1
|
Chen X, Kong M, Ma C, Zhang M, Hu Z, Gu M, Wang X, Gao R, Hu S, Chen Y, Liu X, Peng D, Liu X, Hu J. The PA-X host shutoff site 100 V exerts a contrary effect on viral fitness of the highly pathogenic H7N9 influenza A virus in mice and chickens. Virulence 2025; 16:2445238. [PMID: 39731774 DOI: 10.1080/21505594.2024.2445238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/04/2024] [Accepted: 12/16/2024] [Indexed: 12/30/2024] Open
Abstract
Several viruses, including influenza A virus (IAV), encode viral factors to hijack cellular RNA biogenesis processes to direct the degradation of host mRNAs, termed "host shutoff." Host shutoff enables viruses to simultaneously reduce antiviral responses and provides preferential access for viral mRNAs to cellular translation machinery. IAV PA-X is one of these factors that selectively shuts off the global host genes. However, the specific role of PA-X host shutoff activity in viral fitness of IAV remains poorly understood. Herein, we successfully mapped PA-X 100 V as a novel site important for host shutoff of the H7N9 and H5N1 viruses. By analysing the polymorphism of this residue in various subtype viruses, we found that PA-X 100 was highly variable in H7N9 viruses. Structural analysis revealed that 100 V was generally close to the PA-X endonuclease active site, which may account for its host shutoff activity. By generating the corresponding mutant viruses derived from the parental H7N9 virus and the PA-X-deficient H7N9 virus, we determined that PA-X 100 V significantly enhanced viral fitness in mice while diminishing viral virulence in chickens. Mechanistically, PA-X 100 V significantly increased viral polymerase activity and viral replication in mammalian cells. Furthermore, PA-X 100 V highly blunted the global host response in 293T cells, particularly restraining genes involved in energy metabolism and inflammatory response. Collectively, our data provided information about the intricate role of the PA-X host shutoff site in regulating the viral fitness of the H7N9 influenza virus, which furthers our understanding of the complicated pathogenesis of the influenza A virus.
Collapse
Affiliation(s)
- Xia Chen
- Key Laboratory of Avian Bioproducts Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
| | - Ming Kong
- Key Laboratory of Avian Bioproducts Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
| | - Chunxi Ma
- Key Laboratory of Avian Bioproducts Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
| | - Manyu Zhang
- Key Laboratory of Avian Bioproducts Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
| | - Zenglei Hu
- Key Laboratory of Avian Bioproducts Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Min Gu
- Key Laboratory of Avian Bioproducts Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
| | - Xiaoquan Wang
- Key Laboratory of Avian Bioproducts Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
| | - Ruyi Gao
- Key Laboratory of Avian Bioproducts Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
| | - Shunlin Hu
- Key Laboratory of Avian Bioproducts Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
| | - Yu Chen
- Key Laboratory of Avian Bioproducts Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
| | - Xiaowen Liu
- Key Laboratory of Avian Bioproducts Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
| | - Daxin Peng
- Key Laboratory of Avian Bioproducts Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
| | - Xiufan Liu
- Key Laboratory of Avian Bioproducts Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
| | - Jiao Hu
- Key Laboratory of Avian Bioproducts Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
| |
Collapse
|
2
|
Zhang X, Tao Y, Wu L, Shu J, He Y, Feng H. PA and PA-X: two key proteins from segment 3 of the influenza viruses. Front Cell Infect Microbiol 2025; 15:1560250. [PMID: 40160474 PMCID: PMC11949978 DOI: 10.3389/fcimb.2025.1560250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 02/27/2025] [Indexed: 04/02/2025] Open
Abstract
In recent years, the influenza viruses have posed an increasingly severe threat to public health. It is essential to analyze the virulence and pathogenesis of influenza viruses to prevent and control them, as well as create antiviral drugs. Previous studies have revealed that influenza virus segment 3 codes for not only the PA protein but also a novel protein, PA-X. PA protein is one subunit of the polymerase of influenza viruses and plays a critical role in its life cycle. PA presented endonuclease activity, the transcription and replication of the viral genome, viral virulence, protein degradation, and host immune response by interacting with viral proteins, including PB2, PB1, and host factors, including ANP32A, CHD6, HAX1, hCLE, HDAC6, MCM complex. PA mutations were involved in the viral replication, pathogenicity, and transmission of influenza viruses in poultry, mammals, and humans. PA-X is an open reading frame generated by +1 ribosomal code shift at the N-terminal amino acids of segment 3 and possesses the shutoff activity of host gene expression, regulating the host immune response, viral virulence and transmission. Therefore, PA is one ideal target for the development of antiviral drugs against influenza viruses. Baloxavir marboxil (BXM) and Favipiravir are two very effective anti-influenza virus drugs targeting the PA endonuclease domain of influenza A viruses. In this review, we summarized the structures, viral replication, virulent determinants and transmission, host factors, innate immunity, and antiviral drugs involved in PA and PA-X. The information is of great value for underlying the mechanism of viral replication and developing novel effective strategies to prevent and control influenza infection and the pandemic.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
- Zhejiang Provincial Engineering Research Center of New Technologies and Applications for Targeted Therapy of Major Diseases, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yingying Tao
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
- Zhejiang Provincial Engineering Research Center of New Technologies and Applications for Targeted Therapy of Major Diseases, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Li Wu
- Department of Biology, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Jianhong Shu
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
- Zhejiang Provincial Engineering Research Center of New Technologies and Applications for Targeted Therapy of Major Diseases, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yulong He
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
- Zhejiang Provincial Engineering Research Center of New Technologies and Applications for Targeted Therapy of Major Diseases, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Huapeng Feng
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
- Zhejiang Provincial Engineering Research Center of New Technologies and Applications for Targeted Therapy of Major Diseases, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| |
Collapse
|
3
|
Jiang Y, Dou H, Wang X, Song T, Jia Y, Yue Y, Li L, He F, Kong L, Wu Z, Huang X, Liang Y, Jiao B, Jiao B. Analysis of seasonal H3N2 influenza virus epidemic characteristics and whole genome features in Jining City from 2018 to 2023. J Med Virol 2024; 96:e29846. [PMID: 39138641 DOI: 10.1002/jmv.29846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/08/2024] [Accepted: 07/23/2024] [Indexed: 08/15/2024]
Abstract
Seasonal H3N2 influenza virus, known for its rapid evolution, poses a serious threat to human health. This study focuses on analyzing the influenza virus trends in Jining City (2018-2023) and understanding the evolving nature of H3N2 strains. Data on influenza-like cases were gathered from Jining City's sentinel hospitals: Jining First People's Hospital and Rencheng Maternal and Child Health Hospital, using the Chinese Influenza Surveillance Information System. Over the period from 2018 to 2023, 7844 throat swab specimens were assessed using real-time fluorescence quantitative PCR for influenza virus nucleic acid detection. For cases positive for seasonal H3N2 influenza virus, virus isolation was followed by whole genome sequencing. Evolutionary trees were built for the eight gene segments, and protein variation analysis was performed. From 2018 to 2023, influenza-like cases in Jining City represented 6.99% (237 299/3 397 247) of outpatient visits, peaking in December and January. Influenza virus was detected in 15.67% (1229/7844) of cases, primarily from December to February. Notably, no cases were found in the 2020-2021 season. Full genome sequencing was conducted on 70 seasonal H3N2 strains, revealing distinct evolutionary branches across seasons. Significant antigenic site variations in the HA protein were noted. No resistance mutations to inhibitors were found, but some strains exhibited mutations in PA, NS1, PA-X, and PB1-F2. Influenza trends in Jining City saw significant shifts in the 2020-2021 and 2022-2023 seasons. Seasonal H3N2 exhibited rapid evolution. Sustained vigilance is imperative for vaccine updates and antiviral selection.
Collapse
Affiliation(s)
- Yajuan Jiang
- Department of Laboratory, Jining Center for Disease Control and Prevention, Jining, China
| | - Huixin Dou
- Department of Laboratory, Jining Center for Disease Control and Prevention, Jining, China
- School of Bioengineering, Qilu University of Technology, Jinan, China
| | - Xiaoyu Wang
- Department of Laboratory, Jining Center for Disease Control and Prevention, Jining, China
| | - Tongyun Song
- Department of Laboratory, Rencheng Maternal and Child Health Hospital, Jining, China
| | - Yongjian Jia
- Department of Laboratory, Jining Center for Disease Control and Prevention, Jining, China
| | - Ying Yue
- Department of Infectious Disease Control, Jining Center for Disease Control and Prevention, Jining, China
| | - Libo Li
- Department of Infectious Disease Control, Jining Center for Disease Control and Prevention, Jining, China
| | - Feifei He
- Computer Information Technology, Northern Arizona University, Flagstaff, Arizona, USA
| | - Lingming Kong
- Department of AI and Bioinformatics, Nanjing Chengshi BioTech (TheraRNA) Co., Ltd., Nanjing, China
| | - Zengding Wu
- Department of AI and Bioinformatics, Nanjing Chengshi BioTech (TheraRNA) Co., Ltd., Nanjing, China
| | - Xiankun Huang
- Department of Laboratory, Jining Center for Disease Control and Prevention, Jining, China
| | - Yumin Liang
- Department of Laboratory, Jining Center for Disease Control and Prevention, Jining, China
| | - Boyan Jiao
- Department of Laboratory, Jining Center for Disease Control and Prevention, Jining, China
| | - Baihai Jiao
- Department of Medicine, School of Medicine, University of Connecticut Health Center, Division of Nephrology, Farmington, Connecticut, USA
| |
Collapse
|
4
|
Wang B, Huang Y, Hu B, Zhang H, Han S, Yang Z, Su Q, He H. Characterization of a reassortant H11N9 subtype avian influenza virus isolated from spot-billed duck in China. Virus Genes 2023:10.1007/s11262-023-02009-8. [PMID: 37266848 DOI: 10.1007/s11262-023-02009-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 05/15/2023] [Indexed: 06/03/2023]
Abstract
H11N9 viruses in wild birds might have provided the NA gene of human H7N9 virus in early 2013 in China, which evolved with highly pathogenic strains in 2017 and caused severe fatalities. To investigate the prevalence and evolution of the H11N9 influenza viruses, 16,781 samples were collected and analyzed during 2016-2020. As a result, a novel strain of influenza A (H11N9) virus with several characteristics that increase virulence was isolated. This strain had reduced pathogenicity in chicken and mice and was able to replicate in mice without prior adaptation. Phylogenetic analyses showed that it was a sextuple-reassortant virus of H11N9, H3N8, H3N6, H7N9, H9N2, and H6N8 viruses present in China, similar to the H11N9 strains in Japan and Korea during the same period. This was the H11N9 strain isolated from China most recently, which add a record to viruses in wild birds. This study identified a new H11N9 reassortant in a wild bird with key mutation contributing to virulence. Therefore, comprehensive surveillance and enhanced biosecurity precautions are particularly important for the prediction and prevention of potential pandemics resulting from reassortant viruses with continuous evolution and expanding geographic distributions.
