1
|
Radziszewska A, Peckham H, Restuadi R, Kartawinata M, Moulding D, de Gruijter NM, Robinson GA, Butt M, Deakin CT, Wilkinson MGL, Wedderburn LR, Jury EC, Rosser EC, Ciurtin C. Type I interferon and mitochondrial dysfunction are associated with dysregulated cytotoxic CD8+ T cell responses in juvenile systemic lupus erythematosus. Clin Exp Immunol 2025; 219:uxae127. [PMID: 39719886 PMCID: PMC11748002 DOI: 10.1093/cei/uxae127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 12/03/2024] [Accepted: 12/22/2024] [Indexed: 12/26/2024] Open
Abstract
Juvenile systemic lupus erythematosus (JSLE) is an autoimmune condition which causes significant morbidity in children and young adults and is more severe in its presentation than adult-onset SLE. While many aspects of immune dysfunction have been studied extensively in adult-onset SLE, there is limited and contradictory evidence of how cytotoxic CD8+ T cells contribute to disease pathogenesis and studies exploring cytotoxicity in JSLE are virtually non-existent. Here, we report that CD8+ T cell cytotoxic capacity is reduced in JSLE versus healthy controls, irrespective of treatment or disease activity. Transcriptomic and serum metabolomic analysis identified that this reduction in cytotoxic CD8+ T cells in JSLE was associated with upregulated type I interferon (IFN) signalling, mitochondrial dysfunction, and metabolic disturbances when compared to controls. Greater interrogation of the influence of these pathways on altered cytotoxic CD8+ T cell function demonstrated that JSLE CD8+ T cells had enlarged mitochondria and enhanced sensitivity to IFN-α leading to selective apoptosis of effector memory (EM) CD8+ T cells, which are enriched for cytotoxic mediator-expressing cells. This process ultimately contributes to the observed reduction in CD8+ T cell cytotoxicity in JSLE, reinforcing the growing evidence that mitochondrial dysfunction is a key pathogenic factor affecting multiple immune cell populations in type I IFN-driven rheumatic diseases.
Collapse
Affiliation(s)
- Anna Radziszewska
- Centre for Adolescent Rheumatology Versus Arthritis at UCL, UCLH, GOSH, London, UK
- Department of Ageing, Rheumatology & Regenerative Medicine, Division of Medicine, UCL, London, UK
| | - Hannah Peckham
- Centre for Adolescent Rheumatology Versus Arthritis at UCL, UCLH, GOSH, London, UK
- Department of Ageing, Rheumatology & Regenerative Medicine, Division of Medicine, UCL, London, UK
| | - Restuadi Restuadi
- Centre for Adolescent Rheumatology Versus Arthritis at UCL, UCLH, GOSH, London, UK
- Infection, Immunity and Inflammation Research & Teaching Department, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Melissa Kartawinata
- Centre for Adolescent Rheumatology Versus Arthritis at UCL, UCLH, GOSH, London, UK
- Infection, Immunity and Inflammation Research & Teaching Department, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Dale Moulding
- NIHR Biomedical Research Centre at Great Ormond Street Hospital, London, UK
- Developmental Biology and Cancer Research & Teaching Department, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Nina M de Gruijter
- Centre for Adolescent Rheumatology Versus Arthritis at UCL, UCLH, GOSH, London, UK
- Department of Ageing, Rheumatology & Regenerative Medicine, Division of Medicine, UCL, London, UK
| | - George A Robinson
- Centre for Adolescent Rheumatology Versus Arthritis at UCL, UCLH, GOSH, London, UK
- Department of Ageing, Rheumatology & Regenerative Medicine, Division of Medicine, UCL, London, UK
| | - Maryam Butt
- Centre for Adolescent Rheumatology Versus Arthritis at UCL, UCLH, GOSH, London, UK
- Department of Ageing, Rheumatology & Regenerative Medicine, Division of Medicine, UCL, London, UK
| | - Claire T Deakin
- Centre for Adolescent Rheumatology Versus Arthritis at UCL, UCLH, GOSH, London, UK
- Infection, Immunity and Inflammation Research & Teaching Department, UCL Great Ormond Street Institute of Child Health, London, UK
- NIHR Biomedical Research Centre at Great Ormond Street Hospital, London, UK
| | - Meredyth G Ll Wilkinson
- Centre for Adolescent Rheumatology Versus Arthritis at UCL, UCLH, GOSH, London, UK
- Infection, Immunity and Inflammation Research & Teaching Department, UCL Great Ormond Street Institute of Child Health, London, UK
- NIHR Biomedical Research Centre at Great Ormond Street Hospital, London, UK
| | - Lucy R Wedderburn
- Centre for Adolescent Rheumatology Versus Arthritis at UCL, UCLH, GOSH, London, UK
- Infection, Immunity and Inflammation Research & Teaching Department, UCL Great Ormond Street Institute of Child Health, London, UK
- NIHR Biomedical Research Centre at Great Ormond Street Hospital, London, UK
| | - Elizabeth C Jury
- Department of Ageing, Rheumatology & Regenerative Medicine, Division of Medicine, UCL, London, UK
| | - Elizabeth C Rosser
- Centre for Adolescent Rheumatology Versus Arthritis at UCL, UCLH, GOSH, London, UK
- Department of Ageing, Rheumatology & Regenerative Medicine, Division of Medicine, UCL, London, UK
| | - Coziana Ciurtin
- Centre for Adolescent Rheumatology Versus Arthritis at UCL, UCLH, GOSH, London, UK
- Department of Ageing, Rheumatology & Regenerative Medicine, Division of Medicine, UCL, London, UK
| |
Collapse
|
2
|
da Silva MI, Oli N, Gambonini F, Ott T. Effects of parity and early pregnancy on peripheral blood leukocytes in dairy cattle. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.06.592827. [PMID: 38766084 PMCID: PMC11100682 DOI: 10.1101/2024.05.06.592827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Subfertility remains a major problem in the dairy industry. Only 35-40% of high-yielding dairy cows and 55-65% of nonlactating heifers become pregnant after their first service. The immune system plays a critical role in the establishment of pregnancy. However, it can also create challenges for embryo survival and contribute to reduced fertility. We conducted 2 separate experiments to characterize changes in subsets of peripheral blood leukocytes (PBL) and their phenotype over the estrous cycle and early pregnancy in heifers and cows. We used flow cytometry and RT-qPCR to assess protein and mRNA expression of molecules important for immune function. We observed that monocytes and T cells were most affected by pregnancy status in heifers, whereas, CD8+ lymphocytes and natural killer (NK) cells were most affected during early pregnancy in cows. Changes in immune parameters measured appeared to be greater in heifers than cows including changes in expression of numerous immune function molecules. To test the hypothesis, we conducted a third experiment to simultaneously analyze the immunological responses to pregnancy between cows and heifers. We observed that cows had greater expression of proinflammatory cytokines and molecules associated with leukocyte migration and phagocytosis compared to heifers. Moreover, animals that failed to become pregnant showed altered expression of anti-inflammatory molecules. Overall, these findings support the hypothesis that early pregnancy signaling alters the proportions and functions of peripheral blood immune cells and differences between cows and heifers may yield insight into the reduced fertility of mature lactating dairy cows.
Collapse
Affiliation(s)
- M I da Silva
- Department of Animal Science, Center for Reproductive Biology and Health, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA
| | - N Oli
- Department of Animal Science, Center for Reproductive Biology and Health, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA
| | - F Gambonini
- Department of Animal Science, Center for Reproductive Biology and Health, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA
| | - T Ott
- Department of Animal Science, Center for Reproductive Biology and Health, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
3
|
Roetman JJ, Erwin MM, Rudloff MW, Favret NR, Detrés Román CR, Apostolova MKI, Murray KA, Lee TF, Lee YA, Philip M. Tumor-Reactive CD8+ T Cells Enter a TCF1+PD-1- Dysfunctional State. Cancer Immunol Res 2023; 11:1630-1641. [PMID: 37844197 PMCID: PMC10841346 DOI: 10.1158/2326-6066.cir-22-0939] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 05/25/2023] [Accepted: 10/13/2023] [Indexed: 10/18/2023]
Abstract
T cells recognize several types of antigens in tumors, including aberrantly expressed, nonmutated proteins, which are therefore shared with normal tissue and referred to as self/shared-antigens (SSA), and mutated proteins or oncogenic viral proteins, which are referred to as tumor-specific antigens (TSA). Immunotherapies such as immune checkpoint blockade (ICB) can activate T-cell responses against TSA, leading to tumor control, and also against SSA, causing immune-related adverse events (irAE). To improve anti-TSA immunity while limiting anti-SSA autoreactivity, we need to understand how tumor-specific CD8+ T cells (TST) and SSA-specific CD8+ T (SST) cells differentiate in response to cognate antigens during tumorigenesis. Therefore, we developed a genetic cancer mouse model in which we can track TST and SST differentiation longitudinally as liver cancers develop. We found that both TST and SST lost effector function over time, but while TST persisted long term and had a dysfunctional/exhausted phenotype (including expression of PD1, CD39, and TOX), SST exited cell cycle prematurely and disappeared from liver lesions. However, SST persisted in spleens in a dysfunctional TCF1+PD-1- state: unable to produce effector cytokines or proliferate in response to ICB targeting PD-1 or PD-L1. Thus, our studies identify a dysfunctional T-cell state occupied by T cells reactive to SSA: a TCF1+PD-1- state lacking in effector function, demonstrating that the type/specificity of tumor antigen may determine tumor-reactive T-cell differentiation.
