviral response through the cleavage of MAVS.
Collapse
Affiliation(s)
- Liping Yu
- Jiangsu Co-Innovation Center for Prevention of Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Xiaorong Zhang
- Jiangsu Co-Innovation Center for Prevention of Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Tianqi Wu
- Jiangsu Co-Innovation Center for Prevention of Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Jin Su
- Jiangsu Co-Innovation Center for Prevention of Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Yuyang Wang
- Jiangsu Co-Innovation Center for Prevention of Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Yuexin Wang
- Jiangsu Co-Innovation Center for Prevention of Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Baoyang Ruan
- Jiangsu Co-Innovation Center for Prevention of Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Xiaosai Niu
- Jiangsu Co-Innovation Center for Prevention of Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Yantao Wu
- Jiangsu Co-Innovation Center for Prevention of Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, China.
| |
Collapse
|
36
|
Abstract
Infected cells can undergo apoptosis as a protective response to viral infection, thereby limiting viral infection. As viruses require a viable cell for replication, the death of the cell limits cellular functions that are required for virus replication and propagation. Picornaviruses are single-stranded RNA viruses that modify the host cell apoptotic response, probably in order to promote viral replication, largely as a function of the viral proteases 2A, 3C, and 3CD. These proteases are essential for viral polyprotein processing and also cleave cellular proteins. Picornavirus proteases cleave proapoptotic adaptor proteins, resulting in downregulation of apoptosis. Picornavirus proteases also cleave nucleoporins, disrupting the orchestrated manner in which signaling pathways use active nucleocytoplasmic trafficking, including those involved in apoptosis. In addition to viral proteases, the transmembrane 2B protein alters intracellular ion signaling, which may also modulate apoptosis. Overall, picornaviruses, via the action of virally encoded proteins, exercise intricate control over and subvert cell death pathways, specifically apoptosis, thereby allowing viral replication to continue.
Collapse
|
37
|
Hepatitis C Virus NS5A Targets Nucleosome Assembly Protein NAP1L1 To Control the Innate Cellular Response. J Virol 2017; 91:JVI.00880-17. [PMID: 28659470 DOI: 10.1128/jvi.00880-17] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 06/19/2017] [Indexed: 12/14/2022] Open
Abstract
Hepatitis C virus (HCV) is a single-stranded positive-sense RNA hepatotropic virus. Despite cellular defenses, HCV is able to replicate in hepatocytes and to establish a chronic infection that could lead to severe complications and hepatocellular carcinoma. An important player in subverting the host response to HCV infection is the viral nonstructural protein NS5A, which, in addition to its role in replication and assembly, targets several pathways involved in the cellular response to viral infection. Several unbiased screens identified nucleosome assembly protein 1-like 1 (NAP1L1) as an interaction partner of HCV NS5A. Here we confirmed this interaction and mapped it to the C terminus of NS5A of both genotype 1 and 2. NS5A sequesters NAP1L1 in the cytoplasm, blocking its nuclear translocation. However, only NS5A from genotype 2 HCV, and not that from genotype 1, targets NAP1L1 for proteosome-mediated degradation. NAP1L1 is a nuclear chaperone involved in chromatin remodeling, and we demonstrated the NAP1L1-dependent regulation of specific pathways involved in cellular responses to viral infection and cell survival. Among those, we showed that lack of NAP1L1 leads to a decrease of RELA protein levels and a strong defect of IRF3 TBK1/IKKε-mediated phosphorylation, leading to inefficient RIG-I and Toll-like receptor 3 (TLR3) responses. Hence, HCV is able to modulate the host cell environment by targeting NAP1L1 through NS5A.IMPORTANCE Viruses have evolved to replicate and to overcome antiviral countermeasures of the infected cell. Hepatitis C virus is capable of establishing a lifelong chronic infection in the liver, which could develop into cirrhosis and cancer. Chronic viruses are particularly able to interfere with the cellular antiviral pathways by several different mechanisms. In this study, we identified a novel cellular target of the viral nonstructural protein NS5A and demonstrated its role in antiviral signaling. This factor, called nucleosome assembly protein 1-like 1 (NAP1L1), is a nuclear chaperone involved in the remodeling of chromatin during transcription. When it is depleted, specific signaling pathways leading to antiviral effectors are affected. Therefore, we provide evidence for both a novel strategy of virus evasion from cellular immunity and a novel role for a cellular protein, which has not been described to date.
