1
|
You H, Zheng C. A Guideline Strategy for Identifying a Viral Gene/Protein Evading Antiviral Innate Immunity. Methods Mol Biol 2025; 2854:9-18. [PMID: 39192113 DOI: 10.1007/978-1-0716-4108-8_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Antiviral innate immunity is the first line of defence against viruses. The interferon (IFN) signaling pathway, the DNA damage response (DDR), apoptosis, endoplasmic reticulum (ER) stress, and autophagy are involved in antiviral innate immunity. Viruses abrogate the antiviral immune response of cells to replication in various ways. Viral genes/proteins play a key role in evading antiviral innate immunity. Here, we will discuss the interference of viruses with antiviral innate immunity and the strategy for identifying viral gene/protein immune evasion.
Collapse
Affiliation(s)
- Hongjuan You
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Chunfu Zheng
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
2
|
Karner D, Kvestak D, Kucan Brlic P, Cokaric Brdovcak M, Lisnic B, Brizic I, Juranic Lisnic V, Golemac M, Tomac J, Krmpotic A, Karkeni E, Libri V, Mella S, Legname G, Altmeppen HC, Hasan M, Jonjic S, Lenac Rovis T. Prion protein alters viral control and enhances pathology after perinatal cytomegalovirus infection. Nat Commun 2024; 15:7754. [PMID: 39237588 PMCID: PMC11377837 DOI: 10.1038/s41467-024-51931-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 08/20/2024] [Indexed: 09/07/2024] Open
Abstract
Cytomegalovirus (CMV) infection poses risks to newborns, necessitating effective therapies. Given that the damage includes both viral infection of brain cells and immune system-related damage, here we investigate the involvement of cellular prion protein (PrP), which plays vital roles in neuroprotection and immune regulation. Using a murine model, we show the role of PrP in tempering neonatal T cell immunity during CMV infection. PrP-null mice exhibit enhanced viral control through elevated virus-specific CD8 T cell responses, leading to reduced viral titers and pathology. We further unravel the molecular mechanisms by showing CMV-induced upregulation followed by release of PrP via the metalloproteinase ADAM10, impairing CD8 T cell response specifically in neonates. Additionally, we confirm PrP downregulation in human CMV (HCMV)-infected fibroblasts, underscoring the broader relevance of our observations beyond the murine model. Furthermore, our study highlights how PrP, under the stress of viral pathogenesis, reveals its impact on neonatal immune modulation.
Collapse
Affiliation(s)
- Dubravka Karner
- Center for Proteomics; Faculty of Medicine; University of Rijeka, Rijeka, Croatia
| | - Daria Kvestak
- Center for Proteomics; Faculty of Medicine; University of Rijeka, Rijeka, Croatia
| | - Paola Kucan Brlic
- Center for Proteomics; Faculty of Medicine; University of Rijeka, Rijeka, Croatia
| | | | - Berislav Lisnic
- Center for Proteomics; Faculty of Medicine; University of Rijeka, Rijeka, Croatia
| | - Ilija Brizic
- Center for Proteomics; Faculty of Medicine; University of Rijeka, Rijeka, Croatia
| | - Vanda Juranic Lisnic
- Center for Proteomics; Faculty of Medicine; University of Rijeka, Rijeka, Croatia
| | - Mijo Golemac
- Department of Histology and Embryology; Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Jelena Tomac
- Department of Histology and Embryology; Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Astrid Krmpotic
- Department of Histology and Embryology; Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Esma Karkeni
- Cytometry and Biomarkers Unit of Technology and Service (CB TechS); Institut Pasteur, Université Paris Cité, Paris, France
| | - Valentina Libri
- Cytometry and Biomarkers Unit of Technology and Service (CB TechS); Institut Pasteur, Université Paris Cité, Paris, France
| | - Sebastien Mella
- Cytometry and Biomarkers Unit of Technology and Service (CB TechS); Institut Pasteur, Université Paris Cité, Paris, France
| | - Giuseppe Legname
- Department of Neuroscience, Prion Biology Laboratory, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
| | - Hermann C Altmeppen
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Milena Hasan
- Cytometry and Biomarkers Unit of Technology and Service (CB TechS); Institut Pasteur, Université Paris Cité, Paris, France
| | - Stipan Jonjic
- Center for Proteomics; Faculty of Medicine; University of Rijeka, Rijeka, Croatia
| | - Tihana Lenac Rovis
- Center for Proteomics; Faculty of Medicine; University of Rijeka, Rijeka, Croatia.