Collapse
Affiliation(s)
- Jessica J. Roetman
- Department of Medicine, Division of Hematology and Oncology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Megan M. Erwin
- Department of Medicine, Division of Hematology and Oncology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Michael W. Rudloff
- Department of Medicine, Division of Hematology and Oncology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Natalie R. Favret
- Department of Medicine, Division of Hematology and Oncology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Carlos R. Detrés Román
- Department of Medicine, Division of Hematology and Oncology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Minna K. I. Apostolova
- Department of Medicine, Division of Hematology and Oncology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Kristen A. Murray
- Department of Medicine, Division of Hematology and Oncology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Ting-Fang Lee
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Digestive Diseases Research Center, Vanderbilt University Medical Center, Nashville, TN USA
| | - Youngmin A. Lee
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Digestive Diseases Research Center, Vanderbilt University Medical Center, Nashville, TN USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Mary Philip
- Department of Medicine, Division of Hematology and Oncology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt Digestive Diseases Research Center, Vanderbilt University Medical Center, Nashville, TN USA
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
4
|
Parking CAR T Cells in Tumours: Oncolytic Viruses as Valets or Vandals? Cancers (Basel) 2021; 13:cancers13051106. [PMID: 33807553 PMCID: PMC7961585 DOI: 10.3390/cancers13051106] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/01/2021] [Accepted: 03/03/2021] [Indexed: 12/18/2022] Open
Abstract
Oncolytic viruses (OVs) and adoptive T cell therapy (ACT) each possess direct tumour cytolytic capabilities, and their combination potentially seems like a match made in heaven to complement the strengths and weakness of each modality. While providing strong innate immune stimulation that can mobilize adaptive responses, the magnitude of anti-tumour T cell priming induced by OVs is often modest. Chimeric antigen receptor (CAR) modified T cells bypass conventional T cell education through introduction of a synthetic receptor; however, realization of their full therapeutic properties can be stunted by the heavily immune-suppressive nature of the tumour microenvironment (TME). Oncolytic viruses have thus been seen as a natural ally to overcome immunosuppressive mechanisms in the TME which limit CAR T cell infiltration and functionality. Engineering has further endowed viruses with the ability to express transgenes in situ to relieve T cell tumour-intrinsic resistance mechanisms and decorate the tumour with antigen to overcome antigen heterogeneity or loss. Despite this helpful remodeling of the tumour microenvironment, it has simultaneously become clear that not all virus induced effects are favourable for CAR T, begging the question whether viruses act as valets ushering CAR T into their active site, or vandals which cause chaos leading to both tumour and T cell death. Herein, we summarize recent studies combining these two therapeutic modalities and seek to place them within the broader context of viral T cell immunology which will help to overcome the current limitations of effective CAR T therapy to make the most of combinatorial strategies.
Collapse
|
5
|
Boukhaled GM, Harding S, Brooks DG. Opposing Roles of Type I Interferons in Cancer Immunity. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2021; 16:167-198. [PMID: 33264572 DOI: 10.1146/annurev-pathol-031920-093932] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The immune system is tasked with identifying malignant cells to eliminate or prevent cancer spread. This involves a complex orchestration of many immune cell types that together recognize different aspects of tumor transformation and growth. In response, tumors have developed mechanisms to circumvent immune attack. Type I interferons (IFN-Is) are a class of proinflammatory cytokines produced in response to viruses and other environmental stressors. IFN-Is are also emerging as essential drivers of antitumor immunity, potently stimulating the ability of immune cells to eliminate tumor cells. However, a more complicated role for IFN-Is has arisen, as prolonged stimulation can promote feedback inhibitory mechanisms that contribute to immune exhaustion and other deleterious effects that directly or indirectly permit cancer cells to escape immune clearance. We review the fundamental and opposing functions of IFN-Is that modulate tumor growth and impact immune function and ultimately how these functions can be harnessed for the design of new cancer therapies.
Collapse
Affiliation(s)
- Giselle M Boukhaled
- Princess Margaret Cancer Centre, University Health Network Toronto, Ontario M5G 2M9, Canada; .,Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Shane Harding
- Princess Margaret Cancer Centre, University Health Network Toronto, Ontario M5G 2M9, Canada; .,Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada.,Departments of Medical Biophysics and Radiation Oncology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - David G Brooks
- Princess Margaret Cancer Centre, University Health Network Toronto, Ontario M5G 2M9, Canada; .,Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
6
|
Kranich J, Chlis NK, Rausch L, Latha A, Schifferer M, Kurz T, Foltyn-Arfa Kia A, Simons M, Theis FJ, Brocker T. In vivo identification of apoptotic and extracellular vesicle-bound live cells using image-based deep learning. J Extracell Vesicles 2020; 9:1792683. [PMID: 32944180 PMCID: PMC7480589 DOI: 10.1080/20013078.2020.1792683] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The in vivo detection of dead cells remains a major challenge due to technical hurdles. Here, we present a novel method, where injection of fluorescent milk fat globule-EGF factor 8 protein (MFG-E8) in vivo combined with imaging flow cytometry and deep learning allows the identification of dead cells based on their surface exposure of phosphatidylserine (PS) and other image parameters. A convolutional autoencoder (CAE) was trained on defined pictures and successfully used to identify apoptotic cells in vivo. However, unexpectedly, these analyses also revealed that the great majority of PS+ cells were not apoptotic, but rather live cells associated with PS+ extracellular vesicles (EVs). During acute viral infection apoptotic cells increased slightly, while up to 30% of lymphocytes were decorated with PS+ EVs of antigen-presenting cell (APC) exosomal origin. The combination of recombinant fluorescent MFG-E8 and the CAE-method will greatly facilitate analyses of cell death and EVs in vivo.
Collapse
Affiliation(s)
- Jan Kranich
- Faculty of Medicine, Institute for Immunology, Munich, Germany
| | - Nikolaos-Kosmas Chlis
- Institute of Computational Biology, Neuherberg, Germany.,Roche Pharma Research and Early Development, Large Molecule Research, Roche Innovation Center Munich, Penzberg, Germany
| | - Lisa Rausch
- Faculty of Medicine, Institute for Immunology, Munich, Germany
| | - Ashretha Latha
- Faculty of Medicine, Institute for Immunology, Munich, Germany
| | - Martina Schifferer
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Munich Cluster of Systems Neurology (Synergy), Munich, Germany
| | - Tilman Kurz
- Faculty of Medicine, Institute for Immunology, Munich, Germany
| | | | - Mikael Simons
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Munich Cluster of Systems Neurology (Synergy), Munich, Germany.,Institute of Neuronal Cell Biology, Technical University of Munich, Munich, Germany
| | - Fabian J Theis
- Institute of Computational Biology, Neuherberg, Germany.,Department of Mathematics, Technical University of Munich, Garching, Germany
| | - Thomas Brocker
- Faculty of Medicine, Institute for Immunology, Munich, Germany
| |
Collapse
|
7
|
Placenta-specific 8 limits IFNγ production by CD4 T cells in vitro and promotes establishment of influenza-specific CD8 T cells in vivo. PLoS One 2020; 15:e0235706. [PMID: 32639988 PMCID: PMC7343148 DOI: 10.1371/journal.pone.0235706] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 06/20/2020] [Indexed: 01/03/2023] Open
Abstract
During type 1 immune responses, CD4 T helper 1 (Th1) cells and CD8 T cells are activated via IL-12 and contribute to the elimination of intracellular pathogens through interferon gamma (IFNγ) production. In this study, we identified Placenta-specific 8 (Plac8) as a gene that is uniquely expressed in Th1 CD4 T cells relative to other CD4 T cell subsets and hypothesized that Plac8 may represent a novel therapeutic target in Th1 CD4 T cells. First, we determined that Plac8 mRNA in CD4 T cells was induced following IL-12 stimulation via an indirect route that required new protein synthesis. Upon evaluating the functional relevance of Plac8 expression in Th1 CD4 T cells, we discovered that Plac8 was important for suppressing IFNγ mRNA and protein production by CD4 T cells 24 hours after IL-12 stimulation, however Plac8 did not contribute to pathogenic CD4 T cell function during two models of intestinal inflammation. We also noted relatively high basal expression of Plac8 in CD8 T cells which could be further induced following IL-12 stimulation in CD8 T cells. Furthermore, Plac8 expression was important for establishing an optimal CD8 T cell response against influenza A virus via a T cell-intrinsic manner. Altogether, these results implicate Plac8 as a potential regulator of Th1 CD4 and CD8 T cell responses during Th1 T cell-driven inflammation.