Collapse
|
38
|
Corby MJ, Stoneman MR, Biener G, Paprocki JD, Kolli R, Raicu V, Frick DN. Quantitative microspectroscopic imaging reveals viral and cellular RNA helicase interactions in live cells. J Biol Chem 2017; 292:11165-11177. [PMID: 28483922 DOI: 10.1074/jbc.m117.777045] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 04/29/2017] [Indexed: 01/12/2023] Open
Abstract
Human cells detect RNA viruses through a set of helicases called RIG-I-like receptors (RLRs) that initiate the interferon response via a mitochondrial signaling complex. Many RNA viruses also encode helicases, which are sometimes covalently linked to proteases that cleave signaling proteins. One unresolved question is how RLRs interact with each other and with viral proteins in cells. This study examined the interactions among the hepatitis C virus (HCV) helicase and RLR helicases in live cells with quantitative microspectroscopic imaging (Q-MSI), a technique that determines FRET efficiency and subcellular donor and acceptor concentrations. HEK293T cells were transfected with various vector combinations to express cyan fluorescent protein (CFP) or YFP fused to either biologically active HCV helicase or one RLR (i.e. RIG-I, MDA5, or LGP2), expressed in the presence or absence of polyinosinic-polycytidylic acid (poly(I:C)), which elicits RLR accumulation at mitochondria. Q-MSI confirmed previously reported RLR interactions and revealed an interaction between HCV helicase and LGP2. Mitochondria in CFP-RIG-I:YFP-RIG-I cells, CFP-MDA5:YFP-MDA5 cells, and CFP-MDA5:YFP-LGP2 cells had higher FRET efficiencies in the presence of poly(I:C), indicating that RNA causes these proteins to accumulate at mitochondria in higher-order complexes than those formed in the absence of poly(I:C). However, mitochondria in CFP-LGP2:YFP-LGP2 cells had lower FRET signal in the presence of poly(I:C), suggesting that LGP2 oligomers disperse so that LGP2 can bind MDA5. Data support a new model where an LGP2-MDA5 oligomer shuttles NS3 to the mitochondria to block antiviral signaling.
Collapse
Affiliation(s)
- M J Corby
- From the Departments of Chemistry and Biochemistry
| | | | | | | | - Rajesh Kolli
- From the Departments of Chemistry and Biochemistry
| | - Valerica Raicu
- Physics, and .,Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53201
| | | |
Collapse
|
39
|
Sandstrom TS, Ranganath N, Angel JB. Impairment of the type I interferon response by HIV-1: Potential targets for HIV eradication. Cytokine Growth Factor Rev 2017; 37:1-16. [PMID: 28455216 DOI: 10.1016/j.cytogfr.2017.04.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 04/20/2017] [Accepted: 04/21/2017] [Indexed: 12/11/2022]
Abstract
By interfering with the type I interferon (IFN1) response, human immunodeficiency virus 1 (HIV-1) can circumvent host antiviral signalling and establish persistent viral reservoirs. HIV-1-mediated defects in the IFN pathway are numerous, and include the impairment of protein receptors involved in pathogen detection, downstream signalling cascades required for IFN1 upregulation, and expression or function of key IFN1-inducible, antiviral proteins. Despite this, the activation of IFN1-inducible, antiviral proteins has been shown to facilitate the killing of latently HIV-infected cells in vitro. Understanding how IFN1 signalling is blocked in physiologically-relevant models of HIV-1 infection, and whether these defects can be reversed, is therefore of great importance for the development of novel therapeutic strategies aimed at eradicating the HIV-1 reservoir.
