1
|
Wang X, Yao J, Wang X, Yang F, Zhao T, Wang H, Li N, Ko HMUUTHUKO, Oo KYAWZIN, Jiang L, Gao S, Huan C. Lysimachia christinae polysaccharides dampen pseudorabies viral infection by downregulating adsorption and exert antioxidant activity. Int J Biol Macromol 2025; 306:141158. [PMID: 39965698 DOI: 10.1016/j.ijbiomac.2025.141158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 01/25/2025] [Accepted: 02/14/2025] [Indexed: 02/20/2025]
Abstract
Pseudorabies virus (PRV) is an alpha herpes virus that causes pseudorabies. Pigs are the only natural hosts of the virus. This disease has caused considerable economic losses to the global pig industry. Since 2011, the effectiveness of vaccines has decreased greatly because of the emergence of various PRV varieties. Additionally, some people are infected with PRV. Therefore, the development of new anti-PRV agents is highly important. Lysimachia christinae is a traditional Chinese herbal medicine that has favorable effects on urine, detoxification, and swelling. In this study, the in vitro and in vivo anti-PRV activities of Lysimachia christinae polysaccharide (LCP) were investigated. Our results revealed that 200 μg/mL LCP significantly attenuated the infection of PK-15 B6 cells by PRV XJ5 and that 100 mg/kg LCP significantly reduced PRV XJ5 infection in mice. Mechanistic studies revealed that the main target of the anti-PRV effect of LCP was in the virus adsorption stage. In addition, our study revealed that LCP can reduce reactive oxygen species (ROS) and malondialdehyde (MDA) levels in PRV XJ5-infected PK-15 B6 cells and increase the activity of superoxide dismutase (SOD). These results showed that LCP can reduce the oxidative stress caused by PRV infection. In summary, LCP may be used as an antiviral drug to fight new PRV mutant strains.
Collapse
Affiliation(s)
- Xiaobing Wang
- Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China; Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China
| | - Jingting Yao
- Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China; Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China
| | - Xiaotong Wang
- Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China; Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China
| | - Fan Yang
- Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China; Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China
| | - Tanyan Zhao
- Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China; Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China
| | - Hongbo Wang
- Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China; Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China
| | - Nan Li
- Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China; Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China
| | - H M U U T H U K O Ko
- Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China; Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China
| | - K Y A W Z I N Oo
- Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China; Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China
| | - Luyao Jiang
- Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China; Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China
| | - Song Gao
- Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China; Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China
| | - Changchao Huan
- Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China; Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China.
| |
Collapse
|
2
|
Sun L, Xu Y, Chen K, Nan W, Wang M, Zhang Y, Hao B, Huang J. Unraveling dual fusion mechanisms in BmNPV GP64: critical roles of CARC motifs and signal peptide retention. J Virol 2025; 99:e0151124. [PMID: 39601591 PMCID: PMC11784077 DOI: 10.1128/jvi.01511-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
Viral membrane fusion is a critical process enabling viruses to invade host cells, driven by viral membrane fusion proteins (MFPs). Cholesterol plays a pivotal role in this process, which is essential for the infectivity of many enveloped viruses. The interaction between MFPs and cholesterol is often facilitated by specific amino acid motifs known as cholesterol recognition/interaction amino acid consensus (CRAC) motifs and reverse CARC motifs. In a previous study, we demonstrated that CRAC1 and CRAC2 in GP64 are required for Bombyx mori nucleopolyhedrovirus (BmNPV) infection. This study further investigates the role of CARC in the GP64 protein of BmNPV, revealing their complex interaction with cholesterol and the influence of signal peptide (SP) retention on viral infectivity. We identified six putative CARC motifs in GP64 and generated mutants to assess their function. Our findings show that CARC1, CARC2, CARC3, and CARC4 are indispensable for viral fusion and infection when the SP is retained, whereas only CARC2 and CARC3 remain essential after SP cleavage. In contrast, CARC1 and CARC4 are necessary for viral infection through a cholesterol-independent mechanism resulting from double mutations in the CRAC1 and CRAC2 motifs of GP64. These insights not only deepen our understanding of BmNPV GP64-mediated fusion but also highlight potential antiviral targets, underscoring the adaptability and resilience of viral fusion mechanisms.IMPORTANCEUnderstanding viral membrane fusion mechanisms is crucial for developing antiviral strategies. This study provides novel insights into the intricate roles of CARC and CRAC motifs in the GP64 protein of BmNPV, particularly their interaction with cholesterol and the influence of signal peptide retention. The discovery that certain CARC motifs are essential for cholesterol-dependent fusion, whereas others function in a cholesterol-independent context advances our understanding of viral fusion processes. These findings emphasize the potential of targeting CARC motifs for therapeutic interventions and underline the importance of cholesterol interactions in viral infections. This research not only deepens our understanding of BmNPV fusion mechanisms but also has broader implications for other enveloped viruses.
Collapse
Affiliation(s)
- Luping Sun
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Ying Xu
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Kai Chen
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Wenbin Nan
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Meixian Wang
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| | - Yiling Zhang
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| | - Bifang Hao
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| | - Jinshan Huang
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| |
Collapse
|
3
|
Atanasiu D, Cairns TM. Special Issue: Research on Herpes Virus Fusion and Entry. Viruses 2024; 16:1788. [PMID: 39599902 PMCID: PMC11599099 DOI: 10.3390/v16111788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024] Open
Abstract
Herpesviridae comprise a large family of enveloped DNA viruses with a unifying ability to establish a latent infection in their host [...].