Collapse
|
8
|
Evgin L, Huff AL, Wongthida P, Thompson J, Kottke T, Tonne J, Schuelke M, Ayasoufi K, Driscoll CB, Shim KG, Reynolds P, Monie DD, Johnson AJ, Coffey M, Young SL, Archer G, Sampson J, Pulido J, Perez LS, Vile R. Oncolytic virus-derived type I interferon restricts CAR T cell therapy. Nat Commun 2020; 11:3187. [PMID: 32581235 PMCID: PMC7314766 DOI: 10.1038/s41467-020-17011-z] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 05/29/2020] [Indexed: 01/14/2023] Open
Abstract
The application of adoptive T cell therapies, including those using chimeric antigen receptor (CAR)-modified T cells, to solid tumors requires combinatorial strategies to overcome immune suppression associated with the tumor microenvironment. Here we test whether the inflammatory nature of oncolytic viruses and their ability to remodel the tumor microenvironment may help to recruit and potentiate the functionality of CAR T cells. Contrary to our hypothesis, VSVmIFNβ infection is associated with attrition of murine EGFRvIII CAR T cells in a B16EGFRvIII model, despite inducing a robust proinflammatory shift in the chemokine profile. Mechanistically, type I interferon (IFN) expressed following infection promotes apoptosis, activation, and inhibitory receptor expression, and interferon-insensitive CAR T cells enable combinatorial therapy with VSVmIFNβ. Our study uncovers an unexpected mechanism of therapeutic interference, and prompts further investigation into the interaction between CAR T cells and oncolytic viruses to optimize combination therapy.
Collapse
MESH Headings
- Animals
- Apoptosis
- Cell Line, Tumor
- Chemokines/metabolism
- Combined Modality Therapy
- Female
- Immunotherapy, Adoptive
- Interferon-beta/genetics
- Interferon-beta/metabolism
- Lymphocyte Activation
- Melanoma, Experimental/immunology
- Melanoma, Experimental/therapy
- Mice
- Mice, Inbred C57BL
- Mice, Mutant Strains
- Oncolytic Virotherapy
- Oncolytic Viruses/genetics
- Oncolytic Viruses/metabolism
- Receptor, Interferon alpha-beta/genetics
- Receptor, Interferon alpha-beta/metabolism
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Chimeric Antigen/metabolism
- Spleen/immunology
- T-Lymphocytes/metabolism
Collapse
Affiliation(s)
- Laura Evgin
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Amanda L Huff
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| | | | - Jill Thompson
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Tim Kottke
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Jason Tonne
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| | | | | | | | - Kevin G Shim
- Department of Immunology, Mayo Clinic, Rochester, MN, USA
| | - Pierce Reynolds
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Dileep D Monie
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| | | | - Matt Coffey
- Oncolytics Biotech Incorporated, Calgary, Canada
| | - Sarah L Young
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Gary Archer
- Department of Neurosurgery, Duke University, Durham, NC, USA
| | - John Sampson
- Department of Neurosurgery, Duke University, Durham, NC, USA
| | - Jose Pulido
- Department of Ophthalmology, Mayo Clinic, Rochester, MN, USA
| | | | - Richard Vile
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA.
- Department of Immunology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
9
|
Liang Y, Wang ML, Chien CS, Yarmishyn AA, Yang YP, Lai WY, Luo YH, Lin YT, Chen YJ, Chang PC, Chiou SH. Highlight of Immune Pathogenic Response and Hematopathologic Effect in SARS-CoV, MERS-CoV, and SARS-Cov-2 Infection. Front Immunol 2020; 11:1022. [PMID: 32574260 PMCID: PMC7236801 DOI: 10.3389/fimmu.2020.01022] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 04/28/2020] [Indexed: 01/08/2023] Open
Abstract
A sudden outbreak of COVID-19 caused by a novel coronavirus, SARS-CoV-2, in Wuhan, China in December 2019 quickly grew into a global pandemic, putting at risk not only the global healthcare system, but also the world economy. As the disease continues to spread rapidly, the development of prophylactic and therapeutic approaches is urgently required. Although some progress has been made in understanding the viral structure and invasion mechanism of coronaviruses that may cause severe cases of the syndrome, due to the limited understanding of the immune effects caused by SARS-CoV-2, it is difficult for us to prevent patients from developing acute respiratory distress syndrome (ARDS) and pulmonary fibrosis (PF), the major complications of coronavirus infection. Therefore, any potential treatments should focus not only on direct killing of coronaviruses and prevention strategies by vaccine development, but also on keeping in check the acute immune/inflammatory responses, resulting in ARDS and PF. In addition, potential treatments currently under clinical trials focusing on killing coronaviruses or on developing vaccines preventing coronavirus infection largely ignore the host immune response. However, taking care of SARS-CoV-2 infected patients with ARDS and PF is considered to be the major difficulty. Therefore, further understanding of the host immune response to SARS-CoV-2 is extremely important for clinical resolution and saving medication cost. In addition to a breif overview of the structure, infection mechanism, and possible therapeutic approaches, we summarized and compared the hematopathologic effect and immune responses to SARS-CoV, MERS-CoV, and SARS-CoV-2. We also discussed the indirect immune response caused by SARS and direct infection, replication, and destroying of immune cells by MERS-CoV. The molecular mechanisms of SARS-CoV and MERS-CoV infection-induced lymphopenia or cytokine storm may provide some hint toward fight against SARS-CoV-2, the novel coronavirus. This may provide guidance over using immune therapy as a combined treatment to prevent patients developing severe respiratory syndrome and largely reduce complications.
Collapse
Affiliation(s)
- Yanwen Liang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Life Sciences and Institute of Genomic Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Mong-Lien Wang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Food Safety and Health Risk Assessment, National Yang-Ming University, Taipei, Taiwan
- School of Medicine, National Yang-Ming Medical University, Taipei, Taiwan
| | - Chian-Shiu Chien
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan
| | | | - Yi-Ping Yang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang-Ming Medical University, Taipei, Taiwan
- School of Pharmaceutical Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Wei-Yi Lai
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yung-Hung Luo
- School of Medicine, National Yang-Ming Medical University, Taipei, Taiwan
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yi-Tsung Lin
- Division of Infectious Diseases, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yann-Jang Chen
- Department of Life Sciences and Institute of Genomic Sciences, National Yang-Ming University, Taipei, Taiwan
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
- Department of Pediatrics, Renai Branch, Taipei City Hospital, Taipei, Taiwan
| | - Pei-Ching Chang
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| | - Shih-Hwa Chiou
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang-Ming Medical University, Taipei, Taiwan
- Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan
- School of Pharmaceutical Sciences, National Yang-Ming University, Taipei, Taiwan
- Genomic Research Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
10
|
Jangalwe S, Kapoor VN, Xu J, Girnius N, Kennedy NJ, Edwards YJK, Welsh RM, Davis RJ, Brehm MA. Cutting Edge: Early Attrition of Memory T Cells during Inflammation and Costimulation Blockade Is Regulated Concurrently by Proapoptotic Proteins Fas and Bim. THE JOURNAL OF IMMUNOLOGY 2019; 202:647-651. [PMID: 30610162 DOI: 10.4049/jimmunol.1800278] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 12/06/2018] [Indexed: 11/19/2022]
Abstract
Apoptosis of CD8 T cells is an essential mechanism that maintains immune system homeostasis, prevents autoimmunity, and reduces immunopathology. CD8 T cell death also occurs early during the response to both inflammation and costimulation blockade (CoB). In this article, we studied the effects of a combined deficiency of Fas (extrinsic pathway) and Bim (intrinsic pathway) on early T cell attrition in response to lymphocytic choriomeningitis virus infection and during CoB during transplantation. Loss of Fas and Bim function in Bcl2l11-/-Faslpr/lpr mice inhibited apoptosis of T cells and prevented the early T cell attrition resulting from lymphocytic choriomeningitis virus infection. Bcl2l11-/-Faslpr/lpr mice were also resistant to prolonged allograft survival induced by CoB targeting the CD40-CD154 pathway. These results demonstrate that both extrinsic and intrinsic apoptosis pathways function concurrently to regulate T cell homeostasis during the early stages of immune responses and allograft survival during CoB.