Collapse
Affiliation(s)
- Teslin S Sandstrom
- Ottawa Hospital Research Institute, ORCC Room C4445, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada.
| | - Nischal Ranganath
- Ottawa Hospital Research Institute, ORCC Room C4445, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada.
| | - Jonathan B Angel
- Ottawa Hospital Research Institute, ORCC Room C4445, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada; Division of Infectious Diseases, Ottawa Hospital-General Campus, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada.
| |
Collapse
|
40
|
Herpes Simplex Virus 1 UL24 Abrogates the DNA Sensing Signal Pathway by Inhibiting NF-κB Activation. J Virol 2017; 91:JVI.00025-17. [PMID: 28100608 DOI: 10.1128/jvi.00025-17] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 01/09/2017] [Indexed: 12/22/2022] Open
Abstract
Cyclic GMP-AMP synthase (cGAS) is a newly identified DNA sensor that recognizes foreign DNA, including the genome of herpes simplex virus 1 (HSV-1). Upon binding of viral DNA, cGAS produces cyclic GMP-AMP, which interacts with and activates stimulator of interferon genes (STING) to trigger the transcription of antiviral genes such as type I interferons (IFNs), and the production of inflammatory cytokines. HSV-1 UL24 is widely conserved among members of the herpesviruses family and is essential for efficient viral replication. In this study, we found that ectopically expressed UL24 could inhibit cGAS-STING-mediated promoter activation of IFN-β and interleukin-6 (IL-6), and UL24 also inhibited interferon-stimulatory DNA-mediated IFN-β and IL-6 production during HSV-1 infection. Furthermore, UL24 selectively blocked nuclear factor κB (NF-κB) but not IFN-regulatory factor 3 promoter activation. Coimmunoprecipitation analysis demonstrated that UL24 bound to the endogenous NF-κB subunits p65 and p50 in HSV-1-infected cells, and UL24 was also found to bind the Rel homology domains (RHDs) of these subunits. Furthermore, UL24 reduced the tumor necrosis factor alpha (TNF-α)-mediated nuclear translocation of p65 and p50. Finally, mutational analysis revealed that the region spanning amino acids (aa) 74 to 134 of UL24 [UL24(74-134)] is responsible for inhibiting cGAS-STING-mediated NF-κB promoter activity. For the first time, UL24 was shown to play an important role in immune evasion during HSV-1 infection.IMPORTANCE NF-κB is a critical component of the innate immune response and is strongly induced downstream of most pattern recognition receptors (PRRs), leading to the production of IFN-β as well as a number of inflammatory chemokines and interleukins. To establish persistent infection, viruses have evolved various mechanisms to counteract the host NF-κB pathway. In the present study, for the first time, HSV-1 UL24 was demonstrated to inhibit the activation of NF-κB in the DNA sensing signal pathway via binding to the RHDs of the NF-κB subunits p65 and p50 and abolishing their nuclear translocation.
