1
|
Yamauchi K, Maekawa S, Osawa L, Komiyama Y, Nakakuki N, Takada H, Muraoka M, Suzuki Y, Sato M, Takano S, Enomoto N. Single-molecule sequencing of the whole HCV genome revealed envelope deletions in decompensated cirrhosis associated with NS2 and NS5A mutations. J Gastroenterol 2024; 59:1021-1036. [PMID: 39225750 DOI: 10.1007/s00535-024-02146-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Defective hepatitis C virus (HCV) genomes with deletion of the envelope region have been occasionally reported by short-read sequencing analyses. However, the clinical and virological details of such deletion HCV have not been fully elucidated. METHODS We developed a highly accurate single-molecule sequencing system for full-length HCV genes by combining the third-generation nanopore sequencing with rolling circle amplification (RCA) and investigated the characteristics of deletion HCV through the analysis of 21 patients chronically infected with genotype-1b HCV. RESULT In 5 of the 21 patients, a defective HCV genome with approximately 2000 bp deletion from the E1 to NS2 region was detected, with the read frequencies of 34-77%, suggesting the trans-complementation of the co-infecting complete HCV. Deletion HCV was found exclusively in decompensated cirrhosis (5/12 patients), and no deletion HCV was observed in nine compensated patients. Comparing the amino acid substitutions between the deletion and complete HCV (DAS, deletion-associated substitutions), the deletion HCV showed higher amino acid mutations in the ISDR (interferon sensitivity-determining region) in NS5A, and also in the TMS (transmembrane segment) 3 to H (helix) 2 region of NS2. CONCLUSIONS Defective HCV genome with deletion of envelope genes is associated with decompensated cirrhosis. The deletion HCV seems susceptible to innate immunity, such as endogenous interferon with NS5A mutations, escaping from acquired immunity with deletion of envelope proteins with potential modulation of replication capabilities with NS2 mutations. The relationship between these mutations and liver damage caused by HCV deletion is worth investigating.
Collapse
Affiliation(s)
- Kozue Yamauchi
- Department of Gastroenterology and Hepatology, Faculty of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan
| | - Shinya Maekawa
- Department of Gastroenterology and Hepatology, Faculty of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan.
| | - Leona Osawa
- Department of Gastroenterology and Hepatology, Faculty of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan
| | - Yasuyuki Komiyama
- Department of Gastroenterology and Hepatology, Faculty of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan
| | - Natsuko Nakakuki
- Department of Gastroenterology and Hepatology, Faculty of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan
| | - Hitomi Takada
- Department of Gastroenterology and Hepatology, Faculty of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan
| | - Masaru Muraoka
- Department of Gastroenterology and Hepatology, Faculty of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan
| | - Yuichiro Suzuki
- Department of Gastroenterology and Hepatology, Faculty of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan
| | - Mitsuaki Sato
- Department of Gastroenterology and Hepatology, Faculty of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan
| | - Shinichi Takano
- Department of Gastroenterology and Hepatology, Faculty of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan
| | - Nobuyuki Enomoto
- Department of Gastroenterology and Hepatology, Faculty of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan
| |
Collapse
|
2
|
Zhao L, Lythgoe KA. The social role of defective viral genomes in chronic viral infections: a commentary on Leeks et al. 2023. J Evol Biol 2023; 36:1577-1581. [PMID: 37975505 PMCID: PMC10880559 DOI: 10.1111/jeb.14244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 10/05/2023] [Indexed: 11/19/2023]
Affiliation(s)
- Lele Zhao
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of MedicineUniversity of OxfordOxfordUK
- Pandemic Sciences Institute, Nuffield Department for MedicineUniversity of OxfordOxfordUK
| | - Katrina A. Lythgoe
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of MedicineUniversity of OxfordOxfordUK
- Pandemic Sciences Institute, Nuffield Department for MedicineUniversity of OxfordOxfordUK
- Department of BiologyUniversity of OxfordOxfordUK
| |
Collapse
|
3
|
Li D, Lin MH, Rawle DJ, Jin H, Wu Z, Wang L, Lor M, Hussain M, Aaskov J, Harrich D. Dengue virus-free defective interfering particles have potent and broad anti-dengue virus activity. Commun Biol 2021; 4:557. [PMID: 33976375 PMCID: PMC8113447 DOI: 10.1038/s42003-021-02064-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 03/23/2021] [Indexed: 02/03/2023] Open
Abstract
Dengue virus (DENV) is spread from human to human through the bite of the female Aedes aegypti mosquito and leads to about 100 million clinical infections yearly. Treatment options and vaccine availability for DENV are limited. Defective interfering particles (DIPs) are considered a promising antiviral approach but infectious virus contamination has limited their development. Here, a DENV-derived DIP production cell line was developed that continuously produced DENV-free DIPs. The DIPs contained and could deliver to cells a DENV serotype 2 subgenomic defective-interfering RNA, which was originally discovered in DENV infected patients. The DIPs released into cell culture supernatant were purified and could potently inhibit replication of all DENV serotypes in cells. Antiviral therapeutics are limited for many viral infection. The DIP system described could be re-purposed to make antiviral DIPs for many other RNA viruses such as SARS-CoV-2, yellow fever, West Nile and Zika viruses.
Collapse
Affiliation(s)
- Dongsheng Li
- Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Min-Hsuan Lin
- Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Daniel J Rawle
- Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Hongping Jin
- Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Zhonglan Wu
- Ningxia Center for Disease Control and Prevention, Ningxia, China
| | - Lu Wang
- Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Mary Lor
- Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Mazhar Hussain
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - John Aaskov
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - David Harrich
- Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia.
| |
Collapse
|
4
|
López CB. Defective Viral Particles. Virology 2021. [DOI: 10.1002/9781119818526.ch5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
5
|
Bhebhe L, Anderson M, Souda S, Choga WT, Zumbika E, Shaver ZM, Mbangiwa T, Phinius BB, Banda CC, Melamu P, Musonda RM, Essex M, Blackard JT, Moyo S, Gaseitsiwe S. Molecular characterization of hepatitis C virus in liver disease patients in Botswana: a retrospective cross-sectional study. BMC Infect Dis 2019; 19:875. [PMID: 31640596 PMCID: PMC6805647 DOI: 10.1186/s12879-019-4514-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 09/26/2019] [Indexed: 12/11/2022] Open
Abstract
Background Hepatitis C virus (HCV) infection is a major cause of chronic liver disease globally. Direct acting antivirals (DAAs) have proven effective in curing HCV. However, the current standard of care (SOC) in Botswana remains PEGylated interferon-α (IFN-α) with ribavirin. Several mutations have been reported to confer resistance to interferon-based treatments. Therefore, there is a need to determine HCV genotypes in Botswana, as these data will guide new treatment guidelines and understanding of HCV epidemiology in Botswana. Methods This was a retrospective cross-sectional pilot study utilizing plasma obtained from 55 participants from Princess Marina Hospital in Gaborone, Botswana. The partial core region of HCV was amplified, and genotypes were determined using phylogenetic analysis. Results Four genotype 5a and two genotype 4v sequences were identified. Two significant mutations – K10Q and R70Q – were observed in genotype 5a sequences and have been associated with increased risk of hepatocellular carcinoma (HCC), while R70Q confers resistance to interferon-based treatments. Conclusion Genotypes 5a and 4v are circulating in Botswana. The presence of mutations in genotype 5 suggests that some patients may not respond to IFN-based regimens. The information obtained in this study, in addition to the World health organization (WHO) recommendations, can be utilized by policy makers to implement DAAs as the new SOC for HCV treatment in Botswana.