Collapse
Affiliation(s)
- Doina Atanasiu
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tina M. Cairns
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
4
|
Vallbracht M, Schnell M, Seyfarth A, Fuchs W, Küchler R, Mettenleiter TC, Klupp BG. A Single Amino Acid Substitution in the Transmembrane Domain of Glycoprotein H Functionally Compensates for the Absence of gL in Pseudorabies Virus. Viruses 2023; 16:26. [PMID: 38257727 PMCID: PMC10819001 DOI: 10.3390/v16010026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/12/2023] [Accepted: 12/20/2023] [Indexed: 01/24/2024] Open
Abstract
Herpesvirus entry requires the coordinated action of at least four viral glycoproteins. Virus-specific binding to a cellular receptor triggers a membrane fusion cascade involving the conserved gH/gL complex and gB. Although gB is the genuine herpesvirus fusogen, it requires gH/gL for fusion, but how activation occurs is still unclear. To study the underlying mechanism, we used a gL-deleted pseudorabies virus (PrV) mutant characterized by its limited capability to directly infect neighboring cells that was exploited for several independent serial passages in cell culture. Unlike previous revertants that acquired mutations in the gL-binding N-terminus of gH, we obtained a variant, PrV-ΔgLPassV99, that unexpectedly contained two amino acid substitutions in the gH transmembrane domain (TMD). One of these mutations, I662S, was sufficient to compensate for gL function in virus entry and in in vitro cell-cell fusion assays in presence of wild type gB, but barely for cell-to-cell spread. Additional expression of receptor-binding PrV gD, which is dispensable for cell-cell fusion mediated by native gB, gH and gL, resulted in hyperfusion in combination with gH V99. Overall, our results uncover a yet-underestimated role of the gH TMD in fusion regulation, further shedding light on the complexity of herpesvirus fusion involving all structural domains of the conserved entry glycoproteins.
Collapse
Affiliation(s)
- Melina Vallbracht
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald-Insel Riems, Germany; (M.V.); (R.K.)
- Schaller Research Groups, Department of Infectious Diseases, Virology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Marina Schnell
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald-Insel Riems, Germany; (M.V.); (R.K.)
| | - Annemarie Seyfarth
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald-Insel Riems, Germany; (M.V.); (R.K.)
- Department of Hematology, Oncology and Tumor Immunology, CBF, Charité—Universitätsmedizin, Corporate Member of Freie Universität Berlin und Humboldt—Universität zu Berlin, 12200 Berlin, Germany
| | - Walter Fuchs
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald-Insel Riems, Germany; (M.V.); (R.K.)
| | - Richard Küchler
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald-Insel Riems, Germany; (M.V.); (R.K.)
| | - Thomas C. Mettenleiter
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald-Insel Riems, Germany; (M.V.); (R.K.)
| | - Barbara G. Klupp
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald-Insel Riems, Germany; (M.V.); (R.K.)
| |
Collapse
|
5
|
Cai X, Wang Z, Li X, Zhang J, Ren Z, Shao Y, Xu Y, Zhu Y. Emodin as an Inhibitor of PRV Infection In Vitro and In Vivo. Molecules 2023; 28:6567. [PMID: 37764342 PMCID: PMC10537396 DOI: 10.3390/molecules28186567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/17/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Pseudorabies (PR) is an acute and severe infectious disease caused by pseudorabies virus (PRV). Once the virus infects pigs, it is difficult to eliminate, resulting in major economic losses to the global pig industry. In addition, reports of human infection with PRV suggest that the virus is a potential threat to human health; thus, its significance to public health should be considered. In this paper, the anti-PRV activities of emodin in vitro and in vivo, and its mechanism of action were studied. The results showed that emodin inhibited the proliferation of PRV in PK15 cells in a dose-dependent manner, with an IC50 of 0.127 mg/mL and a selection index of 5.52. The addition of emodin at different stages of viral infection showed that emodin inhibited intracellular replication. Emodin significantly inhibited the expression of the IE180, EP0, UL29, UL44, US6, and UL27 genes of PRV within 48 h. Emodin also significantly inhibited the expression of PRV gB and gD proteins. The molecular docking results suggested that emodin might form hydrogen bonds with PRV gB and gD proteins and affect the structure of viral proteins. Emodin effectively inhibited the apoptosis induced by PRV infection. Moreover, emodin showed a good protective effect on PRV-infected mice. During the experimental period, all the control PRV-infected mice died resulting in a survival rate of 0%, while the survival rate of emodin-treated mice was 28.5%. Emodin also significantly inhibited the replication of PRV in the heart, liver, brain, kidneys and lungs of mice and alleviated tissue and organ damage caused by PRV infection. Emodin was able to combat viral infection by regulating the levels of the cytokines TNF-α, IFN-γ, IL-6, and IL-4 in the sera of infected mice. These results indicate that emodin has good anti-PRV activity in vitro and in vivo, and is expected to be a new agent for the prevention and control of PRV infection.
Collapse
Affiliation(s)
- Xiaojing Cai
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (X.C.); (Z.W.); (Z.R.); (Y.S.); (Y.X.)
| | - Zhiying Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (X.C.); (Z.W.); (Z.R.); (Y.S.); (Y.X.)
| | - Xiaocheng Li
- Harbin Da BEINONG Animal Husbandry Technology Co., Ltd., Harbin 150030, China; (X.L.); (J.Z.)
| | - Jing Zhang
- Harbin Da BEINONG Animal Husbandry Technology Co., Ltd., Harbin 150030, China; (X.L.); (J.Z.)
| | - Zhiyuan Ren
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (X.C.); (Z.W.); (Z.R.); (Y.S.); (Y.X.)
| | - Yi Shao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (X.C.); (Z.W.); (Z.R.); (Y.S.); (Y.X.)
| | - Yongkang Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (X.C.); (Z.W.); (Z.R.); (Y.S.); (Y.X.)
| | - Yan Zhu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (X.C.); (Z.W.); (Z.R.); (Y.S.); (Y.X.)
| |
Collapse
|
6
|
Ye N, Feng W, Fu T, Tang D, Zeng Z, Wang B. Membrane fusion, potential threats, and natural antiviral drugs of pseudorabies virus. Vet Res 2023; 54:39. [PMID: 37131259 PMCID: PMC10152797 DOI: 10.1186/s13567-023-01171-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 04/04/2023] [Indexed: 05/04/2023] Open
Abstract
Pseudorabies virus (PrV) can infect several animals and causes severe economic losses in the swine industry. Recently, human encephalitis or endophthalmitis caused by PrV infection has been frequently reported in China. Thus, PrV can infect animals and is becoming a potential threat to human health. Although vaccines and drugs are the main strategies to prevent and treat PrV outbreaks, there is no specific drug, and the emergence of new PrV variants has reduced the effectiveness of classical vaccines. Therefore, it is challenging to eradicate PrV. In the present review, the membrane fusion process of PrV entering target cells, which is conducive to revealing new therapeutic and vaccine strategies for PrV, is presented and discussed. The current and potential PrV pathways of infection in humans are analyzed, and it is hypothesized that PrV may become a zoonotic agent. The efficacy of chemically synthesized drugs for treating PrV infections in animals and humans is unsatisfactory. In contrast, multiple extracts of traditional Chinese medicine (TCM) have shown anti-PRV activity, exerting its effects in different phases of the PrV life-cycle and suggesting that TCM compounds may have great potential against PrV. Overall, this review provides insights into developing effective anti-PrV drugs and emphasizes that human PrV infection should receive more attention.