Collapse
|
41
|
Herpes Simplex Virus 1 Abrogates the cGAS/STING-Mediated Cytosolic DNA-Sensing Pathway via Its Virion Host Shutoff Protein, UL41. J Virol 2017; 91:JVI.02414-16. [PMID: 28077645 DOI: 10.1128/jvi.02414-16] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 01/03/2017] [Indexed: 12/20/2022] Open
Abstract
Cyclic GMP-AMP synthase (cGAS) is a key DNA sensor capable of detecting microbial DNA and activating the adaptor protein stimulator of interferon genes (STING), leading to interferon (IFN) production and host antiviral responses. Cells exhibited reduced type I IFN production in response to cytosolic DNA in the absence of cGAS. Although the cGAS/STING-mediated DNA-sensing signal is crucial for host defense against many viruses, especially for DNA viruses, few viral components have been identified to specifically target this signaling pathway. Herpes simplex virus 1 (HSV-1) is a DNA virus that has evolved multiple strategies to evade host immune responses. In the present study, we found that HSV-1 tegument protein UL41 was involved in counteracting the cGAS/STING-mediated DNA-sensing pathway. Our results showed that wild-type (WT) HSV-1 infection could inhibit immunostimulatory DNA-induced activation of the IFN signaling pathway compared with the UL41-null mutant virus (R2621), and ectopic expression of UL41 decreased cGAS/STING-mediated IFN-β promoter activation and IFN-β production. Further study indicated that UL41 reduced the accumulation of cGAS to abrogate host recognition of viral DNA. In addition, stable knockdown of cGAS facilitated the replication of R2621 but not WT HSV-1. For the first time, HSV-1 UL41 was demonstrated to evade the cGAS/STING-mediated DNA-sensing pathway by degrading cGAS via its RNase activity.IMPORTANCE HSV-1 is well known for its ability to evade host antiviral responses and establish a lifelong latent infection while triggering reactivation and lytic infection under stress. Currently, whether HSV-1 evades the cytosolic DNA sensing and signaling is still poorly understood. In the present study, we found that tegument protein UL41 targeted the cGAS/STING-mediated cellular DNA-sensing pathway by selectively degrading cGAS mRNA. Knockdown of endogenous cGAS could facilitate the replication of R2621 but not WT HSV-1. Furthermore, UL41 was shown for the first time to act directly on cGAS. Findings in this study could provide new insights into the host-virus interaction and help develop new approaches against HSV-1.
Collapse
|
42
|
Herpes Simplex Virus 1 Ubiquitin-Specific Protease UL36 Abrogates NF-κB Activation in DNA Sensing Signal Pathway. J Virol 2017; 91:JVI.02417-16. [PMID: 28031360 DOI: 10.1128/jvi.02417-16] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 12/19/2016] [Indexed: 01/09/2023] Open
Abstract
The DNA sensing pathway triggers innate immune responses against DNA virus infection, and NF-κB signaling plays a critical role in establishing innate immunity. We report here that the herpes simplex virus 1 (HSV-1) ubiquitin-specific protease (UL36USP), which is a deubiquitinase (DUB), antagonizes NF-κB activation, depending on its DUB activity. In this study, ectopically expressed UL36USP blocked promoter activation of beta interferon (IFN-β) and NF-κB induced by cyclic GMP-AMP synthase (cGAS) and stimulator of interferon genes (STING). UL36USP restricted NF-κB activation mediated by overexpression of STING, TANK-binding kinase 1, IκB kinase α (IKKα), and IKKβ, but not p65. UL36USP was also shown to inhibit IFN-stimulatory DNA-induced IFN-β and NF-κB activation under conditions of HSV-1 infection. Furthermore, UL36USP was demonstrated to deubiquitinate IκBα and restrict its degradation and, finally, abrogate NF-κB activation. More importantly, the recombinant HSV-1 lacking UL36USP DUB activity, denoted as C40A mutant HSV-1, failed to cleave polyubiquitin chains on IκBα. For the first time, UL36USP was shown to dampen NF-κB activation in the DNA sensing signal pathway to evade host antiviral innate immunity.IMPORTANCE It has been reported that double-stranded-DNA-mediated NF-κB activation is critical for host antiviral responses. Viruses have established various strategies to evade the innate immune system. The N terminus of the HSV-1 UL36 gene-encoded protein contains the DUB domain and is conserved across all herpesviruses. This study demonstrates that UL36USP abrogates NF-κB activation by cleaving polyubiquitin chains from IκBα and therefore restricts proteasome-dependent degradation of IκBα and that DUB activity is indispensable for this process. This study expands our understanding of the mechanisms utilized by HSV-1 to evade the host antiviral innate immune defense induced by NF-κB signaling.