| |
Collapse
|
3
|
Sun L, He Y, Chen J, Yang X, Ding Y, Shi M, He A, Zhang P, Huang Z, Li R. Bioinformatics analysis identifies potential autophagy key genes and immune infiltration in preeclampsia. J Obstet Gynaecol Res 2024; 50:618-632. [PMID: 38350492 DOI: 10.1111/jog.15902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/30/2024] [Indexed: 02/15/2024]
Abstract
BACKGROUND Preeclampsia (PE) is a disease that seriously threatens maternal and fetal health. Appropriate autophagy can shield the placenta from oxidative stress, but its role in PE is unclear. OBJECTIVE To identify potential autophagy-related genes in PE. METHODS Microarray datasets from the Gene Expression Omnibus database, compassing the test dataset GSE10588, along with validation datasets GSE4707 and GSE60438 GPL10558, were utilized. Differentially expressed genes (DEGs) were identified using the limma R package, intersected with autophagy-related genes. Hub genes were obtained using the Cytoscape software and analyzed via gene set enrichment analysis (GSEA). The diagnostic capability of hub genes was evaluated using receiver operating characteristic (ROC) curve analysis. Analysis of immune cell infiltration was conducted using single-sample gene set enrichment analysis (ssGSEA) and CIBERSORT methods. Placental tissues were collected from 10 normal pregnant women and 10 preeclamptic pregnant women, and the expression of hub genes was validated through immunohistochemistry and western blot analysis. RESULTS Analysis of the microarray data identified 2224 DEGs, among which 26 were autophagy-related DEGs identified through intersection with autophagy genes. Ten hub genes were identified. Immune cell infiltration analysis suggested the potential involvement of T regulatory cells (Tregs), natural killer cells, neutrophils, and T follicular helper cells in the pathogenesis of PE. ROC curve analysis indicated promising diagnostic capabilities for EGFR and TP53. Additionally, levels of EGFR and TP53 were significantly higher in placental tissue from PE pregnancies compared to normal pregnancies. CONCLUSION EGFR and TP53 may play a role in PE by influencing autophagy.
Collapse
Affiliation(s)
- Lu Sun
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yanhong He
- Department of Obstetrics and Gynecology, The Affiliated Shunde hospital of Jinan University, the Second People's Hospital of Shunde, Foshan, China
| | - Jie Chen
- Department of Obstetrics and Gynecology, The Affiliated Shunde hospital of Jinan University, the Second People's Hospital of Shunde, Foshan, China
| | - Xiaofeng Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yuzhen Ding
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Meiting Shi
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Andong He
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Ping Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Zhengrui Huang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Ruiman Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
4
|
Hong JM, Munna AN, Moon JH, Kim JH, Seol JW, Eo SK, Park SY. Antiviral activity of prion protein against Japanese encephalitis virus infection in vitro and in vivo. Virus Res 2023; 338:199249. [PMID: 37858731 PMCID: PMC10598702 DOI: 10.1016/j.virusres.2023.199249] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/05/2023] [Accepted: 10/16/2023] [Indexed: 10/21/2023]
Abstract
Flaviviruses are a major cause of viral diseases worldwide, for which effective treatments have yet to be discovered. The prion protein (PrPc) is abundantly expressed in brain cells and has been shown to play a variety of roles, including neuroprotection, cell homeostasis, and regulation of cellular signaling. However, it is still unclear whether PrPc can protect against flaviviruses. In this study, we investigated the role of PrPc in regulating autophagy flux and its potential antiviral activity during Japanese encephalitis virus (JEV) infection. Our in vivo experiment showed that JEV was more lethal to the PrPc knocked out mice which was further supported by histological analysis, western blot and rtPCR results from infected mice brain samples. Role of PrPc against viral propagation in vitro was verified through cell survival study, protein expression and RNA replication analysis, and adenoviral vector assay by overexpressing PrPc. Further analysis indicated that after virus entry, PrPc inhibited autophagic flux that prevented JEV replication inside the host cell. Our results from in vivo and in vitro investigations demonstrate that prion protein effectively inhibited JEV propagation by regulating autophagy flux which is used by JEV to release its genetic material and replication after entering the host cell, suggesting that prion protein may be a promising therapeutic target for flavivirus infection.
