1
|
Xu Y, Zhang Q, Hou G, Hu L, Xiao T, Liang X, Li D, Li J. Viral pseudo-enzyme facilitates KSHV lytic replication via suppressing PFAS-mediated RTA deamidation. Virol Sin 2025:S1995-820X(25)00040-9. [PMID: 40228741 DOI: 10.1016/j.virs.2025.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Accepted: 04/09/2025] [Indexed: 04/16/2025] Open
Abstract
Deamidation, a type of post-translational modification commonly considered a hallmark of protein "aging" and function decay, is increasingly recognized for its pivotal role in regulating biological processes and viral infection. Our previous study has demonstrated that the deamidation of replication and transcription activator (RTA), a master regulator of ubiquitous and oncogenic Kaposi's sarcoma-associated herpesvirus (KSHV), mediated by phosphoribosylformylglycinamidine synthetase (PFAS), hinders its nuclear import and transcriptional activity. Here we report that the viral glutamine amidotransferase (vGAT) pseudo-enzyme was exploited to facilitate KSHV lytic infection by inhibiting RTA deamidation. To be more specific, vGAT interacted with both RTA and cellular PFAS, and inhibited PFAS-mediated RTA deamidation, thus facilitating RTA nuclear localization and suppressing nuclear factor-kappa B (NF-κB) signaling activation, as well as augmenting RTA-mediated transcriptional activation of viral open reading frames (ORFs). In addition, vGAT appeared to regulate the deamidation process of several viral ORFs of KSHV. Collectively, these findings unveil that a viral pseudo-enzyme was exploited to enhance viral infection via deamidation regulation.
Collapse
Affiliation(s)
- Yang Xu
- College of Fisheries, Hunan Agricultural University, Changsha, 410128, China
| | - Qiushi Zhang
- College of Fisheries, Hunan Agricultural University, Changsha, 410128, China
| | - Guoli Hou
- College of Fisheries, Hunan Agricultural University, Changsha, 410128, China; Section of Infection and Immunity, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Liang Hu
- College of Fisheries, Hunan Agricultural University, Changsha, 410128, China
| | - Tiaoyi Xiao
- College of Fisheries, Hunan Agricultural University, Changsha, 410128, China
| | - Xinyu Liang
- College of Fisheries, Hunan Agricultural University, Changsha, 410128, China
| | - Deliang Li
- College of Fisheries, Hunan Agricultural University, Changsha, 410128, China.
| | - Junhua Li
- College of Fisheries, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
2
|
Han C, Gui C, Su B, Liu N, Yan H, Lan K. DR5 is a restriction factor for human herpesviruses. Proc Natl Acad Sci U S A 2025; 122:e2417372122. [PMID: 40063798 PMCID: PMC11929488 DOI: 10.1073/pnas.2417372122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 02/04/2025] [Indexed: 03/25/2025] Open
Abstract
Restriction factors are dominant proteins that target different essential steps of the viral life cycle; thus, these proteins provide an early line of defense against viruses. Here, we found that the internalization of DR5, an important receptor of the extrinsic apoptotic pathway, initiates apoptosis to inhibit Kaposi sarcoma-associated herpesvirus (KSHV) lytic replication. An evolutionary analysis of the DR5 sequence demonstrated that three amino acids underwent positive selection in primates. Notably, one of these positive selection sites, A62, is essential for the antiviral function of DR5 and is important for the binding of DR5 to its ligand, TNF-related apoptosis-inducing ligand. Moreover, DR5 exhibits broad antiviral activity against and inhibits various herpesviruses, including Epstein-Barr virus, herpes simplex virus type 1, and herpes simplex virus type 2. As a countermeasure, the KSHV K5 protein interacts with DR5 and promotes DR5 degradation through the lysosomal and proteasomal degradation pathways; lysine 245 of DR5 is essential for K5-induced DR5 degradation. These findings demonstrate that DR5 is a restriction factor for human herpesviruses.
Collapse
Affiliation(s)
- Chunyan Han
- State Key Laboratory of Virology and Biosafety, College of Life Sciences, Wuhan University, Wuhan430072, China
| | - Chenwu Gui
- State Key Laboratory of Virology and Biosafety, College of Life Sciences, Wuhan University, Wuhan430072, China
| | - Bingbing Su
- State Key Laboratory of Virology and Biosafety, College of Life Sciences, Wuhan University, Wuhan430072, China
| | - Naizhang Liu
- State Key Laboratory of Virology and Biosafety, College of Life Sciences, Wuhan University, Wuhan430072, China
| | - Haojie Yan
- State Key Laboratory of Virology and Biosafety, College of Life Sciences, Wuhan University, Wuhan430072, China
| | - Ke Lan
- State Key Laboratory of Virology and Biosafety, College of Life Sciences, Wuhan University, Wuhan430072, China
- Department of Infectious Diseases, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan430071, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan430071, China
| |
Collapse
|
3
|
Li Z, Lao Y, Yan R, Li F, Guan X, Dong Z. N6-methyladenosine in inflammatory diseases: Important actors and regulatory targets. Gene 2025; 936:149125. [PMID: 39613051 DOI: 10.1016/j.gene.2024.149125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/17/2024] [Accepted: 11/25/2024] [Indexed: 12/01/2024]
Abstract
N6-methyladenosine (m6A) is one of the most prevalent epigenetic modifications in eukaryotic cells. It regulates RNA function and stability by modifying RNA methylation through writers, erasers, and readers. As a result, m6A plays a critical role in a wide range of biological processes. Inflammation is a common and fundamental pathological process. Numerous studies have investigated the role of m6A modifications in inflammatory diseases. This review highlights the mechanisms by which m6A contributes to inflammation, focusing on pathogen-induced infectious diseases, autoimmune disorders, allergic conditions, and metabolic disorder-related inflammatory diseases.
Collapse
Affiliation(s)
- Zewen Li
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China; Department of Urology, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Yongfeng Lao
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China; Department of Urology, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Rui Yan
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China; Department of Urology, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Fuhan Li
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China; Department of Urology, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Xin Guan
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China; Department of Urology, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Zhilong Dong
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China; Department of Urology, The Second Hospital of Lanzhou University, Lanzhou, China.
| |
Collapse
|
4
|
Causey A, Constantine M, Oswald J, Dellomo A, Masters B, Omorogbe E, Admon A, Garzino-Demo A, Ehrlich E. Analysis of the ubiquitin-modified proteome identifies novel host factors in Kaposi's sarcoma herpesvirus lytic reactivation. J Virol 2025; 99:e0122424. [PMID: 39636148 PMCID: PMC11784101 DOI: 10.1128/jvi.01224-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 11/05/2024] [Indexed: 12/07/2024] Open
Abstract
Kaposi's sarcoma herpesvirus (KSHV) is the causative agent of Kaposi's sarcoma and is associated with primary effusion lymphoma (PEL), multicentric Castleman's disease, and two inflammatory diseases. KSHV-associated cancers are primarily associated with genes expressed during latency, while other pathologies are associated with lytic gene expression. The major lytic switch of the virus, Replication and Transcription Activator (RTA), interacts with cellular machinery to co-opt the host ubiquitin proteasome system to evade the immune response as well as activate the program of lytic replication. Through stable isotope labeling using amino acids in cell culture (SILAC) labeling, ubiquitin remnant enrichment, and mass spectrometry, we have analyzed the RTA-dependent ubiquitin-modified proteome. We identified RTA-dependent changes in the populations of polyubiquitin chains, as well as changes in ubiquitinated proteins in both cells expressing RTA and naturally infected cells following lytic reactivation. We observed an enrichment of proteins that are also reported to be SUMOylated, suggesting that RTA, a small ubiquitin-like modifier (SUMO) targeting ubiquitin ligase, may function to alleviate a SUMO-dependent block to lytic reactivation. RTA targeted substrates directly through a ubiquitin ligase domain-dependent mechanism as well as indirectly through cellular ubiquitin ligase RAUL. Our ubiquitome analysis revealed an RTA-dependent mechanism of immune evasion. We provide evidence of inhibition of transporter associated with antigen processing (TAP)-dependent peptide transport, resulting in decreased human leukocyte antigen (HLA) complex stability. The results of this analysis increase our understanding of mechanisms governing the latent to lytic transition in addition to the identification of a novel RTA-dependent mechanism of immune evasion. IMPORTANCE Kaposi's sarcoma herpesvirus, an AIDS-associated pathogen, is associated with multiple cancers and inflammatory syndromes. This virus has a latent and lytic lifecycle, each associated with pathogenesis and oncogenesis. Here, we identify proteins that display differential abundance in different phases of the lifecycle. We provide evidence supporting a new model of viral immune evasion. These findings increase our understanding of how the virus manipulates the host cell and provides new targets for intervention.
Collapse
Affiliation(s)
- Amerria Causey
- Biological Sciences, Towson University, Towson, Maryland, USA
| | | | - Jessica Oswald
- Biological Sciences, Towson University, Towson, Maryland, USA
| | - Anna Dellomo
- Biological Sciences, Towson University, Towson, Maryland, USA
| | - Bronwyn Masters
- Biological Sciences, Towson University, Towson, Maryland, USA
| | - Esosa Omorogbe
- Biological Sciences, Towson University, Towson, Maryland, USA
| | - Arie Admon
- Biology, Technion - Israel Institute of Technology, Haifa, Israel
| | - Alfredo Garzino-Demo
- Department of Microbial Pathogenesis, University of Maryland Baltimore School of Dentistry, Baltimore, Maryland, USA
- Department of Microbiology and Immunology, University of Maryland Baltimore School of Medicine, Baltimore, Maryland, USA
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Elana Ehrlich
- Biological Sciences, Towson University, Towson, Maryland, USA
| |
Collapse
|
5
|
Mund R, Whitehurst CB. Ubiquitin-Mediated Effects on Oncogenesis during EBV and KSHV Infection. Viruses 2024; 16:1523. [PMID: 39459858 PMCID: PMC11512223 DOI: 10.3390/v16101523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/13/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
The Herpesviridae include the Epstein-Barr Virus (EBV) and the Kaposi Sarcoma-associated Herpesvirus (KSHV), both of which are oncogenic gamma-herpesviruses. These viruses manipulate host cellular mechanisms, including through ubiquitin-mediated pathways, to promote viral replication and oncogenesis. Ubiquitin, a regulatory protein which tags substrates for degradation or alters their function, is manipulated by both EBV and KSHV to facilitate viral persistence and cancer development. EBV infects approximately 90% of the global population and is implicated in malignancies including Burkitt lymphoma (BL), Hodgkin lymphoma (HL), post-transplant lymphoproliferative disorder (PTLD), and nasopharyngeal carcinoma. EBV latency proteins, notably LMP1 and EBNA3C, use ubiquitin-mediated mechanisms to inhibit apoptosis, promote cell proliferation, and interfere with DNA repair, contributing to tumorigenesis. EBV's lytic proteins, including BZLF1 and BPLF1, further disrupt cellular processes to favor oncogenesis. Similarly, KSHV, a causative agent of Kaposi's Sarcoma and lymphoproliferative disorders, has a latency-associated nuclear antigen (LANA) and other latency proteins that manipulate ubiquitin pathways to degrade tumor suppressors, stabilize oncogenic proteins, and evade immune responses. KSHV's lytic cycle proteins, such as RTA and Orf64, also use ubiquitin-mediated strategies to impair immune functions and promote oncogenesis. This review explores the ubiquitin-mediated interactions of EBV and KSHV proteins, elucidating their roles in viral oncogenesis. Understanding these mechanisms offers insights into the similarities between the viruses, as well as provoking thought about potential therapeutic targets for herpesvirus-associated cancers.
Collapse
Affiliation(s)
| | - Christopher B. Whitehurst
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA;
| |
Collapse
|
6
|
Luan Y, Long W, Dai L, Tao P, Deng Z, Xia Z. Linear ubiquitination regulates the KSHV replication and transcription activator protein to control infection. Nat Commun 2024; 15:5515. [PMID: 38951495 PMCID: PMC11217414 DOI: 10.1038/s41467-024-49887-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 06/21/2024] [Indexed: 07/03/2024] Open
Abstract
Like many other viruses, KSHV has two life cycle modes: the latent phase and the lytic phase. The RTA protein from KSHV is essential for lytic reactivation, but how this protein's activity is regulated is not fully understood. Here, we report that linear ubiquitination regulates the activity of RTA during KSHV lytic reactivation and de novo infection. Overexpressing OTULIN inhibits KSHV lytic reactivation, whereas knocking down OTULIN or overexpressing HOIP enhances it. Intriguingly, we found that RTA is linearly polyubiquitinated by HOIP at K516 and K518, and these modifications control the RTA's nuclear localization. OTULIN removes linear polyubiquitin chains from cytoplasmic RTA, preventing its nuclear import. The RTA orthologs encoded by the EB and MHV68 viruses are also linearly polyubiquitinated and regulated by OTULIN. Our study establishes that linear polyubiquitination plays a critically regulatory role in herpesvirus infection, adding virus infection to the list of biological processes known to be controlled by linear polyubiquitination.
Collapse
Affiliation(s)
- Yi Luan
- Clinical Systems Biology Laboratories, Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Institute of Infection and Immunity, Henan Academy of Innovations in Medical Science, Zhengzhou, China
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Wenying Long
- Center for Clinical Research, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, Zhejiang, China
| | - Lisi Dai
- Department of Pathology & Pathophysiology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Surgical Oncology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- School of Basic Medical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Panfeng Tao
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhifen Deng
- Clinical Systems Biology Laboratories, Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Institute of Infection and Immunity, Henan Academy of Innovations in Medical Science, Zhengzhou, China
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zongping Xia
- Clinical Systems Biology Laboratories, Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
- Institute of Infection and Immunity, Henan Academy of Innovations in Medical Science, Zhengzhou, China.