Collapse
|
43
|
Subcellular Localizations of RIG-I, TRIM25, and MAVS Complexes. J Virol 2017; 91:JVI.01155-16. [PMID: 27807226 DOI: 10.1128/jvi.01155-16] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 09/30/2016] [Indexed: 12/12/2022] Open
Abstract
The retinoic acid-inducible gene 1 (RIG-I) signaling pathway is essential for the recognition of viruses and the initiation of host interferon (IFN)-mediated antiviral responses. Once activated, RIG-I interacts with polyubiquitin chains generated by TRIM25 and binds mitochondrial antiviral signaling protein (MAVS), leading to the production of type I IFN. We now show specific interactions among these key partners in the RLR pathway through the use of bimolecular fluorescence complementation (BiFC) and super-resolution microscopy. Dimers of RIG-I, TRIM25, and MAVS localize into different compartments. Upon activation, we show that TRIM25 is redistributed into cytoplasmic dots associated with stress granules, while RIG-I associates with TRIM25/stress granules and with mitochondrial MAVS. In addition, MAVS competes with TRIM25 for RIG-I binding, and this suggests that upon TRIM25-mediated activation of RIG-I, RIG-I moves away from TRIM25 to interact with MAVS at the mitochondria. For the first time, the distribution of these three proteins was analyzed at the same time in virus-infected cells. We also investigated how specific viral proteins modify some of the protein complexes in the pathway. The protease NS3/4A from hepatitis C virus redistributes the complexes RIG-I/MAVS and MAVS/MAVS but not RIG-I/TRIM25. In contrast, the influenza A virus NS1 protein interacts with RIG-I and TRIM25 in specific areas in the cell cytoplasm and inhibits the formation of TRIM25 homocomplexes but not the formation of RIG-I/TRIM25 heterocomplexes, preventing the formation of RIG-I/MAVS complexes. Thus, we have localized spatially in the cell different complexes formed between RIG-I, TRIM25, and MAVS, in the presence or absence of two viral IFN antagonistic proteins. IMPORTANCE The first line of defense against viral infections is the innate immune response. Viruses are recognized by pathogen recognition receptors, such as the RIG-I like receptor family, that activate a signaling cascade that induces IFN production. In the present study, we visualized, for the first time in cells, both in overexpression and endogenous levels, complexes formed among key proteins involved in this innate immune signaling pathway. Through different techniques we were able to analyze how these proteins are distributed and reorganized spatially within the cell in order to transmit the signal, leading to an efficient antiviral state. In addition, this work presents a new means by how, when, and where viral proteins can target these pathways and act against the host immune system in order to counteract the activation of the immune response.
Collapse
|
44
|
Herpes Simplex Virus 1 Serine Protease VP24 Blocks the DNA-Sensing Signal Pathway by Abrogating Activation of Interferon Regulatory Factor 3. J Virol 2016; 90:5824-5829. [PMID: 27076640 DOI: 10.1128/jvi.00186-16] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 04/05/2016] [Indexed: 12/13/2022] Open
Abstract
UNLABELLED The interferon (IFN)-mediated antiviral response is a central aspect of host defense; however, viruses have evolved multiple strategies to counteract IFN-mediated responses in order to successfully infect the host. Herpes simplex virus 1 (HSV-1), a typical human-restricted DNA virus, is capable of counteracting host immune responses via several distinct viral proteins, thus establishing a lifelong latent infection. In this study, we demonstrate that the VP24 protein, a serine protease of HSV-1 essential for the formation and maturation of capsids, is a novel antagonist of the beta interferon (IFN-β) pathway. Here, VP24 was shown for the first time to dampen interferon stimulatory DNA (ISD)-triggered IFN-β production and inhibit IFN-β promoter activation induced by cyclic GMP-AMP synthase (cGAS) and stimulator of interferon genes (STING) and by STING, respectively. Further study demonstrated that ectopic expression of VP24 selectively blocked IFN regulatory factor 3 (IRF3) but not NF-κB promoter activation. In addition, VP24 was demonstrated to downregulate ISD-induced phosphorylation and dimerization of IRF3 during HSV-1 infection with a VP24 stable knockdown human foreskin fibroblast cell line. The underlying molecular mechanism is that VP24 abrogates the interaction between TANK-binding kinase 1 (TBK1) and IRF3, hence impairing IRF3 activation. These results illustrate that VP24 is able to block the production of IFN-β by inhibiting IRF3 activation, which may represent a critical adaptation to enable viral effective replication within the host. IMPORTANCE This study demonstrated that HSV-1 protein VP24 could inhibit IFN-β production and promoter activation triggered by ISD, cGAS and STING and by STING, respectively. VP24 selectively blocked IRF3 promoter activation and ISD-induced phosphorylation and dimerization of IRF3 without affecting the NF-κB promoter activation during viral infection. VP24 also inhibited IRF3 activation by impeding the interaction between TBK1 and IRF3 during viral infection. This study provides new insights into the immune evasion mediated by HSV-1 and identifies VP24 as a crucial effector for HSV-1 to evade the host DNA-sensing signal pathway.