Collapse
Affiliation(s)
- Bo Wang
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, No. 1-5 Beichenxilu, Chaoyang District, Beijing, 100101, People's Republic of China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Yanyi Huang
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, No. 1-5 Beichenxilu, Chaoyang District, Beijing, 100101, People's Republic of China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Bin Hu
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, No. 1-5 Beichenxilu, Chaoyang District, Beijing, 100101, People's Republic of China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Heng Zhang
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, No. 1-5 Beichenxilu, Chaoyang District, Beijing, 100101, People's Republic of China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Shuyi Han
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, No. 1-5 Beichenxilu, Chaoyang District, Beijing, 100101, People's Republic of China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Ziwen Yang
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, No. 1-5 Beichenxilu, Chaoyang District, Beijing, 100101, People's Republic of China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Qianqian Su
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, No. 1-5 Beichenxilu, Chaoyang District, Beijing, 100101, People's Republic of China
| | - Hongxuan He
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, No. 1-5 Beichenxilu, Chaoyang District, Beijing, 100101, People's Republic of China.
| |
Collapse
|
5
|
Ghorbani A, Ngunjiri JM, Edward C Abundo M, Pantin-Jackwood M, Kenney SP, Lee CW. Development of in ovo-compatible NS1-truncated live attenuated influenza vaccines by modulation of hemagglutinin cleavage and polymerase acidic X frameshifting sites. Vaccine 2023; 41:1848-1858. [PMID: 36669965 DOI: 10.1016/j.vaccine.2023.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/08/2023] [Accepted: 01/10/2023] [Indexed: 01/20/2023]
Abstract
Emerging avian influenza viruses pose a high risk to poultry production, necessitating the need for more broadly protective vaccines. Live attenuated influenza vaccines offer excellent protective efficacies but their use in poultry farms is discouraged due to safety concerns related to emergence of reassortant viruses. Vaccination of chicken embryos inside eggs (in ovo) induces early immunity in young chicks while reduces the safety concerns related to the use of live vaccines on farms. However, in ovo vaccination using influenza viruses severely affects the egg hatchability. We previously engineered a high interferon-inducing live attenuated influenza vaccine candidate with an enhanced protective efficacy in chickens. Here, we asked whether we could further modify this high interferon-inducing vaccine candidate to develop an in ovo-compatible live attenuated influenza vaccine. We first showed that the enhanced interferon responses induced by the vaccine is not enough to attenuate the virus in ovo. To reduce the pathogenicity of the virus for chicken embryos, we replaced the hemagglutinin cleavage site of the H7 vaccine virus (PENPKTR/GL) with that of the H6-subtype viruses (PQIETR/GL) and disrupted the ribosomal frameshifting site responsible for viral polymerase acidic X protein expression. In ovo vaccination of chickens with up to 105 median egg infectious dose of the modified vaccine had minimal effects on hatchability while protecting the chickens against a heterologous challenge virus at two weeks of age. This study demonstrates that targeted genetic mutations can be applied to further attenuate and enhance the safety of live attenuated influenza vaccines to develop future in ovo vaccines for poultry.
Collapse
Affiliation(s)
- Amir Ghorbani
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA; Center for Food Animal Health, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH, USA
| | - John M Ngunjiri
- Center for Food Animal Health, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH, USA
| | - Michael Edward C Abundo
- Center for Food Animal Health, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH, USA
| | - Mary Pantin-Jackwood
- Southeast Poultry Research Laboratory, US National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA, USA
| | - Scott P Kenney
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA; Center for Food Animal Health, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH, USA.
| | - Chang-Won Lee
- Southeast Poultry Research Laboratory, US National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA, USA.
| |
Collapse
|
6
|
Strategies of Influenza A Virus to Ensure the Translation of Viral mRNAs. Pathogens 2022; 11:pathogens11121521. [PMID: 36558855 PMCID: PMC9783940 DOI: 10.3390/pathogens11121521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
Viruses are obligatorily intracellular pathogens. To generate progeny virus particles, influenza A viruses (IAVs) have to divert the cellular machinery to ensure sufficient translation of viral mRNAs. To this end, several strategies have been exploited by IAVs, such as host gene shutoff, suppression of host innate immune responses, and selective translation of viral mRNAs. Various IAV proteins are responsible for host gene shutoff, e.g., NS1, PA-X, and RdRp, through inhibition of cellular gene transcription, suppression of cellular RNA processing, degradation of cellular RNAs, and blockage of cellular mRNA export from the nucleus. Host shutoff should suppress the innate immune responses and also increase the translation of viral mRNAs indirectly due to the reduced competition from cellular mRNAs for cellular translational machinery. However, many other mechanisms are also responsible for the suppression of innate immune responses by IAV, such as prevention of the detection of the viral RNAs by the RLRs, inhibition of the activities of proteins involved in signaling events of interferon production, and inhibition of the activities of interferon-stimulated genes, mainly through viral NS1, PB1-F2, and PA-X proteins. IAV mRNAs may be selectively translated in favor of cellular mRNAs through interacting with viral and/or cellular proteins, such as NS1, PABPI, and/or IFIT2, in the 5'-UTR of viral mRNAs. This review briefly summarizes the strategies utilized by IAVs to ensure sufficient translation of viral mRNAs focusing on recent developments.
Collapse
|
7
|
Schaefer J, Clow W, Bhandari R, Kimura M, Williams L, Pellegrini M. Killing in self-defense: proapoptotic drugs to eliminate intracellular pathogens. Curr Opin Immunol 2022; 79:102263. [PMID: 36375234 DOI: 10.1016/j.coi.2022.102263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/13/2022] [Accepted: 10/17/2022] [Indexed: 11/13/2022]
Abstract
Intracellular infections rely on host cell survival for replication and have evolved several mechanisms to prevent infected cells from dying. Drugs that promote apoptosis, a noninflammatory form of cell death, can dysregulate these survival mechanisms to kill infected cells via a mechanism that resists the evolution of drug resistance. Two such drug classes, known as SMAC mimetics and BH3 mimetics, have shown preclinical efficacy at mediating clearance of liver-stage malaria and chronic infections such as hepatitis-B virus and Mycobacterium tuberculosis. Emerging toxicity and efficacy data have reinforced the broad applicability of these drugs and form the foundations for preclinical and clinical studies into their various usage cases.
Collapse
Affiliation(s)
- Jan Schaefer
- Walter & Eliza Hall Institute Infectious Disease and Immune Defence Division, 1G Royal Parade, Parkville, VIC 3052, Australia
| | - William Clow
- Walter & Eliza Hall Institute Infectious Disease and Immune Defence Division, 1G Royal Parade, Parkville, VIC 3052, Australia
| | - Reet Bhandari
- Walter & Eliza Hall Institute Infectious Disease and Immune Defence Division, 1G Royal Parade, Parkville, VIC 3052, Australia
| | - Mari Kimura
- Walter & Eliza Hall Institute Infectious Disease and Immune Defence Division, 1G Royal Parade, Parkville, VIC 3052, Australia
| | - Lewis Williams
- Walter & Eliza Hall Institute Infectious Disease and Immune Defence Division, 1G Royal Parade, Parkville, VIC 3052, Australia
| | - Marc Pellegrini
- Walter & Eliza Hall Institute Infectious Disease and Immune Defence Division, 1G Royal Parade, Parkville, VIC 3052, Australia.
| |
Collapse
|
8
|
Lutz M, Schmierer J, Takimoto T. Host adaptive mutations in the 2009 H1N1 pandemic influenza A virus PA gene regulate translation efficiency of viral mRNAs via GRSF1. Commun Biol 2022; 5:1102. [PMID: 36253464 PMCID: PMC9576711 DOI: 10.1038/s42003-022-04082-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 10/06/2022] [Indexed: 11/08/2022] Open
Abstract
Avian species are the major natural reservoir from which pandemic influenza A viruses can be introduced to humans. Avian influenza A virus genes, including the three viral polymerase genes, PA, PB1 and PB2, require host-adaptive mutations to allow for viral replication and transmission in humans. Previously, PA from the 2009 pH1N1 viral polymerase was found to harbor host-adaptive mutations leading to enhanced viral polymerase activity. By quantifying translation and mRNA transcription, we found that the 2009 pH1N1 PA, and the associated host-adaptive mutations, led to greater translation efficiency. This was due to enhanced cytosolic accumulation of viral mRNA, which was dependent on the host RNA binding protein GRSF1. Mutations to the GRSF1 binding site in viral mRNA, as well as GRSF1 knockdown, reduced cytosolic accumulation and translation efficiency of viral mRNAs. This study identifies a previously unrecognized mechanism by which host-adaptive mutations in PA regulate viral replication and host adaptation. Importantly, these results provide greater insight into the host adaptation process of IAVs and reveal the importance of GRSF1 in the lifecycle of IAV.
Collapse
Affiliation(s)
- Michael Lutz
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Jordana Schmierer
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Toru Takimoto
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, 14642, USA.
| |
Collapse
|
9
|
Abstract
Influenza A virus has long been known to encode 10 major polypeptides, produced, almost without exception, by every natural isolate of the virus. These polypeptides are expressed in readily detectable amounts during infection and are either fully essential or their loss severely attenuates virus replication. More recent work has shown that this core proteome is elaborated by expression of a suite of accessory gene products that tend to be expressed at lower levels through noncanonical transcriptional and/or translational events. Expression and activity of these accessory proteins varies between virus strains and is nonessential (sometimes inconsequential) for virus replication in cell culture, but in many cases has been shown to affect virulence and/or transmission in vivo. This review describes, when known, the expression mechanisms and functions of this influenza A virus accessory proteome and discusses its significance and evolution.
Collapse
Affiliation(s)
- Rute M Pinto
- The Roslin Institute, University of Edinburgh, Midlothian EH25 9RG, United Kingdom
| | - Samantha Lycett
- The Roslin Institute, University of Edinburgh, Midlothian EH25 9RG, United Kingdom
| | - Eleanor Gaunt
- The Roslin Institute, University of Edinburgh, Midlothian EH25 9RG, United Kingdom
| | - Paul Digard
- The Roslin Institute, University of Edinburgh, Midlothian EH25 9RG, United Kingdom
| |
Collapse
|
10
|
Virus Adaptation Following Experimental Infection of Chickens with a Domestic Duck Low Pathogenic Avian Influenza Isolate from the 2017 USA H7N9 Outbreak Identifies Polymorphic Mutations in Multiple Gene Segments. Viruses 2021; 13:v13061166. [PMID: 34207098 PMCID: PMC8234733 DOI: 10.3390/v13061166] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/09/2021] [Accepted: 06/15/2021] [Indexed: 11/17/2022] Open
Abstract
In March 2017, highly pathogenic (HP) and low pathogenic (LP) avian influenza virus (AIV) subtype H7N9 were detected from poultry farms and backyard birds in several states in the southeast United States. Because interspecies transmission is a known mechanism for evolution of AIVs, we sought to characterize infection and transmission of a domestic duck-origin H7N9 LPAIV in chickens and genetically compare the viruses replicating in the chickens to the original H7N9 clinical field samples used as inoculum. The results of the experimental infection demonstrated virus replication and transmission in chickens, with overt clinical signs of disease and shedding through both oral and cloacal routes. Unexpectedly, higher levels of virus shedding were observed in some cloacal swabs. Next generation sequencing (NGS) analysis identified numerous non-synonymous mutations at the consensus level in the polymerase genes (i.e., PA, PB1, and PB2) and the hemagglutinin (HA) receptor binding site in viruses recovered from chickens, indicating possible virus adaptation in the new host. For comparison, NGS analysis of clinical samples obtained from duck specimen collected during the outbreak indicated three polymorphic sides in the M1 segment and a minor population of viruses carrying the D139N (21.4%) substitution in the NS1 segment. Interestingly, at consensus level, A/duck/Alabama (H7N9) had isoleucine at position 105 in NP protein, similar to HPAIV (H7N9) but not to LPAIV (H7N9) isolated from the same 2017 influenza outbreak in the US. Taken together, this work demonstrates that the H7N9 viruses could readily jump between avian species, which may have contributed to the evolution of the virus and its spread in the region.