Collapse
Affiliation(s)
- Lynnette Bhebhe
- Botswana Harvard AIDS Institute Partnership, Research Laboratory, Gaborone, Botswana.,Department of Applied Biology and Biochemistry, National University of Science and Technology, Bulawayo, Zimbabwe
| | - Motswedi Anderson
- Botswana Harvard AIDS Institute Partnership, Research Laboratory, Gaborone, Botswana
| | - Sajini Souda
- Department of Pathology, Faculty of Medicine, University of Botswana, Gaborone, Botswana
| | - Wonderful T Choga
- Botswana Harvard AIDS Institute Partnership, Research Laboratory, Gaborone, Botswana.,Department of Applied Biology and Biochemistry, National University of Science and Technology, Bulawayo, Zimbabwe
| | - Edward Zumbika
- Department of Applied Biology and Biochemistry, National University of Science and Technology, Bulawayo, Zimbabwe
| | - Zachary M Shaver
- Botswana Harvard AIDS Institute Partnership, Research Laboratory, Gaborone, Botswana
| | - Tshepiso Mbangiwa
- Botswana Harvard AIDS Institute Partnership, Research Laboratory, Gaborone, Botswana.,Department of Medical Laboratory Sciences, Faculty of Health Sciences, University of Botswana, Gaborone, Botswana
| | - Bonolo B Phinius
- Botswana Harvard AIDS Institute Partnership, Research Laboratory, Gaborone, Botswana
| | - Chabeni C Banda
- Botswana Harvard AIDS Institute Partnership, Research Laboratory, Gaborone, Botswana
| | - Pinkie Melamu
- Botswana Harvard AIDS Institute Partnership, Research Laboratory, Gaborone, Botswana
| | - Rosemary M Musonda
- Botswana Harvard AIDS Institute Partnership, Research Laboratory, Gaborone, Botswana.,Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Max Essex
- Botswana Harvard AIDS Institute Partnership, Research Laboratory, Gaborone, Botswana.,Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Jason T Blackard
- University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Sikhulile Moyo
- Botswana Harvard AIDS Institute Partnership, Research Laboratory, Gaborone, Botswana.,Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Simani Gaseitsiwe
- Botswana Harvard AIDS Institute Partnership, Research Laboratory, Gaborone, Botswana. .,Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
6
|
Karamichali E, Chihab H, Kakkanas A, Marchio A, Karamitros T, Pogka V, Varaklioti A, Kalliaropoulos A, Martinez-Gonzales B, Foka P, Koskinas I, Mentis A, Benjelloun S, Pineau P, Georgopoulou U. HCV Defective Genomes Promote Persistent Infection by Modulating the Viral Life Cycle. Front Microbiol 2018; 9:2942. [PMID: 30559733 PMCID: PMC6287115 DOI: 10.3389/fmicb.2018.02942] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 11/15/2018] [Indexed: 12/19/2022] Open
Abstract
Defective interfering (DI) RNAs have been detected in several human viruses. HCV in-frame deletions mutants (IFDMs), missing mainly the envelope proteins, have been found in patient sera and liver tissues. IFDMs replicate independently and can be trans-packaged into infectious virions in the presence of full length viral genome. So far, their biological role is unclear. In this study, we have isolated and cloned IFDMs from sera samples and liver tissues of patients infected with HCV genotypes 1b, 2a, and 3a. IFDMs were present in up to 26% of samples tested. Using the in vitro HCV cell culture system, co-expression of the wild type (wt) HCV replicon with HCV IFDMs RNA resulted in increased HCV replication. Additionally, co-transfection of the HCV full length genome RNA and a defective mutant missing the envelope region led to increased viral release, collectively suggesting an important biological role for IFDMs in the virus life cycle. Recently, exosomes, masters of intercellular communication, have been implicated in the transport of HCV viral genomes. We report for the first time that exosomal RNA isolated from HCV sera samples contains HCV defective genomes. We also demonstrate that inhibition of exosomal biogenesis and release influences HCV viral replication. Overall, we provide evidence that the presence of HCV IFDMs affects both viral replication and release. IFDMs exploit exosomes as means of transport, a way to evade the immune system, to spread more efficiently and possibly maintain persistent infection.
Collapse
Affiliation(s)
- Eirini Karamichali
- Molecular Virology Laboratory, Hellenic Pasteur Institute, Athens, Greece
| | - Hajar Chihab
- Virology Unit, Viral Hepatitis Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco
| | | | - Agnes Marchio
- Institut Pasteur, INSERM U993, Unité "Organisation Nucléaire et Oncogenèse", Paris, France
| | | | - Vasiliki Pogka
- Medical Microbiology Laboratory, Hellenic Pasteur Institute, Athens, Greece
| | - Agoritsa Varaklioti
- Blood Center and National Centre for Congenital Bleeding Disorders, Laiko General Hospital, Athens, Greece
| | | | | | - Pelagia Foka
- Molecular Virology Laboratory, Hellenic Pasteur Institute, Athens, Greece
| | - Ioannis Koskinas
- 2nd Department of Internal Medicine, Medical School of Athens, Hippokration General Hospital, Athens, Greece
| | - Andreas Mentis
- Medical Microbiology Laboratory, Hellenic Pasteur Institute, Athens, Greece
| | - Soumaya Benjelloun
- Virology Unit, Viral Hepatitis Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Pascal Pineau
- Institut Pasteur, INSERM U993, Unité "Organisation Nucléaire et Oncogenèse", Paris, France
| | | |
Collapse
|
7
|
Pedersen MS, Fahnøe U, Hansen TA, Pedersen AG, Jenssen H, Bukh J, Schønning K. A near full-length open reading frame next generation sequencing assay for genotyping and identification of resistance-associated variants in hepatitis C virus. J Clin Virol 2018; 105:49-56. [PMID: 29886373 DOI: 10.1016/j.jcv.2018.05.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 05/22/2018] [Accepted: 05/26/2018] [Indexed: 12/27/2022]
Abstract
BACKGROUND The current treatment options for hepatitis C virus (HCV), based on direct acting antivirals (DAA), are dependent on virus genotype and previous treatment experience. Treatment failures have been associated with detection of resistance-associated substitutions (RASs) in the DAA targets of HCV, the NS3, NS5A and NS5 B proteins. OBJECTIVE To develop a next generation sequencing based method that provides genotype and detection of HCV NS3, NS5A, and NS5 B RASs without prior knowledge of sample genotype. STUDY DESIGN In total, 101 residual plasma samples from patients with HCV covering 10 different viral subtypes across 4 genotypes with viral loads of 3.84-7.61 Log IU/mL were included. All samples were de-identified and consequently prior treatment status for patients was unknown. Almost full open reading frame amplicons (∼ 9 kb) were generated using RT-PCR with a single primer set. The resulting amplicons were sequenced with high throughput sequencing and analysed using an in-house developed script for detecting RASs. RESULTS The method successfully amplified and sequenced 94% (95/101) of samples with an average coverage of 14,035; four of six failed samples were genotype 4a. Samples analysed twice yielded reproducible nucleotide frequencies across all sites. RASs were detected in 21/95 (22%) samples at a 15% threshold. The method identified one patient infected with two genotype 2b variants, and the presence of subgenomic deletion variants in 8 (8.4%) of 95 successfully sequenced samples. CONCLUSIONS The presented method may provide identification of HCV genotype, RASs detection, and detect multiple HCV infection without prior knowledge of sample genotype.
Collapse
Affiliation(s)
- M S Pedersen
- Department of Microbiology, Copenhagen University Hospital, Hvidovre, Denmark; Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases and Clinical Research Centre, Copenhagen University Hospital, Hvidovre, And Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark; Department of Science and Environment, Roskilde University, Denmark
| | - U Fahnøe
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases and Clinical Research Centre, Copenhagen University Hospital, Hvidovre, And Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - T A Hansen
- Department of Microbiology, Copenhagen University Hospital, Hvidovre, Denmark
| | - A G Pedersen
- DTU Bioinformatics, Technical University of Denmark, Denmark
| | - H Jenssen
- Department of Science and Environment, Roskilde University, Denmark
| | - J Bukh
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases and Clinical Research Centre, Copenhagen University Hospital, Hvidovre, And Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - K Schønning
- Department of Microbiology, Copenhagen University Hospital, Hvidovre, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| |
Collapse
|
8
|
Monoclonal Antibodies against Occludin Completely Prevented Hepatitis C Virus Infection in a Mouse Model. J Virol 2018; 92:JVI.02258-17. [PMID: 29437969 DOI: 10.1128/jvi.02258-17] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 02/01/2018] [Indexed: 02/07/2023] Open
Abstract
Hepatitis C virus (HCV) entry into host cells is a multistep process requiring various host factors, including the tight junction protein occludin (OCLN), which has been shown to be essential for HCV infection in in vitro cell culture systems. However, it remains unclear whether OCLN is an effective and safe target for HCV therapy, owing to the lack of binders that can recognize the intact extracellular loop domains of OCLN and prevent HCV infection. In this study, we successfully generated four rat anti-OCLN monoclonal antibodies (MAbs) by the genetic immunization method and unique cell differential screening. These four MAbs bound to human OCLN with a very high affinity (antibody dissociation constant of <1 nM). One MAb recognized the second loop of human and mouse OCLN, whereas the three other MAbs recognized the first loop of human OCLN. All MAbs inhibited HCV infection in Huh7.5.1-8 cells in a dose-dependent manner without apparent cytotoxicity. Additionally, the anti-OCLN MAbs prevented both cell-free HCV infection and cell-to-cell HCV transmission. Kinetic studies with anti-OCLN and anti-claudin-1 (CLDN1) MAbs demonstrated that OCLN interacts with HCV after CLDN1 in the internalization step. Two selected MAbs completely inhibited HCV infection in human liver chimeric mice without apparent adverse effects. Therefore, OCLN would be an appropriate host target for anti-HCV entry inhibitors, and anti-OCLN MAbs may be promising candidates for novel anti-HCV agents, particularly in combination with direct-acting HCV antiviral agents.IMPORTANCE HCV entry into host cells is thought to be a very complex process involving various host entry factors, such as the tight junction proteins claudin-1 and OCLN. In this study, we developed novel functional MAbs that recognize intact extracellular domains of OCLN, which is essential for HCV entry into host cells. The established MAbs against OCLN, which had very high affinity and selectivity for intact OCLN, strongly inhibited HCV infection both in vitro and in vivo Using these anti-OCLN MAbs, we found that OCLN is necessary for the later stages of HCV entry. These anti-OCLN MAbs are likely to be very useful for understanding the OCLN-mediated HCV entry mechanism and might be promising candidates for novel HCV entry inhibitors.