Collapse
|
45
|
Abstract
Mitochondria are unique dynamic organelles that evolved from free-living bacteria into endosymbionts of mammalian hosts (Sagan 1967; Hatefi 1985). They have a distinct ~16.6 kb closed circular DNA genome coding for 13 polypeptides (Taanman 1999). In addition, a majority of the ~1500 mitochondrial proteins are encoded in the nucleus and transported to the mitochondria (Bonawitz et al. 2006). Mitochondria have two membranes: an outer smooth membrane and a highly folded inner membrane called cristae, which encompasses the matrix that houses the enzymes of the tricarboxylic acid (TCA) cycle and lipid metabolism. The inner mitochondrial membrane houses the protein complexes comprising the electron transport chain (ETC) (Hatefi 1985).
Collapse
Affiliation(s)
- David M. Hockenbery
- Clinical Research Divison, Fred Hutchinson Cancer Research Center, Seattle, Washington USA
| |
Collapse
|
46
|
Miorin L, Maiuri P, Marcello A. Visual detection of Flavivirus RNA in living cells. Methods 2016; 98:82-90. [PMID: 26542763 PMCID: PMC7129942 DOI: 10.1016/j.ymeth.2015.11.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 10/29/2015] [Accepted: 11/01/2015] [Indexed: 12/24/2022] Open
Abstract
Flaviviruses include a wide range of important human pathogens delivered by insects or ticks. These viruses have a positive-stranded RNA genome that is replicated in the cytoplasm of the infected cell. The viral RNA genome is the template for transcription by the virally encoded RNA polymerase and for translation of the viral proteins. Furthermore, the double-stranded RNA intermediates of viral replication are believed to trigger the innate immune response through interaction with cytoplasmic cellular sensors. Therefore, understanding the subcellular distribution and dynamics of Flavivirus RNAs is of paramount importance to understand the interaction of the virus with its cellular host, which could be of insect, tick or mammalian, including human, origin. Recent advances on the visualization of Flavivirus RNA in living cells together with the development of methods to measure the dynamic properties of viral RNA are reviewed and discussed in this essay. In particular the application of bleaching techniques such as fluorescence recovery after photobleaching (FRAP) and fluorescence loss in photobleaching (FLIP) are analysed in the context of tick-borne encephalitis virus replication. Conclusions driven by this approached are discussed in the wider context Flavivirus infection.
Collapse
MESH Headings
- Animals
- Cell Line
- Cricetinae
- Encephalitis Viruses, Tick-Borne/genetics
- Encephalitis Viruses, Tick-Borne/metabolism
- Encephalitis Viruses, Tick-Borne/ultrastructure
- Fluorescence Recovery After Photobleaching
- Fluorescent Dyes/chemistry
- Gene Expression Regulation, Viral
- Host-Pathogen Interactions
- Humans
- Molecular Imaging/methods
- RNA, Messenger/chemistry
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Viral/chemistry
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Staining and Labeling/methods
- Ticks/virology
- Transcription, Genetic
Collapse
Affiliation(s)
- Lisa Miorin
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Paolo Maiuri
- IFOM - Istituto FIRC di Oncologia Molecolare, via Adamello 16, 20139 Milan, Italy
| | - Alessandro Marcello
- Laboratory of Molecular Virology, International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano 99, 34149 Trieste, Italy.