Collapse
|
11
|
Impact of Influenza A Virus Shutoff Proteins on Host Immune Responses. Vaccines (Basel) 2021; 9:vaccines9060629. [PMID: 34200539 PMCID: PMC8230195 DOI: 10.3390/vaccines9060629] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/03/2021] [Accepted: 06/07/2021] [Indexed: 12/26/2022] Open
Abstract
Influenza A virus (IAV) is a significant human pathogen that causes seasonal epidemics. Although various types of vaccines are available, IAVs still circulate among human populations, possibly due to their ability to circumvent host immune responses. IAV expresses two host shutoff proteins, PA-X and NS1, which antagonize the host innate immune response. By transcriptomic analysis, we previously showed that PA-X is a major contributor for general shutoff, while shutoff active NS1 specifically inhibits the expression of host cytokines, MHC molecules, and genes involved in innate immunity in cultured human cells. So far, the impact of these shutoff proteins in the acquired immune response in vivo has not been determined in detail. In this study, we analyzed the effects of PA-X and NS1 shutoff activities on immune response using recombinant influenza A/California/04/2009 viruses containing mutations affecting the expression of shutoff active PA-X and NS1 in a mouse model. Our data indicate that the virus without shutoff activities induced the strongest T and B cell responses. Both PA-X and NS1 reduced host immune responses, but shutoff active NS1 most effectively suppressed lymphocyte migration to the lungs, antibody production, and the generation of IAV specific CD4+ and CD8+ T cells. NS1 also prevented the generation of protective immunity against a heterologous virus challenge. These data indicate that shutoff active NS1 plays a major role in suppressing host immune responses against IAV infection.
Collapse
|
12
|
Amino Acid Residues Involved in Inhibition of Host Gene Expression by Influenza A/Brevig Mission/1/1918 PA-X. Microorganisms 2021; 9:microorganisms9051109. [PMID: 34065592 PMCID: PMC8160905 DOI: 10.3390/microorganisms9051109] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/19/2021] [Accepted: 05/19/2021] [Indexed: 12/12/2022] Open
Abstract
The influenza A virus (IAV) PA-X protein is a virulence factor that selectively degrades host mRNAs leading to protein shutoff. This function modulates host inflammation, antiviral responses, cell apoptosis, and pathogenesis. In this work we describe a novel approach based on the use of bacteria and plasmid encoding of the PA-X gene under the control of the bacteriophage T7 promoter to identify amino acid residues important for A/Brevig Mission/1/1918 H1N1 PA-X’s shutoff activity. Using this system, we have identified PA-X mutants encoding single or double amino acid changes, which diminish its host shutoff activity, as well as its ability to counteract interferon responses upon viral infection. This novel bacteria-based approach could be used for the identification of viral proteins that inhibit host gene expression as well as the amino acid residues responsible for inhibition of host gene expression.
Collapse
|
13
|
Wu Y, Hu J, Jin X, Li X, Wang J, Zhang M, Chen J, Xie S, Qi W, Liao M, Jia W. Accelerated Evolution of H7N9 Subtype Influenza Virus under Vaccination Pressure. Virol Sin 2021; 36:1124-1132. [PMID: 33974230 PMCID: PMC8112217 DOI: 10.1007/s12250-021-00383-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 03/17/2021] [Indexed: 01/02/2023] Open
Abstract
No avian H7N9 outbreaks have occurred since the introduction of H7N9 inactivated vaccine in the fall of 2017. However, H7N9 is still prevalent in poultry. To surveil the prevalence, genetic characteristics, and antigenic changes of H7N9, over 7000 oropharyngeal and cloaca swab specimens were collected from live poultry markets and farms in 15 provinces of China from 2017 to 2019. A total of 85 influenza virus subtype H7N9 strains were isolated and 20 representative strains were selected for genetic analysis and antigenicity evaluation. Results indicated the decreased prevalence of low-pathogenic H7N9 strains while highly-pathogenic H7N9 strains became dominated since the introduction of vaccine. Phylogenetic analysis showed that strains from 2019 formed an independent small branch and were genetically distant to strains isolated in 2013-2018. Analysis of key amino acid sites showed that the virus strains may adapt to the host environment evolutionally through mutation. Our analysis predicted additional potential glycosylation sites for HA and NA genes in the 2019 strains. Sequence analysis of HA gene in strains isolated from 2018 to 2019 showed that there were an increased nucleotide substitution rate and an increased mutation rate in the first and second nucleotides of coding codons within the open reading frame. The hemagglutination inhibition (HI) assay showed that H7-Re1 and H7-Re2 exhibited a lower HI titer for isolates from 2019, while H7-Re3 and rLN79 showed a high HI titer. The protective effect of the vaccine decreased after 15 months of use. Overall, under vaccination pressure, the evolution of influenza virus subtype H7N9 has accelerated.
Collapse
Affiliation(s)
- Yifan Wu
- National Avian Influenza Para-Reference Laboratory (Guangzhou), College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Jingkai Hu
- National Avian Influenza Para-Reference Laboratory (Guangzhou), College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Xuanjiang Jin
- National Avian Influenza Para-Reference Laboratory (Guangzhou), College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Xiao Li
- National Avian Influenza Para-Reference Laboratory (Guangzhou), College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Jinfeng Wang
- National Avian Influenza Para-Reference Laboratory (Guangzhou), College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Mengmeng Zhang
- National Avian Influenza Para-Reference Laboratory (Guangzhou), College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Jianglin Chen
- National Avian Influenza Para-Reference Laboratory (Guangzhou), College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Shumin Xie
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China.,National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, 510642, China.,Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Guangzhou, 510642, China
| | - Wenbao Qi
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, 510642, China
| | - Ming Liao
- Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Guangzhou, 510642, China
| | - Weixin Jia
- National Avian Influenza Para-Reference Laboratory (Guangzhou), College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China. .,Key Laboratory of Zoonosis, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, China. .,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China. .,National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, 510642, China. .,Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Guangzhou, 510642, China.
| |
Collapse
|
14
|
Identification of amino acid residues required for inhibition of host gene expression by influenza A/Viet Nam/1203/2004 H5N1 PA-X. J Virol 2021; 96:e0040821. [PMID: 33853954 DOI: 10.1128/jvi.00408-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PA-X is a non-structural protein of influenza A virus (IAV), which is encoded by the polymerase acidic (PA) N-terminal region that contains a C-terminal +1 frameshifted sequence. IAV PA-X protein modulates virus-induced host innate immune responses and viral pathogenicity via suppression of host gene expression or cellular shutoff, through cellular mRNA cleavage. Highly pathogenic avian influenza viruses (HPAIV) of the H5N1 subtype naturally infect different avian species, they have an enormous economic impact in the poultry farming, and they also have zoonotic and pandemic potential, representing a risk to human public health. In the present study, we describe a novel bacteria-based approach to identify amino acid residues in the PA-X protein of the HPAIV A/Viet Nam/1203/2004 H5N1 that are important for its ability to inhibit host protein expression or cellular shutoff activity. Identified PA-X mutants displayed a reduced shutoff activity as compared to that of the wild-type (WT) A/Viet Nam/1203/2004 H5N1 PA-X protein. Notably, this new bacteria-based screening allowed us to identify amino acid residues widely distributed over the entire N-terminal region of PA-X. Furthermore, we found that some of the residues affecting A/Viet Nam/1203/2004 H5N1 PA-X host shutoff activity also affect PA polymerase activity in a minigenome assay. This information could be used for the rational design of new and more effective compounds with antiviral activity against IAV. Moreover, our results demonstrate the feasibility of using this bacteria-based approach to identify amino acid residues important for the activity of viral proteins to inhibit host gene expression. IMPORTANCE Highly pathogenic avian influenza viruses (HPAIV) continue to pose a huge threat to global animal and human health. Despite of the limited genome size of Influenza A virus (IAV), the virus encodes eight main viral structural proteins and multiple accessory non-structural proteins, depending on the IAV type, subtype or strain. One of the IAV accessory proteins, PA-X, is encoded by the polymerase acidic (PA) protein and is involved in pathogenicity through the modulation of IAV-induced host inflammatory and innate immune responses. However, the molecular mechanism(s) of IAV PA-X regulation of the host immune response is not well understood. In this work, we used, for the first time, a bacteria-based approach for the identification of amino acids important for the ability of IAV PA-X to induce host shutoff activity and describe novel residues relevant for its ability to inhibit host gene expression, and their contribution in PA polymerase activity.
Collapse
|
15
|
The influenza A virus host shutoff factor PA-X is rapidly turned over in a strain-specific manner. J Virol 2021; 95:JVI.02312-20. [PMID: 33504608 PMCID: PMC8103685 DOI: 10.1128/jvi.02312-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The influenza A endoribonuclease PA-X regulates virulence and transmission of the virus by reducing host gene expression and thus regulating immune responses to influenza A virus. Despite this key function in viral biology, the levels of PA-X protein remain markedly low during infection, and previous results suggest that these low levels are not solely the result of regulation of the level of translation and RNA stability. How PA-X is regulated post-translationally remains unknown. We now report that the PA-X protein is rapidly turned over. PA-X from multiple viral strains are short-lived, although the half-life of PA-X ranges from ∼30 minutes to ∼3.5 hours depending on the strain. Moreover, sequences in the variable PA-X C-terminal domain are primarily responsible for regulating PA-X half-life, although the N-terminal domain also accounts for some differences among strains. Interestingly, we find that the PA-X from the 2009 pandemic H1N1 strain has a longer half-life compared to the other variants we tested. This PA-X isoform has been reported to have a higher host shutoff activity, suggesting a role for protein turnover in regulating PA-X activity. Collectively, this study reveals a novel regulatory mechanism of PA-X protein levels that may impact host shutoff activity during influenza A virus infection.IMPORTANCE The PA-X protein from influenza A virus reduces host immune responses to infection through suppressing host gene expression, including genes encoding the antiviral response. Thus, it plays a central role in influenza A virus biology. Despite its key function, PA-X was only discovered in 2012 and much remains to be learned including how PA-X activity is regulated to promote optimal levels of viral infection. In this study, we reveal that PA-X protein levels are very low likely because of rapid turnover. We show that instability is a conserved property among PA-X variants from different strains of influenza A virus, but that the half-lives of PA-X variants differ. Moreover, the longer half-life of PA-X from the 2009 pandemic H1N1 strain correlates with its reported higher activity. Therefore, PA-X stability may be a way to regulate its activity and may contribute to the differential virulence of influenza A virus strains.
Collapse
|
16
|
Clements AL, Peacock TP, Sealy JE, Lee HM, Hussain S, Sadeyen JR, Shelton H, Digard P, Iqbal M. PA-X is an avian virulence factor in H9N2 avian influenza virus. J Gen Virol 2021; 102:001531. [PMID: 33544070 PMCID: PMC8515854 DOI: 10.1099/jgv.0.001531] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 11/03/2020] [Indexed: 12/12/2022] Open
Abstract
Influenza A viruses encode several accessory proteins that have host- and strain-specific effects on virulence and replication. The accessory protein PA-X is expressed due to a ribosomal frameshift during translation of the PA gene. Depending on the particular combination of virus strain and host species, PA-X has been described as either acting to reduce or increase virulence and/or virus replication. In this study, we set out to investigate the role PA-X plays in H9N2 avian influenza viruses, focusing on the natural avian host, chickens. We found that the G1 lineage A/chicken/Pakistan/UDL-01/2008 (H9N2) PA-X induced robust host shutoff in both mammalian and avian cells and increased virus replication in mammalian, but not avian cells. We further showed that PA-X affected embryonic lethality in ovo and led to more rapid viral shedding and widespread organ dissemination in vivo in chickens. Overall, we conclude PA-X may act as a virulence factor for H9N2 viruses in chickens, allowing faster replication and wider organ tropism.