Collapse
Affiliation(s)
- Ni Ye
- College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Wei Feng
- College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Tiantian Fu
- College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Deyuan Tang
- College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Zhiyong Zeng
- College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Bin Wang
- College of Animal Science, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
7
|
Cai M, Xiao B, Wang Y, Wang K, Luo W, Fu J, Wang S, Deng S, Li B, Gong L, Zhong J, Hu L, Pan L, Wang L, Liu Y, Huang C, Li X, Zeng Q, Kang H, Li L, Zan J, Peng T, Yang H, Li M. Epstein-Barr virus envelope glycoprotein 110 inhibits NF-κB activation by interacting with NF-κB subunit p65. J Biol Chem 2023; 299:104613. [PMID: 36931391 PMCID: PMC10173782 DOI: 10.1016/j.jbc.2023.104613] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 03/17/2023] Open
Abstract
Epstein-Barr virus (EBV) is a member of the lymphotropic virus family, and is highly correlated with some human malignant tumors. It has been reported that envelope glycoprotein 110 (gp110) plays an essential role in viral fusion, DNA replication, and nucleocapsid assembly of EBV. However, it has not been established whether gp110 is involved in regulating the host's innate immunity. In this study, we found that gp110 inhibits tumor necrosis factor α (TNF-α)-mediated NF-κB promoter activity and the downstream production of NF-κB-regulated cytokines under physiological conditions. Using dual-luciferase reporter assays, we showed that gp110 might impede the NF-κB promoter activation downstream of NF-κB transactivational subunit p65. Subsequently, we used co-immunoprecipitation assays to demonstrate that gp110 interacts with p65 during EBV lytic infection, and that the C-terminal cytoplasmic region of gp110 is the key interaction domain with p65. Furthermore, we determined gp110 can bind to the N-terminal Rel homologous and C-terminal domains of p65. Alternatively, gp110 might not disturb the association of p65 with non-transactivational subunit p50, but we showed it restrains activational phosphorylation (at Ser536) and nuclear translocation of p65, which we also found to be executed by the C-terminal cytoplasmic region of gp110. Altogether, these data suggest that the surface protein gp110 may be a vital component for EBV to antagonize the host's innate immune response, which is also helpful for revealing the infectivity and pathogenesis of EBV.
Collapse
Affiliation(s)
- Mingsheng Cai
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital; State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Qingyuan, Guangdong, China; Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China; Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Bin Xiao
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital; State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Qingyuan, Guangdong, China
| | - Yuanfang Wang
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital; State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Qingyuan, Guangdong, China; The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Kezhen Wang
- School of Life Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Wenqi Luo
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital; State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Qingyuan, Guangdong, China
| | - Jiangqin Fu
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital; State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Qingyuan, Guangdong, China
| | - Shuai Wang
- Institutes of Biology and Medical Science, Soochow University, Suzhou, Jiangsu, China
| | - Shenyu Deng
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital; State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Qingyuan, Guangdong, China
| | - Bolin Li
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital; State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Qingyuan, Guangdong, China
| | - Lan Gong
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital; State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Qingyuan, Guangdong, China
| | - Jiayi Zhong
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital; State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Qingyuan, Guangdong, China
| | - Li Hu
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital; State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Qingyuan, Guangdong, China
| | - Lingxia Pan
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital; State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Qingyuan, Guangdong, China
| | - Liding Wang
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital; State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Qingyuan, Guangdong, China
| | - Yintao Liu
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital; State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Qingyuan, Guangdong, China
| | - Chen Huang
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital; State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Qingyuan, Guangdong, China
| | - Xiaoqing Li
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital; State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Qingyuan, Guangdong, China
| | - Qiyuan Zeng
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital; State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Qingyuan, Guangdong, China
| | - Haoran Kang
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital; State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Qingyuan, Guangdong, China
| | - Linhai Li
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital; State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Qingyuan, Guangdong, China
| | - Jie Zan
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong, China.
| | - Tao Peng
- State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, Guangdong, China; Guangdong South China Vaccine, Guangzhou, Guangdong, China.
| | - Haidi Yang
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Institute of Hearing and Speech-Language Science, Guangzhou Xinhua University, Guangzhou, Guangdong, China.
| | - Meili Li
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital; State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Qingyuan, Guangdong, China; Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
8
|
Zheng HH, Bai YL, Xu T, Zheng LL, Li XS, Chen HY, Wang ZY. Isolation and Phylogenetic Analysis of Reemerging Pseudorabies Virus Within Pig Populations in Central China During 2012 to 2019. Front Vet Sci 2021; 8:764982. [PMID: 34869736 PMCID: PMC8635136 DOI: 10.3389/fvets.2021.764982] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/15/2021] [Indexed: 02/03/2023] Open
Abstract
To understand the biological characteristics of the reemerging pseudorabies virus (PRV) strains, a total of 392 tissue samples were collected from diseased pigs during reemerging PR outbreaks between 2012 and 2019 on farms in central China where swine had been immunized with Bartha-K61 and 51 (13. 01%) were positive for the gE gene by PCR. Sixteen PRV strains were isolated and caused clinical symptoms and death in mice. Subsequently, gE, gC, gB, and gD complete genes were amplified from the 16 PRV isolates and sequenced. Phylogenetic analysis based on these four gene sequences shows that the 16 PRV isolates were more closely related to the Chinese PRV variants (after 2012) but genetically differed from early Chinese PRV isolates (before 2012). Sequence analysis reveals that PRV isolates exhibited amino acid insertions, substitutions, or deletions compared with early Chinese PRV isolates and European–American PRV strains. In addition, this is the first report that eight isolates (8/16) in this study harbor a unique amino acid substitution at position 280 (F to L) of the gC protein, and six isolates have an amino acid substitution at position 338 (A to V) of the gD protein compared with the Chinese PRV variants. The emulsion containing inactivated PRV NY isolate could provide complete protection against the NY isolate. This study might enrich our understanding of the evolution of reemerging PRV strains as well as pave the way for finding a model virus to develop a novel vaccine based on reemerging PRV strains.