Collapse
|
9
|
Genetic Analysis of Serum-Derived Defective Hepatitis C Virus Genomes Revealed Novel Viral cis Elements for Virus Replication and Assembly. J Virol 2018; 92:JVI.02182-17. [PMID: 29367245 DOI: 10.1128/jvi.02182-17] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 01/08/2018] [Indexed: 12/12/2022] Open
Abstract
Defective viral genomes (DVGs) of hepatitis C virus (HCV) exist, but their biological significances have not been thoroughly investigated. Here, we analyzed HCV DVGs circulating in patient sera that possess deletions in the structural protein-encoding region. About 30% of 41 HCV clinical isolates possess DVGs that originated from the full-length genome in the same patients. No correlation between DVGs, viremia, and alanine aminotransferase (ALT) levels was found. Sequencing analysis of DVGs revealed the existence of deletion hot spots, with upstream sites in E1 and downstream sites in E2 and NS2. Interestingly, the coding sequences for the core protein and the C-terminal protease domain of NS2 were always intact in DVGs despite the fact that both proteins are dispensable for HCV genome replication. Mechanistic studies showed that transmembrane segment 3 (TMS3) of NS2, located immediately upstream of its protease domain, was required for the cleavage of NS2-NS3 and the replication of DVGs. Moreover, we identified a highly conserved secondary structure (SL750) within the core domain 2-coding region that is critical for HCV genome packaging. In summary, our analysis of serum-derived HCV DVGs revealed novel viral cis elements that play important roles in virus replication and assembly.IMPORTANCE HCV DVGs have been identified in vivo and in vitro, but their biogenesis and physiological significances remain elusive. In addition, a conventional packaging signal has not yet been identified on the HCV RNA genome, and mechanisms underlying the specificity in the encapsidation of the HCV genome into infectious particles remain to be uncovered. Here, we identified new viral cis elements critical for the HCV life cycle by determining genetic constraints that define the boundary of serum-derived HCV DVGs. We found that transmembrane segment 3 of NS2, located immediately upstream of its protease domain, was required for the cleavage of NS2-NS3 and the replication of DVGs. We identified a highly conserved secondary structure (SL750) within the core-coding region that is critical for HCV genome packaging. In summary, our analysis of serum-derived HCV DVGs revealed previously unexpected novel cis elements critical for HCV replication and morphogenesis.
Collapse
|
10
|
Baltes A, Akpinar F, Inankur B, Yin J. Inhibition of infection spread by co-transmitted defective interfering particles. PLoS One 2017; 12:e0184029. [PMID: 28915264 PMCID: PMC5600374 DOI: 10.1371/journal.pone.0184029] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 08/16/2017] [Indexed: 11/18/2022] Open
Abstract
Although virus release from host cells and tissues propels the spread of many infectious diseases, most virus particles are not infectious; many are defective, lacking essential genetic information needed for replication. When defective and viable particles enter the same cell, the defective particles can multiply while interfering with viable particle production. Defective interfering particles (DIPs) occur in nature, but their role in disease pathogenesis and spread is not known. Here, we engineered an RNA virus and its DIPs to express different fluorescent reporters, and we observed how DIPs impact viral gene expression and infection spread. Across thousands of host cells, co-infected with infectious virus and DIPs, gene expression was highly variable, but average levels of viral reporter expression fell at higher DIP doses. In cell populations spatial patterns of infection spread provided the first direct evidence for the co-transmission of DIPs with infectious virus. Patterns of spread were highly sensitive to the behavior of initial or early co-infected cells, with slower overall spread stemming from higher early DIP doses. Under such conditions striking patterns of patchy gene expression reflected localized regions of DIP or virus enrichment. From a broader perspective, these results suggest DIPs contribute to the ecological and evolutionary persistence of viruses in nature.
Collapse
Affiliation(s)
- Ashley Baltes
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Systems Biology Theme, Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Fulya Akpinar
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Systems Biology Theme, Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Bahar Inankur
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Systems Biology Theme, Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - John Yin
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Systems Biology Theme, Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
11
|
Jaworski E, Routh A. Parallel ClickSeq and Nanopore sequencing elucidates the rapid evolution of defective-interfering RNAs in Flock House virus. PLoS Pathog 2017; 13:e1006365. [PMID: 28475646 PMCID: PMC5435362 DOI: 10.1371/journal.ppat.1006365] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 05/17/2017] [Accepted: 04/19/2017] [Indexed: 11/18/2022] Open
Abstract
Defective-Interfering RNAs (DI-RNAs) have long been known to play an important role in virus replication and transmission. DI-RNAs emerge during virus passaging in both cell-culture and their hosts as a result of non-homologous RNA recombination. However, the principles of DI-RNA emergence and their subsequent evolution have remained elusive. Using a combination of long- and short-read Next-Generation Sequencing, we have characterized the formation of DI-RNAs during serial passaging of Flock House virus (FHV) in cell-culture over a period of 30 days in order to elucidate the pathways and potential mechanisms of DI-RNA emergence and evolution. For short-read RNAseq, we employed 'ClickSeq' due to its ability to sensitively and confidently detect RNA recombination events with nucleotide resolution. In parallel, we used the Oxford Nanopore Technologies's (ONT) MinION to resolve full-length defective and wild-type viral genomes. Together, these accurately resolve both rare and common RNA recombination events, determine the correlation between recombination events, and quantifies the relative abundance of different DI-RNAs throughout passaging. We observe the formation of a diverse pool of defective RNAs at each stage of viral passaging. However, many of these 'intermediate' species, while present in early stages of passaging, do not accumulate. After approximately 9 days of passaging we observe the rapid accumulation of DI-RNAs with a correlated reduction in specific infectivity and with the Nanopore data find that DI-RNAs are characterized by multiple RNA recombination events. This suggests that intermediate DI-RNA species are not competitive and that multiple recombination events interact epistatically to confer 'mature' DI-RNAs with their selective advantage allowing for their rapid accumulation. Alternatively, it is possible that mature DI-RNA species are generated in a single event involving multiple RNA rearrangements. These insights have important consequences for our understanding of the mechanisms, determinants and limitations in the emergence and evolution of DI-RNAs.
Collapse
Affiliation(s)
- Elizabeth Jaworski
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX, United States of America
| | - Andrew Routh
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX, United States of America.,Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas, United States of America
| |
Collapse
|
12
|
McCarthy MK, Morrison TE. Persistent RNA virus infections: do PAMPS drive chronic disease? Curr Opin Virol 2017; 23:8-15. [PMID: 28214732 PMCID: PMC5474173 DOI: 10.1016/j.coviro.2017.01.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 01/16/2017] [Accepted: 01/27/2017] [Indexed: 12/12/2022]
Abstract
Chronic disease associated with persistent RNA virus infections represents a key public health concern. While human immunodeficiency virus-1 and hepatitis C virus are perhaps the most well-known examples of persistent RNA viruses that cause chronic disease, evidence suggests that many other RNA viruses, including re-emerging viruses such as chikungunya virus, Ebola virus and Zika virus, establish persistent infections. The mechanisms by which RNA viruses drive chronic disease are poorly understood. Here, we discuss how the persistence of viral RNA may drive chronic disease manifestations via the activation of RNA sensing pathways.
Collapse
Affiliation(s)
- Mary K McCarthy
- Department of Immunology and Microbiology, University of Colorado School of Medicine, USA
| | - Thomas E Morrison
- Department of Immunology and Microbiology, University of Colorado School of Medicine, USA.
| |
Collapse
|
13
|
Stewart H, Bingham R, White SJ, Dykeman EC, Zothner C, Tuplin AK, Stockley PG, Twarock R, Harris M. Identification of novel RNA secondary structures within the hepatitis C virus genome reveals a cooperative involvement in genome packaging. Sci Rep 2016; 6:22952. [PMID: 26972799 PMCID: PMC4789732 DOI: 10.1038/srep22952] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 02/19/2016] [Indexed: 12/11/2022] Open
Abstract
The specific packaging of the hepatitis C virus (HCV) genome is hypothesised to be driven by Core-RNA interactions. To identify the regions of the viral genome involved in this process, we used SELEX (systematic evolution of ligands by exponential enrichment) to identify RNA aptamers which bind specifically to Core in vitro. Comparison of these aptamers to multiple HCV genomes revealed the presence of a conserved terminal loop motif within short RNA stem-loop structures. We postulated that interactions of these motifs, as well as sub-motifs which were present in HCV genomes at statistically significant levels, with the Core protein may drive virion assembly. We mutated 8 of these predicted motifs within the HCV infectious molecular clone JFH-1, thereby producing a range of mutant viruses predicted to possess altered RNA secondary structures. RNA replication and viral titre were unaltered in viruses possessing only one mutated structure. However, infectivity titres were decreased in viruses possessing a higher number of mutated regions. This work thus identified multiple novel RNA motifs which appear to contribute to genome packaging. We suggest that these structures act as cooperative packaging signals to drive specific RNA encapsidation during HCV assembly.