Collapse
Affiliation(s)
- Anabel L. Clements
- The Pirbright Institute, Pirbright, Woking, GU24 0NF, UK
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, EH25 9RG, UK
| | - Thomas P. Peacock
- The Pirbright Institute, Pirbright, Woking, GU24 0NF, UK
- Department of Infectious Diseases, Imperial College London, W2 1PG, UK
| | | | - Hui Min Lee
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, EH25 9RG, UK
| | - Saira Hussain
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, EH25 9RG, UK
- Present address: The Francis Crick Institute, London, NW1 1AT, UK
| | | | - Holly Shelton
- The Pirbright Institute, Pirbright, Woking, GU24 0NF, UK
| | - Paul Digard
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, EH25 9RG, UK
| | - Munir Iqbal
- The Pirbright Institute, Pirbright, Woking, GU24 0NF, UK
| |
Collapse
|
17
|
Kong M, Chen K, Zeng Z, Wang X, Gu M, Hu Z, Jiao X, Hu J, Liu X. The virulence modulator PA-X protein has minor effect on the pathogenicity of the highly pathogenic H7N9 avian influenza virus in mice. Vet Microbiol 2021; 255:109019. [PMID: 33676094 DOI: 10.1016/j.vetmic.2021.109019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 02/16/2021] [Indexed: 12/27/2022]
Abstract
PA-X is a novel discovered accessory protein encoded by the PA mRNA of the influenza A virus. Accumulated studies have demonstrated the crucial role of this protein in regulating the virulence of various subtypes of influenza virus, including H1N1, H5N1, H9N2, H1N2, H3N8 and H3N2 virus. However, the role of PA-X protein in regulating the virulence of the highly pathogenic avian H7N9 virus was unknown. In this study, we firstly generated two recombinant H7N9 viruses which have lower PA-X expression level than the parental H7N9 virus. We then systematically compared their difference in virus replication, polymerase activity, virulence and virus-induced host immune responses in mice. The results showed that the PA-X deficient viruses significantly increased viral replication in madin darby canine kidney cells and slightly increased viral replication in mouse lung. In addition, loss of PA-X expression significantly increased viral polymerase activity and alleviated the host-shutoff activity mediated by the parental PA protein. However, in contrast with the usual function of PA-X in regulating the virulence in different subtype influenza virus, no obvious effect on viral virulence in mice was observed by H7N9 PA-X protein. Furthermore, among the 12 kinds of cytokines and 2 kinds of complement derived components that we tested, the PA-X deficiency viruses only induced significantly higher expression levels of MX1 than the parental virus. Altogether, these results showed that PA-X has little effect on viral virulence and viral induced innate immune response of the H7N9 subtype virus. Our study adds further information for the growing understanding of the complexity of PA-X in regulating viral virulence and host innate immune response of different influenza virus.
Collapse
Affiliation(s)
- Ming Kong
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Kaibiao Chen
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Zixiong Zeng
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Xiaoquan Wang
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Min Gu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Zenglei Hu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Xinan Jiao
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
| | - Jiao Hu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China.
| | - Xiufan Liu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China.
| |
Collapse
|
18
|
Li M, Qi W, Chang Q, Chen R, Zhen D, Liao M, Wen J, Deng Y. Influenza A virus protein PA-X suppresses host Ankrd17-mediated immune responses. Microbiol Immunol 2021; 65:48-59. [PMID: 33241870 DOI: 10.1111/1348-0421.12863] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 11/16/2020] [Accepted: 11/19/2020] [Indexed: 11/30/2022]
Abstract
Influenza A virus (IAV) PA-X is a critical ribonuclease protein involved in host cell shutoff but its role in modulating the host immune response to IAV infection remains to be addressed. In this study, host cellular proteins that directly interact with PA-X were screened to investigate the biological function of PA-X in the pathogenesis of IAV infection. The protein ankyrin repeat domain 17 (Ankrd17), a positive regulator of inflammatory responses via the retinoic acid-inducible gene-I (RIG-I)-like receptor (RLR) signaling pathway, was identified as a specific PA-X binding partner that preferred PA-X to the PA protein. The N-terminal ankyrin repeats of Ankrd17 are the key domain for the interaction with PA-X rather than PA, which is required for the function of Ankrd17 in elevating the host immune response. Using Ankrd17 knockout and overexpression, we confirmed that PA-X significantly affected the Ankrd17-mediated response to infection in host cells. Our data therefore reveal a novel function for PA-X in the regulation of innate immune pathways via the interaction between PA-X and Ankrd17.
Collapse
Affiliation(s)
- Mai Li
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China.,Guangdong Food and Drug Vocational College, Guangzhou, China.,Key Laboratory of Zoonosis of the Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, China
| | - Wenbao Qi
- Key Laboratory of Zoonosis of the Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, China.,National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Qing Chang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Ruohong Chen
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China.,Key Laboratory of Zoonosis of the Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, China
| | - Danlin Zhen
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Ming Liao
- Key Laboratory of Zoonosis of the Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, China.,National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Jikai Wen
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China.,Key Laboratory of Zoonosis of the Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, China
| | - Yiqun Deng
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China.,Key Laboratory of Zoonosis of the Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, China
| |
Collapse
|
19
|
Deep sequencing of the transcriptome from murine lung infected with H5N8 subtype avian influenza virus with combined substitutions I283M and K526R in PB2 gene. INFECTION GENETICS AND EVOLUTION 2020; 87:104672. [PMID: 33309772 DOI: 10.1016/j.meegid.2020.104672] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 11/13/2020] [Accepted: 12/06/2020] [Indexed: 01/04/2023]
Abstract
H5N8 subtype highly pathogenic avian influenza viruses (HPAIVs) pose a huge threat to poultry industry and general public health. Our previous study demonstrated that synergistic effect of 283M and 526R in PB2 gene was a critical factor for viral high pathogenicity in mammals. However, the potential pathogenic mechanism of the mutant virus is still unclear. Here, RNA-seq method was used to analyze the global host response of murine lungs after infecting with parental r-JY virus and JY-PB2-I283M-K526R mutant virus. We found that both amounts and the expression levels of host differentially expressed genes (DEGs) were higher in mutant virus-infected mice compared with the group of parental virus. Furthermore, the DEGs mainly related with innate immune response by GO and KEGG analysis. Especially, PB2-I283M-K526R mutation strongly induced a sharp expression of cytokine storm-related genes, including MX1, CXCL10, and IFN-γ, performed by qRT-PCR. We also found that PB2-I283M-K526R mutation accelerated the level of cell apoptosis by heat map analysis of apoptosis-related DEGs in lungs and apoptosis assay in vitro. Taken together, our data demonstrated that PB2-I283M-K526R of H5N8 subtype HPAIV exacerbated the innate immune response and the level of cell apoptosis, which might be a key pathogenic mechanism for the enhanced pathogenicity of mutants in mammals.
Collapse
|
20
|
The Effects of Genetic Variation on H7N9 Avian Influenza Virus Pathogenicity. Viruses 2020; 12:v12111220. [PMID: 33126529 PMCID: PMC7693985 DOI: 10.3390/v12111220] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/18/2020] [Accepted: 10/26/2020] [Indexed: 12/12/2022] Open
Abstract
Since the H7N9 avian influenza virus emerged in China in 2013, there have been five seasonal waves which have shown human infections and caused high fatality rates in infected patients. A multibasic amino acid insertion seen in the HA of current H7N9 viruses occurred through natural evolution and reassortment, and created a high pathogenicity avian influenza (HPAI) virus from the low pathogenicity avian influenza (LPAI) in 2017, and significantly increased pathogenicity in poultry, resulting in widespread HPAI H7N9 in poultry, which along with LPAI H7N9, contributed to the severe fifth seasonal wave in China. H7N9 is a novel reassorted virus from three different subtypes of influenza A viruses (IAVs) which displays a great potential threat to public health and the poultry industry. To date, no sustained human-to-human transmission has been recorded by the WHO. However, the high ability of evolutionary adaptation of H7N9 and lack of pre-existing immunity in humans heightens the pandemic potential. Changes in IAVs proteins can affect the viral transmissibility, receptor binding specificity, pathogenicity, and virulence. The multibasic amino acid insertion, mutations in hemagglutinin, deletion and mutations in neuraminidase, and mutations in PB2 contribute to different virological characteristics. This review summarized the latest research evidence to describe the impacts of viral protein changes in viral adaptation and pathogenicity of H7N9, aiming to provide better insights for developing and enhancing early warning or intervention strategies with the goal of preventing highly pathogenic IAVs circulation in live poultry, and transmission to humans.
Collapse
|
21
|
Roles of the Non-Structural Proteins of Influenza A Virus. Pathogens 2020; 9:pathogens9100812. [PMID: 33023047 PMCID: PMC7600879 DOI: 10.3390/pathogens9100812] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 09/29/2020] [Accepted: 10/01/2020] [Indexed: 12/11/2022] Open
Abstract
Influenza A virus (IAV) is a segmented, negative single-stranded RNA virus that causes seasonal epidemics and has a potential for pandemics. Several viral proteins are not packed in the IAV viral particle and only expressed in the infected host cells. These proteins are named non-structural proteins (NSPs), including NS1, PB1-F2 and PA-X. They play a versatile role in the viral life cycle by modulating viral replication and transcription. More importantly, they also play a critical role in the evasion of the surveillance of host defense and viral pathogenicity by inducing apoptosis, perturbing innate immunity, and exacerbating inflammation. Here, we review the recent advances of these NSPs and how the new findings deepen our understanding of IAV–host interactions and viral pathogenesis.
Collapse
|
22
|
Clements AL, Sealy JE, Peacock TP, Sadeyen JR, Hussain S, Lycett SJ, Shelton H, Digard P, Iqbal M. Contribution of Segment 3 to the Acquisition of Virulence in Contemporary H9N2 Avian Influenza Viruses. J Virol 2020; 94:e01173-20. [PMID: 32727875 PMCID: PMC7527061 DOI: 10.1128/jvi.01173-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 07/27/2020] [Indexed: 12/16/2022] Open
Abstract
H9N2 avian influenza viruses (AIVs) circulate in poultry throughout much of Asia, the Middle East, and Africa. These viruses cause huge economic damage to poultry production systems and pose a zoonotic threat both in their own right and in the generation of novel zoonotic viruses, for example, H7N9. In recent years, it has been observed that H9N2 viruses have further adapted to gallinaceous poultry, becoming more highly transmissible and causing higher morbidity and mortality. Here, we investigate the molecular basis for this increased virulence, comparing a virus from the 1990s and a contemporary field strain. The modern virus replicated to higher titers in various systems, and this difference mapped to a single amino acid polymorphism at position 26 of the endonuclease domain shared by the PA and PA-X proteins. This change was responsible for increased replication and higher morbidity and mortality rates along with extended tissue tropism seen in chickens. Although the PA K26E change correlated with increased host cell shutoff activity of the PA-X protein in vitro, it could not be overridden by frameshift site mutations that block PA-X expression and therefore increased PA-X activity could not explain the differences in replication phenotype. Instead, this indicates that these differences are due to subtle effects on PA function. This work gives insight into the ongoing evolution and poultry adaptation of H9N2 and other avian influenza viruses and helps us understand the striking morbidity and mortality rates in the field, as well as the rapidly expanding geographical range seen in these viruses.IMPORTANCE Avian influenza viruses, such as H9N2, cause huge economic damage to poultry production worldwide and are additionally considered potential pandemic threats. Understanding how these viruses evolve in their natural hosts is key to effective control strategies. In the Middle East and South Asia, an older H9N2 virus strain has been replaced by a new reassortant strain with greater fitness. Here, we take representative viruses and investigate the genetic basis for this "fitness." A single mutation in the virus was responsible for greater fitness, enabling high growth of the contemporary H9N2 virus in cells, as well as in chickens. The genetic mutation that modulates this change is within the viral PA protein, a part of the virus polymerase gene that contributes to viral replication as well as to virus accessory functions-however, we find that the fitness effect is specifically due to changes in the protein polymerase activity.