| |
Collapse
|
47
|
Li D, Lei C, Xu Z, Yang F, Liu H, Zhu Z, Li S, Liu X, Shu H, Zheng H. Foot-and-mouth disease virus non-structural protein 3A inhibits the interferon-β signaling pathway. Sci Rep 2016; 6:21888. [PMID: 26883855 PMCID: PMC4756384 DOI: 10.1038/srep21888] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 01/19/2016] [Indexed: 01/22/2023] Open
Abstract
Foot-and-mouth disease virus (FMDV) is the etiological agent of FMD, which affects cloven-hoofed animals. The pathophysiology of FMDV has not been fully understood and the evasion of host innate immune system is still unclear. Here, the FMDV non-structural protein 3A was identified as a negative regulator of virus-triggered IFN-β signaling pathway. Overexpression of the FMDV 3A inhibited Sendai virus-triggered activation of IRF3 and the expressions of RIG-I/MDA5. Transient transfection and co-immunoprecipitation experiments suggested that FMDV 3A interacts with RIG-I, MDA5 and VISA, which is dependent on the N-terminal 51 amino acids of 3A. Furthermore, 3A also inhibited the expressions of RIG-I, MDA5, and VISA by disrupting their mRNA levels. These results demonstrated that 3A inhibits the RLR-mediated IFN-β induction and uncovered a novel mechanism by which the FMDV 3A protein evades the host innate immune system.
Collapse
Affiliation(s)
- Dan Li
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Caoqi Lei
- Collaborative Innovation Center for Viral Immunology, Medical Research Institute, Wuhan University, Wuhan 430072, China
| | - Zhisheng Xu
- Collaborative Innovation Center for Viral Immunology, Medical Research Institute, Wuhan University, Wuhan 430072, China
| | - Fan Yang
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Huanan Liu
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Zixiang Zhu
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Shu Li
- Collaborative Innovation Center for Viral Immunology, Medical Research Institute, Wuhan University, Wuhan 430072, China
| | - Xiangtao Liu
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Hongbing Shu
- Collaborative Innovation Center for Viral Immunology, Medical Research Institute, Wuhan University, Wuhan 430072, China
| | - Haixue Zheng
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| |
Collapse
|
48
|
Li D, Yang W, Yang F, Liu H, Zhu Z, Lian K, Lei C, Li S, Liu X, Zheng H, Shu H. The VP3 structural protein of foot-and-mouth disease virus inhibits the IFN-β signaling pathway. FASEB J 2016; 30:1757-66. [PMID: 26813975 DOI: 10.1096/fj.15-281410] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 12/18/2015] [Indexed: 11/11/2022]
Abstract
Foot-and-mouth disease is a frequently occurring disease of cloven-hoofed animals that is caused by infection with the foot-and-mouth virus (FMDV). FMDV circumvents the type-I IFN response by expressing proteins that antagonize cellular innate immunity, such as leader protease and 3C protease. We identified the FMDV structural protein VP3 as a negative regulator of the virus-triggered IFN-β signaling pathway. Expression of FMDV VP3 inhibited the Sendai virus-triggered activation of IFN regulatory factor-3 and the expression of retinoic acid-inducible gene-I/melanoma differentiation-associated protein-5. Transient transfection and coimmunoprecipitation confirmed that the structural protein VP3 interacts with virus-induced signaling adapter (VISA), which is dependent on the C-terminal aa 111-220 of VP3. In addition, we found that FMDV VP3 inhibits the expression of VISA by disrupting its mRNA. Taken together, our findings reveal a novel strategy used by the structural VP3 protein of FMDV to evade host innate immunity.-Li, D., Yang, W., Yang, F., Liu, H., Zhu, Z., Lian, K., Lei, C., Li, S., Liu, X., Zheng, H., Shu, H. The VP3 structural protein of foot-and-mouth disease virus inhibits the IFN-β signaling pathway.