Collapse
Affiliation(s)
- Hui-Hua Zheng
- Zhengzhou Major Pig Disease Prevention and Control Laboratory, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Yi-Lin Bai
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Tong Xu
- Zhengzhou Major Pig Disease Prevention and Control Laboratory, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Lan-Lan Zheng
- Zhengzhou Major Pig Disease Prevention and Control Laboratory, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Xin-Sheng Li
- Zhengzhou Major Pig Disease Prevention and Control Laboratory, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Hong-Ying Chen
- Zhengzhou Major Pig Disease Prevention and Control Laboratory, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Zhen-Ya Wang
- Key Laboratory of "Runliang" Antiviral Medicines Research and Development, Institute of Drug Discovery & Development, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
9
|
A Genome-Wide CRISPR/Cas9 Screen Reveals the Requirement of Host Sphingomyelin Synthase 1 for Infection with Pseudorabies Virus Mutant gD -Pass. Viruses 2021; 13:v13081574. [PMID: 34452438 PMCID: PMC8402627 DOI: 10.3390/v13081574] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/26/2021] [Accepted: 08/02/2021] [Indexed: 12/26/2022] Open
Abstract
Herpesviruses are large DNA viruses, which encode up to 300 different proteins including enzymes enabling efficient replication. Nevertheless, they depend on a multitude of host cell proteins for successful propagation. To uncover cellular host factors important for replication of pseudorabies virus (PrV), an alphaherpesvirus of swine, we performed an unbiased genome-wide CRISPR/Cas9 forward screen. To this end, a porcine CRISPR-knockout sgRNA library (SsCRISPRko.v1) targeting 20,598 genes was generated and used to transduce porcine kidney cells. Cells were then infected with either wildtype PrV (PrV-Ka) or a PrV mutant (PrV-gD-Pass) lacking the receptor-binding protein gD, which regained infectivity after serial passaging in cell culture. While no cells survived infection with PrV-Ka, resistant cell colonies were observed after infection with PrV-gD-Pass. In these cells, sphingomyelin synthase 1 (SMS1) was identified as the top hit candidate. Infection efficiency was reduced by up to 90% for PrV-gD-Pass in rabbit RK13-sgms1KO cells compared to wildtype cells accompanied by lower viral progeny titers. Exogenous expression of SMS1 partly reverted the entry defect of PrV-gD-Pass. In contrast, infectivity of PrV-Ka was reduced by 50% on the knockout cells, which could not be restored by exogenous expression of SMS1. These data suggest that SMS1 plays a pivotal role for PrV infection, when the gD-mediated entry pathway is blocked.
Collapse
|
10
|
In Vitro Viral Evolution Identifies a Critical Residue in the Alphaherpesvirus Fusion Glycoprotein B Ectodomain That Controls gH/gL-Independent Entry. mBio 2021; 12:mBio.00557-21. [PMID: 33947756 PMCID: PMC8262866 DOI: 10.1128/mbio.00557-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Herpesvirus entry and spread requires fusion of viral and host cell membranes, which is mediated by the conserved surface glycoprotein B (gB). Upon activation, gB undergoes a major conformational change and transits from a metastable prefusion to a stable postfusion conformation. Although gB is a structural homolog of low-pH-triggered class III fusogens, its fusion activity depends strictly on the presence of the conserved regulatory gH/gL complex and nonconserved receptor binding proteins, which ensure that fusion occurs at the right time and space. How gB maintains its prefusion conformation and how gB fusogenicity is controlled remain poorly understood. Here, we report the isolation and characterization of a naturally selected pseudorabies virus (PrV) gB able to mediate efficient gH/gL-independent virus-cell and cell-cell fusion. We found that the control exerted on gB by the accompanying viral proteins is mediated via its cytosolic domain (CTD). Whereas gB variants lacking the CTD are inactive, a single mutation of a conserved asparagine residue in an alpha-helical motif of the ectodomain recently shown to be at the core of the gB prefusion trimer compensated for CTD absence and uncoupled gB from regulatory viral proteins, resulting in a hyperfusion phenotype. This phenotype was transferred to gB homologs from different alphaherpesvirus genera. Overall, our data propose a model in which the central helix acts as a molecular switch for the gB pre-to-postfusion transition by conveying the structural status of the endo- to the ectodomain, thereby governing their cross talk for fusion activation, providing a new paradigm for herpesvirus fusion regulation.