Collapse
Affiliation(s)
- Anabel L Clements
- The Pirbright Institute, Pirbright, Woking, United Kingdom
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Joshua E Sealy
- The Pirbright Institute, Pirbright, Woking, United Kingdom
| | - Thomas P Peacock
- The Pirbright Institute, Pirbright, Woking, United Kingdom
- Department of Infectious Diseases, Imperial College London, United Kingdom
| | | | - Saira Hussain
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Samantha J Lycett
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Holly Shelton
- The Pirbright Institute, Pirbright, Woking, United Kingdom
| | - Paul Digard
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Munir Iqbal
- The Pirbright Institute, Pirbright, Woking, United Kingdom
| |
Collapse
|
23
|
Hu J, Kong M, Cui Z, Gao Z, Ma C, Hu Z, Jiao X, Liu X. PA-X protein of H5N1 avian influenza virus inhibits NF-kappaB activity, a potential mechanism for PA-X counteracting the host innate immune responses. Vet Microbiol 2020; 250:108838. [PMID: 33045633 DOI: 10.1016/j.vetmic.2020.108838] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 08/28/2020] [Indexed: 12/28/2022]
Abstract
PA-X is a fusion protein of influenza virus which plays a crucial role in modulating influenza virus-induced host innate immune response and subsequent pathogenicity. However, the potential mechanism of PA-X regulation of the host innate immune response remains largely unknown. It is well known that NF-κB signal pathway is crucial for the immediate early step of immune responses activation, while the specific role of PA-X in NF-κB transcriptional activity is totally unknown. In this study, we initially showed that PA-X inhibits NF-κB transcription that stimulated by poly(I:C). We then further determined that the inhibitory effect on NF-κB activation mediated by PA-X was characterized by restricting NF-κB p65 nuclear translocation and nuclear NF-κB p65 activity but not by impeding the phosphorylation of NF-κB p65. Correspondingly, PA-X decreases the amount of NF-κB signaling pathway-associated genes, including TNF-α, Nos2, IL-6 and IL-2. Moreover, PA-X also suppresses both the mRNA and protein expression level of IFN-β, suggesting the direct contribution of PA-X to the inhibition of NF-κB-regulated IFN-β expression. Together, our study sheds light on the potential molecular mechanisms underlying the regulation of host NF-κB activity by PA-X and also identifies a novel functional role for PA-X in counteracting the host innate immune response. However, further exploration of the more elaborate mechanism of PA-X-mediated inhibition of NF-κB activity and the associated signaling pathway may help to elucidate its precise mechanism of evading and subverting the host immune response.
Collapse
Affiliation(s)
- Jiao Hu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
| | - Ming Kong
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
| | - Zhu Cui
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
| | - Zhao Gao
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
| | - Chunxi Ma
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
| | - Zenglei Hu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
| | - Xinan Jiao
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
| | - Xiufan Liu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China.
| |
Collapse
|
24
|
Truncation of PA-X Contributes to Virulence and Transmission of H3N8 and H3N2 Canine Influenza Viruses in Dogs. J Virol 2020; 94:JVI.00949-20. [PMID: 32461313 DOI: 10.1128/jvi.00949-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 05/20/2020] [Indexed: 12/15/2022] Open
Abstract
Equine-origin H3N8 and avian-origin H3N2 canine influenza viruses (CIVs) prevalent in dogs are thought to pose a public health threat arising from intimate contact between dogs and humans. However, our understanding of CIV virulence is still limited. Influenza A virus PA-X is a fusion protein encoded in part by a +1 frameshifted open reading frame (X-ORF) in segment 3. The X-ORF can be translated in full-length (61-amino-acid) or truncated (41-amino-acid) form. Genetic analysis indicated that the X-ORFs of equine H3N8 and avian H3N2 influenza viruses encoded 61 amino acids but were truncated after introduction into dogs. To determine the effect of PA-X truncation on the biological characteristics of CIVs, we constructed four recombinant viruses on H3N8 and H3N2 CIV backgrounds bearing truncated or full-length PA-Xs. We observed that truncation of PA-X increased growth of both H3N8 and H3N2 CIVs in MDCK cells and suppressed expression from cotransfected plasmids in MDCK cells. Furthermore, truncation of PA-X enhanced viral pathogenicity in dogs, as shown by aggravated clinical symptoms and histopathological changes, increased viral replication in the respiratory system, and prolonged virus shedding. Additionally, CIVs with truncated PA-Xs were transmitted more efficiently in dogs. Global gene expression profiling of the lungs of infected dogs revealed that differentially expressed genes were mainly associated with inflammatory responses, which might contribute to the pathogenicity of PA-X-truncated CIVs. Our findings revealed that truncation of PA-X might be important for the adaptation of influenza viruses to dogs.IMPORTANCE Epidemics of equine-origin H3N8 and avian-origin H3N2 influenza viruses in canine populations are examples of successful cross-species transmission of influenza A viruses. Genetic analysis showed that the PA-X genes of equine H3N8 or avian H3N2 influenza viruses were full-length, with X-ORFs encoding 61 amino acids; however, those of equine-origin H3N8 or avian-origin H3N2 CIVs were truncated, suggesting that PA-X truncation occurred after transmission to dogs. In this study, we extended the PA-X genes of H3N8 and H3N2 CIVs and compared the biological characteristics of CIVs bearing different lengths of PA-X. We demonstrated that for both H3N8 and H3N2 viruses, truncation of PA-X increased virus yields in MDCK cells and enhanced viral replication, pathogenicity, and transmission in dogs. These results might reflect enhanced suppression of host gene expression and upregulation of genes related to inflammatory responses. Collectively, our data partially explain the conservation of truncated PA-X in CIVs.
Collapse
|
25
|
An R195K Mutation in the PA-X Protein Increases the Virulence and Transmission of Influenza A Virus in Mammalian Hosts. J Virol 2020; 94:JVI.01817-19. [PMID: 32161172 DOI: 10.1128/jvi.01817-19] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 03/05/2020] [Indexed: 11/20/2022] Open
Abstract
In the 21st century, the emergence of H7N9 and H1N1/2009 influenza viruses, originating from animals and causing severe human infections, has prompted investigations into the genetic alterations required for cross-species transmission. We previously found that replacement of the human-origin PA gene segment in avian influenza virus (AIV) could overcome barriers to cross-species transmission. Recently, it was reported that the PA gene segment encodes both the PA protein and a second protein, PA-X. Here, we investigated the role of PA-X. We found that an H9N2 avian influenza reassortant virus bearing a human-origin H1N1/2009 PA gene was attenuated in mice after the loss of PA-X. Reverse genetics analyses of PA-X substitutions conserved in human influenza viruses indicated that R195K, K206R, and P210L substitutions conferred significantly increased replication and pathogenicity on H9N2 virus in mice and ferrets. PA-X R195K was present in all human H7N9 and H1N1/2009 viruses and predominated in human H5N6 viruses. Compared with PA-X 195R, H7N9 influenza viruses bearing PA-X 195K showed increased replication and transmission in ferrets. We further showed that PA-X 195K enhanced lung inflammatory responses, potentially due to decreased host shutoff function. A competitive transmission study in ferrets indicated that 195K provides a replicative advantage over 195R in H1N1/2009 viruses. In contrast, PA-X 195K did not influence the virulence of H9N2 AIV in chickens, suggesting that the effects of the substitution were mammal specific. Therefore, future surveillance efforts should scrutinize this region of PA-X because of its potential impact on cross-species transmission of influenza viruses.IMPORTANCE Four influenza pandemics in humans (the Spanish flu of 1918 [H1N1], the Asian flu of 1957 [H2N2], the Hong Kong flu of 1968 [H3N2], and the swine origin flu of 2009 [H1N1]) are all proposed to have been caused by avian or swine influenza viruses that acquired virulence factors through adaptive mutation or reassortment with circulating human viruses. Currently, influenza viruses circulating in animals are repeatedly transmitted to humans, posing a significant threat to public health. However, the molecular properties accounting for interspecies transmission of influenza viruses remain unclear. In the present study, we demonstrated that PA-X plays an important role in cross-species transmission of influenza viruses. At least three human-specific amino acid substitutions in PA-X dramatically enhanced the adaptation of animal influenza viruses in mammals. In particular, PA-X 195K might have contributed to cross-species transmission of H7N9, H5N6, and H1N1/2009 viruses from animal reservoirs to humans.
Collapse
|
26
|
|
27
|
Lutz MM, Dunagan MM, Kurebayashi Y, Takimoto T. Key Role of the Influenza A Virus PA Gene Segment in the Emergence of Pandemic Viruses. Viruses 2020; 12:v12040365. [PMID: 32224899 PMCID: PMC7232137 DOI: 10.3390/v12040365] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 03/24/2020] [Indexed: 12/18/2022] Open
Abstract
Influenza A viruses (IAVs) are a significant human pathogen that cause seasonal epidemics and occasional pandemics. Avian waterfowl are the natural reservoir of IAVs, but a wide range of species can serve as hosts. Most IAV strains are adapted to one host species and avian strains of IAV replicate poorly in most mammalian hosts. Importantly, IAV polymerases from avian strains function poorly in mammalian cells but host adaptive mutations can restore activity. The 2009 pandemic H1N1 (H1N1pdm09) virus acquired multiple mutations in the PA gene that activated polymerase activity in mammalian cells, even in the absence of previously identified host adaptive mutations in other polymerase genes. These mutations in PA localize within different regions of the protein suggesting multiple mechanisms exist to activate polymerase activity. Additionally, an immunomodulatory protein, PA-X, is expressed from the PA gene segment. PA-X expression is conserved amongst many IAV strains but activity varies between viruses specific for different hosts, suggesting that PA-X also plays a role in host adaptation. Here, we review the role of PA in the emergence of currently circulating H1N1pdm09 viruses and the most recent studies of host adaptive mutations in the PA gene that modulate polymerase activity and PA-X function.
Collapse
Affiliation(s)
- Michael M. Lutz
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA (M.M.D.); (Y.K.)
| | - Megan M. Dunagan
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA (M.M.D.); (Y.K.)
| | - Yuki Kurebayashi
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA (M.M.D.); (Y.K.)
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka-shi 422-8526, Japan
| | - Toru Takimoto
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA (M.M.D.); (Y.K.)
- Correspondence: ; Tel.: +1-585-273-2856
| |
Collapse
|
28
|
N-Terminal Acetylation by NatB Is Required for the Shutoff Activity of Influenza A Virus PA-X. Cell Rep 2020; 24:851-860. [PMID: 30044982 DOI: 10.1016/j.celrep.2018.06.078] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 03/26/2018] [Accepted: 06/18/2018] [Indexed: 12/17/2022] Open
Abstract
N-terminal acetylation is a major posttranslational modification in eukaryotes catalyzed by N-terminal acetyltransferases (NATs), NatA through NatF. Although N-terminal acetylation modulates diverse protein functions, little is known about its roles in virus replication. We found that NatB, which comprises NAA20 and NAA25, is involved in the shutoff activity of influenza virus PA-X. The shutoff activity of PA-X was suppressed in NatB-deficient cells, and PA-X mutants that are not acetylated by NatB showed reduced shutoff activities. We also evaluated the importance of N-terminal acetylation of PA, because PA-X shares its N-terminal sequence with PA. Viral polymerase activity was reduced in NatB-deficient cells. Moreover, mutant PAs that are not acetylated by NatB lost their function in the viral polymerase complex. Taken together, our findings demonstrate that N-terminal acetylation is required for the shutoff activity of PA-X and for viral polymerase activity.