Collapse
Affiliation(s)
- Sonal Jangalwe
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| | - Varun N Kapoor
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Jia Xu
- IBM Watson Health, Cambridge, MA 02142
| | - Nomeda Girnius
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115; and.,Ludwig Center at Harvard, Harvard Medical School, Boston, MA 02115
| | - Norman J Kennedy
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| | - Yvonne J K Edwards
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| | - Raymond M Welsh
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Roger J Davis
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| | - Michael A Brehm
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605;
| |
Collapse
|
11
|
Huang S, Zou S, Chen M, Gao X, Chen L, Yang X, Yu Q, Zhao X, Du Y, Yang X, Lin Y, Wang B, Lu Y, Liu J, Zheng X, Gong F, Lu M, Yang D, Wu J. Local Stimulation of Liver Sinusoidal Endothelial Cells with a NOD1 Agonist Activates T Cells and Suppresses Hepatitis B Virus Replication in Mice. THE JOURNAL OF IMMUNOLOGY 2018; 200:3170-3179. [PMID: 29592964 DOI: 10.4049/jimmunol.1700921] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 02/28/2018] [Indexed: 12/19/2022]
Abstract
Functional maturation of liver sinusoidal endothelial cells (LSECs) induced by a NOD1 ligand (diaminopimelic acid [DAP]) during viral infection has not been well defined. Thus, we investigated the role of DAP-stimulated LSEC maturation during hepatitis B virus (HBV) infection and its potential mechanism in a hydrodynamic injection (HI) mouse model. Primary LSECs were isolated from wild-type C57BL/6 mice and stimulated with DAP in vitro and in vivo and assessed for the expression of surface markers as well as for their ability to promote T cell responses via flow cytometry. The effects of LSEC maturation on HBV replication and expression and the role of LSECs in the regulation of other immune cells were also investigated. Pretreatment of LSECs with DAP induced T cell activation in vitro. HI-administered DAP induced LSEC maturation and subsequently enhanced T cell responses, which was accompanied by an increased production of intrahepatic cytokines, chemokines, and T cell markers in the liver. The HI of DAP significantly reduced the HBsAg and HBV DNA levels in the mice. Importantly, the DAP-induced anti-HBV effect was impaired in the LSEC-depleted mice, which indicated that LSEC activation and T cell recruitment into the liver were essential for the antiviral function mediated by DAP application. Taken together, the results showed that the Ag-presenting ability of LSECs was enhanced by DAP application, which resulted in enhanced T cell responses and inhibited HBV replication in a mouse model.
Collapse
Affiliation(s)
- Shunmei Huang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shi Zou
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Mingfa Chen
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Department of Infectious Disease, Shenzhen Luohu People's Hospital, Shenzhen 518033, China
| | - Xiaoyan Gao
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Liwen Chen
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xilang Yang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Qing Yu
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiaoli Zhao
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yanqin Du
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xuecheng Yang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yong Lin
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Baoju Wang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yinping Lu
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jia Liu
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xin Zheng
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Feili Gong
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; and
| | - Mengji Lu
- Institute of Virology, University Hospital of Essen, 45147 Essen, Germany
| | - Dongliang Yang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jun Wu
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China;
| |
Collapse
|
12
|
Serbanescu MA, Ramonell KM, Hadley A, Margoles LM, Mittal R, Lyons JD, Liang Z, Coopersmith CM, Ford ML, McConnell KW. Attrition of memory CD8 T cells during sepsis requires LFA-1. J Leukoc Biol 2016; 100:1167-1180. [PMID: 27286793 DOI: 10.1189/jlb.4a1215-563rr] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 05/24/2016] [Indexed: 12/29/2022] Open
Abstract
CD8 T cell loss and dysfunction have been implicated in the increased susceptibility to opportunistic infections during the later immunosuppressive phase of sepsis, but CD8 T cell activation and attrition in early sepsis remain incompletely understood. With the use of a CLP model, we assessed CD8 T cell activation at 5 consecutive time points and found that activation after sepsis results in a distinct phenotype (CD69+CD25intCD62LHI) independent of cognate antigen recognition and TCR engagement and likely through bystander-mediated cytokine effects. Additionally, we observed that sepsis concurrently results in the preferential depletion of a subset of memory-phenotype CD8 T cells that remain "unactivated" (i.e., fail to up-regulate activation markers) by apoptosis. Unactivated CD44HI OT-I cells were spared from sepsis-induced attrition, as were memory-phenotype CD8 T cells of mice treated with anti-LFA-1 mAb, 1 h after CLP. Perhaps most importantly, we demonstrate that attrition of memory phenotype cells may have a pathologic significance, as elevated IL-6 levels were associated with decreased numbers of memory-phenotype CD8 T cells in septic mice, and preservation of this subset after administration of anti-LFA-1 mAb conferred improved survival at 7 d. Taken together, these data identify potentially modifiable responses of memory-phenotype CD8 T cells in early sepsis and may be particularly important in the application of immunomodulatory therapies in sepsis.
Collapse
Affiliation(s)
- Mara A Serbanescu
- Department of Surgery and Emory Critical Care Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Kimberly M Ramonell
- Department of Surgery and Emory Critical Care Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Annette Hadley
- Department of Surgery and Emory Critical Care Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Lindsay M Margoles
- Department of Infectious Diseases and Emory Critical Care Center, Emory University School of Medicine, Atlanta, Georgia, USA; and
| | - Rohit Mittal
- Department of Surgery and Emory Critical Care Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - John D Lyons
- Department of Surgery and Emory Critical Care Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Zhe Liang
- Department of Surgery and Emory Critical Care Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Craig M Coopersmith
- Department of Surgery and Emory Critical Care Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Mandy L Ford
- Department of Surgery and Emory Transplant Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Kevin W McConnell
- Department of Surgery and Emory Critical Care Center, Emory University School of Medicine, Atlanta, Georgia, USA;
| |
Collapse
|
13
|
Hurtado de Mendoza T, Liu F, Verma IM. Antiapoptotic Role for Lifeguard in T Cell Mediated Immune Response. PLoS One 2015; 10:e0142161. [PMID: 26565411 PMCID: PMC4643990 DOI: 10.1371/journal.pone.0142161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 10/19/2015] [Indexed: 11/18/2022] Open
Abstract
Anti-apoptotic protein Lifeguard (LFG) is upregulated on T cells upon in vitro activation. To investigate its role in T cell immunity we infected wild type and LFG knockout bone marrow chimaeras mice with LCMV. We observed a decreased number of LFG KO activated CD8 and CD4 T cells throughout the infection and a marked decrease in LFG KO LCMV specific memory T cells. WT and KO T cells proliferated at the same rate, however, LFG KO CD44hi T cells showed increased cell death during the initial phase of the immune response. LFG KO and WT T cells were equally sensitive to the FAS antibody Jo-2 in ex vivo cultures, and blocking extrinsic pathways of cell death in vivo with Fas L or caspase 8 inhibitors did not rescue the increased apoptosis in LFG KO T cells. Our data suggest that LFG plays a role in T cell survival during the initial phase of anti-viral immune response by protecting pre-existing memory T cells and possibly newly activated T cells resulting in a diminished immune response and a decreased number of LCMV specific memory T cells.
Collapse
Affiliation(s)
- Tatiana Hurtado de Mendoza
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - Fei Liu
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - Inder M. Verma
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
14
|
Gil A, Kenney LL, Mishra R, Watkin LB, Aslan N, Selin LK. Vaccination and heterologous immunity: educating the immune system. Trans R Soc Trop Med Hyg 2015; 109:62-9. [PMID: 25573110 DOI: 10.1093/trstmh/tru198] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
This review discusses three inter-related topics: (1) the immaturity of the neonatal and infant immune response; (2) heterologous immunity, where prior infection history with unrelated pathogens alters disease outcome resulting in either enhanced protective immunity or increased immunopathology to new infections, and (3) epidemiological human vaccine studies that demonstrate vaccines can have beneficial or detrimental effects on subsequent unrelated infections. The results from the epidemiological and heterologous immunity studies suggest that the immune system has tremendous plasticity and that each new infection or vaccine that an individual is exposed to during a lifetime will potentially alter the dynamics of their immune system. It also suggests that each new infection or vaccine that an infant receives is not only perturbing the immune system but is educating the immune system and laying down the foundation for all subsequent responses. This leads to the question, is there an optimum way to educate the immune system? Should this be taken into consideration in our vaccination protocols?