Collapse
MESH Headings
- Aptamers, Nucleotide/chemistry
- Aptamers, Nucleotide/genetics
- Aptamers, Nucleotide/metabolism
- Base Sequence
- Blotting, Western
- Cell Line, Tumor
- Gene Expression Regulation, Viral
- Genome, Viral/genetics
- Hepacivirus/genetics
- Hepacivirus/metabolism
- Humans
- Mutation
- Nucleic Acid Conformation
- Nucleotide Motifs/genetics
- Protein Binding
- RNA, Viral/chemistry
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- SELEX Aptamer Technique
- Viral Core Proteins/genetics
- Viral Core Proteins/metabolism
- Viral Proteins/genetics
- Viral Proteins/metabolism
- Virus Assembly/genetics
Collapse
Affiliation(s)
- H. Stewart
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - R.J. Bingham
- York Centre for Complex Systems Analysis, Departments of Mathematics and Biology, University of York, York, YO10 5DD, United Kingdom
| | - S. J. White
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - E. C. Dykeman
- York Centre for Complex Systems Analysis, Departments of Mathematics and Biology, University of York, York, YO10 5DD, United Kingdom
| | - C. Zothner
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - A. K. Tuplin
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, United Kingdom
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - P. G. Stockley
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - R. Twarock
- York Centre for Complex Systems Analysis, Departments of Mathematics and Biology, University of York, York, YO10 5DD, United Kingdom
| | - M. Harris
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, United Kingdom
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, United Kingdom
| |
Collapse
|
14
|
Shirasago Y, Shimizu Y, Tanida I, Suzuki T, Suzuki R, Sugiyama K, Wakita T, Hanada K, Yagi K, Kondoh M, Fukasawa M. Occludin-Knockout Human Hepatic Huh7.5.1-8-Derived Cells Are Completely Resistant to Hepatitis C Virus Infection. Biol Pharm Bull 2016; 39:839-48. [PMID: 26887345 DOI: 10.1248/bpb.b15-01023] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
It is well known that occludin (OCLN) is involved in hepatitis C virus (HCV) entry into hepatocytes, but there has been no conclusive evidence that OCLN is essential for HCV infection. In this study, we first established an OCLN-knockout cell line derived from human hepatic Huh7.5.1-8 cells using the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 system, in which two independent targeting plasmids expressing single-guide RNAs were used. One established cell clone, named OKH-4, had the OCLN gene truncated in the N-terminal region, and a complete defect of the OCLN protein was shown using immunoblot analysis. Infection of OKH-4 cells with various genotypes of HCV was abolished, and exogenous expression of the OCLN protein in OKH-4 cells completely reversed permissiveness to HCV infection. In addition, using a co-culture system of HCV-infected Huh7.5.1-8 cells with OKH-4 cells, we showed that OCLN is also critical for cell-to-cell HCV transmission. Thus, we concluded that OCLN is essential for HCV infection of human hepatic cells. Further experiments using HCV genomic RNA-transfected OKH-4 cells or HCV subgenomic replicon-harboring OKH-4 cells suggested that OCLN is mainly involved in the entry step of the HCV life cycle. It was also demonstrated that the second extracellular loop of OCLN, especially the two cysteine residues, is critical for HCV infection of hepatic cells. OKH-4 cells may be a useful tool for understanding not only the entire mechanism of HCV entry, but also the biological functions of OCLN.
Collapse
Affiliation(s)
- Yoshitaka Shirasago
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Akpinar F, Timm A, Yin J. High-Throughput Single-Cell Kinetics of Virus Infections in the Presence of Defective Interfering Particles. J Virol 2016; 90:1599-612. [PMID: 26608322 PMCID: PMC4719634 DOI: 10.1128/jvi.02190-15] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 11/18/2015] [Indexed: 01/01/2023] Open
Abstract
UNLABELLED Defective interfering particles (DIPs) are virus mutants that lack essential genes for growth. In coinfections with helper virus, the diversion of viral proteins to the replication and packaging of DIP genomes can interfere with virus production. Mounting cases of DIPs and DIP-like genomes in clinical and natural isolates, as well as growing interest in DIP-based therapies, underscore a need to better elucidate how DIPs work. DIP activity is primarily measured by its inhibition of virus infection yield, an endpoint that masks the dynamic and potentially diverse individual cell behaviors. Using vesicular stomatitis virus (VSV) as a model, we coinfected BHK cells with VSV DIPs and recombinant helper virus carrying a gene encoding a red fluorescent protein (RFP) whose expression correlates with the timing and level of virus release. For single cells within a monolayer, 10 DIPs per cell suppressed the reporter expression in only 1.2% of the cells. In most cells, it slowed and reduced viral gene expression, manifested as a shift in mean latent time from 4 to 6 h and reduced virus yields by 10-fold. For single cells isolated in microwells, DIP effects were more pronounced, reducing virus yields by 100-fold and extending latent times to 12 h, including individual instances above 20 h. Together, these results suggest that direct or indirect cell-cell interactions prevent most coinfected cells from being completely suppressed by DIPs. Finally, a gamma distribution model captures well how the infection kinetics quantitatively depends on the DIP dose. Such models will be useful for advancing a predictive biology of DIP-associated virus growth and infection spread. IMPORTANCE During the last century, basic studies in virology have focused on developing a molecular mechanistic understanding of how infectious viruses reproduce in their living host cells. However, over the last 10 years, the advent of deep sequencing and other powerful technologies has revealed in natural and patient infections that viruses do not act alone. Instead, viruses are often accompanied by defective virus-like particles that carry large deletions in their genomes and fail to replicate on their own. Coinfections of viable and defective viruses behave in unpredictable ways, but they often interfere with normal virus growth, potentially enabling infections to evade host immune surveillance. In the current study, controlled levels of defective viruses are coinfected with viable viruses that have been engineered to express a fluorescent reporter protein during infection. Unique profiles of reporter expression acquired from thousands of coinfected cells reveal how interference acts at multiple stages of infection.
Collapse
Affiliation(s)
- Fulya Akpinar
- Systems Biology Theme, Wisconsin Institute for Discovery, Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Andrea Timm
- Systems Biology Theme, Wisconsin Institute for Discovery, Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - John Yin
- Systems Biology Theme, Wisconsin Institute for Discovery, Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
16
|
Abstract
Various host factors are involved in the cellular entry of hepatitis C virus (HCV). In addition to the factors previously reported, we discovered that the very-low-density lipoprotein receptor (VLDLR) mediates HCV entry independent of CD81. Culturing Huh7.5 cells under hypoxic conditions significantly increased HCV entry as a result of the expression of VLDLR, which was not expressed under normoxic conditions in this cell line. Ectopic VLDLR expression conferred susceptibility to HCV entry of CD81-deficient Huh7.5 cells. Additionally, VLDLR-mediated HCV entry was not affected by the knockdown of cellular factors known to act as HCV receptors or HCV entry factors. Because VLDLR is expressed in primary human hepatocytes, our results suggest that VLDLR functions in vivo as an HCV receptor independent of canonical CD81-mediated HCV entry.
Collapse
|
17
|
Provazzi PJS, Mukherjee S, Hanson AM, Nogueira ML, Carneiro BM, Frick DN, Rahal P. Analysis of the Enzymatic Activity of an NS3 Helicase Genotype 3a Variant Sequence Obtained from a Relapse Patient. PLoS One 2015; 10:e0144638. [PMID: 26658750 PMCID: PMC4684341 DOI: 10.1371/journal.pone.0144638] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 11/20/2015] [Indexed: 12/15/2022] Open
Abstract
The hepatitis C virus (HCV) is a species of diverse genotypes that infect over 170 million people worldwide, causing chronic inflammation, cirrhosis and hepatocellular carcinoma. HCV genotype 3a is common in Brazil, and it is associated with a relatively poor response to current direct-acting antiviral therapies. The HCV NS3 protein cleaves part of the HCV polyprotein, and cellular antiviral proteins. It is therefore the target of several HCV drugs. In addition to its protease activity, NS3 is also an RNA helicase. Previously, HCV present in a relapse patient was found to harbor a mutation known to be lethal to HCV genotype 1b. The point mutation encodes the amino acid substitution W501R in the helicase RNA binding site. To examine how the W501R substitution affects NS3 helicase activity in a genotype 3a background, wild type and W501R genotype 3a NS3 alleles were sub-cloned, expressed in E. coli, and the recombinant proteins were purified and characterized. The impact of the W501R allele on genotype 2a and 3a subgenomic replicons was also analyzed. Assays monitoring helicase-catalyzed DNA and RNA unwinding revealed that the catalytic efficiency of wild type genotype 3a NS3 helicase was more than 600 times greater than the W501R protein. Other assays revealed that the W501R protein bound DNA less than 2 times weaker than wild type, and both proteins hydrolyzed ATP at similar rates. In Huh7.5 cells, both genotype 2a and 3a subgenomic HCV replicons harboring the W501R allele showed a severe defect in replication. Since the W501R allele is carried as a minor variant, its replication would therefore need to be attributed to the trans-complementation by other wild type quasispecies.