Collapse
|
29
|
Suttie A, Deng YM, Greenhill AR, Dussart P, Horwood PF, Karlsson EA. Inventory of molecular markers affecting biological characteristics of avian influenza A viruses. Virus Genes 2019; 55:739-768. [PMID: 31428925 PMCID: PMC6831541 DOI: 10.1007/s11262-019-01700-z] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 08/09/2019] [Indexed: 12/20/2022]
Abstract
Avian influenza viruses (AIVs) circulate globally, spilling over into domestic poultry and causing zoonotic infections in humans. Fortunately, AIVs are not yet capable of causing sustained human-to-human infection; however, AIVs are still a high risk as future pandemic strains, especially if they acquire further mutations that facilitate human infection and/or increase pathogenesis. Molecular characterization of sequencing data for known genetic markers associated with AIV adaptation, transmission, and antiviral resistance allows for fast, efficient assessment of AIV risk. Here we summarize and update the current knowledge on experimentally verified molecular markers involved in AIV pathogenicity, receptor binding, replicative capacity, and transmission in both poultry and mammals with a broad focus to include data available on other AIV subtypes outside of A/H5N1 and A/H7N9.
Collapse
Affiliation(s)
- Annika Suttie
- Virology Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, 5 Monivong Blvd, PO Box #983, Phnom Penh, Cambodia
- School of Health and Life Sciences, Federation University, Churchill, Australia
- World Health Organization Collaborating Centre for Reference and Research on Influenza, Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Yi-Mo Deng
- World Health Organization Collaborating Centre for Reference and Research on Influenza, Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Andrew R Greenhill
- School of Health and Life Sciences, Federation University, Churchill, Australia
| | - Philippe Dussart
- Virology Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, 5 Monivong Blvd, PO Box #983, Phnom Penh, Cambodia
| | - Paul F Horwood
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, Australia
| | - Erik A Karlsson
- Virology Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, 5 Monivong Blvd, PO Box #983, Phnom Penh, Cambodia.
| |
Collapse
|
30
|
Hartenian E, Glaunsinger BA. Feedback to the central dogma: cytoplasmic mRNA decay and transcription are interdependent processes. Crit Rev Biochem Mol Biol 2019; 54:385-398. [PMID: 31656086 PMCID: PMC6871655 DOI: 10.1080/10409238.2019.1679083] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/13/2019] [Accepted: 10/08/2019] [Indexed: 02/06/2023]
Abstract
Transcription and RNA decay are key determinants of gene expression; these processes are typically considered as the uncoupled beginning and end of the messenger RNA (mRNA) lifecycle. Here we describe the growing number of studies demonstrating interplay between these spatially disparate processes in eukaryotes. Specifically, cells can maintain mRNA levels by buffering against changes in mRNA stability or transcription, and can also respond to virally induced accelerated decay by reducing RNA polymerase II gene expression. In addition to these global responses, there is also evidence that mRNAs containing a premature stop codon can cause transcriptional upregulation of homologous genes in a targeted fashion. In each of these systems, RNA binding proteins (RBPs), particularly those involved in mRNA degradation, are critical for cytoplasmic to nuclear communication. Although their specific mechanistic contributions are yet to be fully elucidated, differential trafficking of RBPs between subcellular compartments are likely to play a central role in regulating this gene expression feedback pathway.
Collapse
Affiliation(s)
- Ella Hartenian
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| | - Britt A. Glaunsinger
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
- Department of Plant & Microbial Biology, University of California, Berkeley, CA 94720
- Howard Hughes Medical Institute, Berkeley, CA 94720
| |
Collapse
|
31
|
Oishi K, Yamayoshi S, Kawaoka Y. Identification of Amino Acid Residues in Influenza A Virus PA-X That Contribute to Enhanced Shutoff Activity. Front Microbiol 2019; 10:432. [PMID: 30894843 PMCID: PMC6414799 DOI: 10.3389/fmicb.2019.00432] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 02/19/2019] [Indexed: 01/07/2023] Open
Abstract
The influenza virus protein PA-X modulates the host immune responses and viral pathogenicity through suppression of host protein expression. The endonuclease active site in the N-terminal region, the basic amino acid cluster in the C-terminal PA-X-specific region, and N-terminal acetylation of PA-X by NatB are important for the shutoff activity of PA-X. Here, we focused on the shutoff activity of PA-X derived from the A/California/04/2009 and A/WSN/33 viruses because these two PA-X proteins differ in their shutoff activity. Mutagenesis analysis revealed that proline and serine at positions 28 and 65, respectively, play a central role in this difference. Furthermore, we found that P28 and S65 also affect the shutoff activity of PA-X derived from other influenza virus subtypes. These data demonstrate that P28 and S65 contribute to enhanced shutoff activity of PA-X.
Collapse
Affiliation(s)
- Kohei Oishi
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Seiya Yamayoshi
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Yoshihiro Kawaoka
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin–Madison, Madison, WI, United States
- Department of Special Pathogens, International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| |
Collapse
|
32
|
Mutation of Influenza A Virus PA-X Decreases Pathogenicity in Chicken Embryos and Can Increase the Yield of Reassortant Candidate Vaccine Viruses. J Virol 2019; 93:JVI.01551-18. [PMID: 30381488 PMCID: PMC6321911 DOI: 10.1128/jvi.01551-18] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 10/25/2018] [Indexed: 01/08/2023] Open
Abstract
Influenza A virus is a widespread pathogen that affects both humans and a variety of animal species, causing regular epidemics and sporadic pandemics, with major public health and economic consequences. A better understanding of virus biology is therefore important. The primary control measure is vaccination, which for humans mostly relies on antigens produced in eggs from PR8-based viruses bearing the glycoprotein genes of interest. However, not all reassortants replicate well enough to supply sufficient virus antigen for demand. The significance of our research lies in identifying that mutation of the PA-X gene in the PR8 strain of virus can improve antigen yield, potentially by decreasing the pathogenicity of the virus in embryonated eggs. The PA-X protein of influenza A virus has roles in host cell shutoff and viral pathogenesis. While most strains are predicted to encode PA-X, strain-dependent variations in activity have been noted. We found that PA-X protein from the A/PR/8/34 (PR8) strain had significantly lower repressive activity against cellular gene expression than PA-X proteins from the avian strains A/turkey/England/50-92/91 (H5N1) (T/E) and A/chicken/Rostock/34 (H7N1). Loss of normal PA-X expression, either by mutation of the frameshift site or by truncating the X open reading frame (ORF), had little effect on the infectious virus titer of PR8 or PR8 7:1 reassortants with T/E segment 3 grown in embryonated hens’ eggs. However, in both virus backgrounds, mutation of PA-X led to decreased embryo mortality and lower overall pathology, effects that were more pronounced in the PR8 strain than in the T/E reassortant, despite the low shutoff activity of the PR8 PA-X. Purified PA-X mutant virus particles displayed an increased ratio of hemagglutinin (HA) to nucleoprotein (NP) and M1 compared to values for their wild-type (WT) counterparts, suggesting altered virion composition. When the PA-X gene was mutated in the background of poorly growing PR8 6:2 vaccine reassortant analogues containing the HA and neuraminidase (NA) segments from H1N1 2009 pandemic viruses or from an avian H7N3 strain, HA yield increased up to 2-fold. This suggests that the PR8 PA-X protein may harbor a function unrelated to host cell shutoff and that disruption of the PA-X gene has the potential to improve the HA yield of vaccine viruses. IMPORTANCE Influenza A virus is a widespread pathogen that affects both humans and a variety of animal species, causing regular epidemics and sporadic pandemics, with major public health and economic consequences. A better understanding of virus biology is therefore important. The primary control measure is vaccination, which for humans mostly relies on antigens produced in eggs from PR8-based viruses bearing the glycoprotein genes of interest. However, not all reassortants replicate well enough to supply sufficient virus antigen for demand. The significance of our research lies in identifying that mutation of the PA-X gene in the PR8 strain of virus can improve antigen yield, potentially by decreasing the pathogenicity of the virus in embryonated eggs.
Collapse
|
33
|
Nogales A, Martinez-Sobrido L, Topham DJ, DeDiego ML. Modulation of Innate Immune Responses by the Influenza A NS1 and PA-X Proteins. Viruses 2018; 10:v10120708. [PMID: 30545063 PMCID: PMC6315843 DOI: 10.3390/v10120708] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 12/06/2018] [Accepted: 12/08/2018] [Indexed: 12/14/2022] Open
Abstract
Influenza A viruses (IAV) can infect a broad range of animal hosts, including humans. In humans, IAV causes seasonal annual epidemics and occasional pandemics, representing a serious public health and economic problem, which is most effectively prevented through vaccination. The defense mechanisms that the host innate immune system provides restrict IAV replication and infection. Consequently, to successfully replicate in interferon (IFN)-competent systems, IAV has to counteract host antiviral activities, mainly the production of IFN and the activities of IFN-induced host proteins that inhibit virus replication. The IAV multifunctional proteins PA-X and NS1 are virulence factors that modulate the innate immune response and virus pathogenicity. Notably, these two viral proteins have synergistic effects in the inhibition of host protein synthesis in infected cells, although using different mechanisms of action. Moreover, the control of innate immune responses by the IAV NS1 and PA-X proteins is subject to a balance that can determine virus pathogenesis and fitness, and recent evidence shows co-evolution of these proteins in seasonal viruses, indicating that they should be monitored for enhanced virulence. Importantly, inhibition of host gene expression by the influenza NS1 and/or PA-X proteins could be explored to develop improved live-attenuated influenza vaccines (LAIV) by modulating the ability of the virus to counteract antiviral host responses. Likewise, both viral proteins represent a reasonable target for the development of new antivirals for the control of IAV infections. In this review, we summarize the role of IAV NS1 and PA-X in controlling the antiviral response during viral infection.
Collapse
Affiliation(s)
- Aitor Nogales
- Department of Microbiology and Immunology, University of Rochester, Rochester, New York, NY 14642, USA.
- Centro de Investigación en Sanidad Animal (CISA)-INIA, Valdeolmos, 28130 Madrid, Spain.
| | - Luis Martinez-Sobrido
- Department of Microbiology and Immunology, University of Rochester, Rochester, New York, NY 14642, USA.
| | - David J Topham
- Department of Microbiology and Immunology, University of Rochester, Rochester, New York, NY 14642, USA.
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, New York, NY 14642, USA.
| | - Marta L DeDiego
- Department of Microbiology and Immunology, University of Rochester, Rochester, New York, NY 14642, USA.
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, New York, NY 14642, USA.
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| |
Collapse
|
34
|
Specificity and functional interplay between influenza virus PA-X and NS1 shutoff activity. PLoS Pathog 2018; 14:e1007465. [PMID: 30496325 PMCID: PMC6289448 DOI: 10.1371/journal.ppat.1007465] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 12/11/2018] [Accepted: 11/12/2018] [Indexed: 12/20/2022] Open
Abstract
Influenza A viruses modulate host antiviral responses to promote viral growth and pathogenicity. Through viral PA-X and NS1 proteins, the virus is capable of suppressing host protein synthesis, termed "host shutoff." Although both proteins are known to induce general shutoff, specificity of target genes and their functional interplay in mediating host shutoff are not fully elucidated. In this study, we generated four recombinant influenza A/California/04/2009 (pH1N1) viruses containing mutations affecting the expression of active PA-X and NS1. We analyzed viral growth, general shutoff activity, specificity of mRNA targets, and viral gene expressions. Our results showed that PA-X was the major contributor in reducing general host protein expression in the virus-infected cells. Intriguingly, our transcriptomic analysis from infected human airway A549 cells indicate that shutoff-active NS1 specifically targeted host mRNAs related to interferon (IFN) signaling pathways and cytokine release. Specificity of target mRNAs was less evident in PA-X, although it preferentially degraded genes associated with cellular protein metabolism and protein repair. Interestingly, in the presence of shutoff-active NS1, PA-X also degraded viral mRNAs, especially NS segments. The virus expressing shutoff-active NS1 with reduced amount of PA-X expression most efficiently suppressed antiviral and innate immune responses in human cells, indicating that influenza virus needs to optimize the contribution of these two shutoff proteins to circumvent host responses for its optimum growth.