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
7
|
Zhang Y, Dong Z, Gu F, Xu Y, Li Y, Sun W, Rao W, Du S, Zhu C, Wang Y, Wei F, Cai Q. Degradation of TRIM32 is induced by RTA for Kaposi's sarcoma-associated herpesvirus lytic replication. J Virol 2024; 98:e0000524. [PMID: 38717113 PMCID: PMC11237441 DOI: 10.1128/jvi.00005-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/05/2024] [Indexed: 06/14/2024] Open
Abstract
TRIM32 is often aberrantly expressed in many types of cancers. Kaposi's sarcoma-associated herpesvirus (KSHV) is linked with several human malignancies, including Kaposi's sarcoma and primary effusion lymphomas (PELs). Increasing evidence has demonstrated the crucial role of KSHV lytic replication in viral tumorigenesis. However, the role of TRIM32 in herpesvirus lytic replication remains unclear. Here, we reveal that the expression of TRIM32 is upregulated by KSHV in latency, and reactivation of KSHV lytic replication leads to the inhibition of TRIM32 in PEL cells. Strikingly, RTA, the master regulator of lytic replication, interacts with TRIM32 and dramatically promotes TRIM32 for degradation via the proteasome systems. Inhibition of TRIM32 induces cell apoptosis and in turn inhibits the proliferation and colony formation of KSHV-infected PEL cells and facilitates the reactivation of KSHV lytic replication and virion production. Thus, our data imply that the degradation of TRIM32 is vital for the lytic activation of KSHV and is a potential therapeutic target for KSHV-associated cancers. IMPORTANCE TRIM32 is associated with many cancers and viral infections; however, the role of TRIM32 in viral oncogenesis remains largely unknown. In this study, we found that the expression of TRIM32 is elevated by Kaposi's sarcoma-associated herpesvirus (KSHV) in latency, and RTA (the master regulator of lytic replication) induces TRIM32 for proteasome degradation upon viral lytic reactivation. This finding provides a potential therapeutic target for KSHV-associated cancers.
Collapse
Affiliation(s)
- Yulin Zhang
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infections Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganism and Infection, School of Basic Medical Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhongwei Dong
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infections Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganism and Infection, School of Basic Medical Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Feng Gu
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infections Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganism and Infection, School of Basic Medical Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yifei Xu
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infections Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganism and Infection, School of Basic Medical Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ying Li
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infections Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganism and Infection, School of Basic Medical Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wen Sun
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infections Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganism and Infection, School of Basic Medical Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wutian Rao
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infections Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganism and Infection, School of Basic Medical Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shujuan Du
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infections Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganism and Infection, School of Basic Medical Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Caixia Zhu
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infections Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganism and Infection, School of Basic Medical Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yuyan Wang
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infections Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganism and Infection, School of Basic Medical Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Fang Wei
- ShengYushou Center of Cell Biology and Immunology, Joint International Research Laboratory of Metabolic & Development Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Qiliang Cai
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infections Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganism and Infection, School of Basic Medical Science, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
8
|
Han C, Gui C, Dong S, Lan K. The Interplay between KSHV Infection and DNA-Sensing Pathways. Viruses 2024; 16:749. [PMID: 38793630 PMCID: PMC11125855 DOI: 10.3390/v16050749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/02/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024] Open
Abstract
During viral infection, the innate immune system utilizes a variety of specific intracellular sensors to detect virus-derived nucleic acids and activate a series of cellular signaling cascades that produce type I IFNs and proinflammatory cytokines and chemokines. Kaposi's sarcoma-associated herpesvirus (KSHV) is an oncogenic double-stranded DNA virus that has been associated with a variety of human malignancies, including Kaposi's sarcoma, primary effusion lymphoma, and multicentric Castleman disease. Infection with KSHV activates various DNA sensors, including cGAS, STING, IFI16, and DExD/H-box helicases. Activation of these DNA sensors induces the innate immune response to antagonize the virus. To counteract this, KSHV has developed countless strategies to evade or inhibit DNA sensing and facilitate its own infection. This review summarizes the major DNA-triggered sensing signaling pathways and details the current knowledge of DNA-sensing mechanisms involved in KSHV infection, as well as how KSHV evades antiviral signaling pathways to successfully establish latent infection and undergo lytic reactivation.
Collapse
Affiliation(s)
- Chunyan Han
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430062, China
| | - Chenwu Gui
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430062, China
| | - Shuhong Dong
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430062, China
| | - Ke Lan
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430062, China
- Department of Infectious Diseases, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
9
|
Ren P, Niu D, Chang S, Yu L, Ren J, Ma Y, Lan K. RUNX3 inhibits KSHV lytic replication by binding to the viral genome and repressing transcription. J Virol 2024; 98:e0156723. [PMID: 38197631 PMCID: PMC10878072 DOI: 10.1128/jvi.01567-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 12/11/2023] [Indexed: 01/11/2024] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) belongs to the gamma herpesvirus family, which can cause human malignancies including Kaposi sarcoma, primary effusion lymphoma, and multicentric Castleman's diseases. KSHV typically maintains a persistent latent infection within the host. However, after exposure to intracellular or extracellular stimuli, KSHV lytic replication can be reactivated. The reactivation process of KSHV triggers the innate immune response to limit viral replication. Here, we found that the transcriptional regulator RUNX3 is transcriptionally upregulated by the NF-κB signaling pathway in KSHV-infected SLK cells and B cells during KSHV reactivation. Notably, knockdown of RUNX3 significantly promotes viral lytic replication as well as the gene transcription of KSHV. Consistent with this finding, overexpression of RUNX3 impairs viral lytic replication. Mechanistically, RUNX3 binds to the KSHV genome and limits viral replication through transcriptional repression, which is related to its DNA- and ATP-binding ability. However, KSHV has also evolved corresponding strategies to antagonize this inhibition by using the viral protein RTA to target RUNX3 for ubiquitination and proteasomal degradation. Altogether, our study suggests that RUNX3, a novel host-restriction factor of KSHV that represses the transcription of viral genes, may serve as a potential target to restrict KSHV transmission and disease development.IMPORTANCEThe reactivation of Kaposi's sarcoma-associated herpesvirus (KSHV) from latent infection to lytic replication is important for persistent viral infection and tumorigenicity. However, reactivation is a complex event, and the regulatory mechanisms of this process are not fully elucidated. Our study revealed that the host RUNX3 is upregulated by the NF-κB signaling pathway during KSHV reactivation, which can repress the transcription of KSHV genes. At the late stage of lytic replication, KSHV utilizes a mechanism involving RTA to degrade RUNX3, thus evading host inhibition. This finding helps elucidate the regulatory mechanism of the KSHV life cycle and may provide new clues for the development of therapeutic strategies for KSHV-associated diseases.
Collapse
Affiliation(s)
- Pengyu Ren
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Danping Niu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Sijia Chang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Lei Yu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Junrui Ren
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yuanming Ma
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Ke Lan
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
- Department of Infectious Diseases, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
10
|
Oswald J, Constantine M, Adegbuyi A, Omorogbe E, Dellomo AJ, Ehrlich ES. E3 Ubiquitin Ligases in Gammaherpesviruses and HIV: A Review of Virus Adaptation and Exploitation. Viruses 2023; 15:1935. [PMID: 37766341 PMCID: PMC10535929 DOI: 10.3390/v15091935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/10/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
For productive infection and replication to occur, viruses must control cellular machinery and counteract restriction factors and antiviral proteins. Viruses can accomplish this, in part, via the regulation of cellular gene expression and post-transcriptional and post-translational control. Many viruses co-opt and counteract cellular processes via modulation of the host post-translational modification machinery and encoding or hijacking kinases, SUMO ligases, deubiquitinases, and ubiquitin ligases, in addition to other modifiers. In this review, we focus on three oncoviruses, Epstein-Barr virus (EBV), Kaposi's sarcoma herpesvirus (KSHV), and human immunodeficiency virus (HIV) and their interactions with the ubiquitin-proteasome system via viral-encoded or cellular E3 ubiquitin ligase activity.
Collapse
Affiliation(s)
| | | | | | | | | | - Elana S. Ehrlich
- Department of Biological Sciences, Towson University, Towson, MD 21252, USA
| |
Collapse
|
11
|
Tian H, Yu K, He L, Xu H, Han C, Zhang X, Wang X, Zhang X, Zhang L, Gao G, Deng H. RNF213 modulates γ-herpesvirus infection and reactivation via targeting the viral Replication and Transcription Activator. Proc Natl Acad Sci U S A 2023; 120:e2218825120. [PMID: 36917666 PMCID: PMC10041092 DOI: 10.1073/pnas.2218825120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 02/10/2023] [Indexed: 03/16/2023] Open
Abstract
Interferons (IFNs) and the products of interferon-stimulated genes (ISGs) play crucial roles in host defense against virus infections. Although many ISGs have been characterized with respect to their antiviral activity, their target specificities and mechanisms of action remain largely unknown. Kaposi's sarcoma-associated herpesvirus (KSHV) is a gammaherpesvirus that is linked to several human malignancies. Here, we used the genetically and biologically related virus, murine gammaherpesvirus 68 (MHV-68) and screened for ISGs with anti-gammaherpesvirus activities. We found that overexpression of RNF213 dramatically inhibited MHV-68 infection, whereas knockdown of endogenous RNF213 significantly promoted MHV-68 proliferation. Importantly, RNF213 also inhibited KSHV de novo infection, and depletion of RNF213 in the latently KSHV-infected iSLK-219 cell line significantly enhanced lytic reactivation. Mechanistically, we demonstrated that RNF213 targeted the Replication and Transcription Activator (RTA) of both KSHV and MHV-68, and promoted the degradation of RTA protein through the proteasome-dependent pathway. RNF213 directly interacted with RTA and functioned as an E3 ligase to ubiquitinate RTA via K48 linkage. Taken together, we conclude that RNF213 serves as an E3 ligase and inhibits the de novo infection and lytic reactivation of gammaherpesviruses by degrading RTA through the ubiquitin-proteasome pathway.
Collapse
Affiliation(s)
- Huabin Tian
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing100101, P. R. China
| | - Kuai Yu
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing100101, P. R. China
- University of the Chinese Academy of Sciences, Beijing100049, P. R. China
| | - Liang He
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing100101, P. R. China
- University of the Chinese Academy of Sciences, Beijing100049, P. R. China
| | - Hongtao Xu
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing100101, P. R. China
| | - Chuanhui Han
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing100101, P. R. China
| | - Xiaolin Zhang
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing100101, P. R. China
| | - Xinlu Wang
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing100101, P. R. China
| | - Xuyuan Zhang
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing100101, P. R. China
| | - Liguo Zhang
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing100101, P. R. China
| | - Guangxia Gao
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing100101, P. R. China
- University of the Chinese Academy of Sciences, Beijing100049, P. R. China
- CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing100101, P. R. China
| | - Hongyu Deng
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing100101, P. R. China
- University of the Chinese Academy of Sciences, Beijing100049, P. R. China
- CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing100101, P. R. China
| |
Collapse
|
12
|
Combs LR, Combs J, McKenna R, Toth Z. Protein Degradation by Gammaherpesvirus RTAs: More Than Just Viral Transactivators. Viruses 2023; 15:730. [PMID: 36992439 PMCID: PMC10055789 DOI: 10.3390/v15030730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/18/2023] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is a member of the Gammaherpesvirus subfamily that encodes several viral proteins with intrinsic E3 ubiquitin ligase activity or the ability to hijack host E3 ubiquitin ligases to modulate the host's immune response and to support the viral life cycle. This review focuses specifically on how the immediate-early KSHV protein RTA (replication and transcription activator) hijacks the host's ubiquitin-proteasome pathway (UPP) to target cellular and viral factors for protein degradation to allow for robust lytic reactivation. Notably, RTA's targets are either potent transcription repressors or they are activators of the innate and adaptive immune response, which block the lytic cycle of the virus. This review mainly focuses on what is currently known about the role of the E3 ubiquitin ligase activity of KSHV RTA in the regulation of the KSHV life cycle, but we will also discuss the potential role of other gammaherpesviral RTA homologs in UPP-mediated protein degradation.