Collapse
|
11
|
Huang J, Zhu L, Zhao J, Yin X, Feng Y, Wang X, Sun X, Zhou Y, Xu Z. Genetic evolution analysis of novel recombinant pseudorabies virus strain in Sichuan, China. Transbound Emerg Dis 2020; 67:1428-1432. [PMID: 31968152 DOI: 10.1111/tbed.13484] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 01/09/2020] [Accepted: 01/13/2020] [Indexed: 01/21/2023]
Abstract
Pseudorabies is a disease that seriously endangers the pig industry in China. Recently, we successfully isolated a pseudorabies virus from the brain tissue of piglets at a farm in Sichuan, China, and named it the FJ62 strain. In order to understand the molecular biological characteristics of the strain, primers were designed for glycoproteins gB, gC, gD and gE, which were amplified by a polymerase chain reaction (PCR) and sequenced. After comparing the sequence with the GenBank 22 pseudorabies virus reference strains and establishing the genetic evolutionary tree, it was found that the gB gene of pseudorabies virus was highly homologous (up to 100%) with the MY-1 strain which is isolated from a wild boar in Japan (AP018925) but that homology with other strains in China was low. The gC gene was in the same branch as most of the representative strains in China, with 99.5% homology. The gD gene is in the same branch as the domestic strain LA in China (KU552118), and the homology was 99.9%. The gE gene was in the same branch as the domestic BJ/YT strain in China (KC981239), with 99.9% homology. The results showed that the FJ62 strain of the pseudorabies virus isolated here may be a variant strain of FJ62 isolated from a domestic pig after natural recombination of pseudorabies virus genotype I from wild boar and genotype II from pigs in China. There have been no similar reports in Sichuan. The discovery of the recombinant virus strain provides a reference basis for the prevention and control of pseudorabies and a design strategy for a vaccine in Sichuan, China, in the future.
Collapse
Affiliation(s)
- Jianbo Huang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ling Zhu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Jun Zhao
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xinhuan Yin
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yu Feng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xvetao Wang
- Livestock and Poultry Biological Products Key Laboratory of Sichuan Province, Animtech Bioengineering Co. Ltd., Chengdu, China
| | - Xiangang Sun
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yuancheng Zhou
- Livestock and Poultry Biological Products Key Laboratory of Sichuan Province, Animtech Bioengineering Co. Ltd., Chengdu, China
| | - Zhiwen Xu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
12
|
Vallbracht M, Backovic M, Klupp BG, Rey FA, Mettenleiter TC. Common characteristics and unique features: A comparison of the fusion machinery of the alphaherpesviruses Pseudorabies virus and Herpes simplex virus. Adv Virus Res 2019; 104:225-281. [PMID: 31439150 DOI: 10.1016/bs.aivir.2019.05.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Membrane fusion is a fundamental biological process that allows different cellular compartments delimited by a lipid membrane to release or exchange their respective contents. Similarly, enveloped viruses such as alphaherpesviruses exploit membrane fusion to enter and infect their host cells. For infectious entry the prototypic human Herpes simplex viruses 1 and 2 (HSV-1 and -2, collectively termed HSVs) and the porcine Pseudorabies virus (PrV) utilize four different essential envelope glycoproteins (g): the bona fide fusion protein gB and the regulatory heterodimeric gH/gL complex that constitute the "core fusion machinery" conserved in all members of the Herpesviridae; and the subfamily specific receptor binding protein gD. These four components mediate attachment and fusion of the virion envelope with the host cell plasma membrane through a tightly regulated sequential activation process. Although PrV and the HSVs are closely related and employ the same set of glycoproteins for entry, they show remarkable differences in the requirements for fusion. Whereas the HSVs strictly require all four components for membrane fusion, PrV can mediate cell-cell fusion without gD. Moreover, in contrast to the HSVs, PrV provides a unique opportunity for reversion analyses of gL-negative mutants by serial cell culture passaging, due to a limited cell-cell spread capacity of gL-negative PrV not observed in the HSVs. This allows a more direct analysis of the function of gH/gL during membrane fusion. Unraveling the molecular mechanism of herpesvirus fusion has been a goal of fundamental research for years, and yet important mechanistic details remain to be uncovered. Nevertheless, the elucidation of the crystal structures of all key players involved in PrV and HSV membrane fusion, coupled with a wealth of functional data, has shed some light on this complex puzzle. In this review, we summarize and discuss the contemporary knowledge on the molecular mechanism of entry and membrane fusion utilized by the alphaherpesvirus PrV, and highlight similarities but also remarkable differences in the requirements for fusion between PrV and the HSVs.
Collapse
Affiliation(s)
- Melina Vallbracht
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany.
| | - Marija Backovic
- Institut Pasteur, Unité de Virologie Structurale, UMR3569 (CNRS), Paris, France
| | - Barbara G Klupp
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany
| | - Felix A Rey
- Institut Pasteur, Unité de Virologie Structurale, UMR3569 (CNRS), Paris, France
| | - Thomas C Mettenleiter
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany
| |
Collapse
|
13
|
Fan Q, Kopp SJ, Byskosh NC, Connolly SA, Longnecker R. Natural Selection of Glycoprotein B Mutations That Rescue the Small-Plaque Phenotype of a Fusion-Impaired Herpes Simplex Virus Mutant. mBio 2018; 9:e01948-18. [PMID: 30327436 PMCID: PMC6191544 DOI: 10.1128/mbio.01948-18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 09/10/2018] [Indexed: 11/20/2022] Open
Abstract
Glycoprotein B (gB) is a conserved viral fusion protein that is required for herpesvirus entry. To mediate fusion with the cellular membrane, gB refolds from a prefusion to a postfusion conformation. We hypothesize that an interaction between the C-terminal arm and the central coiled coil of the herpes simplex virus 1 (HSV-1) gB ectodomain is critical for fusion. We previously reported that three mutations in the C-terminal arm (I671A/H681A/F683A, called gB3A) greatly reduced cell-cell fusion and that virus carrying these mutations had a small-plaque phenotype and delayed entry into cells. By serially passaging gB3A virus, we selected three revertant viruses with larger plaques. These revertant viruses acquired mutations in gB that restore the fusion function of gB3A, including gB-A683V, gB-S383F/G645R/V705I/A855V, and gB-T509M/N709H. V705I and N709H are novel mutations that map to the portion of domain V that enters domain I in the postfusion structure. S383F, G645R, and T509M are novel mutations that map to an intersection of three domains in a prefusion model of gB. We introduced these second-site mutations individually and in combination into wild-type gB and gB3A to examine the impact of the mutations on fusion and expression. V705I and A855V (a known hyperfusogenic mutation) restored the fusion function of gB3A, whereas S383F and G645R dampened fusion and T509M and N709H worked in concert to restore gB3A fusion. The results identify two regions in the gB ectodomain that modulate the fusion activity of gB, potentially by impacting intramolecular interactions and stability of the prefusion and/or postfusion gB trimer.IMPORTANCE Glycoprotein B (gB) is an essential viral protein that is conserved in all herpesviruses and is required for virus entry. gB is thought to undergo a conformational change that provides the energy to fuse the viral and cellular membranes; however, the details of this conformational change and the structure of the prefusion and intermediate conformations of gB are not known. Previously, we demonstrated that mutations in the gB "arm" region inhibit fusion and impart a small-plaque phenotype. Using serial passage of a virus carrying these mutations, we identified revertants with restored plaque size. The revertant viruses acquired novel mutations in gB that restored fusion function and mapped to two sites in the gB ectodomain. This work supports our hypothesis that an interaction between the gB arm and the core of gB is critical for gB refolding and provides details about the function of gB in herpesvirus-mediated fusion and subsequent virus entry.