Collapse
Affiliation(s)
- Dan Li
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, National Foot and Mouth Diseases Reference Laboratory, Chinese Academy of Agricultural Sciences, Lanzhou, China; and
| | - Wenping Yang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, National Foot and Mouth Diseases Reference Laboratory, Chinese Academy of Agricultural Sciences, Lanzhou, China; and
| | - Fan Yang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, National Foot and Mouth Diseases Reference Laboratory, Chinese Academy of Agricultural Sciences, Lanzhou, China; and
| | - Huanan Liu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, National Foot and Mouth Diseases Reference Laboratory, Chinese Academy of Agricultural Sciences, Lanzhou, China; and
| | - Zixiang Zhu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, National Foot and Mouth Diseases Reference Laboratory, Chinese Academy of Agricultural Sciences, Lanzhou, China; and
| | - Kaiqi Lian
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, National Foot and Mouth Diseases Reference Laboratory, Chinese Academy of Agricultural Sciences, Lanzhou, China; and
| | - Caoqi Lei
- Collaborative Innovation Center for Viral Immunology, Medical Research Institute, Wuhan University, Wuhan, China
| | - Shu Li
- Collaborative Innovation Center for Viral Immunology, Medical Research Institute, Wuhan University, Wuhan, China
| | - Xiangtao Liu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, National Foot and Mouth Diseases Reference Laboratory, Chinese Academy of Agricultural Sciences, Lanzhou, China; and
| | - Haixue Zheng
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, National Foot and Mouth Diseases Reference Laboratory, Chinese Academy of Agricultural Sciences, Lanzhou, China; and
| | - Hongbing Shu
- Collaborative Innovation Center for Viral Immunology, Medical Research Institute, Wuhan University, Wuhan, China.
| |
Collapse
|
49
|
Innate Immunity and Immune Evasion by Enterovirus 71. Viruses 2015; 7:6613-30. [PMID: 26694447 PMCID: PMC4690884 DOI: 10.3390/v7122961] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 11/16/2015] [Accepted: 12/09/2015] [Indexed: 12/23/2022] Open
Abstract
Enterovirus 71 (EV71) is a major infectious disease affecting millions of people worldwide and it is the main etiological agent for outbreaks of hand foot and mouth disease (HFMD). Infection is often associated with severe gastroenterological, pulmonary, and neurological diseases that are most prevalent in children. Currently, no effective vaccine or antiviral drugs exist against EV71 infection. A lack of knowledge on the molecular mechanisms of EV71 infection in the host and the virus-host interactions is a major constraint to developing specific antiviral strategies against this infection. Previous studies have identified and characterized the function of several viral proteins produced by EV71 that interact with the host innate immune proteins, including type I interferon signaling and microRNAs. These interactions eventually promote efficient viral replication and increased susceptibility to the disease. In this review we discuss the functions of EV71 viral proteins in the modulation of host innate immune responses to facilitate viral replication.
Collapse
|
50
|
Abstract
Despite advances in therapy, hepatitis C virus infection remains a major global health issue with 3 to 4 million incident cases and 170 million prevalent chronic infections. Complex, partially understood, host-virus interactions determine whether an acute infection with hepatitis C resolves, as occurs in approximately 30% of cases, or generates a persistent hepatic infection, as occurs in the remainder. Once chronic infection is established, the velocity of hepatocyte injury and resultant fibrosis is significantly modulated by immunologic as well as environmental factors. Immunomodulation has been the backbone of antiviral therapy despite poor understanding of its mechanism of action.
Collapse
Affiliation(s)
- David E. Kaplan
- Medicine and Research Services, Philadelphia VA Medical Center, Philadelphia PA,Division of Gastroenterology, Department of Medicine, University of Pennsylvania
| |
Collapse
|