Collapse
Affiliation(s)
- Paola J. S. Provazzi
- São Paulo State University - UNESP, Department of Biology, São José do Rio Preto/SP, CEP: 15054–000, Brazil
- * E-mail:
| | - Sourav Mukherjee
- University of Wisconsin- Milwaukee, Department of Chemistry & Biochemistry, Milwaukee, WI, 53217, United States of America
| | - Alicia M. Hanson
- University of Wisconsin- Milwaukee, Department of Chemistry & Biochemistry, Milwaukee, WI, 53217, United States of America
| | - Mauricio L. Nogueira
- São José do Rio Preto Medical School, Laboratory of Virology, São José do Rio Preto/SP, CEP: 15090–000, Brazil
| | - Bruno M. Carneiro
- São Paulo State University - UNESP, Department of Biology, São José do Rio Preto/SP, CEP: 15054–000, Brazil
| | - David N. Frick
- University of Wisconsin- Milwaukee, Department of Chemistry & Biochemistry, Milwaukee, WI, 53217, United States of America
| | - Paula Rahal
- São Paulo State University - UNESP, Department of Biology, São José do Rio Preto/SP, CEP: 15054–000, Brazil
| |
Collapse
|
18
|
Hepatitis C Virus Deletion Mutants Are Found in Individuals Chronically Infected with Genotype 1 Hepatitis C Virus in Association with Age, High Viral Load and Liver Inflammatory Activity. PLoS One 2015; 10:e0138546. [PMID: 26405760 PMCID: PMC4583497 DOI: 10.1371/journal.pone.0138546] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 09/01/2015] [Indexed: 01/08/2023] Open
Abstract
Hepatitis C virus (HCV) variants characterized by genomic deletions in the structural protein region have been sporadically detected in liver and serum of hepatitis C patients. These defective genomes are capable of autonomous RNA replication and are packaged into infectious viral particles in cells co-infected with the wild-type virus. The prevalence of such forms in the chronically HCV-infected population and the impact on the severity of liver disease or treatment outcome are currently unknown. In order to determine the prevalence of HCV defective variants and to study their association with clinical characteristics, a screening campaign was performed on pre-therapy serum samples from a well-characterized cohort of previously untreated genotype 1 HCV-infected patients who received treatment with PEG-IFNα and RBV. 132 subjects were successfully analyzed for the presence of defective species exploiting a long-distance nested PCR assay. HCV forms with deletions predominantly affecting E1, E2 and p7 proteins were found in a surprising high fraction of the subjects (25/132, 19%). Their presence was associated with patient older age, higher viral load and increased necroinflammatory activity in the liver. While the presence of circulating HCV carrying deletions in the E1-p7 region did not appear to significantly influence sustained virological response rates to PEG-IFNα/RBV, our study indicates that the presence of these subgenomic HCV mutants could be associated with virological relapse in patients who did not have detectable viremia at the end of the treatment.
Collapse
|
19
|
Katsarou K, Rao ALN, Tsagris M, Kalantidis K. Infectious long non-coding RNAs. Biochimie 2015; 117:37-47. [PMID: 25986218 DOI: 10.1016/j.biochi.2015.05.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 05/07/2015] [Indexed: 02/06/2023]
Abstract
Long non protein coding RNAs (lncRNAs) constitute a large category of the RNA world, able to regulate different biological processes. In this review we are focusing on infectious lncRNAs, their classification, pathogenesis and impact on the infected organisms. Here they are presented in two separate groups: 'dependent lncRNAs' (comprising satellites RNA, Hepatitis D virus and lncRNAs of viral origin) which need a helper virus and 'independent lncRNAs' (viroids) that can self-replicate. Even though these lncRNA do not encode any protein, their structure and/or sequence comprise all the necessary information to drive specific interactions with host factors and regulate several cellular functions. These new data that have emerged during the last few years concerning lncRNAs modify the way we understand molecular biology's 'central dogma' and give new perspectives for applications and potential therapeutic strategies.
Collapse
Affiliation(s)
- Konstantina Katsarou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Heraklion, Crete, Greece
| | - A L N Rao
- Department of Plant Pathology and Microbiology, University of California, Riverside, CA, 92521-01222, USA
| | - Mina Tsagris
- Department of Biology, University of Crete, Heraklion, Crete, Greece
| | - Kriton Kalantidis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Heraklion, Crete, Greece; Department of Biology, University of Crete, Heraklion, Crete, Greece.
| |
Collapse
|
20
|
Chu PS, Ebinuma H, Nakamoto N, Sugiyama K, Usui S, Wakayama Y, Taniki N, Yamaguchi A, Shiba S, Yamagishi Y, Wakita T, Hibi T, Saito H, Kanai T. Genotype-Associated Differential NKG2D Expression on CD56+CD3+ Lymphocytes Predicts Response to Pegylated-Interferon/Ribavirin Therapy in Chronic Hepatitis C. PLoS One 2015; 10:e0125664. [PMID: 25965701 PMCID: PMC4428701 DOI: 10.1371/journal.pone.0125664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Accepted: 03/16/2015] [Indexed: 12/13/2022] Open
Abstract
Hepatitis C virus (HCV) genotype 1 infections are significantly more difficult to eradicate with PEG-IFN/ribavirin therapy, compared to HCV genotype 2. The aim of this work is to investigate the difference of immunological impairments underlying this phenomenon. Pre-treatment NKG2D expression on peripheral CD56+CD3+ lymphocytes and CD56+CD3- NK cells from cases of chronic hepatitis C were analyzed and assessed by treatment effect. Two strains of HCV were used to co-incubate with immune cells in vitro. NKG2D expression on peripheral CD56+CD3+ lymphocytes, but not NK cells, was significantly impaired in genotype 1 infection, compared to genotype 2. When peripheral blood mononuclear cells from healthy donors were co-incubated with TNS2J1, a genotype 1b/2a chimera strain, or with JFH1, a genotype 2a strain, genotype-specific decrease of NKG2D on CD56+CD3+ lymphocytes, but not NK cells, was observed. Pre-treatment NKG2D expression on peripheral CD56+CD3+ lymphocytes significantly correlated with reduction in serum HCV RNA levels from week 0 to week 4, and predicted treatment response. Ex vivo stimulation of peripheral CD56+CD3+ lymphocytes showed NKG2D expression-correlated IFN-γ production. In conclusion, Decreased NKG2D expression on CD56+CD3+ lymphocytes in chronic HCV genotype 1 infection predicts inferior treatment response to PEG-IFN/ribavirin therapy compared to genotype 2.