Collapse
Affiliation(s)
- Anna Gil
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Laurie L Kenney
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Rabinarayan Mishra
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Levi B Watkin
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Nuray Aslan
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Liisa K Selin
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| |
Collapse
|
15
|
Hoekstra ME, Dijkgraaf FE, Schumacher TN, Rohr JC. Assessing T lymphocyte function and differentiation by genetically encoded reporter systems. Trends Immunol 2015; 36:392-400. [DOI: 10.1016/j.it.2015.05.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 05/15/2015] [Accepted: 05/15/2015] [Indexed: 02/07/2023]
|
16
|
Doyle T, Goujon C, Malim MH. HIV-1 and interferons: who's interfering with whom? Nat Rev Microbiol 2015; 13:403-13. [PMID: 25915633 DOI: 10.1038/nrmicro3449] [Citation(s) in RCA: 224] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The ability of interferons (IFNs) to inhibit HIV-1 replication in cell culture models has long been recognized, and the therapeutic administration of IFNα to HIV-1-infected patients who are not receiving antiretroviral therapy produces a clear but transient decrease in plasma viral load. Conversely, studies of chronic HIV-1 infection in humans and SIV-infected animal models of AIDS show positive correlations between elevated plasma levels of IFNs, increased expression of IFN-stimulated genes (ISGs), biomarkers of inflammation and disease progression. In this Review, we discuss the evidence that IFNs can control HIV-1 replication in vivo and debate the controversial role of IFNs in promoting the pathological sequelae of chronic HIV-1 infection.
Collapse
Affiliation(s)
- Tomas Doyle
- Department of Infectious Diseases, King's College London, 2nd Floor, Borough Wing, Guy's Hospital, London Bridge, London SE1 9RT, UK
| | - Caroline Goujon
- Department of Infectious Diseases, King's College London, 2nd Floor, Borough Wing, Guy's Hospital, London Bridge, London SE1 9RT, UK
| | - Michael H Malim
- Department of Infectious Diseases, King's College London, 2nd Floor, Borough Wing, Guy's Hospital, London Bridge, London SE1 9RT, UK
| |
Collapse
|
17
|
|
18
|
Davidson S, Maini MK, Wack A. Disease-promoting effects of type I interferons in viral, bacterial, and coinfections. J Interferon Cytokine Res 2015; 35:252-64. [PMID: 25714109 PMCID: PMC4389918 DOI: 10.1089/jir.2014.0227] [Citation(s) in RCA: 146] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
While type I interferons (IFNs) are universally acknowledged for their antiviral and immunostimulatory functions, there is increasing appreciation of the detrimental effects of inappropriate, excessive, or mistimed type I IFN responses in viral and bacterial infections. The underlying mechanisms by which type I IFNs promote susceptibility or severity include direct tissue damage by apoptosis induction or suppression of proliferation in tissue cells, immunopathology due to excessive inflammation, and cell death induced by TRAIL- and Fas-expressing immune cells, as well as immunosuppression through IL-10, IL-27, PD-L1, IL-1Ra, and other regulatory molecules that antagonize the induction or action of IL-1, IL-12, IL-17, IFN-γ, KC, and other effectors of the immune response. Bacterial superinfections following influenza infection are a prominent example of a situation where type I IFNs can misdirect the immune response. This review discusses current understanding of the parameters of signal strength, duration, timing, location, and cellular recipients that determine whether type I IFNs have beneficial or detrimental effects in infection.
Collapse
Affiliation(s)
- Sophia Davidson
- 1 Division of Immunoregulation, MRC National Institute for Medical Research , Mill Hill, London, United Kingdom
| | | | | |
Collapse
|
19
|
Abstract
UNLABELLED Regulatory T (Treg) cells are important in the maintenance of self-tolerance, and the depletion of Treg cells correlates with autoimmune development. It has been shown that type I interferon (IFN) responses induced early in the infection of mice can drive memory (CD44hi) CD8 and CD4 T cells into apoptosis, and we questioned here whether the apoptosis of CD44-expressing Treg cells might be involved in the infection-associated autoimmune development. Instead, we found that Treg cells were much more resistant to apoptosis than CD44hi CD8 and CD4 T cells at days 2 to 3 after lymphocytic choriomeningitis virus infection, when type I IFN levels are high. The infection caused a downregulation of the interleukin-7 (IL-7) receptor, needed for survival of conventional T cells, while increasing on Treg cells the expression of the high-affinity IL-2 receptor, needed for STAT5-dependent survival of Treg cells. The stably maintained Treg cells early during infection may explain the relatively low incidence of autoimmune manifestations among infected patients. IMPORTANCE Autoimmune diseases are controlled in part by regulatory T cells (Treg) and are thought to sometimes be initiated by viral infections. We tested the hypothesis that Treg may die off at early stages of infection, when virus-induced factors kill other lymphocyte types. Instead, we found that Treg resisted this cell death, perhaps reducing the tendency of viral infections to cause immune dysfunction and induce autoimmunity.
Collapse
|
20
|
Regulating the diverse outcomes of interferon's interference. Trends Immunol 2014; 35:353-4. [PMID: 25052591 DOI: 10.1016/j.it.2014.07.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 07/07/2014] [Indexed: 12/19/2022]
Abstract
Regulatory T cells are crucial for preventing autoimmunity, but how their function is restrained to allow optimal effector T cells responses in appropriate contexts is unclear. In a recent paper in the Journal of Experimental Medicine, Campbell and colleagues demonstrate that virus-induced type I interferon acts directly on Treg cells to allow for functional antiviral T cell responses.
Collapse
|
21
|
Poly(I:C) treatment leads to interferon-dependent clearance of hepatitis B virus in a hydrodynamic injection mouse model. J Virol 2014; 88:10421-31. [PMID: 24920792 DOI: 10.1128/jvi.00996-14] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
UNLABELLED We have previously shown that poly(I:C) activates murine hepatic cells to produce interferon (IFN) and suppresses hepatitis B virus (HBV) replication in vitro. Therefore, we addressed whether poly(I:C) is able to induce the clearance of HBV in vivo. The chronic HBV replication mouse model was established by the hydrodynamic injection (HI) of pAAV-HBV1.2 into the tail veins of wild-type and IFN-α/βR-, IFN-γ-, and CXCR3-deficient C57BL/6 mice. Fourteen days post-HI of pAAV-HBV1.2, mice were administered poly(I:C) by intraperitoneal injection, intramuscular injection, or HI. Only treatment of poly(I:C) by HI led to HBV clearance in wild-type C57BL/6 mice. Serum HBsAg disappeared within 40 days postinfection (dpi) in mice that received poly(I:C) by HI, and this was accompanied by the appearance of anti-HBs antibodies. HBV-specific T-cell and antibody responses were significantly enhanced by HI of poly(I:C). HBV replication intermediates and HBcAg-positive hepatocytes were eliminated in the liver. HI of poly(I:C) induced the production of IFNs in mice and enhanced the levels of cytokines, IFN-stimulated genes, and T-cell markers in the liver. Importantly, poly(I:C)-induced HBV clearance was impaired in IFN-α/βR-, IFN-γ-, and CXCR3-deficient mice, indicating that the induction of type I IFN and the stimulation and recruitment of T cells into the liver are essential for HBV clearance in this model. Taken together, the application of poly(I:C) by HI into the liver enhances innate and adaptive immune responses and leads to HBV clearance in an HBV mouse model, implicating the potential of intrahepatic Toll-like receptor 3 (TLR3) activation for the treatment of chronic hepatitis B patients. IMPORTANCE It has become well accepted that immunomodulation is a potentially useful approach to treat chronic viral infection. Recently, combinations of antiviral treatment and therapeutic vaccinations were evaluated for therapies of chronic hepatitis B virus (HBV) infection. Activation of the innate immune branch may also be important for viral control and contributes to HBV clearance. Our present study demonstrated that hepatic TLR3 activation led to clearance of hepatitis B virus in an HBV mouse model. For the first time, we showed that HBV clearance in this model is dependent not only on type I interferon (IFN) but also on type II IFN, indicating a coordinated action of innate and adaptive immune responses. T-cell recruitment appeared to be critical for the success of TLR3-mediated antiviral action. These findings implicate the potential of intrahepatic TLR3 activation for the treatment of chronic HBV infection.