Collapse
Affiliation(s)
- Lauren R. Combs
- Department of Oral Biology, University of Florida College of Dentistry, 1395 Center Drive, Gainesville, FL 32610, USA
| | - Jacob Combs
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, 1200 Newell Drive, Gainesville, FL 32610, USA
| | - Robert McKenna
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, 1200 Newell Drive, Gainesville, FL 32610, USA
| | - Zsolt Toth
- Department of Oral Biology, University of Florida College of Dentistry, 1395 Center Drive, Gainesville, FL 32610, USA
- UF Genetics Institute, Gainesville, FL 32610, USA
- UF Health Cancer Center, Gainesville, FL 32610, USA
| |
Collapse
|
13
|
KSHV RTA antagonizes SMC5/6 complex-induced viral chromatin compaction by hijacking the ubiquitin-proteasome system. PLoS Pathog 2022; 18:e1010744. [PMID: 35914008 PMCID: PMC9371351 DOI: 10.1371/journal.ppat.1010744] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 08/11/2022] [Accepted: 07/15/2022] [Indexed: 02/07/2023] Open
Abstract
Kaposi’s sarcoma-associated herpesvirus (KSHV) is a double-stranded DNA virus with the capacity to establish life-long latent infection. During latent infection, the viral genome persists as a circular episome that associates with cellular histones and exists as a nonintegrated minichromosome in the nucleus of infected cells. Chromatin structure and epigenetic programming are required for the proper control of viral gene expression and stable maintenance of viral DNA. However, there is still limited knowledge regarding how the host regulates the chromatin structure and maintenance of episomal DNA. Here, we found that the cellular protein structural maintenance of chromosome (SMC) complex SMC5/6 recognizes and associates with the KSHV genome to inhibit its replication. The SMC5/6 complex can bind to the KSHV genome and suppress KSHV gene transcription by condensing the viral chromatin and creating a repressive chromatin structure. Correspondingly, KSHV employs an antagonistic strategy by utilizing the viral protein RTA to degrade the SMC5/6 complex and antagonize the inhibitory effect of this complex on viral gene transcription. Interestingly, this antagonistic mechanism of RTA is evolutionarily conserved among γ-herpesviruses. Our work suggests that the SMC5/6 complex is a new host factor that restricts KSHV replication. KSHV can establish life-long latent infection. During latency, the viral genome is maintained as an extrachromosomal episome in the infected cells. We demonstrated that the host protein SMC5/6 complex associates with the KSHV genome and results in direct transcriptional inhibition by creating a transcriptionally repressive chromatin structure of the viral genome. RTA, the master switch protein of KSHV, can hijack the ubiquitin-proteasome system to degrade the SMC5/6 complex to antagonize its inhibitory effect on viral gene transcription. Interestingly, this function of RTA is evolutionarily conserved among γ-herpesviruses.
Collapse
|
14
|
Combs LR, Spires LM, Alonso JD, Papp B, Toth Z. KSHV RTA Induces Degradation of the Host Transcription Repressor ID2 To Promote the Viral Lytic Cycle. J Virol 2022; 96:e0010122. [PMID: 35604218 PMCID: PMC9215225 DOI: 10.1128/jvi.00101-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 05/05/2022] [Indexed: 11/20/2022] Open
Abstract
The immediate early viral protein replication and transcription activator (RTA) of Kaposi's sarcoma-associated herpesvirus (KSHV) is essential for activating the lytic cycle of KSHV. RTA induces the KSHV lytic cycle by several mechanisms, acting as a viral transcription factor that directly induces viral and host genes and acting as a viral E3 ubiquitin ligase by degrading host proteins that block viral lytic replication. Recently, we have characterized the global gene expression changes in primary effusion lymphoma (PEL) upon lytic reactivation of KSHV, which also led to the identification of rapidly downregulated genes such as ID2, an inhibitor of basic helix-loop-helix transcription factors. Here, we demonstrate that ID2 overexpression in PEL ablates KSHV lytic reactivation, indicating that ID2 inhibits the KSHV lytic cycle. Furthermore, we show that while ID2 is highly expressed during latency, its protein level is rapidly reduced by 4 h postinduction during lytic reactivation. Our results indicate that RTA binds to ID2 and induces its degradation during the KSHV lytic cycle by N-terminal ubiquitination through the ubiquitin-proteasome pathway. Importantly, we found that not only KSHV RTA but also its Epstein-Barr virus (EBV) and murine gammaherpesvirus 68 (MHV68) homologs interact with ID2, and they can induce the degradation of all four members of the ID protein family, suggesting an evolutionarily conserved interplay between gammaherpesvirus RTAs and ID proteins. Taken together, we propose that ID2 acts as a repressor of the KSHV lytic cycle, which is counteracted by its RTA-mediated degradation. We also predict that ID proteins may act as restriction factors of the lytic phase of the other gammaherpesviruses as well. IMPORTANCE In addition to its transcription regulatory role, RTA is also known to have an E3 ubiquitin ligase activity, which RTA utilizes for inducing protein degradation. However, it is still largely unknown what host factors are downregulated during KSHV lytic reactivation by RTA-mediated protein degradation and what the biological significance of the degradation of these host factors is. In this study, we discovered that RTA employs N-terminal ubiquitination to induce degradation of ID2, a potent transcription repressor of host genes, via the ubiquitin-proteasome pathway to promote KSHV lytic reactivation in PEL cells. Furthermore, we found that not only KSHV RTA but also RTA of EBV and MHV68 gammaherpesviruses can induce the degradation of all four human ID proteins, indicating that the interplay between gammaherpesvirus RTAs and ID proteins is evolutionarily conserved.
Collapse
Affiliation(s)
- Lauren R. Combs
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, USA
| | - Lauren McKenzie Spires
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, USA
| | - Juan D. Alonso
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, USA
| | - Bernadett Papp
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, USA
- University of Florida Genetics Institute, Gainesville, Florida, USA
- University of Florida Health Cancer Center, Gainesville, Florida, USA
- University of Florida Center for Orphaned Autoimmune Disorders, Gainesville, Florida, USA
- University of Florida Informatics Institute, Gainesville, Florida, USA
| | - Zsolt Toth
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, USA
- University of Florida Genetics Institute, Gainesville, Florida, USA
- University of Florida Health Cancer Center, Gainesville, Florida, USA
| |
Collapse
|
15
|
Lange PT, White MC, Damania B. Activation and Evasion of Innate Immunity by Gammaherpesviruses. J Mol Biol 2022; 434:167214. [PMID: 34437888 PMCID: PMC8863980 DOI: 10.1016/j.jmb.2021.167214] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/11/2021] [Accepted: 08/13/2021] [Indexed: 12/20/2022]
Abstract
Gammaherpesviruses are ubiquitous pathogens that establish lifelong infections in the vast majority of adults worldwide. Importantly, these viruses are associated with numerous malignancies and are responsible for significant human cancer burden. These virus-associated cancers are due, in part, to the ability of gammaherpesviruses to successfully evade the innate immune response throughout the course of infection. In this review, we will summarize the current understanding of how gammaherpesviruses are detected by innate immune sensors, how these viruses evade recognition by host cells, and how this knowledge can inform novel therapeutic approaches for these viruses and their associated diseases.
Collapse
Affiliation(s)
- Philip T Lange
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA. https://twitter.com/langept
| | - Maria C White
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA. https://twitter.com/maria_c_white
| | - Blossom Damania
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
16
|
Letafati A, Najafi S, Mottahedi M, Karimzadeh M, Shahini A, Garousi S, Abbasi-Kolli M, Sadri Nahand J, Tamehri Zadeh SS, Hamblin MR, Rahimian N, Taghizadieh M, Mirzaei H. MicroRNA let-7 and viral infections: focus on mechanisms of action. Cell Mol Biol Lett 2022; 27:14. [PMID: 35164678 PMCID: PMC8853298 DOI: 10.1186/s11658-022-00317-9] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/26/2022] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are fundamental post-transcriptional modulators of several critical cellular processes, a number of which are involved in host defense mechanisms. In particular, miRNA let-7 functions as an essential regulator of the function and differentiation of both innate and adaptive immune cells. Let-7 is involved in several human diseases, including cancer and viral infections. Several viral infections have found ways to dysregulate the expression of miRNAs. Extracellular vesicles (EV) are membrane-bound lipid structures released from many types of human cells that can transport proteins, lipids, mRNAs, and miRNAs, including let-7. After their release, EVs are taken up by the recipient cells and their contents released into the cytoplasm. Let-7-loaded EVs have been suggested to affect cellular pathways and biological targets in the recipient cells, and can modulate viral replication, the host antiviral response, and the action of cancer-related viruses. In the present review, we summarize the available knowledge concerning the expression of let-7 family members, functions, target genes, and mechanistic involvement in viral pathogenesis and host defense. This may provide insight into the development of new therapeutic strategies to manage viral infections.
Collapse
Affiliation(s)
- Arash Letafati
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Sajad Najafi
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehran Mottahedi
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Karimzadeh
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Shahini
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Setareh Garousi
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Abbasi-Kolli
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Javid Sadri Nahand
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028 South Africa
| | - Neda Rahimian
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Department of Internal Medicine, School of Medicine, Firoozgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Taghizadieh
- Department of Pathology, School of Medicine, Center for Women’s Health Research Zahra, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
17
|
Di C, Zheng G, Zhang Y, Tong E, Ren Y, Hong Y, Song Y, Chen R, Tan X, Yang L. RTA and LANA Competitively Regulate let-7a/RBPJ Signal to Control KSHV Replication. Front Microbiol 2022; 12:804215. [PMID: 35069510 PMCID: PMC8777081 DOI: 10.3389/fmicb.2021.804215] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/03/2021] [Indexed: 11/13/2022] Open
Abstract
The recombination signal binding protein for immunoglobulin kappa J region (RBPJ) has a dual effect on Kaposi's sarcoma-associated herpesvirus (KSHV) replication. RBPJ interaction with replication and transcription activator (RTA) is essential for lytic replication, while the interaction with latency-associated nuclear antigen (LANA) facilitates latent infection. Furthermore, our previous study found that LANA decreased RBPJ through upregulating miRNA let-7a. However, it is unclear whether RTA regulates the expression of RBPJ. Here, we show RTA increases RBPJ by decreasing let-7a. During KSHV replication, the RBPJ expression level was positively correlated with the RTA expression level and negatively correlated with the LANA expression level. The let-7a expression level was inverse to RBPJ. Knockdown of RBPJ inhibited the self-activation of RTA promoter and LANA promoter and weakened LANA's inhibition of RTA promoter. Collectively, these findings indicate that RTA and LANA compete for let-7a/RBPJ signal to control the KSHV replication. Regulating the RBPJ expression level by RTA and LANA plays an important role during KSHV replication.
Collapse
Affiliation(s)
- Chunhong Di
- Affiliated Hospital, Hangzhou Normal University, Hangzhou, China.,School of Public Health, Hangzhou Normal University, Hangzhou, China
| | - Guoxia Zheng
- School of Public Health, Hangzhou Normal University, Hangzhou, China
| | - Yunheng Zhang
- School of Public Health, Hangzhou Normal University, Hangzhou, China
| | - Enyu Tong
- School of Public Health, Hangzhou Normal University, Hangzhou, China
| | - Yanli Ren
- School of Public Health, Hangzhou Normal University, Hangzhou, China
| | - Yu Hong
- School of Public Health, Hangzhou Normal University, Hangzhou, China
| | - Yang Song
- School of Public Health, Hangzhou Normal University, Hangzhou, China
| | - Rong Chen
- School of Public Health, Hangzhou Normal University, Hangzhou, China
| | - Xiaohua Tan
- School of Public Health, Hangzhou Normal University, Hangzhou, China
| | - Lei Yang
- School of Public Health, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
18
|
Gaglia MM. Anti-viral and pro-inflammatory functions of Toll-like receptors during gamma-herpesvirus infections. Virol J 2021; 18:218. [PMID: 34749760 PMCID: PMC8576898 DOI: 10.1186/s12985-021-01678-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/12/2021] [Indexed: 12/15/2022] Open
Abstract
Toll-like receptors (TLRs) control anti-viral responses both directly in infected cells and in responding cells of the immune systems. Therefore, they are crucial for responses against the oncogenic γ-herpesviruses Epstein-Barr virus and Kaposi's sarcoma-associated herpesvirus and the related murine virus MHV68, which directly infect immune system cells. However, since these viruses also cause lifelong persistent infections, TLRs may also be involved in modulation of inflammation during latent infection and contribute to virus-driven tumorigenesis. This review summarizes work on both of these aspects of TLR/γ-herpesvirus interactions, as well as results showing that TLR activity can drive these viruses' re-entry into the replicative lytic cycle.
Collapse
Affiliation(s)
- Marta Maria Gaglia
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, 02111, USA.
| |
Collapse
|
19
|
Li D, Baloch Z, Zhao Y, Bai L, Wang X, Wang G, Zhang AM, Lan K, Xia X. Establishment of Tree Shrew Animal Model for Kaposi's Sarcoma-Associated Herpesvirus (HHV-8) Infection. Front Microbiol 2021; 12:710067. [PMID: 34603235 PMCID: PMC8481836 DOI: 10.3389/fmicb.2021.710067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 07/01/2021] [Indexed: 01/22/2023] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is the most common cause of Kaposi's sarcoma (KS) and other malignant growths in humans. However, the lack of a KSHV-infected small animal model has hampered understanding of the mechanisms of KSHV infection, virus replication, pathogenesis, and persistence. This study was designed to explore the susceptibility of tree shrews as a possible KSHV-infected small animal model. A recombinant GFP (latent)/RFP (lytic)-positive rKSHV.219 strain was used to infect primary cells cultured from different tissues of tree shrews as an in vitro model and adult tree shrews as an in vivo model. KSHV latent nuclear antigen (LANA) and DNA were successfully detected in primary cells of tree shrews. Among them, tree shrew kidney epithelial cells (TSKEC) were the most susceptible cells to KSHV infection compared to other cells. KSHV genomic DNA, mRNA, and KSHV-specific proteins were readily detected in the TSKEC cultured up to 32 dpi. Moreover, KSHV DNA and mRNA transcription were also readily detected in the peripheral blood mononuclear cells (PBMCs) and various tissues of tree shrews infected with KSHV. Haematoxylin and eosin (HE) staining showed lymphocyte infiltration, lymphoid tissue focal aggregation, alveolar wall thickening, hepatocyte edema, hepatic necrosis in the spleen, lung, and liver of KSHV-infected animals. Additionally, immune-histochemical (IHC) staining showed that LANA or ORF62-positive cells were present in the spleen, lung, liver, and kidney of KSHV-infected tree shrews. Here, we have successfully established in vitro and in vivo KSHV latent infection in tree shrews. This small animal model is not only useful for studying the pathogenesis of KSHV in vivo but can also be a useful model to study transmission routes of viral infection and a useful platform to characterize the novel therapeutics against KSHV.