Collapse
Affiliation(s)
- Jeong-Min Hong
- Biosafety Research Institute, College of Veterinary Medicine, Jeonbuk National University, 79, Gobong-ro, Iksan, Jeonbuk 54596, South Korea
| | - Ali Newaz Munna
- Biosafety Research Institute, College of Veterinary Medicine, Jeonbuk National University, 79, Gobong-ro, Iksan, Jeonbuk 54596, South Korea
| | - Ji-Hong Moon
- Biosafety Research Institute, College of Veterinary Medicine, Jeonbuk National University, 79, Gobong-ro, Iksan, Jeonbuk 54596, South Korea
| | - Jong-Hoon Kim
- Biosafety Research Institute, College of Veterinary Medicine, Jeonbuk National University, 79, Gobong-ro, Iksan, Jeonbuk 54596, South Korea
| | - Jae-Won Seol
- Biosafety Research Institute, College of Veterinary Medicine, Jeonbuk National University, 79, Gobong-ro, Iksan, Jeonbuk 54596, South Korea
| | - Seong-Kug Eo
- Biosafety Research Institute, College of Veterinary Medicine, Jeonbuk National University, 79, Gobong-ro, Iksan, Jeonbuk 54596, South Korea
| | - Sang-Youel Park
- Biosafety Research Institute, College of Veterinary Medicine, Jeonbuk National University, 79, Gobong-ro, Iksan, Jeonbuk 54596, South Korea.
| |
Collapse
|
5
|
Stress and viral insults do not trigger E200K PrP conversion in human cerebral organoids. PLoS One 2022; 17:e0277051. [PMID: 36301953 PMCID: PMC9612459 DOI: 10.1371/journal.pone.0277051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/18/2022] [Indexed: 12/03/2022] Open
Abstract
Prion diseases are a group of rare, transmissible, and invariably fatal neurodegenerative diseases that affect both humans and animals. The cause of these diseases is misfolding of the prion protein into pathological isoforms called prions. Of all human prion diseases, 10-15% of cases are genetic and the E200K mutation, which causes familial Creutzfeldt-Jakob disease (CJD), is the most prevalent. For both sporadic and genetic disease, it remains uncertain as to how initial protein misfolding is triggered. Prior studies have linked protein misfolding with oxidative stress insults, deregulated interactions with cellular cofactors, and viral infections. Our previous work developed a cerebral organoid (CO) model using human induced pluripotent stem cells containing the E200K mutation. COs are three-dimensional human neural tissues that permit the study of host genetics and environmental factors that contribute to disease onset. Isogenically matched COs with and without the E200K mutation were used to investigate the propensity of E200K PrP to misfold following cellular insults associated with oxidative stress. Since viral infections have also been associated with oxidative stress and neurodegenerative diseases, we additionally investigated the influence of Herpes Simplex Type-1 virus (HSV1), a neurotropic virus that establishes life-long latent infection in its host, on E200K PrP misfolding. While COs proved to be highly infectable with HSV1, neither acute nor latent infection, or direct oxidative stress insult, resulted in evidence of E200K prion misfolding. We conclude that misfolding into seeding-active PrP species is not readily induced by oxidative stress or HSV1 in our organoid system.
Collapse
|
6
|
Li M, Yan P, Shen X, Liu Z, Wang Q, Huang Y, Wu Y. Muscovy duck reovirus promotes virus replication by inhibiting autophagy-lysosomal degradation pathway. Vet Microbiol 2020; 253:108945. [PMID: 33373883 DOI: 10.1016/j.vetmic.2020.108945] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 11/25/2020] [Indexed: 11/27/2022]
Abstract
Autophagy plays a momentous role in cellular responses against pathogens. However, the influence of the autophagy machinery on Muscovy duck reovirus (MDRV) infection is not yet confirmed. In this study, it was shown that MDRV infection significantly increased the number of autophagy-like vesicles in DF-1 cells under electron microscope and the LC3-I/LC3-II conversion, which was considered important indicators of autophagy. It was worth noting that the level of autophagy was positively correlated with MDRV replication. Further test results showed that MDRV-induced autophagy can promote virus replication in DF-1 cells, and both the envelope protein sigma A and non-structural protein sigma NS that play an important role in virus replication process can colocalize with the autophagosome marker molecule LC3-II by confocal immunofluorescence analysis. These results indicated that MDRV utilized the autophagosomes for replication. Through transfection of the dual fluorescent plasmid mcherry-EGFP-LC3 and fluorescence microscope observation, it was found that autophagosomes were more likely to fuse with lysosomes in MDRV-infected cells compared with the blank group. The phenomenon of pEGFP-LC3B fluorescent spot and LAMP1 co-localization appeared in MDRV infected cells, indicating that MDRV infection would promote the fusion of autophagosomes and the lysosomes. Conversely, accumulation of p62 was observed by immunoblotting, suggesting that autolysosomes does not exert effective degradation. MDRV infection triggered a incomplete autophagic response. Further studies found that the expression of LAMP1, a marker protein of late endosome/early lysosome, increased significantly in MDRV-infected cells, suggesting an increase in the number of immature lysosomes. In addition, the experiment detected the maturation of the lysosomal acid hydrolase Cathepsin D in the cells, and found that the expression of the 33 kDa mature form of Cathepsin D was significantly reduced after MDRV infection, indicating that MDRV inhibits the maturation of lysosomes. In general, MDRV infection induces autophagy of DF-1 cells, promotes the fusion of autophagosomes and lysosomes, inhibits autophagolysosome degradation, and promotes virus replication.