Collapse
|
35
|
Du S, Liu X, Cai Q. Viral-Mediated mRNA Degradation for Pathogenesis. Biomedicines 2018; 6:biomedicines6040111. [PMID: 30501096 PMCID: PMC6315618 DOI: 10.3390/biomedicines6040111] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 11/25/2018] [Accepted: 11/29/2018] [Indexed: 11/21/2022] Open
Abstract
Cellular RNA decay machinery plays a vital role in regulating gene expression by altering the stability of mRNAs in response to external stresses, including viral infection. In the primary infection, viruses often conquer the host cell’s antiviral immune response by controlling the inherently cellular mRNA degradation machinery to facilitate viral gene expression and establish a successful infection. This review summarizes the current knowledge about the diverse strategies of viral-mediated regulatory RNA shutoff for pathogenesis, and particularly sheds a light on the mechanisms that viruses evolve to elude immune surveillance during infection.
Collapse
Affiliation(s)
- Shujuan Du
- MOE& MOH Key Laboratory of Medical Molecular Virology, School of Basic Medicine, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| | - Xiaoqing Liu
- MOE& MOH Key Laboratory of Medical Molecular Virology, School of Basic Medicine, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| | - Qiliang Cai
- MOE& MOH Key Laboratory of Medical Molecular Virology, School of Basic Medicine, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| |
Collapse
|
36
|
Gao Z, Hu J, Wang X, Yang Q, Liang Y, Ma C, Liu D, Liu K, Hao X, Gu M, Liu X, Jiao XA, Liu X. The PA-interacting host protein nucleolin acts as an antiviral factor during highly pathogenic H5N1 avian influenza virus infection. Arch Virol 2018; 163:2775-2786. [PMID: 29974255 DOI: 10.1007/s00705-018-3926-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 06/19/2018] [Indexed: 01/08/2023]
Abstract
Polymerase acidic (PA) protein is a multifunctional regulator of influenza A virus (IAV) replication and pathogenesis. In a previous study, we reported that nucleolin (NCL) is a novel PA-interacting host protein. In this study, we further explored the role of NCL during highly pathogenic H5N1 avian influenza virus infection. We found that depletion of endogenous NCL in mammalian cells by siRNA targeting during H5N1 infection resulted in significantly increased viral polymerase activity, elevated viral mRNA, cRNA and vRNA synthesis, accelerated viral replication, and enhanced apoptosis and necrosis. Moreover, siRNA silencing of NCL significantly exacerbated the inflammatory response, resulting in increased secretion of IL-6, TNF-α, TNF-β, CCL-4, CCL-8, IFN-α, IFN-β and IFN-γ. Conversely, overexpression of NCL significantly decreased IAV replication. Collectively, these data show that NCL acts as a novel potential antiviral factor during H5N1 infection. Further studies exploring the antiviral mechanisms of NCL may accelerate the development of new anti-influenza drugs.
Collapse
Affiliation(s)
- Zhao Gao
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Jiao Hu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Xiaoquan Wang
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Qian Yang
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Yanyan Liang
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Chunxi Ma
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Dong Liu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Kaituo Liu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Xiaoli Hao
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Min Gu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Xiaowen Liu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Xin-An Jiao
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Xiufan Liu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China.
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China.
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China.
| |
Collapse
|
37
|
Functional Evolution of the 2009 Pandemic H1N1 Influenza Virus NS1 and PA in Humans. J Virol 2018; 92:JVI.01206-18. [PMID: 30021892 DOI: 10.1128/jvi.01206-18] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 07/12/2018] [Indexed: 12/12/2022] Open
Abstract
In 2009, a pandemic H1N1 influenza A virus (IAV) (pH1N1) emerged in the human population from swine causing a pandemic. Importantly, this virus is still circulating in humans seasonally. To analyze the evolution of pH1N1 in humans, we sequenced viral genes encoding proteins inhibiting general gene expression (nonstructural protein 1 [NS1] and PA-X) from circulating seasonal viruses and compared them to the viruses isolated at the origin of the pandemic. Recent pH1N1 viruses contain amino acid changes in the NS1 protein (E55K, L90I, I123V, E125D, K131E, and N205S), as previously described (A. M. Clark, A. Nogales, L. Martinez-Sobrido, D. J. Topham, and M. L. DeDiego, J Virol 91:e00721-17, 2017, https://doi.org/10.1128/JVI.00721-17), and amino acid changes in the PA-X protein (V100I, N204S, R221Q, and L229S). These amino acid differences between early and more recent pH1N1 isolates are responsible for increased NS1-mediated inhibition of host gene expression and decreased PA-X-mediated shutoff, including innate immune response genes. In addition, currently circulating pH1N1 viruses have acquired amino acid changes in the PA protein (V100I, P224S, N321K, I330V, and R362K). A recombinant pH1N1 virus containing PA, PA-X, and NS1 genes from currently circulating viruses is fitter in replication in cultured cells and in mice and is slightly more pathogenic than the original ancestor pH1N1 virus. These results demonstrate the need to monitor the evolution of pH1N1 in humans for mutations in the viral genome that could result in enhanced virulence. Importantly, these results further support our previous findings suggesting that inhibition of global gene expression mediated by NS1 and PA-X proteins is subject to a balance which can determine virus pathogenesis and fitness.IMPORTANCE IAVs emerge in humans from animal reservoirs, causing unpredictable pandemics. One of these pandemics was caused by an H1N1 virus in 2009, and this virus is still circulating seasonally. To analyze host-virus adaptations likely affecting influenza virus pathogenesis, protein amino acid sequences from viruses circulating at the beginning of the pandemic and those circulating currently were compared. Currently circulating viruses have incorporated amino acid changes in two viral proteins (NS1 and PA-X), affecting innate immune responses, and in the PA gene. These amino acid differences led to increased NS1-mediated and decreased PA-X-mediated inhibition of host gene expression. A recombinant pH1N1 virus containing PA, PA-X, and NS1 genes from recently circulating viruses is fitter in replication in tissue culture cells and in mice, and the virus is more pathogenic in vivo Importantly, these results suggest that a balance in the abilities of NS1 and PA-X to induce host shutoff is beneficial for IAVs.
Collapse
|
38
|
Levene RE, Gaglia MM. Host Shutoff in Influenza A Virus: Many Means to an End. Viruses 2018; 10:E475. [PMID: 30189604 PMCID: PMC6165434 DOI: 10.3390/v10090475] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 08/31/2018] [Accepted: 09/01/2018] [Indexed: 12/21/2022] Open
Abstract
Influenza A virus carries few of its own proteins, but uses them effectively to take control of the infected cells and avoid immune responses. Over the years, host shutoff, the widespread down-regulation of host gene expression, has emerged as a key process that contributes to cellular takeover in infected cells. Interestingly, multiple mechanisms of host shutoff have been described in influenza A virus, involving changes in translation, RNA synthesis and stability. Several viral proteins, notably the non-structural protein NS1, the RNA-dependent RNA polymerase and the endoribonuclease PA-X have been implicated in host shutoff. This multitude of host shutoff mechanisms indicates that host shutoff is an important component of the influenza A virus replication cycle. Here we review the various mechanisms of host shutoff in influenza A virus and the evidence that they contribute to immune evasion and/or viral replication. We also discuss what the purpose of having multiple mechanisms may be.
Collapse
Affiliation(s)
- Rachel Emily Levene
- Graduate Program in Molecular Microbiology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA 02111, USA.
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, 136 Harrison Ave, Boston, MA 02111, USA.
| | - Marta Maria Gaglia
- Graduate Program in Molecular Microbiology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA 02111, USA.
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, 136 Harrison Ave, Boston, MA 02111, USA.
| |
Collapse
|
39
|
Hu J, Ma C, Liu X. PA-X: a key regulator of influenza A virus pathogenicity and host immune responses. Med Microbiol Immunol 2018; 207:255-269. [PMID: 29974232 PMCID: PMC7086933 DOI: 10.1007/s00430-018-0548-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 06/28/2018] [Indexed: 02/07/2023]
Abstract
PA-X, a fusion protein belonging to influenza A viruses (IAVs), integrating the N-terminal 191 amino acids of PA gene and the ribosomal frame-shifting product that lengthens out to 41 or 61 amino acids. Since its discovery in 2012, multiple functions have been attributed to this small protein, including a process, where wide-spread protein synthesis in infected host cells is shut down (called host shutoff), and viral replication, polymerase activity, viral-induced cell apoptosis, PA nuclear localization, and virulence are modulated. However, many of its proposed functions may be specific to strain, subtype, host, or cell line. In this review, we start by describing the well-defined global host-shutoff ability of PA-X and the potential mechanisms underlying it. We move on to the role played by PA-X in modulating innate and acquired immune responses in the host. We then systematically discuss the role played by PA-X in modulating the virulence of influenza viruses of different subtypes and host origins, and finish with a general overview of the research advances made in identifying the host cell partners that interact with PA-X. To uncover possible clues about the differential effects of PA-X in modulating viral virulence, we focus on systemically evaluating polymorphisms in PA-X from various viral subtypes and hosts, including avian and human H5N1, H5N6, H9N2, and H7N9 viruses. Finally, we conclude with a proposition regarding the possible future research directions for this important protein.
Collapse
Affiliation(s)
- Jiao Hu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu Province, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Chunxi Ma
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu Province, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Xiufan Liu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu Province, China.
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China.
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China.
| |
Collapse
|
40
|
Three amino acid substitutions in the NS1 protein change the virus replication of H5N1 influenza virus in human cells. Virology 2018; 519:64-73. [PMID: 29677653 DOI: 10.1016/j.virol.2018.04.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 04/05/2018] [Accepted: 04/10/2018] [Indexed: 12/15/2022]
Abstract
Influenza A viruses have sophisticated strategies to promote their own replication. Here, we found that three H5N1 influenza viruses display different replication patterns in human A549 and macrophage cells. The HN01 virus displayed poor replication compared to HN021 and JS01. In addition, the HN01 virus was unable to counteract the interferon response and block general gene expression. This capability was restored by three amino acid substitutions on the NS1 protein: K55E, K66E, and C133F, resulting in recovered binding to CPSF30 and decreased interferon response activity. Furthermore, a recombinant HN01 virus expressing either NS1-C133F or the triple mutation replicate with higher titers in human A549 cells and macrophages compared to the parent virus. These three amino acid mutations reveal a new pathway to alter H5N1 virus replication.
Collapse
|
41
|
Oishi K, Yamayoshi S, Kawaoka Y. Identification of novel amino acid residues of influenza virus PA-X that are important for PA-X shutoff activity by using yeast. Virology 2018; 516:71-75. [PMID: 29331676 DOI: 10.1016/j.virol.2018.01.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/03/2018] [Accepted: 01/05/2018] [Indexed: 10/18/2022]
Abstract
The influenza A virus protein PA-X comprises an N-terminal PA region and a C-terminal PA-X-specific region. PA-X suppresses host gene expression, termed shutoff, via mRNA cleavage. Although the endonuclease active site in the N-terminal PA region of PA-X and basic amino acids in the C-terminal PA-X-specific region are known to be important for PA-X shutoff activity, other amino acids may also play a role. Here, we used yeast to identify novel amino acids of PA-X that are important for PA-X shutoff activity. Unlike wild-type PA-X, most PA-X mutants predominantly localized in the cytoplasm, indicating that these mutations decreased the shutoff activity of PA-X by affecting PA-X translocation to the nucleus. Mapping of the identified amino acids onto the N-terminal structure of PA revealed that some of them likely contribute to the formation of the endonuclease active site of PA.