Collapse
Affiliation(s)
- Daoqun Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- Institute of Basic Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Zulqarnain Baloch
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Yang Zhao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Lei Bai
- State Key Laboratory of Virology, College of Life Sciences, Medical Research Institute, Wuhan University, Wuhan, China
| | - Xing Wang
- State Key Laboratory of Virology, College of Life Sciences, Medical Research Institute, Wuhan University, Wuhan, China
| | - Gang Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - A-Mei Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Ke Lan
- State Key Laboratory of Virology, College of Life Sciences, Medical Research Institute, Wuhan University, Wuhan, China
| | - Xueshan Xia
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
20
|
Wang C, Ruan L, Shi H, Lin W, Liu L, Li S. Phosphorylation of Shrimp Tcf by a Viral Protein Kinase WSV083 Suppresses Its Antiviral Effect. Front Immunol 2021; 12:698697. [PMID: 34408747 PMCID: PMC8365339 DOI: 10.3389/fimmu.2021.698697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/21/2021] [Indexed: 12/17/2022] Open
Abstract
Nuclear DNA-binding TCF proteins, which act as the main downstream effectors of Wnt signaling, are essential for the regulation of cell fate and innate immunity. However, their role during viral infection in shrimp remains unknown. Herein, we demonstrated that Litopenaeus vannamei TCF (LvTcf) acts independently of Lvβ-catenin to promote interferon-like protein LvVago1 production, thus mounting the response to WSSV infection. Further, we observed that WSV083, a WSSV serine/threonine protein kinase, bound to LvTcf and phosphorylated it. Phosphorylated LvTcf was then recognized and degraded via the ubiquitin-proteasome pathway. Moreover, mass spectrometry analyses indicated that the T39 and T104 residues of LvTcf were target sites phosphorylated by WSV083. Point mutation analyses suggested that additional sites of LvTcf may undergo phosphorylation via WSV083. Taken together, the current work provides valuable insights into host immunity and viral pathogenesis. LvTcf is not only a modulator of shrimp innate immunity but is also an important target for WSSV immune evasion. Thus, the current findings will help improve disease control in shrimps.
Collapse
Affiliation(s)
- Chuanqi Wang
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of Ministry of Natural Resources, Third Institute of Oceanography, Ministry of Natural Resources, Fujian Key Laboratory of Marine Genetic Resources, Xiamen, China.,School of Life Science, Xiamen University, Xiamen, China
| | - Lingwei Ruan
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of Ministry of Natural Resources, Third Institute of Oceanography, Ministry of Natural Resources, Fujian Key Laboratory of Marine Genetic Resources, Xiamen, China
| | - Hong Shi
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of Ministry of Natural Resources, Third Institute of Oceanography, Ministry of Natural Resources, Fujian Key Laboratory of Marine Genetic Resources, Xiamen, China
| | - Wenyang Lin
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of Ministry of Natural Resources, Third Institute of Oceanography, Ministry of Natural Resources, Fujian Key Laboratory of Marine Genetic Resources, Xiamen, China.,School of Life Science, Xiamen University, Xiamen, China
| | - Linmin Liu
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of Ministry of Natural Resources, Third Institute of Oceanography, Ministry of Natural Resources, Fujian Key Laboratory of Marine Genetic Resources, Xiamen, China
| | - Sujie Li
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of Ministry of Natural Resources, Third Institute of Oceanography, Ministry of Natural Resources, Fujian Key Laboratory of Marine Genetic Resources, Xiamen, China
| |
Collapse
|
21
|
Dong L, Dong J, Xiang M, Lei P, Li Z, Zhang F, Sun X, Niu D, Bai L, Lan K. NDRG1 facilitates lytic replication of Kaposi's sarcoma-associated herpesvirus by maintaining the stability of the KSHV helicase. PLoS Pathog 2021; 17:e1009645. [PMID: 34077484 PMCID: PMC8202935 DOI: 10.1371/journal.ppat.1009645] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 06/14/2021] [Accepted: 05/14/2021] [Indexed: 01/10/2023] Open
Abstract
The presumed DNA helicase encoded by ORF44 of Kaposi's sarcoma-associated herpesvirus (KSHV) plays a crucial role in unwinding viral double-stranded DNA and initiating DNA replication during lytic reactivation. However, the regulatory mechanism of KSHV ORF44 has not been fully elucidated. In a previous study, we identified that N-Myc downstream regulated gene 1 (NDRG1), a host scaffold protein, facilitates viral genome replication by interacting with proliferating cell nuclear antigen (PCNA) and the latent viral protein latency-associated nuclear antigen (LANA) during viral latency. In the present study, we further demonstrated that NDRG1 can interact with KSHV ORF44 during viral lytic replication. We also found that the mRNA and protein levels of NDRG1 were significantly increased by KSHV ORF50-encoded replication and transcription activator (RTA). Remarkably, knockdown of NDRG1 greatly decreased the protein level of ORF44 and impaired viral lytic replication. Interestingly, NDRG1 enhanced the stability of ORF44 and inhibited its ubiquitin-proteasome-mediated degradation by reducing the polyubiquitination of the lysine residues at positions 79 and 368 in ORF44. In summary, NDRG1 is a novel binding partner of ORF44 and facilitates viral lytic replication by maintaining the stability of ORF44. This study provides new insight into the mechanisms underlying KSHV lytic replication.
Collapse
Affiliation(s)
- Lianghui Dong
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Jiazhen Dong
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Min Xiang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Ping Lei
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Zixian Li
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Fang Zhang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Xiaoyi Sun
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Danping Niu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Lei Bai
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
- * E-mail: (LB); (KL)
| | - Ke Lan
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
- * E-mail: (LB); (KL)
| |
Collapse
|
22
|
Meng W, Gao SJ. Targeting XPO1 enhances innate immune response and inhibits KSHV lytic replication during primary infection by nuclear stabilization of the p62 autophagy adaptor protein. Cell Death Dis 2021; 12:29. [PMID: 33414399 PMCID: PMC7790339 DOI: 10.1038/s41419-020-03303-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/27/2020] [Accepted: 12/02/2020] [Indexed: 12/15/2022]
Abstract
Nucleocytoplasmic transport of signaling modulators is essential for regulating cellular responses to extracellular stimulation and stress, as well as pathogen infection. Exportin 1 (XPO1), also known as chromosomal maintenance 1 (CRM1), mediates nuclear export of proteins, rRNAs, snRNAs, and some mRNAs. In this study, we have identified an essential role of XPO1 in regulating Kaposi's sarcoma-associated herpesvirus (KSHV) lytic replication during primary infection of primary human umbilical vein endothelial cells. Treatment with an XPO1 inhibitor KPT-8602 and short hairpin RNA (shRNA)-mediated knockdown of XPO1 reduced KSHV lytic replication but had no effect on KSHV entry and trafficking. XPO1 inhibition induced retention of autophagy adaptor protein p62 (SQSTM1) in the nucleus, which enhanced activation of TBK1 and IRF3. As a result, nuclear accumulation of p62 increased expression of innate immune-related genes including IRF7, ISG15, IFIT1, IFIT2, and IFIT3, leading to a reduction of KSHV lytic replication. These results illustrate a novel mechanism by which XPO1 mediates innate immune response and KSHV replication, and identify XPO1 as a potential therapeutic target and KPT-8602 as a promising therapeutic agent for KSHV infection.
Collapse
Affiliation(s)
- Wen Meng
- UPMC Hillman Cancer Center, Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Shou-Jiang Gao
- UPMC Hillman Cancer Center, Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
23
|
Imam H, Kim GW, Siddiqui A. Epitranscriptomic(N6-methyladenosine) Modification of Viral RNA and Virus-Host Interactions. Front Cell Infect Microbiol 2020; 10:584283. [PMID: 33330128 PMCID: PMC7732492 DOI: 10.3389/fcimb.2020.584283] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/27/2020] [Indexed: 12/18/2022] Open
Abstract
N6-methyladenosine (m6A) is the most prevalent and internal modification of eukaryotic mRNA. Multiple m6A methylation sites have been identified in the viral RNA genome and transcripts of DNA viruses in recent years. m6A modification is involved in all the phases of RNA metabolism, including RNA stability, splicing, nuclear exporting, RNA folding, translational modulation, and RNA degradation. Three protein groups, methyltransferases (m6A-writers), demethylases (m6A-erasers), and m6A-binding proteins (m6A-readers) regulate this dynamic reversible process. Here, we have reviewed the role of m6A modification dictating viral replication, morphogenesis, life cycle, and its contribution to disease progression. A better understanding of the m6A methylation process during viral pathogenesis is required to reveal novel approaches to combat the virus-associated diseases.
Collapse
Affiliation(s)
- Hasan Imam
- Division of Infectious Diseases, Department of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Geon-Woo Kim
- Division of Infectious Diseases, Department of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Aleem Siddiqui
- Division of Infectious Diseases, Department of Medicine, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
24
|
Barrett L, Chen J, Dai L, Plaisance-Bonstaff K, Del Valle L, Qin Z. Role of Interleukin-1 Family Members and Signaling Pathways in KSHV Pathogenesis. Front Cell Infect Microbiol 2020; 10:587929. [PMID: 33194830 PMCID: PMC7662392 DOI: 10.3389/fcimb.2020.587929] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/13/2020] [Indexed: 01/22/2023] Open
Abstract
Kaposi’s sarcoma-associated herpesvirus (KSHV) represents the etiological agent for several human malignancies, including Kaposi’s sarcoma (KS), primary effusion lymphoma (PEL), and multicentric Castleman’s disease (MCD), which are mostly seen in immunocompromised patients. In fact, KSHV has developed many strategies to hijack host immune response, including the regulation of inflammatory cytokine production. Interleukin-1 (IL-1) family represents a major mediator for inflammation and plays an important role in both innate and adaptive immunity. Furthermore, a broadening list of diseases has revealed the pathologic role of IL-1 mediated inflammation. In the current mini-review, we have summarized recent findings about how this oncogenic virus is able to manipulate the activities of IL-1 signaling pathway to facilitate disease progression. We also discuss the therapeutic potential of IL-1 blockade against KSHV-related diseases and several unsolved questions in this interesting field.
Collapse
Affiliation(s)
- Lindsey Barrett
- Department of Pathology, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Jungang Chen
- Department of Pathology, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Lu Dai
- Department of Pathology, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Karlie Plaisance-Bonstaff
- Department of Medicine, Louisiana State University Health Sciences Center, Louisiana Cancer Research Center, New Orleans, LA, United States
| | - Luis Del Valle
- Department of Pathology, Louisiana State University Health Sciences Center, Louisiana Cancer Research Center, New Orleans, LA, United States
| | - Zhiqiang Qin
- Department of Pathology, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| |
Collapse
|
25
|
Vescovo T, Pagni B, Piacentini M, Fimia GM, Antonioli M. Regulation of Autophagy in Cells Infected With Oncogenic Human Viruses and Its Impact on Cancer Development. Front Cell Dev Biol 2020; 8:47. [PMID: 32181249 PMCID: PMC7059124 DOI: 10.3389/fcell.2020.00047] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 01/20/2020] [Indexed: 12/14/2022] Open
Abstract
About 20% of total cancer cases are associated to infections. To date, seven human viruses have been directly linked to cancer development: high-risk human papillomaviruses (hrHPVs), Merkel cell polyomavirus (MCPyV), hepatitis B virus (HBV), hepatitis C virus (HCV), Epstein–Barr virus (EBV), Kaposi’s sarcoma-associated herpesvirus (KSHV), and human T-lymphotropic virus 1 (HTLV-1). These viruses impact on several molecular mechanisms in the host cells, often resulting in chronic inflammation, uncontrolled proliferation, and cell death inhibition, and mechanisms, which favor viral life cycle but may indirectly promote tumorigenesis. Recently, the ability of oncogenic viruses to alter autophagy, a catabolic process activated during the innate immune response to infections, is emerging as a key event for the onset of human cancers. Here, we summarize the current understanding of the molecular mechanisms by which human oncogenic viruses regulate autophagy and how this negative regulation impacts on cancer development. Finally, we highlight novel autophagy-related candidates for the treatment of virus-related cancers.