Collapse
Affiliation(s)
- Minghui Li
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China; College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450000, People's Republic of China
| | - Ping Yan
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China
| | - Xia Shen
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China
| | - Zhenni Liu
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China; Ganzhou Animal Husbandry Research Institute, Gannan Academy of Sciences, Ganzhou, 341000, People's Republic of China
| | - Quanxi Wang
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China; Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health (Fujian Agricultural and Forestry University), Fuzhou, 350002, People's Republic of China
| | - Yifan Huang
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China; Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health (Fujian Agricultural and Forestry University), Fuzhou, 350002, People's Republic of China
| | - Yijian Wu
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China; Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health (Fujian Agricultural and Forestry University), Fuzhou, 350002, People's Republic of China.
| |
Collapse
|
7
|
Martínez-Chacón G, Vela FJ, Campos JL, Abellán E, Yakhine-Diop SMS, Ballestín A. Autophagy modulation in animal models of corneal diseases: a systematic review. Mol Cell Biochem 2020; 474:41-55. [PMID: 32710189 DOI: 10.1007/s11010-020-03832-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 07/11/2020] [Indexed: 12/19/2022]
Abstract
Autophagy is an intracellular catabolic process implicated in the recycling and degradation of intracellular components. Few studies have defined its role in corneal pathologies. Animal models are essential for understanding autophagy regulation and identifying new treatments to modulate its effects. A systematic review (SR) was conducted of studies employing animal models for investigations of autophagy in corneal diseases. Studies were identified using a structured search strategy (TS = autophagy AND cornea*) in Web of Science, Scopus, and PubMed from inception to September 2019. In this study, 230 articles were collected, of which 28 were analyzed. Mouse models were used in 82% of the studies, while rat, rabbit, and newt models were used in the other 18%. The most studied corneal layer was the epithelium, followed by the endothelium and stroma. In 13 articles, genetically modified animal models were used to study Fuch endothelial corneal dystrophy (FECD), granular corneal dystrophy type 2 (GCD2), dry eye disease (DED), and corneal infection. In other 13 articles, animal models were experimentally induced to mimic DED, keratitis, inflammation, and surgical scenarios. Furthermore, in 50% of studies, modulators that activated or inhibited autophagy were also investigated. Protective effects of autophagy activators were demonstrated, including rapamycin for DED and keratitis, lithium for FECD, LYN-1604 for DED, cysteamine and miR-34c antagomir for damaged corneal epithelium. Three autophagy suppressors were also found to have therapeutic effects, such as aminoimidazole-4-carboxamide-riboside (AICAR) for corneal allogeneic transplantation, celecoxib and chloroquine for DED.
Collapse
Affiliation(s)
- Guadalupe Martínez-Chacón
- Department of Microsurgery, Jesús Usón Minimally Invasive Surgery Centre, 10071, Cáceres, Spain. .,Department of Biochemistry and Molecular Biology and Genetics, Faculty of Nursing and Occupational Therapy, University of Extremadura, Avda de La Universidad S/N, 10003, Cáceres, Spain. .,Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), 28049, Madrid, Spain. .,Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), 10003, Cáceres, Spain.