Collapse
Affiliation(s)
- Qing Fan
- Department of Microbiology-Immunology, Feinberg School of Medicine of Northwestern University, Chicago, Illinois, USA
| | - Sarah J Kopp
- Department of Microbiology-Immunology, Feinberg School of Medicine of Northwestern University, Chicago, Illinois, USA
| | - Nina C Byskosh
- Department of Microbiology-Immunology, Feinberg School of Medicine of Northwestern University, Chicago, Illinois, USA
| | - Sarah A Connolly
- Department of Health Sciences, Department of Biological Sciences, DePaul University, Chicago, Illinois, USA
| | - Richard Longnecker
- Department of Microbiology-Immunology, Feinberg School of Medicine of Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
14
|
Vallbracht M, Fuchs W, Klupp BG, Mettenleiter TC. Functional Relevance of the Transmembrane Domain and Cytoplasmic Tail of the Pseudorabies Virus Glycoprotein H for Membrane Fusion. J Virol 2018; 92:e00376-18. [PMID: 29618646 PMCID: PMC5974499 DOI: 10.1128/jvi.00376-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 03/29/2018] [Indexed: 12/18/2022] Open
Abstract
Herpesvirus membrane fusion depends on the core fusion machinery, comprised of glycoproteins B (gB) and gH/gL. Although gB structurally resembles autonomous class III fusion proteins, it strictly depends on gH/gL to drive membrane fusion. Whether the gH/gL complex needs to be membrane anchored to fulfill its function and which role the gH cytoplasmic (CD) and transmembrane domains (TMD) play in fusion is unclear. While the gH CD and TMD play an important role during infection, soluble gH/gL of herpes simplex virus 1 (HSV-1) seems to be sufficient to mediate cell-cell fusion in transient assays, arguing against an essential contribution of the CD and TMD. To shed more light on this apparent discrepancy, we investigated the role of the CD and TMD of the related alphaherpesvirus pseudorabies virus (PrV) gH. For this purpose, we expressed C-terminally truncated and soluble gH and replaced the TMD with a glycosylphosphatidylinositol (gpi) anchor. We also generated chimeras containing the TMD and/or CD of PrV gD or HSV-1 gH. Proteins were characterized in cell-based fusion assays and during virus infection. Although truncation of the CD resulted in decreased membrane fusion activity, the mutant proteins still supported replication of gH-negative PrV, indicating that the PrV gH CD is dispensable for viral replication. In contrast, PrV gH lacking the TMD, membrane-anchored via a lipid linker, or comprising the PrV gD TMD were nonfunctional, highlighting the essential role of the gH TMD for function. Interestingly, despite low sequence identity, the HSV-1 gH TMD could substitute for the PrV gH TMD, pointing to functional conservation.IMPORTANCE Enveloped viruses depend on membrane fusion for virus entry. While this process can be mediated by only one or two proteins, herpesviruses depend on the concerted action of at least three different glycoproteins. Although gB has features of bona fide fusion proteins, it depends on gH and its complex partner, gL, for fusion. Whether gH/gL prevents premature fusion or actively triggers gB-mediated fusion is unclear, and there are contradictory results on whether gH/gL function requires stable membrane anchorage or whether the ectodomains alone are sufficient. Our results show that in pseudorabies virus gH, the transmembrane anchor plays an essential role for gB-mediated fusion while the cytoplasmic tail is not strictly required.
Collapse
Affiliation(s)
- Melina Vallbracht
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Walter Fuchs
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Barbara G Klupp
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Thomas C Mettenleiter
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| |
Collapse
|
15
|
Vallbracht M, Rehwaldt S, Klupp BG, Mettenleiter TC, Fuchs W. Functional Role of N-Linked Glycosylation in Pseudorabies Virus Glycoprotein gH. J Virol 2018; 92:e00084-18. [PMID: 29437979 PMCID: PMC5899193 DOI: 10.1128/jvi.00084-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 02/02/2018] [Indexed: 12/27/2022] Open
Abstract
Many viral envelope proteins are modified by asparagine (N)-linked glycosylation, which can influence their structure, physicochemical properties, intracellular transport, and function. Here, we systematically analyzed the functional relevance of N-linked glycans in the alphaherpesvirus pseudorabies virus (PrV) glycoprotein H (gH), which is an essential component of the conserved core herpesvirus fusion machinery. Upon gD-mediated receptor binding, the heterodimeric complex of gH and gL activates gB to mediate fusion of the viral envelope with the host cell membrane for viral entry. gH contains five potential N-linked glycosylation sites at positions 77, 162, 542, 604, and 627, which were inactivated by conservative mutations (asparagine to glutamine) singly or in combination. The mutated proteins were tested for correct expression and fusion activity. Additionally, the mutated gH genes were inserted into the PrV genome for analysis of function during virus infection. Our results demonstrate that all five sites are glycosylated. Inactivation of the PrV-specific N77 or the conserved N627 resulted in significantly reduced in vitro fusion activity, delayed penetration kinetics, and smaller virus plaques. Moreover, substitution of N627 greatly affected transport of gH in transfected cells, resulting in endoplasmic reticulum (ER) retention and reduced surface expression. In contrast, mutation of N604, which is conserved in the Varicellovirus genus, resulted in enhanced in vitro fusion activity and viral cell-to-cell spread. These results demonstrate a role of the N-glycans in proper localization and function of PrV gH. However, even simultaneous inactivation of all five N-glycosylation sites of gH did not severely inhibit formation of infectious virus particles.IMPORTANCE Herpesvirus infection requires fusion of the viral envelope with cellular membranes, which involves the conserved fusion machinery consisting of gB and the heterodimeric gH/gL complex. The bona fide fusion protein gB depends on the presence of the gH/gL complex for activation. Viral envelope glycoproteins, such as gH, usually contain N-glycans, which can have a strong impact on their folding, transport, and functions. Here, we systematically analyzed the functional relevance of all five predicted N-linked glycosylation sites in the alphaherpesvirus pseudorabies virus (PrV) gH. Despite the fact that mutation of specific sites affected gH transport, in vitro fusion activity, and cell-to-cell spread and resulted in delayed penetration kinetics, even simultaneous inactivation of all five N-glycosylation sites of gH did not severely inhibit formation of infectious virus particles. Thus, our results demonstrate a modulatory but nonessential role of N-glycans for gH function.