Collapse
Affiliation(s)
- Tiziana Vescovo
- National Institute for Infectious Diseases "Lazzaro Spallanzani" - IRCCS, Rome, Italy
| | - Benedetta Pagni
- National Institute for Infectious Diseases "Lazzaro Spallanzani" - IRCCS, Rome, Italy.,Department of Biology, University of Rome "Tor Vergata," Rome, Italy
| | - Mauro Piacentini
- National Institute for Infectious Diseases "Lazzaro Spallanzani" - IRCCS, Rome, Italy.,Department of Biology, University of Rome "Tor Vergata," Rome, Italy
| | - Gian Maria Fimia
- National Institute for Infectious Diseases "Lazzaro Spallanzani" - IRCCS, Rome, Italy.,Department of Molecular Medicine, University of Rome "Sapienza," Rome, Italy
| | - Manuela Antonioli
- National Institute for Infectious Diseases "Lazzaro Spallanzani" - IRCCS, Rome, Italy
| |
Collapse
|
26
|
Wei X, Bai L, Dong L, Liu H, Xing P, Zhou Z, Wu S, Lan K. NCOA2 promotes lytic reactivation of Kaposi's sarcoma-associated herpesvirus by enhancing the expression of the master switch protein RTA. PLoS Pathog 2019; 15:e1008160. [PMID: 31751430 PMCID: PMC6894885 DOI: 10.1371/journal.ppat.1008160] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 12/05/2019] [Accepted: 10/28/2019] [Indexed: 12/20/2022] Open
Abstract
Reactivation of Kaposi’s sarcoma-associated herpesvirus (KSHV) is important for persistent infection in the host as well as viral oncogenesis. The replication and transcription activator (RTA) encoded by KSHV ORF50 plays a central role in the switch from viral latency to lytic replication. Given that RTA is a transcriptional activator and RTA expression is sufficient to activate complete lytic replication, RTA must possess an elaborate mechanism for regulating its protein abundance. Previous studies have demonstrated that RTA could be degraded through the ubiquitin-proteasome pathway. A protein abundance regulatory signal (PARS), which consists of PARS I and PARS II, at the C-terminal region of RTA modulates its protein abundance. In the present study, we identified a host protein named Nuclear receptor coactivator 2 (NCOA2), which can interact with RTA in vitro and in vivo. We further showed that NCOA2 binds to the PARS II domain of RTA. We demonstrated that NCOA2 enhances RTA stability and prevents the proteasome-mediated degradation of RTA by competing with MDM2, an E3 ubiquitin ligase of RTA that interacts with the PARS II domain. Moreover, overexpression of NCOA2 in KSHV-infected cells significantly enhanced the expression level of RTA, which promotes the expression of RTA downstream viral lytic genes and lytic replication. In contrast, silencing of endogenous NCOA2 downregulated the expression of viral lytic genes and impaired viral lytic replication. Interestingly, we also found that RTA upregulates the expression of NCOA2 during lytic reactivation. Taken together, our data support the conclusion that NCOA2 is a novel RTA-binding protein that promotes RTA-driven lytic reactivation by increasing the stability of RTA, and the RTA-NCOA2 positive feedback regulatory loop plays an important role in KSHV reactivation. Reactivation of KSHV from latency to lytic replication plays an important role in viral spread, establishment of lifelong latent infection and disease progression. RTA, the lytic switch protein, is essential and sufficient for triggering the full viral lytic program. Here, we report a host protein named NCOA2 as a novel RTA-binding protein. Direct interaction of NCOA2 with RTA increased the expression level of RTA. Further study revealed that NCOA2 competes with the E3 ubiquitin ligase of RTA, MDM2, to interact with the PARS II domain of RTA, which inhibits RTA degradation and enhances the stability of RTA. In the context of KSHV-infected cells, we showed that NCOA2 plays an important role in promoting RTA-driven lytic reactivation.
Collapse
Affiliation(s)
- Xiaoqin Wei
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Lei Bai
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Lianghui Dong
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Huimei Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Peidong Xing
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Zhiyao Zhou
- University College London, Gower Street, London, United Kingdom
| | - Shuwen Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Ke Lan
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
- * E-mail:
| |
Collapse
|
27
|
Carriere J, Rao Y, Liu Q, Lin X, Zhao J, Feng P. Post-translational Control of Innate Immune Signaling Pathways by Herpesviruses. Front Microbiol 2019; 10:2647. [PMID: 31798565 PMCID: PMC6868034 DOI: 10.3389/fmicb.2019.02647] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 10/30/2019] [Indexed: 12/21/2022] Open
Abstract
Herpesviruses constitute a large family of disease-causing DNA viruses. Each herpesvirus strain is capable of infecting particular organisms with a specific cell tropism. Upon infection, pattern recognition receptors (PRRs) recognize conserved viral features to trigger signaling cascades that culminate in the production of interferons and pro-inflammatory cytokines. To invoke a proper immune response while avoiding collateral tissue damage, signaling proteins involved in these cascades are tightly regulated by post-translational modifications (PTMs). Herpesviruses have developed strategies to subvert innate immune signaling pathways in order to ensure efficient viral replication and achieve persistent infection. The ability of these viruses to control the proteins involved in these signaling cascades post-translationally, either directly via virus-encoded enzymes or indirectly through the deregulation of cellular enzymes, has been widely reported. This ability provides herpesviruses with a powerful tool to shut off or restrict host antiviral and inflammatory responses. In this review, we highlight recent findings on the herpesvirus-mediated post-translational control along PRR-mediated signaling pathways.
Collapse
Affiliation(s)
| | | | | | | | | | - Pinghui Feng
- Section of Infection and Immunity, Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
28
|
Amin I, Younas S, Afzal S, Shahid M, Idrees M. Herpes Simplex Virus Type 1 and Host Antiviral Immune Responses: An Update. Viral Immunol 2019; 32:424-429. [PMID: 31599707 DOI: 10.1089/vim.2019.0097] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Herpes simplex virus type 1 (HSV-1) infection activates a rapid stimulation of host innate immune responses and a delicate interplay between virus and host immune elements regulates the whole events. Although host immune elements play well in limiting the HSV-1 infection by interfering viral replication, they are still unable to remove the virus completely, because HSV-1 proteins are efficient enough to bypass the host antiviral immune responses and virus succeed to reactivate again from latency at opportune time. Type 1 interferon signaling pathway is the central point of innate immunity along with some of the activated neutrophils, monocytes, macrophages, and dendritic cells, and some natural killer cells play role, while the CD8+ T cells are crucial in adaptive immunity. In this review, the current knowledge of host and HSV-1 interaction has been described that how the host antiviral immune responses occur and what are the mechanisms of viral evasion adapted by virus to counteract with both arms of immunity.
Collapse
Affiliation(s)
- Iram Amin
- Division of Molecular Virology and Infectious Diseases, Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan
| | - Saima Younas
- Molecular Diagnostic Lab, Centre for Applied Molecular Biology (CAMB), University of the Punjab, Lahore, Pakistan
| | - Samia Afzal
- Division of Molecular Virology and Infectious Diseases, Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan
| | - Muhammad Shahid
- Division of Molecular Virology and Infectious Diseases, Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan
| | - Muhammad Idrees
- Division of Molecular Virology and Infectious Diseases, Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan
| |
Collapse
|
29
|
Epstein-Barr Virus and Innate Immunity: Friends or Foes? Microorganisms 2019; 7:microorganisms7060183. [PMID: 31238570 PMCID: PMC6617214 DOI: 10.3390/microorganisms7060183] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 06/20/2019] [Accepted: 06/22/2019] [Indexed: 12/16/2022] Open
Abstract
Epstein–Barr virus (EBV) successfully persists in the vast majority of adults but causes lymphoid and epithelial malignancies in a small fraction of latently infected individuals. Innate immunity is the first-line antiviral defense, which EBV has to evade in favor of its own replication and infection. EBV uses multiple strategies to perturb innate immune signaling pathways activated by Toll-like, RIG-I-like, NOD-like, and AIM2-like receptors as well as cyclic GMP-AMP synthase. EBV also counteracts interferon production and signaling, including TBK1-IRF3 and JAK-STAT pathways. However, activation of innate immunity also triggers pro-inflammatory response and proteolytic cleavage of caspases, both of which exhibit proviral activity under some circumstances. Pathogenic inflammation also contributes to EBV oncogenesis. EBV activates NFκB signaling and induces pro-inflammatory cytokines. Through differential modulation of the proviral and antiviral roles of caspases and other host factors at different stages of infection, EBV usurps cellular programs for death and inflammation to its own benefits. The outcome of EBV infection is governed by a delicate interplay between innate immunity and EBV. A better understanding of this interplay will instruct prevention and intervention of EBV-associated cancers.
Collapse
|
30
|
Yan L, Majerciak V, Zheng ZM, Lan K. Towards Better Understanding of KSHV Life Cycle: from Transcription and Posttranscriptional Regulations to Pathogenesis. Virol Sin 2019; 34:135-161. [PMID: 31025296 PMCID: PMC6513836 DOI: 10.1007/s12250-019-00114-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 03/14/2019] [Indexed: 02/08/2023] Open
Abstract
Kaposi’s sarcoma-associated herpesvirus (KSHV), also known as human herpesvirus-8 (HHV-8), is etiologically linked to the development of Kaposi’s sarcoma, primary effusion lymphoma, and multicentric Castleman’s disease. These malignancies often occur in immunosuppressed individuals, making KSHV infection-associated diseases an increasing global health concern with persistence of the AIDS epidemic. KSHV exhibits biphasic life cycles between latent and lytic infection and extensive transcriptional and posttranscriptional regulation of gene expression. As a member of the herpesvirus family, KSHV has evolved many strategies to evade the host immune response, which help the virus establish a successful lifelong infection. In this review, we summarize the current research status on the biology of latent and lytic viral infection, the regulation of viral life cycles and the related pathogenesis.
Collapse
Affiliation(s)
- Lijun Yan
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Vladimir Majerciak
- National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA
| | - Zhi-Ming Zheng
- National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA.
| | - Ke Lan
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
31
|
Qi Y, Zheng G, Di C, Zhang J, Wang X, Hong Y, Song Y, Chen R, Yang Y, Yan Y, Xu L, Tan X, Yang L. Latency-associated nuclear antigen inhibits lytic replication of Kaposi's sarcoma-associated herpesvirus by regulating let-7a/RBPJ signaling. Virology 2019; 531:69-78. [PMID: 30856484 DOI: 10.1016/j.virol.2019.02.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 02/27/2019] [Accepted: 02/27/2019] [Indexed: 10/27/2022]
Abstract
Latency-associated nuclear antigen (LANA) is the key factor in the establishment and maintenance of latency of Kaposi's sarcoma-associated herpesvirus (KSHV). A cellular protein, recombination signal binding protein for immunoglobulin kappa J region (RBPJ), is essential for the lytic reactivation of KSHV. However, whether RBPJ expression is regulated by KSHV is not clear. Here, we show that LANA upregulates let-7a and its primary transcripts in parallel with its reduction of RBPJ expression. An increase in notch intracellular domain (NICD) and the downregulation of NF-κB and LIN28B contribute to the upregulation of let-7a by LANA. Let-7a represses RBPJ expression by directly binding the 3' untranslated region of RBPJ. Let-7a overexpression or RBPJ knockdown led to a dose- and time-dependent inhibition of lytic reactivation of KSHV. Collectively, these findings support a model wherein LANA inhibits the lytic replication of KSHV by regulating let-7a/RBPJ signaling.
Collapse
Affiliation(s)
- Yan Qi
- School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, People's Republic of China
| | - Guoxia Zheng
- School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, People's Republic of China
| | - Chunhong Di
- Affiliated Hospital, Hangzhou Normal University, Hangzhou, Zhejiang, People's Republic of China
| | - Jinxia Zhang
- School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, People's Republic of China
| | - Xiaobo Wang
- Affiliated Hospital, Hangzhou Normal University, Hangzhou, Zhejiang, People's Republic of China
| | - Yu Hong
- School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, People's Republic of China
| | - Yang Song
- School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, People's Republic of China
| | - Rong Chen
- School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, People's Republic of China
| | - Yi Yang
- School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, People's Republic of China
| | - Yutao Yan
- School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, People's Republic of China
| | - Liangwen Xu
- School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, People's Republic of China
| | - Xiaohua Tan
- School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, People's Republic of China.
| | - Lei Yang
- School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, People's Republic of China.
| |
Collapse
|
32
|
Dang W, Xie Y, Cao P, Xin S, Wang J, Li S, Li Y, Lu J. N 6-Methyladenosine and Viral Infection. Front Microbiol 2019; 10:417. [PMID: 30891023 PMCID: PMC6413633 DOI: 10.3389/fmicb.2019.00417] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 02/18/2019] [Indexed: 12/12/2022] Open
Abstract
N6-methyladenosine (m6A), as a dynamic posttranscriptional RNA modification, recently gave rise to the field of viral epitranscriptomics. The interaction between virus and host is affected by m6A. Multiple m6A-modified viral RNAs have been observed. The epitranscriptome of m6A in host cells are altered after viral infection. The expression of viral genes, the replication of virus and the generation of progeny virions are influenced by m6A modifications in viral RNAs during virus infection. Meanwhile, the decorations of m6A in host mRNAs can make viral infections more likely to happen or can enhance the resistance of host to virus infection. However, the mechanism of m6A regulation in viral infection and host immune response has not been thoroughly elucidated to date. With the development of sequencing-based biotechnologies, transcriptome-wide mapping of m6A in viruses has been achieved, laying the foundation for expanding its functions and corresponding mechanisms. In this report, we summarize the positive and negative effects of m6A in distinct viral infection. Given the increasingly important roles of m6A in diverse viruses, m6A represents a novel potential target for antiviral therapy.