Collapse
|
22
|
Gómez-Cabañas L, Delgado-Martín C, López-Cotarelo P, Escribano-Diaz C, Alonso-C LM, Riol-Blanco L, Rodríguez-Fernández JL. Detecting apoptosis of leukocytes in mouse lymph nodes. Nat Protoc 2014; 9:1102-12. [PMID: 24743418 DOI: 10.1038/nprot.2014.078] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Although there are multiple methods for analyzing apoptosis in cultured cells, methodologies for analyzing apoptosis in vivo are sparse. In this protocol, we describe how to detect apoptosis of leukocytes in mouse lymph nodes (LNs) via the detection of apoptotic caspases. We have previously used this protocol to study factors that modulate dendritic cell (DC) survival in LNs; however, it can also be used to analyze other leukocytes that migrate to the LNs. DCs labeled with a fluorescent cell tracker are subcutaneously injected in the posterior footpads of mice. Once the labeled DCs reach the popliteal LN (PLN), the animals are intravenously injected with FLIVO, a permeant fluorescent reagent that selectively marks active caspases and consequently apoptotic cells. Explanted PLNs are then examined under a two-photon microscope to look for the presence of apoptotic cells among the DCs injected. The protocol requires 6-6.5 h for preparation and analysis plus an additional 34-40 h to allow apoptosis of the injected DCs in the PLN.
Collapse
Affiliation(s)
- Laura Gómez-Cabañas
- 1] Centro de Investigaciones Biológicas. Consejo Superior de Investigaciones Científicas, Madrid, Spain. [2]
| | - Cristina Delgado-Martín
- 1] Centro de Investigaciones Biológicas. Consejo Superior de Investigaciones Científicas, Madrid, Spain. [2]
| | - Pilar López-Cotarelo
- Centro de Investigaciones Biológicas. Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Cristina Escribano-Diaz
- Centro de Investigaciones Biológicas. Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Luis M Alonso-C
- Centro de Microscopía y Citometría, Universidad Complutense, Madrid, Spain
| | - Lorena Riol-Blanco
- 1] Centro de Investigaciones Biológicas. Consejo Superior de Investigaciones Científicas, Madrid, Spain. [2]
| | | |
Collapse
|
23
|
Perot BP, Ingersoll MA, Albert ML. The impact of macroautophagy on CD8(+) T-cell-mediated antiviral immunity. Immunol Rev 2014; 255:40-56. [PMID: 23947346 DOI: 10.1111/imr.12096] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Macroautophagy is a catabolic recycling pathway, which can be induced by various stress stimuli. Viruses are able to manipulate autophagy in the cells that they infect. The impact of autophagy on the innate immune response to viruses and its stimulatory role in antigen presentation to CD4(+) T cells are well documented. Herein, we present the impact of autophagy on the activation of cytotoxic T lymphocyte (CTL)-mediated antiviral immune responses, which are required for the eradication or control of multiple viruses. We first discuss the general mechanisms by which viruses can either induce or block autophagy in cells. We then explore the cross-talk between autophagy and innate immune processes, which are both first line defenses against viruses; and constitute crucial steps for the initiation of potent adaptive immune responses. We describe the impact of autophagy on the presentation of viral peptide antigens on class I major histocompatibility complex (MHC I), a prerequisite for the priming of CTL responses. In sum, our review highlights the interplay between viruses and three integrated host response pathways - autophagy, innate and adaptive immunity - providing a framework for future mechanistic and pathogenesis-based research.
Collapse
Affiliation(s)
- Brieuc P Perot
- Unité d'immunobiologie des cellules dendritiques, Institut Pasteur, Paris, France
| | | | | |
Collapse
|
24
|
Hosking MP, Flynn CT, Botten J, Whitton JL. CD8+ memory T cells appear exhausted within hours of acute virus infection. THE JOURNAL OF IMMUNOLOGY 2013; 191:4211-22. [PMID: 24026080 DOI: 10.4049/jimmunol.1300920] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
CD8(+) memory T cells are abundant and are activated in a near-synchronous manner by infection, thereby providing a unique opportunity to evaluate the coordinate functional and phenotypic changes that occur in vivo within hours of viral challenge. Using two disparate virus challenges of mice, we show that splenic CD8(+) memory T cells rapidly produced IFN-γ in vivo; however, within 18-24 h, IFN-γ synthesis was terminated and remained undetectable for ≥ 48 h. A similar on/off response was observed in CD8(+) memory T cells in the peritoneal cavity. Cessation of IFN-γ production in vivo occurred despite the continued presence of immunostimulatory viral Ag, indicating that the initial IFN-γ response had been actively downregulated and that the cells had been rendered refractory to subsequent in vivo Ag contact. Downregulation of IFN-γ synthesis was accompanied by the upregulation of inhibitory receptor expression on the T cells, and ex vivo analyses using synthetic peptides revealed a concurrent hierarchical loss of cytokine responsiveness (IL-2, then TNF, then IFN-γ) taking place during the first 24 h following Ag contact. Thus, within hours of virus challenge, CD8(+) memory T cells display the standard hallmarks of T cell exhaustion, a phenotype that previously was associated only with chronic diseases and that is generally viewed as a gradually developing and pathological change in T cell function. Our data suggest that, instead, the "exhaustion" phenotype is a rapid and normal physiological T cell response.
Collapse
Affiliation(s)
- Martin P Hosking
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037
| | | | | | | |
Collapse
|
25
|
Benn CS, Netea MG, Selin LK, Aaby P. A small jab - a big effect: nonspecific immunomodulation by vaccines. Trends Immunol 2013; 34:431-9. [PMID: 23680130 DOI: 10.1016/j.it.2013.04.004] [Citation(s) in RCA: 396] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 03/18/2013] [Accepted: 04/07/2013] [Indexed: 02/07/2023]
Abstract
Recent epidemiological studies have shown that, in addition to disease-specific effects, vaccines against infectious diseases have nonspecific effects on the ability of the immune system to handle other pathogens. For instance, in randomized trials tuberculosis and measles vaccines are associated with a substantial reduction in overall child mortality, which cannot be explained by prevention of the target disease. New research suggests that the nonspecific effects of vaccines are related to cross-reactivity of the adaptive immune system with unrelated pathogens, and to training of the innate immune system through epigenetic reprogramming. Hence, epidemiological findings are backed by immunological data. This generates a new understanding of the immune system and about how it can be modulated by vaccines to impact the general resistance to disease.
Collapse
Affiliation(s)
- Christine S Benn
- Research Center for Vitamins and Vaccines (CVIVA), Statens Serum Institut, Institute of Clinical Research, University of Southern Denmark, and Odense University Hospital, Denmark.
| | | | | | | |
Collapse
|
26
|
Micco L, Peppa D, Loggi E, Schurich A, Jefferson L, Cursaro C, Panno AM, Bernardi M, Brander C, Bihl F, Andreone P, Maini MK. Differential boosting of innate and adaptive antiviral responses during pegylated-interferon-alpha therapy of chronic hepatitis B. J Hepatol 2013; 58:225-233. [PMID: 23046671 DOI: 10.1016/j.jhep.2012.09.029] [Citation(s) in RCA: 194] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Revised: 09/11/2012] [Accepted: 09/29/2012] [Indexed: 12/17/2022]
Abstract
BACKGROUND & AIMS A better understanding of the immunomodulatory effects of PegIFNα therapy could allow more rational optimisation of future therapeutic approaches in chronic HBV infection. In this study, we evaluated dynamic changes in the innate and adaptive arms of the immune system induced by PegIFNα. METHODS PBMC were obtained from a cohort of patients with eAg-negative CHB before, during and after PegIFNα treatment. The number, phenotype and function of global and virus-specific T cells and NK cells were analyzed by flow cytometry and serum cytokines by ELISA or CBA. RESULTS The absolute number of CD8 T cells was strikingly reduced on PegIFNα therapy (p<0.001), with a predominant loss of end-stage effectors, including CMV-specific CD8 T cells. There was no significant recovery of the exhausted HBV-specific CD8 T cell response. By contrast, PegIFNα was able to potently and cumulatively drive the proliferation and expansion in absolute numbers of CD56(bright) NK cell numbers (p<0.001), with induction of the pro-proliferative cytokine IL-15. Expanded CD56(bright) NK cells showed enhanced expression of activation markers and the activating receptor NKp46, accompanied by augmentation of TRAIL and IFN-γ expression (p<0.001). Peak virological response (temporal within individual patients and cross-sectional within the cohort) correlated with the degree of expansion of functional CD56(bright) NK cells. CONCLUSIONS IFN-α mediates divergent effects on the innate and adaptive arms of the immune system in vivo. The efficacy of PegIFNα may be limited by its depleting effect on CD8 T cells; conversely, it can cumulatively drive proliferation, activation and antiviral potential of CD56(bright) NK cells.