| | - Francisco Javier Vela
- Department of Microsurgery, Jesús Usón Minimally Invasive Surgery Centre, 10071, Cáceres, Spain
| | - José Luis Campos
- Department of Microsurgery, Jesús Usón Minimally Invasive Surgery Centre, 10071, Cáceres, Spain
| | - Elena Abellán
- Department of Microsurgery, Jesús Usón Minimally Invasive Surgery Centre, 10071, Cáceres, Spain
| | - Sokhna M S Yakhine-Diop
- Department of Biochemistry and Molecular Biology and Genetics, Faculty of Nursing and Occupational Therapy, University of Extremadura, Avda de La Universidad S/N, 10003, Cáceres, Spain.,Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), 28049, Madrid, Spain.,Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), 10003, Cáceres, Spain
| | - Alberto Ballestín
- Department of Microsurgery, Jesús Usón Minimally Invasive Surgery Centre, 10071, Cáceres, Spain
| |
Collapse
|
8
|
Qin Q, Li Y. Herpesviral infections and antimicrobial protection for Alzheimer's disease: Implications for prevention and treatment. J Med Virol 2019; 91:1368-1377. [PMID: 30997676 DOI: 10.1002/jmv.25481] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 04/04/2019] [Indexed: 02/05/2023]
Abstract
Accumulating evidence suggests that infections by herpesviruses might be closely linked to Alzheimer's disease (AD). Pathological hallmarks of AD brains include senile plaques induced by amyloid β peptide (Aβ) in the extracellular space and intracellular neurofibrillary tangles (NFTs) consisting of phosphorylated tau protein. The prevailing hypothesis for the mechanism of AD is amyloid cascade reaction. Recent studies revealed that infections by herpesviruses induce the similar pathological hallmarks of AD, including Aβ production, phosphorylation of tau (P-tau), oxidative stress, neuroinflammation, etc. Aβ peptide is regarded as one of the antimicrobial peptides, which inhibits HSV-1 replication. In the elderly, reactivation of herpesviruses might act as an initiator for amyloid cascade reaction in vulnerable individuals, triggering the neurofibrillary formation of phosphorylated tau and inducing oxidative stress and neuroinflammation, which can further contribute to the accumulation of Aβ and P-tau by impairing mitochondria and autophagosome. Epidemiological studies have shown AD susceptibility genes, such as APOE-ε4 allele, are highly linked to infections by herpesviruses. Interestingly, anti-herpesviral therapy significantly reduced the risk of AD in a large population study. Given that herpesviruses are arguably the most prevalent opportunistic pathogens and often reactivate in the elderly, it is reasonable to argue reactivation of herpesviruses might be major culprits for initiating AD in individuals carrying AD susceptibility genes. In this review, we summarize epidemiological and molecular evidence that support for a hypothesis of herpesviral infections and antimicrobial protection in the development of AD, and discuss the implications for future prevention and treatment of the disease.
Collapse
Affiliation(s)
- Qingsong Qin
- Laboratory of Human Virology and Oncology, Shantou University Medical College, Shantou, Guangdong, China
| | - Yun Li
- Sleep Medicine Center, Shantou University Medical College, Shantou, Guangdong, China
- Mental Health Center, Shantou University Medical College, Shantou, Guangdong, China
| |
Collapse
|
9
|
Abstract
The normal cellular prion protein, designated PrPC, is a membrane glycoprotein expressed most abundantly in brains, particularly by neurons, and to a lesser extent in non-neuronal tissues including lungs. Conformational conversion of PrPC into the amyloidogenic isoform is a key pathogenic event in prion diseases. We recently found that PrPC has a protective role against infection with influenza A viruses (IAVs) in mice by reducing reactive oxygen species in the lungs after infection with IAVs. The antioxidative activity of PrPC is probably attributable to its function to activate antioxidative enzyme Cu/Zn-superoxide dismutase, or SOD1, through regulating Cu content in lungs infected with IAVs. Oxidative stress could play a pivotal role in the pathogenesis of a wide range of viral infections. Here, we introduce our and others' studies on the role of PrPC in viral infections, and raise the attractive possibility that PrPC might be a novel target molecule for development of antioxidative therapeutics against not only IAV infection but also other viral infections.
Collapse
Affiliation(s)
- Suehiro Sakaguchi
- Division of Molecular Neurobiology, Institute for Enzyme Research (KOSOKEN), Tokushima University , Tokushima, Japan
| | - Junji Chida
- Division of Molecular Neurobiology, Institute for Enzyme Research (KOSOKEN), Tokushima University , Tokushima, Japan
| |
Collapse
|
10
|
Lathe R, Darlix JL. Prion Protein PRNP: A New Player in Innate Immunity? The Aβ Connection. J Alzheimers Dis Rep 2017; 1:263-275. [PMID: 30480243 PMCID: PMC6159716 DOI: 10.3233/adr-170037] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2017] [Indexed: 12/25/2022] Open
Abstract
The prion protein PRNP has been centrally implicated in the transmissible spongiform encephalopathies (TSEs), but its normal physiological role remains obscure. We highlight emerging evidence that PRNP displays antimicrobial activity, inhibiting the replication of multiple viruses, and also interacts directly with Alzheimer's disease (AD) amyloid-β (Aβ) peptide whose own antimicrobial role is now increasingly secure. PRNP and Aβ share share membrane-penetrating, nucleic acid binding, and antiviral properties with classical antimicrobial peptides such as LL-37. We discuss findings that binding of abnormal nucleic acids to PRNP leads to oligomerization of the protein, and suggest that this may be an entrapment and sequestration process that contributes to its antimicrobial activity. Some antimicrobial peptides are known to be exploited by infectious agents, and we cover evidence that PRNP is usurped by herpes simplex virus (HSV-1) that has evolved a virus-encoded 'anti-PRNP'.unction. These findings suggest that PRNP, like LL-37 and Aβ, is likely to be a component of the innate immune system, with implications for the pathoetiology of both AD and TSE.