Collapse
Affiliation(s)
- Wei Dang
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China.,Department of Microbiology, Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China
| | - Yan Xie
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China.,Department of Microbiology, Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China
| | - Pengfei Cao
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China
| | - Shuyu Xin
- Department of Microbiology, Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China
| | - Jia Wang
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China.,Department of Microbiology, Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China
| | - Shen Li
- Department of Microbiology, Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China
| | - Yanling Li
- Department of Microbiology, Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China
| | - Jianhong Lu
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China.,Department of Microbiology, Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China
| |
Collapse
|
33
|
He TS, Xie T, Li J, Yang YX, Li C, Wang W, Cao L, Rao H, Ju C, Xu LG. THO Complex Subunit 7 Homolog Negatively Regulates Cellular Antiviral Response against RNA Viruses by Targeting TBK1. Viruses 2019; 11:v11020158. [PMID: 30769920 PMCID: PMC6410154 DOI: 10.3390/v11020158] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 02/05/2019] [Accepted: 02/12/2019] [Indexed: 12/21/2022] Open
Abstract
RNA virus invasion induces a cytosolic RIG-I-like receptor (RLR) signaling pathway by promoting assembly of the Mitochondrial antiviral-signaling protein (MAVS) signalosome and triggers the rapid production of type I interferons (IFNs) and proinflammatory cytokines. During this process, the pivotal kinase TANK binding kinase 1 (TBK1) is recruited to the MAVS signalosome to transduce a robust innate antiviral immune response by phosphorylating transcription factors interferon regulatory factor 3 (IRF3) and nuclear factor (NF)-κB and promoting their nuclear translocation. However, the molecular mechanisms underlying the negative regulation of TBK1 are largely unknown. In the present study, we found that THO complex subunit 7 homolog (THOC7) negatively regulated the cellular antiviral response by promoting the proteasomal degradation of TBK1. THOC7 overexpression potently inhibited Sendai virus- or polyI:C-induced IRF3 dimerization and phosphorylation and IFN-β production. In contrast, THOC7 knockdown had the opposite effects. Moreover, we simulated a node-activated pathway to show that THOC7 regulated the RIG-I-like receptors (RLR)-/MAVS-dependent signaling cascade at the TBK1 level. Furthermore, THOC7 was involved in the MAVS signalosome and promoted TBK1 degradation by increasing its K48 ubiquitin-associated polyubiquitination. Together, these findings suggest that THOC7 negatively regulates type I IFN production by promoting TBK1 proteasomal degradation, thus improving our understanding of innate antiviral immune responses.
Collapse
Affiliation(s)
- Tian-Sheng He
- Key Laboratory of Functional Small Organic Molecules, Ministry of Education and College of Life Science, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, Jiangxi, China.
| | - Tao Xie
- Key Laboratory of Functional Small Organic Molecules, Ministry of Education and College of Life Science, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, Jiangxi, China.
| | - Jing Li
- Key Laboratory of Functional Small Organic Molecules, Ministry of Education and College of Life Science, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, Jiangxi, China.
| | - Ya-Xian Yang
- Key Laboratory of Functional Small Organic Molecules, Ministry of Education and College of Life Science, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, Jiangxi, China.
| | - Changsheng Li
- Key Laboratory of Functional Small Organic Molecules, Ministry of Education and College of Life Science, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, Jiangxi, China.
| | - Weiying Wang
- Key Laboratory of Functional Small Organic Molecules, Ministry of Education and College of Life Science, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, Jiangxi, China.
| | - Lingzhen Cao
- Key Laboratory of Functional Small Organic Molecules, Ministry of Education and College of Life Science, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, Jiangxi, China.
| | - Hua Rao
- Key Laboratory of Functional Small Organic Molecules, Ministry of Education and College of Life Science, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, Jiangxi, China.
| | - Cynthia Ju
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
| | - Liang-Guo Xu
- Key Laboratory of Functional Small Organic Molecules, Ministry of Education and College of Life Science, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, Jiangxi, China.
| |
Collapse
|
34
|
Gu F, Wang C, Wei F, Wang Y, Zhu Q, Ding L, Xu W, Zhu C, Cai C, Qian Z, Yuan Z, Robertson E, Cai Q. STAT6 degradation and ubiquitylated TRIML2 are essential for activation of human oncogenic herpesvirus. PLoS Pathog 2018; 14:e1007416. [PMID: 30532138 PMCID: PMC6287816 DOI: 10.1371/journal.ppat.1007416] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 10/17/2018] [Indexed: 01/01/2023] Open
Abstract
Aberrations in STAT6-mediated signaling are linked to the development of multiple cancer types. Increasing evidence has shown that activation of human oncogenic herpesvirus lytic replication is crucial for viral tumorigenesis. However, the role of STAT6 in herpesvirus lytic replication remains elusive. Here, by using Kaposi’s sarcoma-associated herpesvirus (KSHV) as a model, we revealed that RTA, the master regulator of lytic replication, interacts with STAT6 and promotes lysine 48 (K48) and K63-linked ubiquitylation of STAT6 for degradation via the proteasome and lysosome systems. Moreover, degradation of STAT6 is dramatically associated with the increased ubiquitylated form of tripartite motif family like 2 (TRIML2, a tumor suppressor) for prolonged cell survival and virion production, which is also commonly observed in lytic activation of Epstein-Barr virus, herpes simplex virus 1 and cytomegalovirus. These results suggest that degradation of STAT6 is important for the lytic activation of KSHV and as such, may be an attractive therapeutic target. STAT6 is a transcriptional factor that plays an important role in the extracellular cytokine and virus-mediated immune response. Extensive studies have revealed that the dysregulation of STAT6 is linked to the pathological features of virus-associated cancers. However, the molecular mechanism of STAT6 regulation by tumor viruses is still unknown. Here, we report that the degradation of STAT6 is induced and required for the lytic activation of human herpesviruses including oncogenic γ-herpesviruses (KSHV and EBV) and α/β-herpesviruses (HSV1 and HCMV). Importantly, this effect is highly dependent on the expression of viral lytic antigens (i.e., RTA in KSHV). This study reveals the central role of STAT6 in controlling the switch from latency to lytic replication of herpesviruses.
Collapse
Affiliation(s)
- Feng Gu
- MOE& MOH Key Laboratory of Medical Molecular Virology, School of Basic Medicine, Shanghai Medical College, Fudan University, Shanghai, P. R. China
| | - Chong Wang
- MOE& MOH Key Laboratory of Medical Molecular Virology, School of Basic Medicine, Shanghai Medical College, Fudan University, Shanghai, P. R. China
| | - Fang Wei
- ShengYushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Yuyan Wang
- MOE& MOH Key Laboratory of Medical Molecular Virology, School of Basic Medicine, Shanghai Medical College, Fudan University, Shanghai, P. R. China
| | - Qing Zhu
- MOE& MOH Key Laboratory of Medical Molecular Virology, School of Basic Medicine, Shanghai Medical College, Fudan University, Shanghai, P. R. China
| | - Ling Ding
- MOE& MOH Key Laboratory of Medical Molecular Virology, School of Basic Medicine, Shanghai Medical College, Fudan University, Shanghai, P. R. China
| | - Wenjia Xu
- Unit of Herpesvirus and Molecular Virology, Key Laboratory of Molecular Virology &Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai, P. R. China
| | - Caixia Zhu
- MOE& MOH Key Laboratory of Medical Molecular Virology, School of Basic Medicine, Shanghai Medical College, Fudan University, Shanghai, P. R. China
| | - Cankun Cai
- MOE& MOH Key Laboratory of Medical Molecular Virology, School of Basic Medicine, Shanghai Medical College, Fudan University, Shanghai, P. R. China
| | - Zhikang Qian
- Unit of Herpesvirus and Molecular Virology, Key Laboratory of Molecular Virology &Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai, P. R. China
| | - Zhenghong Yuan
- MOE& MOH Key Laboratory of Medical Molecular Virology, School of Basic Medicine, Shanghai Medical College, Fudan University, Shanghai, P. R. China
| | - Erle Robertson
- Department of Otorhinolaryngology-Head and Neck Surgery, Department of Microbiology, Abramson Comprehensive Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States of America
| | - Qiliang Cai
- MOE& MOH Key Laboratory of Medical Molecular Virology, School of Basic Medicine, Shanghai Medical College, Fudan University, Shanghai, P. R. China
- * E-mail:
| |
Collapse
|
35
|
Wei X, Lan K. Activation and counteraction of antiviral innate immunity by KSHV: an Update. Sci Bull (Beijing) 2018; 63:1223-1234. [PMID: 30906617 PMCID: PMC6426151 DOI: 10.1016/j.scib.2018.07.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The innate immune responses triggering production of type I interferons and inflammatory cytokines constitute a nonspecific innate resistance that eliminates invading pathogens including viruses. The activation of innate immune signaling through pattern recognition receptors (PRRs) is by sensing pathogen-associated molecular patterns derived from viruses. According to their distribution within cells, PRRs are classified into three types of receptors: membrane, cytoplasmic, and nuclear. Kaposi's sarcoma-associated herpesvirus (KSHV), a large DNA virus, replicates in the nucleus. Its genome is protected by capsid proteins during transport in the cytosol. Multiple PRRs are involved in KSHV recognition. To successfully establish latent infection, KSHV has evolved to manipulate different aspects of the host antiviral innate immune responses. This review presents recent advances in our understanding about the activation of the innate immune signaling in response to infection of KSHV. It also reviews the evasion strategies used by KSHV to subvert host innate immune detection for establishing a persistent infection.
Collapse
Affiliation(s)
| | - Ke Lan
- Corresponding author. (K. Lan)
| |
Collapse
|
36
|
Suppression of NF-κB Activity: A Viral Immune Evasion Mechanism. Viruses 2018; 10:v10080409. [PMID: 30081579 PMCID: PMC6115930 DOI: 10.3390/v10080409] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 07/29/2018] [Accepted: 08/02/2018] [Indexed: 12/20/2022] Open
Abstract
Nuclear factor-κB (NF-κB) is an important transcription factor that induces the expression of antiviral genes and viral genes. NF-κB activation needs the activation of NF-κB upstream molecules, which include receptors, adaptor proteins, NF-κB (IκB) kinases (IKKs), IκBα, and NF-κB dimer p50/p65. To survive, viruses have evolved the capacity to utilize various strategies that inhibit NF-κB activity, including targeting receptors, adaptor proteins, IKKs, IκBα, and p50/p65. To inhibit NF-κB activation, viruses encode several specific NF-κB inhibitors, including NS3/4, 3C and 3C-like proteases, viral deubiquitinating enzymes (DUBs), phosphodegron-like (PDL) motifs, viral protein phosphatase (PPase)-binding proteins, and small hydrophobic (SH) proteins. Finally, we briefly describe the immune evasion mechanism of human immunodeficiency virus 1 (HIV-1) by inhibiting NF-κB activity in productive and latent infections. This paper reviews a viral mechanism of immune evasion that involves the suppression of NF-κB activation to provide new insights into and references for the control and prevention of viral diseases.
Collapse
|
37
|
HSP110 sustains chronic NF-κB signaling in activated B-cell diffuse large B-cell lymphoma through MyD88 stabilization. Blood 2018; 132:510-520. [PMID: 29871863 DOI: 10.1182/blood-2017-12-819706] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 05/30/2018] [Indexed: 02/06/2023] Open
Abstract
Activated B-cell diffuse large B-cell lymphoma (ABC-DLBCL) is an aggressive lymphoproliferative disorder involving chronic NF-κB activation. Several mutations in the BCR and MyD88 signaling pathway components, such as MyD88 L265P, are implicated in this aberrant activation. Among heat shock proteins, HSP110 has recently been identified as a prosurvival and/or proliferation factor in many cancers, but its role in ABC-DLBCL survival mechanisms remained to be established. We observed that short hairpin RNA-mediated HSP110 silencing decreased the survival of several ABC-DLBCL cell lines and decreased immunoglobulin M-MyD88 co-localization and subsequent NF-κB signaling. Conversely, overexpression of HSP110 in ABC-DLBCL or non-DLBCL cell lines increased NF-κB signaling, indicating a tight interplay between HSP110 and the NF-κB pathway. By using immunoprecipitation and proximity ligation assays, we identified an interaction between HSP110 and both wild-type MyD88 and MyD88 L265P. HSP110 stabilized both MyD88 forms with a stronger effect on MyD88 L265P, thus facilitating chronic NF-κB activation. Finally, HSP110 expression was higher in lymph node biopsies from patients with ABC-DLBCL than in normal reactive lymph nodes, and a strong correlation was found between the level of HSP110 and MyD88. In conclusion, we identified HSP110 as a regulator of NF-κB signaling through MyD88 stabilization in ABC-DLBCL. This finding reveals HSP110 as a new potential therapeutic target in ABC-DLBCL.
Collapse
|
38
|
Role of Pattern Recognition Receptors in KSHV Infection. Cancers (Basel) 2018; 10:cancers10030085. [PMID: 29558453 PMCID: PMC5876660 DOI: 10.3390/cancers10030085] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 03/12/2018] [Accepted: 03/16/2018] [Indexed: 02/06/2023] Open
Abstract
Kaposi’s sarcoma-associated herpesvirus or Human herpesvirus-8 (KSHV/HHV-8), an oncogenic human herpesvirus and the leading cause of cancer in HIV-infected individuals, is a major public health concern with recurring reports of epidemics on a global level. The early detection of KSHV virus and subsequent activation of the antiviral immune response by the host’s immune system are crucial to prevent KSHV infection. The host’s immune system is an evolutionary conserved system that provides the most important line of defense against invading microbial pathogens, including viruses. Viruses are initially detected by the cells of the host innate immune system, which evoke concerted antiviral responses via the secretion of interferons (IFNs) and inflammatory cytokines/chemokines for elimination of the invaders. Type I IFN and cytokine gene expression are regulated by multiple intracellular signaling pathways that are activated by germline-encoded host sensors, i.e., pattern recognition receptors (PRRs) that recognize a conserved set of ligands, known as ‘pathogen-associated molecular patterns (PAMPs)’. On the contrary, persistent and dysregulated signaling of PRRs promotes numerous tumor-causing inflammatory events in various human cancers. Being an integral component of the mammalian innate immune response and due to their constitutive activation in tumor cells, targeting PRRs appears to be an effective strategy for tumor prevention and/or treatment. Cellular PRRs are known to respond to KSHV infection, and KSHV has been shown to be armed with an array of strategies to selectively inhibit cellular PRR-based immune sensing to its benefit. In particular, KSHV has acquired specific immunomodulatory genes to effectively subvert PRR responses during the early stages of primary infection, lytic reactivation and latency, for a successful establishment of a life-long persistent infection. The current review aims to comprehensively summarize the latest advances in our knowledge of role of PRRs in KSHV infections.