Collapse
|
27
|
Garrod KR, Moreau HD, Garcia Z, Lemaître F, Bouvier I, Albert ML, Bousso P. Dissecting T cell contraction in vivo using a genetically encoded reporter of apoptosis. Cell Rep 2012; 2:1438-47. [PMID: 23159042 DOI: 10.1016/j.celrep.2012.10.015] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 10/01/2012] [Accepted: 10/22/2012] [Indexed: 12/11/2022] Open
Abstract
Contraction is a critical phase of immunity whereby the vast majority of effector T cells die by apoptosis, sparing a population of long-lived memory cells. Where, when, and why contraction occurs has been difficult to address directly due in large part to the rapid clearance of apoptotic T cells in vivo. To circumvent this issue, we introduced a genetically encoded reporter for caspase-3 activity into naive T cells to identify cells entering the contraction phase. Using two-photon imaging, we found that caspase-3 activity in T cells was maximal at the peak of the response and was associated with loss of motility followed minutes later by cell death. We demonstrated that contraction is a widespread process occurring uniformly in all organs tested and targeting phenotypically diverse T cells. Importantly, we identified a critical window of time during which antigen encounters act to antagonize T cell apoptosis, supporting a causal link between antigen clearance and T cell contraction. Our results offer insight into a poorly explored phase of immunity and provide a versatile methodology to study apoptosis during the development or function of a variety of immune cells in vivo.
Collapse
Affiliation(s)
- Kym R Garrod
- Institut Pasteur, Dynamics of Immune Responses Unit, 75015 Paris, France; INSERM U668, 75015 Paris, France
| | | | | | | | | | | | | |
Collapse
|
28
|
Presensitizing with a Toll-like receptor 3 ligand impairs CD8 T-cell effector differentiation and IL-33 responsiveness. Proc Natl Acad Sci U S A 2012; 109:10486-91. [PMID: 22689946 DOI: 10.1073/pnas.1202607109] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The synthetic double-stranded RNA poly(I:C) is commonly used as an adjuvant to boost CD8 T-cell function; however, polyinosinic:polycytidylic acid [poly(I:C)] can also suppress autoimmune disease. The mechanism by which a single adjuvant achieves two distinct immunoregulatory roles is unknown. Although it is clear that coadministration of poly(I:C) with antigen elicits strong adjuvant effects in mice, we found that poly(I:C) injection before antigen substantially reduced antigen-dependent CD8 T-cell responses. Notably, CD8 T cells sensitized in poly(I:C)-pretreated mice failed to fully up-regulate IL-33R (ST2), which led to impaired T-cell receptor-independent responses to IL-33. In contrast, nonsensitized effector CD8 T cells responded robustly to IL-33 using a two-signal cytokine mechanism. During an acute lung response to Staphylococcus aureus enterotoxin, peripheral injection of poly(I:C) manifested a suppressive process by inhibiting the differentiation of both antigen- and IL-33-responsive CD8 effectors systemically. These findings highlight that early exposure to double-stranded RNA reverses its role as an adjuvant and, importantly, prevents IL-33R up-regulation on CD8 effector T cells to dampen inflammation.
Collapse
|
29
|
Chen AT, Cornberg M, Gras S, Guillonneau C, Rossjohn J, Trees A, Emonet S, de la Torre JC, Welsh RM, Selin LK. Loss of anti-viral immunity by infection with a virus encoding a cross-reactive pathogenic epitope. PLoS Pathog 2012; 8:e1002633. [PMID: 22536152 PMCID: PMC3334890 DOI: 10.1371/journal.ppat.1002633;ppathogens-d-11-02190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
T cell cross-reactivity between different strains of the same virus, between different members of the same virus group, and even between unrelated viruses is a common occurrence. We questioned here how an intervening infection with a virus containing a sub-dominant cross-reactive T cell epitope would affect protective immunity to a previously encountered virus. Pichinde virus (PV) and lymphocytic choriomeningitis virus (LCMV) encode subdominant cross-reactive NP₂₀₅₋₂₁₂ CD8 T cell epitopes sharing 6 of 8 amino acids, differing only in the MHC anchoring regions. These pMHC epitopes induce cross-reactive but non-identical T cell receptor (TCR) repertoires, and structural studies showed that the differing anchoring amino acids altered the conformation of the MHC landscape presented to the TCR. PV-immune mice receiving an intervening infection with wild type but not NP205-mutant LCMV developed severe immunopathology in the form of acute fatty necrosis on re-challenge with PV, and this pathology could be predicted by the ratio of NP205-specific to the normally immunodominant PV NP₃₈₋₄₅-specific T cells. Thus, cross-reactive epitopes can exert pathogenic properties that compromise protective immunity by impairing more protective T cell responses.
Collapse
Affiliation(s)
- Alex T. Chen
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Markus Cornberg
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Stephanie Gras
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria, Australia
| | - Carole Guillonneau
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria, Australia
| | - Jamie Rossjohn
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria, Australia
| | - Andrew Trees
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States of America
| | - Sebastien Emonet
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States of America
| | - Juan C. de la Torre
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States of America
| | - Raymond M. Welsh
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- * E-mail:
| | - Liisa K. Selin
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| |
Collapse
|
30
|
Chen AT, Cornberg M, Gras S, Guillonneau C, Rossjohn J, Trees A, Emonet S, de la Torre JC, Welsh RM, Selin LK. Loss of anti-viral immunity by infection with a virus encoding a cross-reactive pathogenic epitope. PLoS Pathog 2012; 8:e1002633. [PMID: 22536152 PMCID: PMC3334890 DOI: 10.1371/journal.ppat.1002633] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Accepted: 02/23/2012] [Indexed: 12/31/2022] Open
Abstract
T cell cross-reactivity between different strains of the same virus, between different members of the same virus group, and even between unrelated viruses is a common occurrence. We questioned here how an intervening infection with a virus containing a sub-dominant cross-reactive T cell epitope would affect protective immunity to a previously encountered virus. Pichinde virus (PV) and lymphocytic choriomeningitis virus (LCMV) encode subdominant cross-reactive NP205–212 CD8 T cell epitopes sharing 6 of 8 amino acids, differing only in the MHC anchoring regions. These pMHC epitopes induce cross-reactive but non-identical T cell receptor (TCR) repertoires, and structural studies showed that the differing anchoring amino acids altered the conformation of the MHC landscape presented to the TCR. PV-immune mice receiving an intervening infection with wild type but not NP205-mutant LCMV developed severe immunopathology in the form of acute fatty necrosis on re-challenge with PV, and this pathology could be predicted by the ratio of NP205-specific to the normally immunodominant PV NP38–45 -specific T cells. Thus, cross-reactive epitopes can exert pathogenic properties that compromise protective immunity by impairing more protective T cell responses. The purpose of vaccination against viruses is to induce strong neutralizing antibody responses that inactivate viruses on contact and strong T cell responses that attack and kill virus-infected cells. Some viruses, however, like HIV and hepatitis C virus, are only weakly controlled by neutralizing antibody, so T cell immunity is very important for control of these infections. T cells recognize small virus-encoded peptides, called epitopes, presented on the surface of infected cells, and some of these epitopes induce strongly protective and others weakly protective T cell responses. However, the same T cells can sometimes demonstrate cross-reactivity and recognize similar epitopes encoded by two different viruses. We questioned here what infection with a virus encoding a weak cross-reactive epitope would do to immunity to a previously-encountered virus. Here we report that such an infection can compromise protective immunity by enhancing the normally weak response and suppressing the normally strong response. Under these conditions such epitopes function as “pathogenic” epitopes, and we suggest that the potential for inducing responses to pathogenic epitopes should be an important consideration in the design of T cell vaccines.
Collapse
Affiliation(s)
- Alex T. Chen
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Markus Cornberg
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Stephanie Gras
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria, Australia
| | - Carole Guillonneau
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria, Australia
| | - Jamie Rossjohn
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria, Australia
| | - Andrew Trees
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States of America
| | - Sebastien Emonet
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States of America
| | - Juan C. de la Torre
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States of America
| | - Raymond M. Welsh
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- * E-mail:
| | - Liisa K. Selin
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| |
Collapse
|
31
|
Affiliation(s)
- Raymond M Welsh
- Department of Pathology and Program in Immunology and Virology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America.
| | | | | | | |
Collapse
|
32
|
Colli ML, Nogueira TC, Allagnat F, Cunha DA, Gurzov EN, Cardozo AK, Roivainen M, Op de beeck A, Eizirik DL. Exposure to the viral by-product dsRNA or Coxsackievirus B5 triggers pancreatic beta cell apoptosis via a Bim / Mcl-1 imbalance. PLoS Pathog 2011; 7:e1002267. [PMID: 21977009 PMCID: PMC3178579 DOI: 10.1371/journal.ppat.1002267] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Accepted: 07/27/2011] [Indexed: 12/20/2022] Open
Abstract
The rise in type 1 diabetes (T1D) incidence in recent decades is probably related to modifications in environmental factors. Viruses are among the putative environmental triggers of T1D. The mechanisms regulating beta cell responses to viruses, however, remain to be defined. We have presently clarified the signaling pathways leading to beta cell apoptosis following exposure to the viral mimetic double-stranded RNA (dsRNA) and a diabetogenic enterovirus (Coxsackievirus B5). Internal dsRNA induces cell death via the intrinsic mitochondrial pathway. In this process, activation of the dsRNA-dependent protein kinase (PKR) promotes eIF2α phosphorylation and protein synthesis inhibition, leading to downregulation of the antiapoptotic Bcl-2 protein myeloid cell leukemia sequence 1 (Mcl-1). Mcl-1 decrease results in the release of the BH3-only protein Bim, which activates the mitochondrial pathway of apoptosis. Indeed, Bim knockdown prevented both dsRNA- and Coxsackievirus B5-induced beta cell death, and counteracted the proapoptotic effects of Mcl-1 silencing. These observations indicate that the balance between Mcl-1 and Bim is a key factor regulating beta cell survival during diabetogenic viral infections.