Collapse
Affiliation(s)
- Melina Vallbracht
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Sascha Rehwaldt
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Barbara G Klupp
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Thomas C Mettenleiter
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Walter Fuchs
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| |
Collapse
|
16
|
Vallbracht M, Brun D, Tassinari M, Vaney MC, Pehau-Arnaudet G, Guardado-Calvo P, Haouz A, Klupp BG, Mettenleiter TC, Rey FA, Backovic M. Structure-Function Dissection of Pseudorabies Virus Glycoprotein B Fusion Loops. J Virol 2018; 92:e01203-17. [PMID: 29046441 PMCID: PMC5730762 DOI: 10.1128/jvi.01203-17] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 10/03/2017] [Indexed: 01/31/2023] Open
Abstract
Conserved across the family Herpesviridae, glycoprotein B (gB) is responsible for driving fusion of the viral envelope with the host cell membrane for entry upon receptor binding and activation by the viral gH/gL complex. Although crystal structures of the gB ectodomains of several herpesviruses have been reported, the membrane fusion mechanism has remained elusive. Here, we report the X-ray structure of the pseudorabies virus (PrV) gB ectodomain, revealing a typical class III postfusion trimer that binds membranes via its fusion loops (FLs) in a cholesterol-dependent manner. Mutagenesis of FL residues allowed us to dissect those interacting with distinct subregions of the lipid bilayer and their roles in membrane interactions. We tested 15 gB variants for the ability to bind to liposomes and further investigated a subset of them in functional assays. We found that PrV gB FL residues Trp187, Tyr192, Phe275, and Tyr276, which were essential for liposome binding and for fusion in cellular and viral contexts, form a continuous hydrophobic patch at the gB trimer surface. Together with results reported for other alphaherpesvirus gBs, our data suggest a model in which Phe275 from the tip of FL2 protrudes deeper into the hydrocarbon core of the lipid bilayer, while the side chains of Trp187, Tyr192, and Tyr276 form a rim that inserts into the more superficial interfacial region of the membrane to catalyze the fusion process. Comparative analysis with gBs from beta- and gamma-herpesviruses suggests that this membrane interaction model is valid for gBs from all herpesviruses.IMPORTANCE Herpesviruses are common human and animal pathogens that infect cells by entering via fusion of viral and cellular membranes. Central to the membrane fusion event is glycoprotein B (gB), which is the most conserved envelope protein across the herpesvirus family. Like other viral fusion proteins, gB anchors itself in the target membrane via two polypeptide segments called fusion loops (FLs). The molecular details of how gB FLs insert into the lipid bilayer have not been described. Here, we provide structural and functional data regarding key FL residues of gB from pseudorabies virus, a porcine herpesvirus of veterinary concern, which allows us to propose, for the first time, a molecular model to understand how the initial interactions by gBs from all herpesviruses with target membranes are established.
Collapse
Affiliation(s)
- Melina Vallbracht
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Delphine Brun
- Institut Pasteur, Unité de Virologie Structurale, Département de Virologie, Paris, France
- CNRS UMR3569, Paris, France
| | - Matteo Tassinari
- Institut Pasteur, Unité de Virologie Structurale, Département de Virologie, Paris, France
- CNRS UMR3569, Paris, France
| | - Marie-Christine Vaney
- Institut Pasteur, Unité de Virologie Structurale, Département de Virologie, Paris, France
- CNRS UMR3569, Paris, France
| | - Gérard Pehau-Arnaudet
- Institut Pasteur, Ultrapole, Département de Biologie Cellulaire et Infection, Paris, France
- CNRS UMR3528, Paris, France
| | - Pablo Guardado-Calvo
- Institut Pasteur, Unité de Virologie Structurale, Département de Virologie, Paris, France
- CNRS UMR3569, Paris, France
| | - Ahmed Haouz
- CNRS UMR3528, Paris, France
- Institut Pasteur, Plate-Forme de Cristallographie, Paris, France
| | - Barbara G Klupp
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Thomas C Mettenleiter
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Felix A Rey
- Institut Pasteur, Unité de Virologie Structurale, Département de Virologie, Paris, France
- CNRS UMR3569, Paris, France
| | - Marija Backovic
- Institut Pasteur, Unité de Virologie Structurale, Département de Virologie, Paris, France
- CNRS UMR3569, Paris, France
| |
Collapse
|
17
|
Möhl BS, Chen J, Park SJ, Jardetzky TS, Longnecker R. Epstein-Barr Virus Fusion with Epithelial Cells Triggered by gB Is Restricted by a gL Glycosylation Site. J Virol 2017; 91:e01255-17. [PMID: 28956769 PMCID: PMC5686762 DOI: 10.1128/jvi.01255-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 09/21/2017] [Indexed: 12/17/2022] Open
Abstract
Epstein-Barr virus (EBV) entry into epithelial cells is mediated by the conserved core fusion machinery, composed of the fusogen gB and the receptor-binding complex gH/gL. The heterodimeric gH/gL complex binds to the EBV epithelial cell receptor or gp42, which binds to the B-cell receptor, triggering gB-mediated fusion of the virion envelope with cellular membranes. Our previous study found that the gL glycosylation mutant N69L/S71V had an epithelial cell-specific hyperfusogenic phenotype. To study the influence of this gL mutant on the initiation and kinetics of gB-driven epithelial cell fusion, we established a virus-free split-green fluorescent protein cell-cell fusion assay that enables real-time measurements of membrane fusion using live cells. The gL_N69L/S71V mutant had a large increase in epithelial cell fusion activity of up to 300% greater than that of wild-type gL starting at early time points. The hyperfusogenicity of the gL mutant was not a result of alterations in complex formation with gH or alterations in cellular localization. Moreover, the