Collapse
Affiliation(s)
- Richard Lathe
- Division of Infection and Pathway Medicine, University of Edinburgh, Edinburgh, UK
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - Jean-Luc Darlix
- Faculté de Pharmacie, Centre Nationale de la Recherche Scientifique (CNRS) Unité 7213, Université de Strasbourg, Illkirch, France
| |
Collapse
|
11
|
Synthetic α-Hydroxytropolones Inhibit Replication of Wild-Type and Acyclovir-Resistant Herpes Simplex Viruses. Antimicrob Agents Chemother 2016; 60:2140-9. [PMID: 26787704 DOI: 10.1128/aac.02675-15] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 01/14/2016] [Indexed: 12/18/2022] Open
Abstract
Herpes simplex virus 1 (HSV-1) and HSV-2 remain major human pathogens despite the development of anti-HSV therapeutics as some of the first antiviral drugs. Current therapies are incompletely effective and frequently drive the evolution of drug-resistant mutants. We recently determined that certain natural troponoid compounds such as β-thujaplicinol readily suppress HSV-1 and HSV-2 replication. Here, we screened 26 synthetic α-hydroxytropolones with the goals of determining a preliminary structure-activity relationship for the α-hydroxytropolone pharmacophore and providing a starting point for future optimization studies. Twenty-five compounds inhibited HSV-1 and HSV-2 replication at 50 μM, and 10 compounds inhibited HSV-1 and HSV-2 at 5 μM, with similar inhibition patterns and potencies against both viruses being observed. The two most powerful inhibitors shared a common biphenyl side chain, were capable of inhibiting HSV-1 and HSV-2 with a 50% effective concentration (EC50) of 81 to 210 nM, and also strongly inhibited acyclovir-resistant mutants. Moderate to low cytotoxicity was observed for all compounds (50% cytotoxic concentration [CC50] of 50 to >100 μM). Therapeutic indexes ranged from >170 to >1,200. These data indicate that troponoids and specifically α-hydroxytropolones are a promising lead scaffold for development as anti-HSV drugs provided that toxicity can be further minimized. Troponoid drugs are envisioned to be employed alone or in combination with existing nucleos(t)ide analogs to suppress HSV replication far enough to prevent viral shedding and to limit the development of or treat nucleos(t)ide analog-resistant mutants.
Collapse
|
12
|
Reiss CS. Innate Immunity in Viral Encephalitis. NEUROTROPIC VIRAL INFECTIONS 2016. [PMCID: PMC7153449 DOI: 10.1007/978-3-319-33189-8_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Carol Shoshkes Reiss
- Departments of Biology and Neural Science, New York University, New York, New York USA
| |
Collapse
|
13
|
Lacritin and other autophagy associated proteins in ocular surface health. Exp Eye Res 2015; 144:4-13. [PMID: 26318608 DOI: 10.1016/j.exer.2015.08.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 07/20/2015] [Accepted: 08/18/2015] [Indexed: 12/19/2022]
Abstract
Advantage may be taken of macroautophagy ('autophagy') to promote ocular health. Autophagy continually captures aged or damaged cellular material for lysosomal degradation and recyling. When autophagic flux is chronically elevated, or alternatively deficient, health suffers. Chronic elevation of flux and stress are the consequence of inflammatory cytokines or of dry eye tears but not normal tears invitro. Exogenous tear protein lacritin transiently accelerates flux to restore homeostasis invitro and corneal health invivo, and yet the monomeric active form of lacritin appears to be selectively deficient in dry eye. Tissue transglutaminase-dependent cross-linking of monomer decreases monomer quantity and monomer affinity for coreceptor syndecan-1 thereby abrogating activity. Tissue transglutaminase is elevated in dry eye. Mutation of arylsulfatase A, arylsulfatase B, ceroid-lipofuscinosis neuronal 3, mucolipin, or Niemann-Pick disease type C1 respectively underlie several diseases of apparently insufficient autophagic flux that affect the eye, including: metachromatic leukodystrophy, mucopolysaccharidosis type VI, juvenile-onset Batten disease, mucolipidosis IV, and Niemann-Pick type C associated with myelin sheath destruction of corneal sensory and ciliary nerves and of the optic nerve; corneal clouding, ocular hypertension, glaucoma and optic nerve atrophy; accumulation of 'ceroid-lipofuscin' in surface conjunctival cells, and in ganglion and neuronal cells; decreased visual acuity and retinal dystrophy; and neurodegeneration. For some, enzyme or gene replacement, or substrate reduction, therapy is proving to be successful. Here we discuss examples of restoring ocular surface homeostasis through alteration of autophagy, with particular attention to lacritin.