Collapse
Affiliation(s)
- Maikel L. Colli
- Laboratory of Experimental Medicine, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | - Tatiane C. Nogueira
- Laboratory of Experimental Medicine, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | - Florent Allagnat
- Laboratory of Experimental Medicine, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | - Daniel A. Cunha
- Laboratory of Experimental Medicine, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | - Esteban N. Gurzov
- Laboratory of Experimental Medicine, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | - Alessandra K. Cardozo
- Laboratory of Experimental Medicine, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | - Merja Roivainen
- Intestinal Viruses Unit, Department of Infectious Disease Surveillance and Control, National Institute for Health and Welfare (THL), Helsinki, Finland
| | - Anne Op de beeck
- Virology Unit, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | - Decio L. Eizirik
- Laboratory of Experimental Medicine, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
- * E-mail:
| |
Collapse
|
33
|
Schmidt NW, Harty JT. Cutting edge: attrition of Plasmodium-specific memory CD8 T cells results in decreased protection that is rescued by booster immunization. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2011; 186:3836-40. [PMID: 21357257 PMCID: PMC3074438 DOI: 10.4049/jimmunol.1003949] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Sterile protection against infection with Plasmodium sporozoites requires high numbers of memory CD8 T cells. However, infections with unrelated pathogens, as may occur in areas endemic to malaria, can dramatically decrease pre-existing memory CD8 T cells. It remains unknown whether unrelated infections will compromise numbers of Plasmodium-specific memory CD8 T cells and thus limit the duration of antimalarial immunity generated by subunit vaccination. We show that P. berghei circumsporozoite-specific memory CD8 T cells underwent significant attrition in numbers in mice subjected to unrelated infections. Attrition was associated with preferential loss of effector memory CD8 T cells and reduced immunity to P. berghei sporozoite challenge. However, and of relevance to deployment of Plasmodium vaccines in areas endemic to malaria, attrition of memory CD8 T cells was reversed by booster immunization, which restored protection. These data suggest that regular booster immunizations may be required to sustain protective vaccine-induced Plasmodium-specific memory CD8 T cells in the face of attrition caused by unrelated infections.
Collapse
Affiliation(s)
| | - John T. Harty
- Department of Microbiology, University of Iowa, Iowa City, IA, USA
- Department of Pathology, University of Iowa, Iowa City, IA, USA
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
34
|
Selin LK, Wlodarczyk MF, Kraft AR, Nie S, Kenney LL, Puzone R, Celada F. Heterologous immunity: immunopathology, autoimmunity and protection during viral infections. Autoimmunity 2011; 44:328-47. [PMID: 21250837 DOI: 10.3109/08916934.2011.523277] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Heterologous immunity is a common phenomenon present in all infections. Most of the time it is beneficial, mediating protective immunity, but in some individuals that have the wrong crossreactive response it leads to a cascade of events that result in severe immunopathology. Infections have been associated with autoimmune diseases such as diabetes, multiple sclerosis and lupus erythematosis, but also with unusual autoimmune like pathologies where the immune system appears dysregulated, such as, sarcoidosis, colitis, panniculitis, bronchiolitis obliterans, infectious mononucleosis and even chronic fatigue syndrome. Here we review the evidence that to better understand these autoreactive pathologies it requires an evaluation of how T cells are regulated and evolve during sequential infections with different pathogens under the influence of heterologous immunity.
Collapse
Affiliation(s)
- Liisa K Selin
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01655, USA.
| | | | | | | | | | | | | |
Collapse
|
35
|
Borrow P, Martínez-Sobrido L, de la Torre JC. Inhibition of the type I interferon antiviral response during arenavirus infection. Viruses 2010; 2:2443-80. [PMID: 21994626 PMCID: PMC3185579 DOI: 10.3390/v2112443] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Revised: 10/22/2010] [Accepted: 10/22/2010] [Indexed: 12/20/2022] Open
Abstract
Arenaviruses merit interest both as tractable experimental model systems to study acute and persistent viral infections, and as clinically-important human pathogens. Several arenaviruses cause hemorrhagic fever (HF) disease in humans. In addition, evidence indicates that the globally-distributed prototypic arenavirus lymphocytic choriomeningitis virus (LCMV) is a human pathogen of clinical significance in congenital infections, and also poses a great danger to immunosuppressed individuals. Arenavirus persistence and pathogenesis are facilitated by their ability to overcome the host innate immune response. Mammalian hosts have developed both membrane toll-like receptors (TLR) and cytoplasmic pattern recognition receptors (PRRs) that recognize specific pathogen-associated molecular patterns (PAMPs), resulting in activation of the transcription factors IRF3 or IRF7, or both, which together with NF-κB and ATF-2/c-JUN induce production of type I interferon (IFN-I). IFN-I plays a key role in host anti-microbial defense by mediating direct antiviral effects via up-regulation of IFN-I stimulated genes (ISGs), activating dendritic cells (DCs) and natural killer (NK) cells, and promoting the induction of adaptive responses. Accordingly, viruses have developed a plethora of strategies to disrupt the IFN-I mediated antiviral defenses of the host, and the viral gene products responsible for these disruptions are often major virulence determinants. IRF3- and IRF7-dependent induction of host innate immune responses is frequently targeted by viruses. Thus, the arenavirus nucleoprotein (NP) was shown to inhibit the IFN-I response by interfering with the activation of IRF3. This NP anti-IFN activity, together with alterations in the number and function of DCs observed in mice chronically infected with LCMV, likely play an important role in LCMV persistence in its murine host. In this review we will discuss current knowledge about the cellular and molecular mechanisms by which arenaviruses can subvert the host innate immune response and their implications for understanding HF arenaviral disease as well as arenavirus persistence in their natural hosts.
Collapse
Affiliation(s)
- Persephone Borrow
- Nuffield Department of Clinical Medicine, The Jenner Institute, University of Oxford, Compton, Newbury, Berkshire RG20 7NN, UK; E-Mail:
| | - Luis Martínez-Sobrido
- Department of Microbiology and Immunology, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Juan Carlos de la Torre
- Department of Immunology and Microbial Science, IMM-6, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| |
Collapse
|
36
|
Viral cell death inhibitor MC159 enhances innate immunity against vaccinia virus infection. J Virol 2010; 84:10467-76. [PMID: 20702623 DOI: 10.1128/jvi.00983-10] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Viral inhibitors of host programmed cell death (PCD) are widely believed to promote viral replication by preventing or delaying host cell death. Viral FLIPs (Fas-linked ICE-like protease [FLICE; caspase-8]-like inhibitor proteins) are potent inhibitors of death receptor-induced apoptosis and programmed necrosis. Surprisingly, transgenic expression of the viral FLIP MC159 from molluscum contagiosum virus (MCV) in mice enhanced rather than inhibited the innate immune control of vaccinia virus (VV) replication. This effect of MC159 was specifically manifested in peripheral tissues such as the visceral fat pad, but not in the spleen. VV-infected MC159 transgenic mice mounted an enhanced innate inflammatory reaction characterized by increased expression of the chemokine CCL-2/MCP-1 and infiltration of γδ T cells into peripheral tissues. Radiation chimeras revealed that MC159 expression in the parenchyma, but not in the hematopoietic compartment, is responsible for the enhanced innate inflammatory responses. The increased inflammation in peripheral tissues was not due to resistance of lymphocytes to cell death. Rather, we found that MC159 facilitated Toll-like receptor 4 (TLR4)- and tumor necrosis factor (TNF)-induced NF-κB activation. The increased NF-κB responses were mediated in part through increased binding of RIP1 to TNFRSF1A-associated via death domain (TRADD), two crucial signal adaptors for NF-κB activation. These results show that MC159 is a dual-function immune modulator that regulates host cell death as well as NF-κB responses by innate immune signaling receptors.
Collapse
|