hyperfusogenic phenotype of the gL mutant correlated with the formation of enlarged syncytia. In summary, our present findings highlight an important role of gL in the kinetics of gB-mediated epithelial cell fusion, adding to previous findings indicating a direct interaction between gL and gB in EBV membrane fusion.IMPORTANCE EBV predominantly infects epithelial cells and B lymphocytes, which are the cells of origin for the EBV-associated malignancies Hodgkin and Burkitt lymphoma as well as nasopharyngeal carcinoma. Contrary to the other key players of the core fusion machinery, gL has the most elusive role during EBV-induced membrane fusion. We found that the glycosylation site N69/S71 of gL is involved in restricting epithelial cell fusion activity, strongly correlating with syncytium size. Interestingly, our data showed that the gL glycosylation mutant increases the fusion activity of the hyperfusogenic gB mutants, indicating that this gL mutant and the gB mutants target different steps during fusion. Our studies on how gL and gB work together to modulate epithelial cell fusion kinetics are essential to understand the highly tuned tropism of EBV for epithelial cells and B lymphocytes and may result in novel strategies for therapies preventing viral entry into target host cells. Finally, making our results of particular interest is the absence of gL syncytial mutants in other herpesviruses.
Collapse
Affiliation(s)
- Britta S Möhl
- Department of Microbiology and Immunology, The Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Jia Chen
- Department of Microbiology and Immunology, The Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Seo Jin Park
- Department of Microbiology and Immunology, The Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Theodore S Jardetzky
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California, USA
| | - Richard Longnecker
- Department of Microbiology and Immunology, The Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
18
|
Functional Relevance of the N-Terminal Domain of Pseudorabies Virus Envelope Glycoprotein H and Its Interaction with Glycoprotein L. J Virol 2017; 91:JVI.00061-17. [PMID: 28228592 DOI: 10.1128/jvi.00061-17] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 02/15/2017] [Indexed: 01/17/2023] Open
Abstract
Several envelope glycoproteins are involved in herpesvirus entry into cells, direct cell-to-cell spread, and induction of cell fusion. The membrane fusion protein glycoprotein B (gB) and the presumably gB-activating heterodimer gH/gL are essential for these processes and conserved throughout the Herpesviridae However, after extended cell culture passage of gL-negative mutants of the alphaherpesvirus pseudorabies virus (PrV), phenotypic revertants could be isolated which had acquired spontaneous mutations affecting the gL-interacting N-terminal part of the gH ectodomain (gDH and gHB4.1) (B. G. Klupp and T. C. Mettenleiter, J Virol 73:3014-3022, 1999; C. Schröter, M. Vallbracht, J. Altenschmidt, S. Kargoll, W. Fuchs, B. G. Klupp, and T. C. Mettenleiter, J Virol 90:2264-2272, 2016). To investigate the functional relevance of this part of gH in more detail, we introduced an in-frame deletion of 66 codons at the 5' end of the plasmid-cloned gH gene (gH32/98). The N-terminal signal peptide was retained, and the deletion did not affect expression or processing of gH but abrogated its function in in vitro fusion assays. Insertion of the engineered gH gene into the PrV genome resulted in a defective mutant (pPrV-gH32/98K), which was incapable of entry and spread. Interestingly, in vitro activity of mutated gH32/98 was restored when it was coexpressed with hyperfusogenic gBB4.1, obtained from a passaged gL deletion mutant of PrV. Moreover, the entry and spread defects of pPrV-gH32/98K were compensated by the mutations in gBB4.1 in cis, as well as in trans, independent of gL. Thus, PrV gL and the gL-interacting domain of gH are not strictly required for function.IMPORTANCE Membrane fusion is crucial for infectious entry and spread of enveloped viruses. While many enveloped viruses require only one or two proteins for receptor binding and membrane fusion, herpesvirus infection depends on several envelope glycoproteins. Besides subfamily-specific receptor binding proteins, the core fusion machinery consists of the conserved fusion protein gB and the gH/gL complex. The role of the latter is unclear, but it is hypothesized to interact with gB for fusion activation. Using isogenic virus recombinants, we demonstrate here that gL and the gL-binding domain of PrV gH are not strictly required for membrane fusion during virus entry and spread when concomitantly mutations in gB are present which increase its fusogenicity. Thus, our results strongly support the notion of a functional gB-gH interaction during the fusion process.
Collapse
|
19
|
Vallbracht M, Schröter C, Klupp BG, Mettenleiter TC. Transient Transfection-based Fusion Assay for Viral Proteins. Bio Protoc 2017; 7:e2162. [PMID: 34458475 DOI: 10.21769/bioprotoc.2162] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 02/07/2017] [Accepted: 02/13/2017] [Indexed: 11/02/2022] Open
Abstract
Membrane fusion is vital for entry of enveloped viruses into host cells as well as for direct viral cell-to-cell spread. To understand the fusion mechanism in more detail, we use an infection free system whereby fusion can be induced by a minimal set of the alphaherpesvirus pseudorabies virus (PrV) glycoproteins gB, gH and gL. Here, we describe an optimized protocol of a transient transfection based fusion assay to quantify cell-cell fusion induced by the PrV glycoproteins.
Collapse
Affiliation(s)
- Melina Vallbracht
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany
| | - Christina Schröter
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany
| | - Barbara G Klupp
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany
| | - Thomas C Mettenleiter
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany
| |
Collapse
|