Collapse
|
39
|
ZIC2 Is Essential for Maintenance of Latency and Is a Target of an Immediate Early Protein during Kaposi's Sarcoma-Associated Herpesvirus Lytic Reactivation. J Virol 2017; 91:JVI.00980-17. [PMID: 28835494 PMCID: PMC5640855 DOI: 10.1128/jvi.00980-17] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 08/14/2017] [Indexed: 01/05/2023] Open
Abstract
Bivalent histone modifications are defined as repressive and activating epigenetic marks that simultaneously decorate the same genomic region. The H3K27me3 mark silences gene expression, while the H3K4me3 mark prevents the region from becoming permanently silenced and prepares the domain for activation when needed. Specific regions of Kaposi's sarcoma-associated herpesvirus (KSHV) latent episomes are poised to be activated by the KSHV replication and transcription activator (K-Rta). How KSHV episomes are prepared such that they maintain latent infection and switch to lytic replication by K-Rta remains unclear. K-Rta transactivation activity requires a protein degradation function; thus, we hypothesized that identification of cellular substrates of K-Rta may provide insight into the maintenance of KSHV latent infection and the switch to lytic replication. Here we show that a zinc finger protein, ZIC2, a key regulator for central nervous system development, is a substrate of K-Rta and is responsible for maintaining latency. K-Rta directly interacted with ZIC2 and functioned as an E3 ligase to ubiquitinate ZIC2. ZIC2 localized at immediate early and early gene cluster regions of the KSHV genome and contributed to tethering of polycomb repressive complex 2 through physical interaction, thus maintaining H3K27me3 marks at the K-Rta promoter. Accordingly, depletion of ZIC2 shifted the balance of bivalent histone modifications toward more active forms and induced KSHV reactivation in naturally infected cells. We suggest that ZIC2 turnover by K-Rta is a strategy employed by KSHV to favor the transition from latency to lytic replication. IMPORTANCE Posttranslational histone modifications regulate the accessibility of transcriptional factors to DNA; thus, they have profound effects on gene expression (e.g., viral reactivation). KSHV episomes are known to possess bivalent chromatin domains. How such KSHV chromatin domains are maintained to be reactivatable by K-Rta remains unclear. We found that ZIC2, a transcriptional factor essential for stem cell pluripotency, plays a role in maintaining KSHV latent infection in naturally infected cells. We found that ZIC2 degradation by K-Rta shifts bivalent histone marks to a more active configuration, leading to KSHV reactivation. ZIC2 interacts with and maintains polycomb repressor complex 2 at the K-Rta promoter. Our findings uncover (i) a mechanism utilized by KSHV to maintain latent infection, (ii) a latency-lytic cycle switch operated by K-Rta, and (iii) a molecular mechanism of ZIC2-mediated local histone modification.
Collapse
|
40
|
Granato M, Gilardini Montani MS, Romeo MA, Santarelli R, Gonnella R, D'Orazi G, Faggioni A, Cirone M. Metformin triggers apoptosis in PEL cells and alters bortezomib-induced Unfolded Protein Response increasing its cytotoxicity and inhibiting KSHV lytic cycle activation. Cell Signal 2017; 40:239-247. [PMID: 28964970 DOI: 10.1016/j.cellsig.2017.09.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 09/26/2017] [Accepted: 09/26/2017] [Indexed: 12/12/2022]
Abstract
Metformin, the most used drug for the treatment of diabetes type 2 patients, has been shown to have anti-cancer properties. In this study, we found that metformin induced apoptosis in Primary Effusion Lymphoma (PEL) cells, an aggressive B cell lymphoma associated with KSHV against which the conventional therapies usually fail. The cytotoxic effect of metformin correlated with intracellular reactive oxygen species reduction, activation of AMPK, the inhibition of pro-survival pathways such as mTOR and STAT3 and the down-regulation of v-FLIP, a latent viral antigen that also plays a pivotal role in PEL cell survival. Interestingly, we found that metformin could be used to potentiate the bortezomib-mediated cytotoxicity against PEL cells and to inhibit the activation of KSHV lytic cycle, a side effect of this treatment that resulted in a block of autophagy in these cells. Mechanistically, metformin altered UPR activated by bortezomib, leading to a reduced expression of BiP, up-regulation of CHOP and down-regulation of Bcl-2. In summary, this study suggests that metformin could represent a promising strategy for the treatment of PEL alone or in combination with bortezomib. In the latter case, besides exerting a stronger cytotoxic effect, it might be used to restrain bortezomib-induced viral replication that is involved in the maintenance and progression of KSHV-associated malignancies.
Collapse
Affiliation(s)
- Marisa Granato
- Department of Experimental Medicine, "Sapienza" University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
| | | | - Maria Anele Romeo
- Department of Experimental Medicine, "Sapienza" University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
| | - Roberta Santarelli
- Department of Experimental Medicine, "Sapienza" University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
| | - Roberta Gonnella
- Department of Experimental Medicine, "Sapienza" University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
| | - Gabriella D'Orazi
- Department of Research, Advanced Diagnostics, and Technological Innovation, Regina Elena National Cancer Institute, 00144 Rome, Italy; Department of Medical, Oral and Biotechnological Sciences, Tumor Biology Section, University 'G. d'Annunzio', Chieti, Italy
| | - Alberto Faggioni
- Department of Experimental Medicine, "Sapienza" University of Rome, Viale Regina Elena 324, 00161 Rome, Italy.
| | - Mara Cirone
- Department of Experimental Medicine, "Sapienza" University of Rome, Viale Regina Elena 324, 00161 Rome, Italy.
| |
Collapse
|
41
|
Guanylate-Binding Protein 1 Inhibits Nuclear Delivery of Kaposi's Sarcoma-Associated Herpesvirus Virions by Disrupting Formation of Actin Filament. J Virol 2017; 91:JVI.00632-17. [PMID: 28592529 DOI: 10.1128/jvi.00632-17] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 05/31/2017] [Indexed: 12/21/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is a typical gammaherpesvirus that establishes persistent lifelong infection in host cells. In order to establish successful infection, KSHV has evolved numerous immune evasion strategies to bypass or hijack the host immune system. However, host cells still produce immune cytokines abundantly during primary KSHV infection. Whether the immune effectors produced are able to inhibit viral infection and how KSHV successfully conquers these immune effectors remain largely unknown. The guanylate-binding protein 1 (GBP1) gene is an interferon-stimulated gene and exerts antiviral functions on several RNA viruses; however, its function in DNA virus infection is less well understood. In this study, we found that KSHV infection increases both the transcriptional and protein levels of GBP1 at the early stage of primary infection by activating the NF-κB pathway. The overexpression of GBP1 significantly inhibited KSHV infection, while the knockdown of GBP1 promoted KSHV infection. The GTPase activity and dimerization of GBP1 were demonstrated to be responsible for its anti-KSHV activity. Furthermore, we found that GBP1 inhibited the nuclear delivery of KSHV virions by disrupting the formation of actin filaments. Finally, we demonstrated that replication and transcription activator (RTA) promotes the degradation of GBP1 through a proteasome pathway. Taken together, these results provide a new understanding of the antiviral mechanism of GBP1, which possesses potent anti-KSHV activity, and suggest the critical role of RTA in the evasion of the innate immune response during primary infection by KSHV.IMPORTANCE GBP1 can be induced by various cytokines and exerts antiviral activities against several RNA viruses. Our study demonstrated that GBP1 can exert anti-KSHV function by inhibiting the nuclear delivery of KSHV virions via the disruption of actin filaments. Moreover, we found that KSHV RTA can promote the degradation of GBP1 through a proteasome-mediated pathway. Taken together, our results elucidate a novel mechanism of GBP1 anti-KSHV activity and emphasize the critical role of RTA in KSHV evasion of the host immune system during primary infection.
Collapse
|
42
|
Liu XJ, Yang B, Huang SN, Wu CC, Li XJ, Cheng S, Jiang X, Hu F, Ming YZ, Nevels M, Britt WJ, Rayner S, Tang Q, Zeng WB, Zhao F, Luo MH. Human cytomegalovirus IE1 downregulates Hes1 in neural progenitor cells as a potential E3 ubiquitin ligase. PLoS Pathog 2017; 13:e1006542. [PMID: 28750047 PMCID: PMC5549770 DOI: 10.1371/journal.ppat.1006542] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 08/08/2017] [Accepted: 07/19/2017] [Indexed: 01/12/2023] Open
Abstract
Congenital human cytomegalovirus (HCMV) infection is the leading cause of neurological disabilities in children worldwide, but the mechanisms underlying these disorders are far from well-defined. HCMV infection has been shown to dysregulate the Notch signaling pathway in human neural progenitor cells (NPCs). As an important downstream effector of Notch signaling, the transcriptional regulator Hairy and Enhancer of Split 1 (Hes1) is essential for governing NPC fate and fetal brain development. In the present study, we report that HCMV infection downregulates Hes1 protein levels in infected NPCs. The HCMV 72-kDa immediate-early 1 protein (IE1) is involved in Hes1 degradation by assembling a ubiquitination complex and promoting Hes1 ubiquitination as a potential E3 ubiquitin ligase, followed by proteasomal degradation of Hes1. Sp100A, an important component of PML nuclear bodies, is identified to be another target of IE1-mediated ubiquitination. A C-terminal acidic region in IE1, spanning amino acids 451 to 475, is required for IE1/Hes1 physical interaction and IE1-mediated Hes1 ubiquitination, but is dispensable for IE1/Sp100A interaction and ubiquitination. Our study suggests a novel mechanism linking downregulation of Hes1 protein to neurodevelopmental disorders caused by HCMV infection. Our findings also complement the current knowledge of herpesviruses by identifying IE1 as the first potential HCMV-encoded E3 ubiquitin ligase. Congenital human cytomegalovirus (HCMV) infection is the leading cause of neurological disabilities in children, but the underlying pathogenesis of this infection remains unclear. Hes1, an important effector of Notch signaling, governs the fate of neural progenitor cells (NPCs) and fetal brain development. Here we demonstrate that: (1) HCMV infection results in loss of Hes1 protein in NPCs; (2) the HCMV immediate-early 1 protein (IE1) mediates Hes1 protein downregulation through direct interaction, which requires amino acids 451–475; (3) IE1 assembles a Hes1 ubiquitination complex and mediates Hes1 ubiquitination; and (4) IE1 also assembles an Sp100A ubiquitination complex and mediates Sp100A ubiquitination, but does not require amino acids 451–475. These results suggest that HCMV IE1 is a potential E3 ubiquitin ligase. Downregulation of Hes1 by HCMV infection and IE1 implies a novel mechanism linking Hes1 depletion to virus-induced neuropathogenesis.
Collapse
Affiliation(s)
- Xi-Juan Liu
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bo Yang
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Sheng-Nan Huang
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Cong-Cong Wu
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Xiao-Jun Li
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Shuang Cheng
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Xuan Jiang
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children Medical Center, Guangzhou, China
| | - Fei Hu
- Wuhan Brain Hospital, Ministry of Transportation, Wuhan, Hubei, China
| | - Ying-Zi Ming
- The Third Xiangya Hospital, South Central University, Changsha, Hunan, China
| | - Michael Nevels
- School of Biology, Biomedical Sciences Research Complex, University of St Andrews, St Andrews, Fife, United Kingdom
| | - William J. Britt
- Department of Pediatrics, University of Alabama School of Medicine, Birmingham, Alabama, United States of America
| | - Simon Rayner
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
- Department of Medical Genetics, Oslo University Hospital & University of Oslo, Oslo, Norway
| | - Qiyi Tang
- Department of Microbiology, Howard University College of Medicine, Howard University, Washington DC, United States of America
| | - Wen-Bo Zeng
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
- * E-mail: (WBZ); (FZ); (MHL)
| | - Fei Zhao
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
- * E-mail: (WBZ); (FZ); (MHL)
| | - Min-Hua Luo
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children Medical Center, Guangzhou, China
- * E-mail: (WBZ); (FZ); (MHL)
| |
Collapse
|
43
|
Darrah EJ, Stoltz KP, Ledwith M, Tarakanova VL. ATM supports gammaherpesvirus replication by attenuating type I interferon pathway. Virology 2017; 510:137-146. [PMID: 28732227 DOI: 10.1016/j.virol.2017.07.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 06/21/2017] [Accepted: 07/10/2017] [Indexed: 12/17/2022]
Abstract
Ataxia-Telangiectasia mutated (ATM) kinase participates in multiple networks, including DNA damage response, oxidative stress, and mitophagy. ATM also supports replication of diverse DNA and RNA viruses. Gammaherpesviruses are prevalent cancer-associated viruses that benefit from ATM expression during replication. This proviral role of ATM had been ascribed to its signaling within the DNA damage response network; other functions of ATM have not been considered. In this study increased type I interferon (IFN) responses were observed in ATM deficient gammaherpesvirus-infected macrophages. Using a mouse model that combines ATM and type I IFN receptor deficiencies we show that increased type I IFN response in the absence of ATM fully accounts for the proviral role of ATM during gammaherpesvirus replication. Further, increased type I IFN response rendered ATM deficient macrophages more susceptible to antiviral effects of type II IFN. This study identifies attenuation of type I IFN responses as the primary mechanism underlying proviral function of ATM during gammaherpesvirus infection.