Collapse
Affiliation(s)
- Po-sung Chu
- Department of Gastroenterology and Hepatology, Division of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Hirotoshi Ebinuma
- Department of Gastroenterology and Hepatology, Division of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Nobuhiro Nakamoto
- Department of Gastroenterology and Hepatology, Division of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Kazuo Sugiyama
- Department of Gastroenterology and Hepatology, Division of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Shingo Usui
- Department of Gastroenterology and Hepatology, Division of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Yuko Wakayama
- Department of Gastroenterology and Hepatology, Division of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Nobuhito Taniki
- Department of Gastroenterology and Hepatology, Division of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Akihiro Yamaguchi
- Department of Gastroenterology and Hepatology, Division of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Shunsuke Shiba
- Department of Gastroenterology and Hepatology, Division of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Yoshiyuki Yamagishi
- Department of Gastroenterology and Hepatology, Division of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Takaji Wakita
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Toshifumi Hibi
- Center for Advanced IBD Research and Treatment, Kitasato Institute Hospital, Kitasato University, Tokyo, Japan
| | - Hidetsugu Saito
- Department of Gastroenterology and Hepatology, Division of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
- Division of Pharmacotherapeutics, School of Pharmacy, Keio University, Tokyo, Japan
| | - Takanori Kanai
- Department of Gastroenterology and Hepatology, Division of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| |
Collapse
|
21
|
Kazakov T, Yang F, Ramanathan HN, Kohlway A, Diamond MS, Lindenbach BD. Hepatitis C virus RNA replication depends on specific cis- and trans-acting activities of viral nonstructural proteins. PLoS Pathog 2015; 11:e1004817. [PMID: 25875808 PMCID: PMC4395149 DOI: 10.1371/journal.ppat.1004817] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 03/18/2015] [Indexed: 02/07/2023] Open
Abstract
Many positive-strand RNA viruses encode genes that can function in trans, whereas other genes are required in cis for genome replication. The mechanisms underlying trans- and cis-preferences are not fully understood. Here, we evaluate this concept for hepatitis C virus (HCV), an important cause of chronic liver disease and member of the Flaviviridae family. HCV encodes five nonstructural (NS) genes that are required for RNA replication. To date, only two of these genes, NS4B and NS5A, have been trans-complemented, leading to suggestions that other replicase genes work only in cis. We describe a new quantitative system to measure the cis- and trans-requirements for HCV NS gene function in RNA replication and identify several lethal mutations in the NS3, NS4A, NS4B, NS5A, and NS5B genes that can be complemented in trans, alone or in combination, by expressing the NS3-5B polyprotein from a synthetic mRNA. Although NS5B RNA binding and polymerase activities can be supplied in trans, NS5B protein expression was required in cis, indicating that NS5B has a cis-acting role in replicase assembly distinct from its known enzymatic activity. Furthermore, the RNA binding and NTPase activities of the NS3 helicase domain were required in cis, suggesting that these activities play an essential role in RNA template selection. A comprehensive complementation group analysis revealed functional linkages between NS3-4A and NS4B and between NS5B and the upstream NS3-5A genes. Finally, NS5B polymerase activity segregated with a daclatasvir-sensitive NS5A activity, which could explain the synergy of this antiviral compound with nucleoside analogs in patients. Together, these studies define several new aspects of HCV replicase structure-function, help to explain the potency of HCV-specific combination therapies, and provide an experimental framework for the study of cis- and trans-acting activities in positive-strand RNA virus replication more generally.
Collapse
Affiliation(s)
- Teymur Kazakov
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Feng Yang
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Harish N. Ramanathan
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Andrew Kohlway
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, United States of America
| | - Michael S. Diamond
- Departments of Medicine, Molecular Microbiology, and Pathology & Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Brett D. Lindenbach
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, United States of America
| |
Collapse
|
22
|
Sugiyama K, Ebinuma H, Nakamoto N, Sakasegawa N, Murakami Y, Chu PS, Usui S, Ishibashi Y, Wakayama Y, Taniki N, Murata H, Saito Y, Fukasawa M, Saito K, Yamagishi Y, Wakita T, Takaku H, Hibi T, Saito H, Kanai T. Prominent steatosis with hypermetabolism of the cell line permissive for years of infection with hepatitis C virus. PLoS One 2014; 9:e94460. [PMID: 24718268 PMCID: PMC3981821 DOI: 10.1371/journal.pone.0094460] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2013] [Accepted: 03/16/2014] [Indexed: 12/11/2022] Open
Abstract
Most of experiments for HCV infection have been done using lytic infection systems, in which HCV-infected cells inevitably die. Here, to elucidate metabolic alteration in HCV-infected cells in a more stable condition, we established an HCV-persistently-infected cell line, designated as HPI cells. This cell line has displayed prominent steatosis and supported HCV infection for more than 2 years, which is the longest ever reported. It enabled us to analyze metabolism in the HCV-infected cells integrally combining metabolomics and expression arrays. It revealed that rate-limiting enzymes for biosynthesis of cholesterol and fatty acids were up-regulated with actual increase in cholesterol, desmosterol (cholesterol precursor) and pool of fatty acids. Notably, the pentose phosphate pathway was facilitated with marked up-regulation of glucose-6-phosphate dehydrogenase, a rete-limiting enzyme, with actual increase in NADPH. In its downstream, enzymes for purine synthesis were also up-regulated resulting in increase of purine. Contrary to common cancers, the TCA cycle was preferentially facilitated comparing to glycolysis pathway with a marked increase of most of amino acids. Interestingly, some genes controlled by nuclear factor (erythroid-derived 2)-like 2 (Nrf2), a master regulator of antioxidation and metabolism, were constitutively up-regulated in HPI cells. Knockdown of Nrf2 markedly reduced steatosis and HCV infection, indicating that Nrf2 and its target genes play important roles in metabolic alteration and HCV infection. In conclusion, HPI cell is a bona fide HCV-persistently-infected cell line supporting HCV infection for years. This cell line sustained prominent steatosis in a hypermetabolic status producing various metabolites. Therefore, HPI cell is a potent research tool not only for persistent HCV infection but also for liver metabolism, overcoming drawbacks of the lytic infection systems.
Collapse
Affiliation(s)
- Kazuo Sugiyama
- Center for the Study of Chronic Liver Diseases, Keio University School of Medicine, Tokyo, Japan
- * E-mail:
| | - Hirotoshi Ebinuma
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Nobuhiro Nakamoto
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | | | - Yuko Murakami
- Division of Pharmacotherapeutics, Faculty of Pharmacy, Keio University, Tokyo, Japan
| | - Po-sung Chu
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Shingo Usui
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Yuka Ishibashi
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Yuko Wakayama
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Nobuhito Taniki
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Hiroko Murata
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Yoshimasa Saito
- Division of Pharmacotherapeutics, Faculty of Pharmacy, Keio University, Tokyo, Japan
| | - Masayoshi Fukasawa
- Department of Biochemistry and Cell Biology, National Institute of Infectious Disease, Tokyo, Japan
| | - Kyoko Saito
- Department of Biochemistry and Cell Biology, National Institute of Infectious Disease, Tokyo, Japan
| | - Yoshiyuki Yamagishi
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Takaji Wakita
- Virology II, National Institute of Infectious Disease, Tokyo, Japan
| | - Hiroshi Takaku
- Department of Life and Environmental Sciences, Chiba Institute of Technology, Chiba, Japan
| | - Toshifumi Hibi
- Center for Advanced IBD Research and Treatment, Kitasato Institute Hospital, Kitasato University, Tokyo, Japan
| | - Hidetsugu Saito
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
- Division of Pharmacotherapeutics, Faculty of Pharmacy, Keio University, Tokyo, Japan
| | - Takanori Kanai
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
23
|
Doumba PP, Serti E, Boutsikou M, Konstadoulakis MM, Georgopoulou U, Koskinas J. Phenotypic and functional alterations of primary human PBMCs induced by HCV non-enveloped capsid-like particles uptake. Cell Mol Life Sci 2013; 70:3463-74. [PMID: 23645326 PMCID: PMC11113332 DOI: 10.1007/s00018-013-1344-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 04/01/2013] [Accepted: 04/11/2013] [Indexed: 12/31/2022]
Abstract
Hepatitis C virus non-enveloped particles circulate in the serum of HCV-infected patients and are believed to be involved in viral persistence. It was previously demonstrated that recombinant HCVne particles can efficiently enter T cells. In this study we investigated the effect of this entry on the phenotype and function of PBMCs, focused on the CD4+ and CD8+ T-cells. We have generated recombinant HCVne in the absence of other viral proteins. PBMCs from healthy donors were sampled after incubation either with HCVne or the control at different time points. Levels of expression of CD107a, CD25, CTLA-4, and T regulatory cells were estimated and cytokine expression and secretion were also monitored. Peripheral T cells expressed elevated CD127. The intracellular expression of the inhibitory marker CTLA-4 (CD152) increased significantly on peripheral T cells at late hours post-treatment, compared to the respective non-treated group. Despite the fact that there was an initial immune response due to HCVne uptake, T cells were driven to a partial exhausted phenotype. A significant induction of CD4+CD25+(hi)CD127-regulatory T cells at late hours was observed. Consistently, Foxp3+CD4+ T cells were also increased. In parallel, a significant transcriptional activation and increased secretion of IL-2, IL-10, and IFN-γ, was recorded. Moreover, mRNA transcription of TGF-β was considerably elevated. HCVne particles have the potential to shape the immune response by modifying specific phenotypic and functional markers mainly on CD4+ T cells and driving them to partial exhaustion as well as to Treg expansion.