Collapse
|
14
|
Zeng L, Zou W, Wang G. Cellular prion protein (PrP(C)) and its role in stress responses. Int J Clin Exp Med 2015; 8:8042-50. [PMID: 26221369 PMCID: PMC4509314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 05/05/2015] [Indexed: 05/18/2024]
Abstract
Investigation of the physiological function of cellular prion protein (PrP(C)) has been developed by the generation of transgenic mice, however, the pathological mechanisms related to PrP(C) in prion diseases such as transmissible spongiform encephalopathies (TSEs) are still abstruse. Regardless of some differences, most studies describe the neuroprotective role of PrP(C) in environmental stresses. In this review, we will update the current knowledge on the responses of PrP(C) to various stresses, especially those correlated with cell signaling and neural degeneration, including ischemia, oxidative stress, inflammation and autophagy.
Collapse
Affiliation(s)
- Liang Zeng
- Department of Cardiothoracic Surgery, First Affiliated Hospital, Nanchang UniversityNanchang 330006, Jiangxi Province, China
| | - Wenquan Zou
- Department of Neurology, National Prion Disease Pathology Surveillance Center, National Center for Regenerative Medicine, Case Western Reserve University2085 Adelbert Road, Cleveland, Ohio 44106, USA
- Department of Urology Surgery, First Affiliated Hospital, Nanchang UniversityNanchang 330006, Jiangxi Province, China
| | - Gongxian Wang
- Department of Urology Surgery, First Affiliated Hospital, Nanchang UniversityNanchang 330006, Jiangxi Province, China
| |
Collapse
|
15
|
Wilcox DR, Wadhwani NR, Longnecker R, Muller WJ. Differential reliance on autophagy for protection from HSV encephalitis between newborns and adults. PLoS Pathog 2015; 11:e1004580. [PMID: 25569138 PMCID: PMC4287605 DOI: 10.1371/journal.ppat.1004580] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 11/16/2014] [Indexed: 12/18/2022] Open
Abstract
Newborns are more susceptible to severe disease from infection than adults, with maturation of immune responses implicated as a major factor. The type I interferon response delays mortality and limits viral replication in adult mice in a model of herpes simplex virus (HSV) encephalitis. We found that intact type I interferon signaling did not control HSV disease in the neonatal brain. However, the multifunctional HSV protein γ34.5 involved in countering type I interferon responses was important for virulence in the brain in both age groups. To investigate this observation further, we studied a specific function of γ34.5 which contributes to HSV pathogenesis in the adult brain, inhibition of the cellular process of autophagy. Surprisingly, we found that the beclin binding domain of γ34.5 responsible for inhibiting autophagy was dispensable for HSV disease in the neonatal brain, as infection of newborns with the deletion mutant decreased time to mortality compared to the rescue virus. Additionally, a functional beclin binding domain in HSV γ34.5 did not effectively inhibit autophagy in the neonate, unlike in the adult. Type I IFN responses promote autophagy in adult, a finding we confirmed in the adult brain after HSV infection; however, in the newborn brain we observed that autophagy was activated through a type I IFN-independent mechanism. Furthermore, autophagy in the wild-type neonatal mouse was associated with increased apoptosis in infected regions of the brain. Observations in the mouse model were consistent with those in a human case of neonatal HSV encephalitis. Our findings reveal age-dependent differences in autophagy for protection from HSV encephalitis, indicating developmental differences in induction and regulation of this innate defense mechanism after HSV infection in the neonatal brain. Disease after infection with a pathogen results from an intersection between the infectious agent and the host. Newborns are particularly susceptible to infectious illness compared to adults, and HSV infection commonly results in devastating encephalitis. We studied the interaction of HSV with the type I interferon pathway and found that a specific activity of the viral protein γ34.5, which counters host autophagy to promote encephalitis in adults, was not required to cause disease in newborns. Furthermore, autophagy was not inhibited by HSV in the neonate and was not activated by type I interferon signaling, unlike in the adult. Activated autophagy was associated with increased apoptosis, which may contribute to the increased pathology in newborns. Our findings reveal development-specific differences in the pathogenesis of HSV encephalitis, including a distinct role for autophagy in the neonatal brain.