Collapse
Affiliation(s)
- Eric J Darrah
- Department of Microbiology and Immunology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| | - Kyle P Stoltz
- Department of Microbiology and Immunology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| | - Mitchell Ledwith
- Department of Microbiology and Immunology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| | - Vera L Tarakanova
- Department of Microbiology and Immunology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States; Cancer Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States.
| |
Collapse
|
44
|
Li S, Bai L, Dong J, Sun R, Lan K. Kaposi's Sarcoma-Associated Herpesvirus: Epidemiology and Molecular Biology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1018:91-127. [PMID: 29052134 DOI: 10.1007/978-981-10-5765-6_7] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV), also known as Human herpesvirus 8 (HHV-8), is a member of the lymphotropic gammaherpesvirus subfamily and a human oncogenic virus. Since its discovery in AIDS-associated KS tissues by Drs. Yuan Chang and Patrick Moore, much progress has been made in the past two decades. There are four types of KS including classic KS, endemic KS, immunosuppressive therapy-related KS, and AIDS-associated KS. In addition to KS, KSHV is also involved in the development of primary effusion lymphoma (PEL) and certain types of multicentric Castleman's disease. KSHV manipulates numerous viral proteins to promote the progression of angiogenesis and tumorigenesis. In this chapter, we review the epidemiology and molecular biology of KSHV and the mechanisms underlying KSHV-induced diseases.
Collapse
Affiliation(s)
- Shasha Li
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Lei Bai
- Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, People's Republic of China
| | - Jiazhen Dong
- Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, People's Republic of China
| | - Rui Sun
- Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, People's Republic of China
| | - Ke Lan
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, People's Republic of China.
| |
Collapse
|
45
|
Lee HR, Choi UY, Hwang SW, Kim S, Jung JU. Viral Inhibition of PRR-Mediated Innate Immune Response: Learning from KSHV Evasion Strategies. Mol Cells 2016; 39:777-782. [PMID: 27871174 PMCID: PMC5125932 DOI: 10.14348/molcells.2016.0232] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 11/04/2016] [Accepted: 11/07/2016] [Indexed: 12/18/2022] Open
Abstract
The innate immune system has evolved to detect and destroy invading pathogens before they can establish systemic infection. To successfully eradicate pathogens, including viruses, host innate immunity is activated through diverse pattern recognition receptors (PRRs) which detect conserved viral signatures and trigger the production of type I interferon (IFN) and pro-inflammatory cytokines to mediate viral clearance. Viral persistence requires that viruses co-opt cellular pathways and activities for their benefit. In particular, due to the potent antiviral activities of IFN and cytokines, viruses have developed various strategies to meticulously modulate intracellular innate immune sensing mechanisms to facilitate efficient viral replication and persistence. In this review, we highlight recent advances in the study of viral immune evasion strategies with a specific focus on how Kaposi's sarcoma-associated herpesvirus (KSHV) effectively targets host PRR signaling pathways.
Collapse
Affiliation(s)
- Hye-Ra Lee
- Department of Biotechnology and Bioinformatics, College of Science and Technology, Korea University, Sejong 30019,
Korea
| | - Un Yung Choi
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Harlyne J. Norris Cancer Research Tower, 1450 Biggy Street, Los Angeles, California 90033,
USA
| | - Sung-Woo Hwang
- Department of Biotechnology and Bioinformatics, College of Science and Technology, Korea University, Sejong 30019,
Korea
| | - Stephanie Kim
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Harlyne J. Norris Cancer Research Tower, 1450 Biggy Street, Los Angeles, California 90033,
USA
| | - Jae U. Jung
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Harlyne J. Norris Cancer Research Tower, 1450 Biggy Street, Los Angeles, California 90033,
USA
| |
Collapse
|
46
|
Yan F, Guan J, Peng Y, Zheng X. MyD88 NEDDylation negatively regulates MyD88-dependent NF-κB signaling through antagonizing its ubiquitination. Biochem Biophys Res Commun 2016; 482:632-637. [PMID: 27864145 DOI: 10.1016/j.bbrc.2016.11.084] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 11/15/2016] [Indexed: 11/26/2022]
Abstract
Myeloid differentiation factor 88 (MyD88) plays a central role in innate immunity response, however, how its activity is tightly regulated remains largely unknown. In this study, we identify MyD88 as a novel substrate of NEDD8, and demonstrate that MyD88 NEDDylation antagonizes its ubiquitination. Interestingly, in response to the stimulation of IL-1β, MyD88 NEDDylation is downregulated while its ubiquitination is upregulated. We also show that deNEDDylase NEDP1 serves as a regulator of this process. Furthermore, we demonstrate that NEDD8 negatively regulates the dimerization of MyD88 and suppresses MyD88-dependent NF-κB signaling. Taken together, this study reveals that NEDDylation of MyD88 regulates NF-κB activity through antagonizing its ubiquitination, suggesting a novel mechanism of modulating NF-κB signaling pathway.
Collapse
Affiliation(s)
- Fangxue Yan
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China; Department of Biochemistry and Molecular Biology, School of Life Sciences, Peking University, Beijing 100871, China
| | - Junhong Guan
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China; Department of Biochemistry and Molecular Biology, School of Life Sciences, Peking University, Beijing 100871, China
| | - Yanyan Peng
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China; Department of Biochemistry and Molecular Biology, School of Life Sciences, Peking University, Beijing 100871, China
| | - Xiaofeng Zheng
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China; Department of Biochemistry and Molecular Biology, School of Life Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
47
|
Nuclear Innate Immune DNA Sensor IFI16 Is Degraded during Lytic Reactivation of Kaposi's Sarcoma-Associated Herpesvirus (KSHV): Role of IFI16 in Maintenance of KSHV Latency. J Virol 2016; 90:8822-41. [PMID: 27466416 PMCID: PMC5021400 DOI: 10.1128/jvi.01003-16] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 07/13/2016] [Indexed: 12/17/2022] Open
Abstract
UNLABELLED IFI16 (interferon gamma-inducible protein 16) recognizes nuclear episomal herpesvirus (Kaposi's sarcoma-associated herpesvirus [KSHV], Epstein-Barr virus [EBV], and herpes simplex virus 1 [HSV-1]) genomes and induces the inflammasome and interferon beta responses. It also acts as a lytic replication restriction factor and inhibits viral DNA replication (human cytomegalovirus [HCMV] and human papillomavirus [HPV]) and transcription (HSV-1, HCMV, and HPV) through epigenetic modifications of the viral genomes. To date, the role of IFI16 in the biology of latent viruses is not known. Here, we demonstrate that knockdown of IFI16 in the latently KSHV-infected B-lymphoma BCBL-1 and BC-3 cell lines results in lytic reactivation and increases in levels of KSHV lytic transcripts, proteins, and viral genome replication. Similar results were also observed during KSHV lytic cycle induction in TREX-BCBL-1 cells with the doxycycline-inducible lytic cycle switch replication and transcription activator (RTA) gene. Overexpression of IFI16 reduced lytic gene induction by the chemical agent 12-O-tetradecoylphorbol-13-acetate (TPA). IFI16 protein levels were significantly reduced or absent in TPA- or doxycycline-induced cells expressing lytic KSHV proteins. IFI16 is polyubiquitinated and degraded via the proteasomal pathway. The degradation of IFI16 was absent in phosphonoacetic acid-treated cells, which blocks KSHV DNA replication and, consequently, late lytic gene expression. Chromatin immunoprecipitation assays of BCBL-1 and BC-3 cells demonstrated that IFI16 binds to KSHV gene promoters. Uninfected epithelial SLK and osteosarcoma U2OS cells transfected with KSHV luciferase promoter constructs confirmed that IFI16 functions as a transcriptional repressor. These results reveal that KSHV utilizes the innate immune nuclear DNA sensor IFI16 to maintain its latency and repression of lytic transcripts, and a late lytic KSHV gene product(s) targets IFI16 for degradation during lytic reactivation. IMPORTANCE Like all herpesviruses, latency is an integral part of the life cycle of Kaposi's sarcoma-associated herpesvirus (KSHV), an etiological agent for many human cancers. Herpesviruses utilize viral and host factors to successfully evade the host immune system to maintain latency. Reactivation is a complex event where the latent episomal viral genome springs back to active transcription of lytic cycle genes. Our studies reveal that KSHV has evolved to utilize the innate immune sensor IFI16 to keep lytic cycle transcription in dormancy. We demonstrate that IFI16 binds to the lytic gene promoter, acts as a transcriptional repressor, and thereby helps to maintain latency. We also discovered that during the late stage of lytic replication, KSHV selectively degrades IFI16, thus relieving transcriptional repression. This is the first report to demonstrate the role of IFI16 in latency maintenance of a herpesvirus, and further understanding will lead to the development of strategies to eliminate latent infection.
Collapse
|
48
|
Dittmer DP, Damania B. Kaposi sarcoma-associated herpesvirus: immunobiology, oncogenesis, and therapy. J Clin Invest 2016; 126:3165-75. [PMID: 27584730 DOI: 10.1172/jci84418] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Kaposi sarcoma-associated herpesvirus (KSHV), also known as human herpesvirus 8, is the etiologic agent underlying Kaposi sarcoma, primary effusion lymphoma, and multicentric Castleman's disease. This human gammaherpesvirus was discovered in 1994 by Drs. Yuan Chang and Patrick Moore. Today, there are over five thousand publications on KSHV and its associated malignancies. In this article, we review recent and ongoing developments in the KSHV field, including molecular mechanisms of KSHV pathogenesis, clinical aspects of KSHV-associated diseases, and current treatments for cancers associated with this virus.
Collapse
|
49
|
Major Histocompatibility Complex Class II HLA-DRα Is Downregulated by Kaposi's Sarcoma-Associated Herpesvirus-Encoded Lytic Transactivator RTA and MARCH8. J Virol 2016; 90:8047-58. [PMID: 27356905 DOI: 10.1128/jvi.01079-16] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 06/07/2016] [Indexed: 12/27/2022] Open
Abstract
UNLABELLED Kaposi's sarcoma-associated herpesvirus (KSHV) maintains two modes of life cycle, the latent and lytic phases. To evade the attack of the cell host's immune system, KSHV switches from the lytic to the latent phase, a phase in which only a few of viral proteins are expressed. The mechanism by which KSHV evades the attack of the immune system and establishes latency has not been fully understood. Major histocompatibility complex class II (MHC-II) molecules are key components of the immune system defense mechanism against viral infections. Here we report that HLA-DRα, a member of the MHC-II molecules, was downregulated by the replication and transcription activator (RTA) protein encoded by KSHV ORF50, an important regulator of the viral life cycle. RTA not only downregulated HLA-DRα at the protein level through direct binding and degradation through the proteasome pathway but also indirectly downregulated the protein level of HLA-DRα by enhancing the expression of MARCH8, a member of the membrane-associated RING-CH (MARCH) proteins. Our findings indicate that KSHV RTA facilitates evasion of the virus from the immune system through manipulation of HLA-DRα. IMPORTANCE Kaposi's sarcoma-associated herpesvirus (KSHV) has a causal role in a number of human cancers, and its persistence in infected cells is controlled by the host's immune system. The mechanism by which KSHV evades an attack by the immune system has not been well understood. This work represents studies which identify a novel mechanism by which the virus can facilitate evasion of an immune system. We now show that RTA, the replication and transcription activator encoded by KSHV (ORF50), can function as an E3 ligase to degrade HLA-DRα. It can directly bind and induce degradation of HLA-DRα through the ubiquitin-proteasome degradation pathway. In addition to the direct regulation of HLA-DRα, RTA can also indirectly downregulate the level of HLA-DRα protein by upregulating transcription of MARCH8. Increased MARCH8 results in the downregulation of HLA-DRα. Furthermore, we also demonstrate that expression of HLA-DRα was impaired in KSHV de novo infection.
Collapse
|
50
|
Gan J, Qiao N, Strahan R, Zhu C, Liu L, Verma SC, Wei F, Cai Q. Manipulation of ubiquitin/SUMO pathways in human herpesviruses infection. Rev Med Virol 2016; 26:435-445. [DOI: 10.1002/rmv.1900] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 07/03/2016] [Accepted: 07/25/2016] [Indexed: 12/17/2022]
Affiliation(s)
- Jin Gan
- MOE & MOH Key Laboratory of Medical Molecular Virology, School of Basic Medicine, Shanghai Medical College; Fudan University; Shanghai China
| | - Niu Qiao
- Department of Medical Systems Biology, School of Basic Medical Sciences; Department of Translational Medicine, Shanghai Public Health Clinical Center; Institutes of Biomedical Sciences, Fudan University; Shanghai China
| | - Roxanne Strahan
- Department of Microbiology & Immunology; University of Nevada, Reno School of Medicine; Reno NV USA
| | - Caixia Zhu
- MOE & MOH Key Laboratory of Medical Molecular Virology, School of Basic Medicine, Shanghai Medical College; Fudan University; Shanghai China
| | - Lei Liu
- Department of Medical Systems Biology, School of Basic Medical Sciences; Department of Translational Medicine, Shanghai Public Health Clinical Center; Institutes of Biomedical Sciences, Fudan University; Shanghai China
| | - Subhash C. Verma
- Department of Microbiology & Immunology; University of Nevada, Reno School of Medicine; Reno NV USA
| | - Fang Wei
- ShengYushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology; Shanghai Jiao Tong University; Shanghai China
| | - Qiliang Cai
- MOE & MOH Key Laboratory of Medical Molecular Virology, School of Basic Medicine, Shanghai Medical College; Fudan University; Shanghai China
| |
Collapse
|