Collapse
Affiliation(s)
- Polyxeni P. Doumba
- Department of Internal Medicine, Medical School of Athens, Hippokration Hospital, Athens, Greece
- Laboratory of Surgical Research, 1st Department of Propaedeutic Surgery, Medical School of Athens, Hippokration Hospital, Athens, Greece
| | - Elisavet Serti
- Molecular Virology Laboratory, Hellenic Pasteur Institute, Athens, Greece
| | - Maria Boutsikou
- Department of Internal Medicine, Medical School of Athens, Hippokration Hospital, Athens, Greece
| | - Manousos M. Konstadoulakis
- Laboratory of Surgical Research, 1st Department of Propaedeutic Surgery, Medical School of Athens, Hippokration Hospital, Athens, Greece
| | | | - John Koskinas
- Department of Internal Medicine, Medical School of Athens, Hippokration Hospital, Athens, Greece
| |
Collapse
|
24
|
Dynamics of defective hepatitis C virus clones in reinfected liver grafts in liver transplant recipients: ultradeep sequencing analysis. J Clin Microbiol 2013; 51:3645-52. [PMID: 23985907 DOI: 10.1128/jcm.00676-13] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Hepatitis C virus (HCV) reinfects liver allografts in transplant recipients by replicating immediately after transplantation, causing a rapid increase in blood serum HCV RNA levels. We evaluated dynamic changes in the viral genetic complexity after HCV reinfection of the graft liver; we also identified the characteristics of replicating HCV clones using a massively parallel ultradeep sequencing technique to determine the full-genome HCV sequences in the liver and serum specimens of five transplant recipients with genotype 1b HCV infection before and after liver transplantation. The recipients showed extremely high genetic heterogeneity before transplantation, and the HCV population makeup was not significantly different between the liver and blood serum specimens of the individuals. Viral quasispecies complexity in serum was significantly lower after liver transplantation than before it, suggesting that certain HCV clones selectively proliferated after transplantation. Defective HCV clones lacking the structural region of the HCV genome did not increase in number, and full-genome HCV clones selectively increased in number immediately after liver transplantation. A re-increase in the same defective clone existing before transplantation was detected 22 months after transplantation in one patient. Ultradeep sequencing technology revealed that the genetic heterogeneity of HCV was reduced after liver transplantation. Dynamic changes in defective HCV clones after liver transplantation indicate that these clones have important roles in the HCV life cycle.
Collapse
|
25
|
Fournier C, Duverlie G, Castelain S. Are trans-complementation systems suitable for hepatitis C virus life cycle studies? J Viral Hepat 2013; 20:225-33. [PMID: 23490366 PMCID: PMC7167126 DOI: 10.1111/jvh.12069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 11/01/2012] [Indexed: 01/28/2023]
Abstract
Complementation is a naturally occurring genetic mechanism that has been studied for a number of plus-strand RNA viruses. Although trans-complementation is well documented for Flaviviridae family viruses, the first such system for hepatitis C virus (HCV) was only described in 2005. Since then, the development of a number of HCV trans-complementation models has improved our knowledge of HCV protein functions and interactions, genome replication and viral particle assembly. These models have also been used to produce defective viruses and so improvements are necessary for vaccine assays. This review provides an update on HCV trans-complementation systems, the viral mechanisms studied therewith and the production and characterization of trans-encapsidated particles.
Collapse
Affiliation(s)
- C. Fournier
- EA4294 Unité de Virologie Clinique et FondamentaleUniversité de Picardie Jules VerneAmiensFrance,Laboratoire de VirologieCentre Hospitalier Universitaire d'AmiensAmiensFrance
| | - G. Duverlie
- EA4294 Unité de Virologie Clinique et FondamentaleUniversité de Picardie Jules VerneAmiensFrance,Laboratoire de VirologieCentre Hospitalier Universitaire d'AmiensAmiensFrance
| | - S. Castelain
- EA4294 Unité de Virologie Clinique et FondamentaleUniversité de Picardie Jules VerneAmiensFrance,Laboratoire de VirologieCentre Hospitalier Universitaire d'AmiensAmiensFrance
| |
Collapse
|
26
|
Fournier C, Helle F, Descamps V, Morel V, François C, Dedeurwaerder S, Wychowski C, Duverlie G, Castelain S. Natural selection of adaptive mutations in non-structural genes increases trans-encapsidation of hepatitis C virus replicons lacking envelope protein genes. J Gen Virol 2013; 94:996-1008. [PMID: 23288424 DOI: 10.1099/vir.0.049676-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A trans-packaging system for hepatitis C virus (HCV) replicons lacking envelope glycoproteins was developed. The replicons were efficiently encapsidated into infectious particles after expression in trans of homologous HCV envelope proteins under the control of an adenoviral vector. Interestingly, expression in trans of core or core, p7 and NS2 with envelope proteins did not enhance trans-encapsidation. Expression of heterologous envelope proteins, in the presence or absence of heterologous core, p7 and NS2, did not rescue single-round infectious particle production. To increase the titre of homologous, single-round infectious particles in our system, successive cycles of trans-encapsidation and infection were performed. Four cycles resulted in a 100-fold increase in the yield of particles. Sequence analysis revealed a total of 16 potential adaptive mutations in two independent experiments. Except for a core mutation in one experiment, all the mutations were located in non-structural regions mainly in NS5A (four in domain III and two near the junction with the NS5B gene). Reverse genetics studies suggested that D2437A and S2443T adaptive mutations, which are located at the NS5A-B cleavage site did not affect viral replication, but enhanced the single-round infectious particles assembly only in trans-encapsidation model. In conclusion, our trans-encapsidation system enables the production of HCV single-round infectious particles. This system is adaptable and can positively select variants. The adapted variants promote trans-encapsidation and should constitute a valuable tool in the development of replicon-based HCV vaccines.
Collapse
Affiliation(s)
- Carole Fournier
- EA4294, Jules Verne University of Picardy, Amiens, France.,Virology Department, Amiens University Hospital, South Hospital, Amiens, France
| | - François Helle
- EA4294, Jules Verne University of Picardy, Amiens, France
| | - Véronique Descamps
- EA4294, Jules Verne University of Picardy, Amiens, France.,Virology Department, Amiens University Hospital, South Hospital, Amiens, France
| | - Virginie Morel
- EA4294, Jules Verne University of Picardy, Amiens, France.,Virology Department, Amiens University Hospital, South Hospital, Amiens, France
| | - Catherine François
- EA4294, Jules Verne University of Picardy, Amiens, France.,Virology Department, Amiens University Hospital, South Hospital, Amiens, France
| | - Sarah Dedeurwaerder
- Laboratory of Cancer Epigenetics, Université Libre de Bruxelles, Faculty of Medicine, Brussels, Belgium.,EA4294, Jules Verne University of Picardy, Amiens, France
| | - Czeslaw Wychowski
- INSERM U1019, CNRS UMR 8204, Center for Infection and Immunity of Lille, Institut de Biologie de Lille, Lille, France
| | - Gilles Duverlie
- EA4294, Jules Verne University of Picardy, Amiens, France.,Virology Department, Amiens University Hospital, South Hospital, Amiens, France
| | - Sandrine Castelain
- EA4294, Jules Verne University of Picardy, Amiens, France.,Virology Department, Amiens University Hospital, South Hospital, Amiens, France
| |
Collapse
|
27
|
Serti E, Doumba PP, Thyphronitis G, Tsitoura P, Katsarou K, Foka P, Konstandoulakis MM, Koskinas J, Mavromara P, Georgopoulou U. Modulation of IL-2 expression after uptake of hepatitis C virus non-enveloped capsid-like particles: the role of p38 kinase. Cell Mol Life Sci 2011; 68:505-22. [PMID: 20680391 PMCID: PMC11114540 DOI: 10.1007/s00018-010-0466-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Revised: 06/28/2010] [Accepted: 07/09/2010] [Indexed: 12/13/2022]
Abstract
Hepatitis C virus (HCV) has been shown to actively replicate in cells of the immune system, altering both their function and cytokine expression. Naked nucleocapsids have been reported in the serum of infected patients. We investigated interference of recombinant non-enveloped capsid-like particles with signaling pathways in T cells. HCV non-enveloped particles (HCVne) internalization was verified in Jurkat and Hut 78 T cells, as well as primary human peripheral blood and intrahepatic mononuclear cells. HCVne uptake leads to activation of the MAPKs-p38 signaling pathway. Using specific phosphoantibodies, signaling pathways inhibitors, and chemical agents, it was demonstrated that p38 activation in T cells correlated with IL-2 transcriptional activation and was accompanied by a parallel increase of IL-2 cytokine secretion. c-fos and egr-1, two transcription factors, essential for IL-2 promoter activity, were also found to be elevated. We propose that HCVne uptake by T lymphocytes results in increased MAPKs-p38 activity and IL-2 expression, thus altering the host immune response.