Collapse
Affiliation(s)
- Douglas R. Wilcox
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Nitin R. Wadhwani
- Department of Pathology, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, United States of America
| | - Richard Longnecker
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - William J. Muller
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
16
|
Inhibitors of nucleotidyltransferase superfamily enzymes suppress herpes simplex virus replication. Antimicrob Agents Chemother 2014; 58:7451-61. [PMID: 25267681 DOI: 10.1128/aac.03875-14] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Herpesviruses are large double-stranded DNA viruses that cause serious human diseases. Herpesvirus DNA replication depends on multiple processes typically catalyzed by nucleotidyltransferase superfamily (NTS) enzymes. Therefore, we investigated whether inhibitors of NTS enzymes would suppress replication of herpes simplex virus 1 (HSV-1) and HSV-2. Eight of 42 NTS inhibitors suppressed HSV-1 and/or HSV-2 replication by >10-fold at 5 μM, with suppression at 50 μM reaching ∼1 million-fold. Five compounds in two chemical families inhibited HSV replication in Vero and human foreskin fibroblast cells as well as the approved drug acyclovir did. The compounds had 50% effective concentration values as low as 0.22 μM with negligible cytotoxicity in the assays employed. The inhibitors suppressed accumulation of viral genomes and infectious particles and blocked events in the viral replication cycle before and during viral DNA replication. Acyclovir-resistant mutants of HSV-1 and HSV-2 remained highly sensitive to the NTS inhibitors. Five of six NTS inhibitors of the HSVs also blocked replication of another herpesvirus pathogen, human cytomegalovirus. Therefore, NTS enzyme inhibitors are promising candidates for new herpesvirus treatments that may have broad efficacy against members of the herpesvirus family.
Collapse
|
17
|
Davis KL, Korom M, Morrison LA. Herpes simplex virus 2 ICP34.5 confers neurovirulence by regulating the type I interferon response. Virology 2014; 468-470:330-339. [PMID: 25238641 DOI: 10.1016/j.virol.2014.08.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 06/04/2014] [Accepted: 08/19/2014] [Indexed: 02/04/2023]
Abstract
The γ34.5 gene of herpes simplex virus (HSV) 2 encodes ICP34.5, which enhances HSV-2 neurovirulence by an unknown mechanism. We found that an HSV-2 γ34.5-null mutant (γ34.5(-/-)) replicated less robustly than its rescue virus (γ34.5R) in wild-type mouse embryo fibroblasts (MEFs), and in cells primed with IFNβ. Increased eIF2α phosphorylation correlated with γ34.5(-/-) attenuation. However, γ34.5(-/-) achieved titers equivalent to γ34.5R in MEFs lacking the type I IFN receptor (IFNα/βR(-/-)) or lacking protein kinase R. γ34.5(-/-) also replicated poorly in the vaginal mucosa of wild-type mice, caused little genital inflammation, and spread to the nervous system at lower levels compared to γ34.5R. In IFNα/βR(-/-) mice, however, γ34.5(-/-) regained the capacity to replicate and cause disease equivalent to γ34.5R after intravaginal infection or direct inoculation into the central nervous system. Thus, the capacity of HSV-2 ICP34.5 to interdict the type I IFN response in vivo largely determines its neurovirulence.
Collapse
Affiliation(s)
- Katie L Davis
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, 1100 South Grand Boulevard, St. Louis, MO 63104, USA
| | - Maria Korom
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, 1100 South Grand Boulevard, St. Louis, MO 63104, USA
| | - Lynda A Morrison
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, 1100 South Grand Boulevard, St. Louis, MO 63104, USA.
| |
Collapse
|
18
|
Nuvolone M, Kana V, Hutter G, Sakata D, Mortin-Toth SM, Russo G, Danska JS, Aguzzi A. SIRPα polymorphisms, but not the prion protein, control phagocytosis of apoptotic cells. ACTA ACUST UNITED AC 2013; 210:2539-52. [PMID: 24145514 PMCID: PMC3832919 DOI: 10.1084/jem.20131274] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Prnp(-/-) mice lack the prion protein PrP(C) and are resistant to prion infections, but variable phenotypes have been reported in Prnp(-/-) mice and the physiological function of PrP(C) remains poorly understood. Here we examined a cell-autonomous phenotype, inhibition of macrophage phagocytosis of apoptotic cells, previously reported in Prnp(-/-) mice. Using formal genetic, genomic, and immunological analyses, we found that the regulation of phagocytosis previously ascribed to PrP(C) is instead controlled by a linked locus encoding the signal regulatory protein α (Sirpa). These findings indicate that control of phagocytosis was previously misattributed to the prion protein and illustrate the requirement for stringent approaches to eliminate confounding effects of flanking genes in studies modeling human disease in gene-targeted mice. The plethora of seemingly unrelated functions attributed to PrP(C) suggests that additional phenotypes reported in Prnp(-/-) mice may actually relate to Sirpa or other genetic confounders.
Collapse
Affiliation(s)
- Mario Nuvolone
- Institute of Neuropathology, University Hospital of Zurich, CH-8091 Zurich, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|