Collapse
Affiliation(s)
- Elisavet Serti
- Molecular Virology Laboratory, Hellenic Pasteur Institute, Athens, Greece
| | - Polyxeni P. Doumba
- Laboratory of Surgical Research, 1st Department of Propaedeutic Surgery, Medical School of Athens, Hippokration Hospital, Athens, Greece
- 2nd Department of Internal Medicine, Medical School of Athens, Hippokration Hospital, Athens, Greece
| | - George Thyphronitis
- Department of Biological Applications and Technology, University of Ioannina, Ioannina, Greece
| | - Panagiota Tsitoura
- Present Address: Insect Molecular Genetics and Biotechnology Group, Institute of Biology, NCSR Demokritos, Athens, Greece
| | | | - Pelagia Foka
- Molecular Virology Laboratory, Hellenic Pasteur Institute, Athens, Greece
| | - Manousos M. Konstandoulakis
- Laboratory of Surgical Research, 1st Department of Propaedeutic Surgery, Medical School of Athens, Hippokration Hospital, Athens, Greece
| | - John Koskinas
- 2nd Department of Internal Medicine, Medical School of Athens, Hippokration Hospital, Athens, Greece
| | - Penelope Mavromara
- Molecular Virology Laboratory, Hellenic Pasteur Institute, Athens, Greece
| | | |
Collapse
|
28
|
Infectivity of hepatitis C virus is influenced by association with apolipoprotein E isoforms. J Virol 2010; 84:12048-57. [PMID: 20826689 DOI: 10.1128/jvi.01063-10] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Hepatitis C virus (HCV) is a causative agent of chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma. HCV in circulating blood associates with lipoproteins such as very low density lipoprotein (VLDL) and low-density lipoprotein (LDL). Although these associations suggest that lipoproteins are important for HCV infectivity, the roles of lipoproteins in HCV production and infectivity are not fully understood. To clarify the roles of lipoprotein in the HCV life cycle, we analyzed the effect of apolipoprotein E (ApoE), a component of lipoprotein, on virus production and infectivity. The production of infectious HCV was significantly reduced by the knockdown of ApoE. When an ApoE mutant that fails to be secreted into the culture medium was used, the amount of infectious HCV in the culture medium was dramatically reduced; the infectious HCV accumulated inside these cells, suggesting that infectious HCV must associate with ApoE prior to virus release. We performed rescue experiments in which ApoE isoforms were ectopically expressed in cells depleted of endogenous ApoE. The ectopic expression of the ApoE2 isoform, which has low affinity for the LDL receptor (LDLR), resulted in poor recovery of infectious HCV, whereas the expression of other isoforms, ApoE3 and ApoE4, rescued the production of infectious virus, raising it to an almost normal level. Furthermore, we found that the infectivity of HCV required both the LDLR and scavenger receptor class B, member I (SR-BI), ligands for ApoE. These findings indicate that ApoE is an essential apolipoprotein for HCV infectivity.
Collapse
|
29
|
Lipoprotein lipase and hepatic triglyceride lipase reduce the infectivity of hepatitis C virus (HCV) through their catalytic activities on HCV-associated lipoproteins. Virology 2010; 407:152-9. [PMID: 20822787 DOI: 10.1016/j.virol.2010.08.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Revised: 06/19/2010] [Accepted: 08/12/2010] [Indexed: 02/07/2023]
Abstract
The effect of lipolysis by lipoprotein lipase (LPL) and hepatic triglyceride lipase (HTGL) on hepatitis C virus (HCV) infection was evaluated. First, medium from HuH7.5 cells bearing HCV genome replication was treated with LPL. LPL treatment led to reduced HCV infectivity, shifted HCV to higher densities, and lowered the amount of apolipoprotein E-associated HCV. The effect of endogenous HTGL secreted from HuH7.5 on HCV infectivity was next examined. Neutralization of HTGL by an anti-HTGL antibody resulted in suppression of LPL-induced reduction in infectivity of HCV-bearing medium, while knockdown of HTGL by siRNA led to increased HCV infectivity irrespective of LPL. HCV in medium from HTGL knockdown cells was found in fractions with a lower density. These results indicate that changes in the nature of HCV-associated lipoproteins by LPL and/or HTGL affect HCV infectivity, suggesting that association of HCV with specific lipoproteins is important for HCV infectivity.
Collapse
|
30
|
Katsarou K, Lavdas AΑ, Tsitoura P, Serti E, Markoulatos P, Mavromara P, Georgopoulou U. Endocytosis of hepatitis C virus non-enveloped capsid-like particles induces MAPK-ERK1/2 signaling events. Cell Mol Life Sci 2010; 67:2491-506. [PMID: 20358251 PMCID: PMC11115770 DOI: 10.1007/s00018-010-0351-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Revised: 03/08/2010] [Accepted: 03/11/2010] [Indexed: 12/12/2022]
Abstract
Although HCV is an enveloped virus, naked nucleocapsids have been reported in the serum of infected patients. The HCV core particle serves as a protective capsid shell for the viral genome and recombinant in vitro assembled HCV core particles induce strong specific immunity. We investigated the post-binding mechanism of recombinant core particle uptake and its intracellular fate. In hepatic cells, these particles are internalized, most likely in a clathrin-dependent pathway, reaching early to late endosomes and finally lysosomes. The endocytic acidic milieu is implicated in trafficking process. Using specific phosphoantibodies, signaling pathway inhibitors and chemical agents, ERK(1/2) was found to be activated in a sustained way after endocytosis, followed by downstream immediate early genes (c-fos and egr-1) modulation. We propose that the intriguing properties of cellular internalization of HCV non-enveloped particles can induce specific ERK(1/2)-MAPKs events that could be important in HCV life cycle and pathogenesis of HCV infection.
Collapse
Affiliation(s)
| | - Alexandros Α. Lavdas
- Laboratory of Cellular and Molecular Neurobiology, Hellenic Pasteur Institute, Athens, Greece
| | - Panagiota Tsitoura
- Present Address: Insect Molecular Genetics and Biotechnology, Institute of Biology, NCSR Demokritos, Athens, Greece
| | - Elisavet Serti
- Molecular Virology Laboratory, Hellenic Pasteur Institute, Athens, Greece
| | | | - Penelope Mavromara
- Molecular Virology Laboratory, Hellenic Pasteur Institute, Athens, Greece
| | | |
Collapse
|
31
|
Production of infectious hepatitis C virus by using RNA polymerase I-mediated transcription. J Virol 2010; 84:5824-35. [PMID: 20237083 DOI: 10.1128/jvi.02397-09] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In this study, we used an RNA polymerase I (Pol I) transcription system for development of a reverse genetics protocol to produce hepatitis C virus (HCV), which is an uncapped positive-strand RNA virus. Transfection with a plasmid harboring HCV JFH-1 full-length cDNA flanked by a Pol I promoter and Pol I terminator yielded an unspliced RNA with no additional sequences at either end, resulting in efficient RNA replication within the cytoplasm and subsequent production of infectious virions. Using this technology, we developed a simple replicon trans-packaging system, in which transient transfection of two plasmids enables examination of viral genome replication and virion assembly as two separate steps. In addition, we established a stable cell line that constitutively produces HCV with a low mutation frequency of the viral genome. The effects of inhibitors of N-linked glycosylation on HCV production were evaluated using this cell line, and the results suggest that certain step(s), such as virion assembly, intracellular trafficking, and secretion, are potentially up- and downregulated according to modifications of HCV envelope protein glycans. This Pol I-based HCV expression system will be beneficial for a high-throughput antiviral screening and vaccine discovery programs.
Collapse
|
32
|
Bittar C, Jardim ACG, Yamasaki LHT, de Queiróz ATL, Carareto CMA, Pinho JRR, de Carvalho-Mello IMVG, Rahal P. Genetic diversity of NS5A protein from hepatitis C virus genotype 3a and its relationship to therapy response. BMC Infect Dis 2010; 10:36. [PMID: 20178583 PMCID: PMC2838888 DOI: 10.1186/1471-2334-10-36] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Accepted: 02/23/2010] [Indexed: 01/14/2023] Open
Abstract
Background The quasispecies nature of HCV may have important implications for viral persistence, pathogenicity and resistance to antiviral agents. The variability of one of the viral proteins, NS5A, is believed to be related to the response to IFN therapy, the standard treatment for infection. In this study we analyzed the quasispecies composition of NS5A protein in patients infected with HCV genotype 3a, before IFN therapy. Methods Viral RNA was isolated from samples of 12 patients: four sustained virological responders (SVR), four non-responders (NR), and four end-of-treatment responders (ETR). cDNA was synthesized, the NS5A region was amplified and the fragments obtained were cloned. Fifteen clones from each patient were sequenced with eight primers, generating 179 contigs. Results Higher values for substitution (either synonymous or non-synonymous) and for distance were found in the SVR group. However, the NR group showed relatively more non-synonymous mutations than the other groups, owing to the higher values of dN/dS in complete NS5A and most specific regions. Overall, NS5A protein is undergoing purifying selection, since all dN/dS ratios values are below 0.5. Conclusions Our study provides an overview of the genetic variability of complete NS5A protein in HCV genotype 3a.
Collapse
Affiliation(s)
- Cíntia Bittar
- Butantan Institute, Viral Immunology Laboratory, Av Vital Brasil n degrees 1500, CEP 05503-900, Butantã, São Paulo, SP, Brazil
| | | | | | | | | | | | | | | |
Collapse
|