Collapse
Affiliation(s)
- Kohei Oishi
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Seiya Yamayoshi
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan.
| | - Yoshihiro Kawaoka
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan; Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, WI 53711, United States; Department of Special Pathogens, International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan.
| |
Collapse
|
42
|
Yi C, Zhao Z, Wang S, Sun X, Zhang D, Sun X, Zhang A, Jin M. Influenza A Virus PA Antagonizes Interferon-β by Interacting with Interferon Regulatory Factor 3. Front Immunol 2017; 8:1051. [PMID: 28955326 PMCID: PMC5600993 DOI: 10.3389/fimmu.2017.01051] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Accepted: 08/14/2017] [Indexed: 01/07/2023] Open
Abstract
The influenza A virus (IAV) can be recognized by retinoic acid-inducible gene I (RIG-I) to activate the type I interferon response and induce antiviral effects. The virus has evolved several strategies to evade the innate immune response, including non-structural protein 1 (NS1) and its polymerase subunits. The mechanism by which NS1 inhibits interferon-β (IFN-β) is well understood, whereas the mechanism by which polymerase acid protein (PA) inhibits IFN-β remains to be elucidated. In this study, we observed that the IAV PA protein could inhibit the production of IFN-β and interferon-stimulated genes induced by Sendai virus through interferon regulatory factor 3 (IRF3), but not through nuclear factor-kappaB (NF-kappaB). In addition, PA inhibited IFN-β induction by RIG-I, melanoma differentiation-associated gene 5, mitochondria antiviral signaling protein, TANK-binding kinase 1, inhibitor of nuclear factor kappa-B kinase-ε (IKKε), and IRF3 overexpression. Furthermore, PA interacted with IRF3 to block its activation. The N-terminal endonuclease activity of PA was responsible for its interaction with IRF3 and inhibition of the IFN-β signaling pathway. In summary, our data reveal the mechanism by which IAV PA inhibits the IFN-β signaling pathway, providing a new mechanism by which the virus antagonizes the antiviral signaling pathway.
Collapse
Affiliation(s)
- Chenyang Yi
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Zongzheng Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Shengyu Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Xin Sun
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Dan Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Xiaomei Sun
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Anding Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Meilin Jin
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
43
|
Bera BC, Virmani N, Kumar N, Anand T, Pavulraj S, Rash A, Elton D, Rash N, Bhatia S, Sood R, Singh RK, Tripathi BN. Genetic and codon usage bias analyses of polymerase genes of equine influenza virus and its relation to evolution. BMC Genomics 2017; 18:652. [PMID: 28830350 PMCID: PMC5568313 DOI: 10.1186/s12864-017-4063-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 08/15/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Equine influenza is a major health problem of equines worldwide. The polymerase genes of influenza virus have key roles in virus replication, transcription, transmission between hosts and pathogenesis. Hence, the comprehensive genetic and codon usage bias of polymerase genes of equine influenza virus (EIV) were analyzed to elucidate the genetic and evolutionary relationships in a novel perspective. RESULTS The group - specific consensus amino acid substitutions were identified in all polymerase genes of EIVs that led to divergence of EIVs into various clades. The consistent amino acid changes were also detected in the Florida clade 2 EIVs circulating in Europe and Asia since 2007. To study the codon usage patterns, a total of 281,324 codons of polymerase genes of EIV H3N8 isolates from 1963 to 2015 were systemically analyzed. The polymerase genes of EIVs exhibit a weak codon usage bias. The ENc-GC3s and Neutrality plots indicated that natural selection is the major influencing factor of codon usage bias, and that the impact of mutation pressure is comparatively minor. The methods for estimating host imposed translation pressure suggested that the polymerase acidic (PA) gene seems to be under less translational pressure compared to polymerase basic 1 (PB1) and polymerase basic 2 (PB2) genes. The multivariate statistical analysis of polymerase genes divided EIVs into four evolutionary diverged clusters - Pre-divergent, Eurasian, Florida sub-lineage 1 and 2. CONCLUSIONS Various lineage specific amino acid substitutions observed in all polymerase genes of EIVs and especially, clade 2 EIVs underwent major variations which led to the emergence of a phylogenetically distinct group of EIVs originating from Richmond/1/07. The codon usage bias was low in all the polymerase genes of EIVs that was influenced by the multiple factors such as the nucleotide compositions, mutation pressure, aromaticity and hydropathicity. However, natural selection was the major influencing factor in defining the codon usage patterns and evolution of polymerase genes of EIVs.
Collapse
Affiliation(s)
- Bidhan Ch Bera
- National Research Centre on Equines, Sirsa Road, Hisar, Haryana, India
| | - Nitin Virmani
- National Research Centre on Equines, Sirsa Road, Hisar, Haryana, India.
| | - Naveen Kumar
- National Institute of High Security Animal Diseases, Hathai Kheda Dam Road, Anand Nagar, Bhopal, Madhya Pradesh, India
| | - Taruna Anand
- National Research Centre on Equines, Sirsa Road, Hisar, Haryana, India
| | - S Pavulraj
- National Research Centre on Equines, Sirsa Road, Hisar, Haryana, India
| | - Adam Rash
- Animal Health Trust, Lanwades Park, Kentford, Newmarket, Suffolk, CB8 7UU, UK
| | - Debra Elton
- Animal Health Trust, Lanwades Park, Kentford, Newmarket, Suffolk, CB8 7UU, UK
| | - Nicola Rash
- Animal Health Trust, Lanwades Park, Kentford, Newmarket, Suffolk, CB8 7UU, UK
| | - Sandeep Bhatia
- National Institute of High Security Animal Diseases, Hathai Kheda Dam Road, Anand Nagar, Bhopal, Madhya Pradesh, India
| | - Richa Sood
- National Institute of High Security Animal Diseases, Hathai Kheda Dam Road, Anand Nagar, Bhopal, Madhya Pradesh, India
| | - Raj Kumar Singh
- Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | | |
Collapse
|
44
|
Nagesh PT, Hussain M, Galvin HD, Husain M. Histone Deacetylase 2 Is a Component of Influenza A Virus-Induced Host Antiviral Response. Front Microbiol 2017; 8:1315. [PMID: 28769891 PMCID: PMC5511851 DOI: 10.3389/fmicb.2017.01315] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Accepted: 06/29/2017] [Indexed: 11/13/2022] Open
Abstract
Host cells produce variety of antiviral factors that create an antiviral state and target various stages of influenza A virus (IAV) life cycle to inhibit infection. However, IAV has evolved various strategies to antagonize those antiviral factors. Recently, we reported that a member of class I host histone deacetylases (HDACs), HDAC1 possesses an anti-IAV function. Herein, we provide evidence that HDAC2, another class I member and closely related to HDAC1 in structure and function, also possesses anti-IAV properties. In turn, IAV, like HDAC1, dysregulates HDAC2, mainly at the polypeptide level through proteasomal degradation to potentially minimize its antiviral effect. We found that IAV downregulated the HDAC2 polypeptide level in A549 cells in an H1N1 strain-independent manner by up to 47%, which was recovered to almost 100% level in the presence of proteasome-inhibitor MG132. A further knockdown in HDAC2 expression by up to 90% via RNA interference augmented the growth kinetics of IAV in A549 cells by more than four-fold after 24 h of infection. Furthermore, the knockdown of HDAC2 expression decreased the IAV-induced phosphorylation of the transcription factor, Signal Transducer and Activator of Transcription I (STAT1) and the expression of interferon-stimulated gene, viperin in infected cells by 41 and 53%, respectively. The role of HDAC2 in viperin expression was analogous to that of HDAC1, but it was not in the phosphorylation of STAT1. This indicated that, like HDAC1, HDAC2 is a component of IAV-induced host innate antiviral response and performs both redundant and non-redundant functions vis-a-vis HDAC1; however, IAV dysregulates them both in a redundant manner.
Collapse
Affiliation(s)
- Prashanth T Nagesh
- Department of Microbiology and Immunology, University of OtagoDunedin, New Zealand.,Department of Microbiology, New York University School of Medicine, New YorkNY, United States
| | - Mazhar Hussain
- Department of Microbiology and Immunology, University of OtagoDunedin, New Zealand
| | - Henry D Galvin
- Department of Microbiology and Immunology, University of OtagoDunedin, New Zealand
| | - Matloob Husain
- Department of Microbiology and Immunology, University of OtagoDunedin, New Zealand
| |
Collapse
|
45
|
Xu G, Zhang X, Liu Q, Bing G, Hu Z, Sun H, Xiong X, Jiang M, He Q, Wang Y, Pu J, Guo X, Yang H, Liu J, Sun Y. PA-X protein contributes to virulence of triple-reassortant H1N2 influenza virus by suppressing early immune responses in swine. Virology 2017; 508:45-53. [PMID: 28494344 DOI: 10.1016/j.virol.2017.05.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 05/03/2017] [Accepted: 05/04/2017] [Indexed: 12/22/2022]
Abstract
Previous studies have identified a functional role of PA-X for influenza viruses in mice and avian species; however, its role in swine remains unknown. Toward this, we constructed PA-X deficient virus (Sw-FS) in the background of a Triple-reassortment (TR) H1N2 swine influenza virus (SIV) to assess the impact of PA-X in viral virulence in pigs. Expression of PA-X in TR H1N2 SIV enhanced viral replication and host protein synthesis shutoff, and inhibited the mRNA levels of type I IFNs and proinflammatory cytokines in porcine cells. A delay of proinflammatory responses was observed in lungs of pigs infected by wild type SIV (Sw-WT) compared to Sw-FS. Furthermore, Sw-WT virus replicated and transmitted more efficiently than Sw-FS in pigs. These results highlight the importance of PA-X in the moderation of virulence and immune responses of TR SIV in swine, which indicated that PA-X is a pro-virulence factor in TR SIV in pigs.
Collapse
Affiliation(s)
- Guanlong Xu
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China; China Institute of Veterinary Drug Control, Beijing, China
| | - Xuxiao Zhang
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| | - Qinfang Liu
- Department of Avian Infectious Disease, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Guoxia Bing
- China Animal Disease Control Center, Beijing, China
| | - Zhe Hu
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| | - Honglei Sun
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| | - Xin Xiong
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| | - Ming Jiang
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| | - Qiming He
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| | - Yu Wang
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| | - Juan Pu
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| | - Xin Guo
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| | - Hanchun Yang
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| | - Jinhua Liu
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| | - Yipeng Sun
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China.
| |
Collapse
|
46
|
Gao Z, Hu J, Liang Y, Yang Q, Yan K, Liu D, Wang X, Gu M, Liu X, Hu S, Hu Z, Liu H, Liu W, Chen S, Peng D, Jiao XA, Liu X. Generation and Comprehensive Analysis of Host Cell Interactome of the PA Protein of the Highly Pathogenic H5N1 Avian Influenza Virus in Mammalian Cells. Front Microbiol 2017; 8:739. [PMID: 28503168 PMCID: PMC5408021 DOI: 10.3389/fmicb.2017.00739] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 04/10/2017] [Indexed: 12/26/2022] Open
Abstract
Accumulating data have identified the important roles of PA protein in replication and pathogenicity of influenza A virus (IAV). Identification of host factors that interact with the PA protein may accelerate our understanding of IAV pathogenesis. In this study, using immunoprecipitation assay combined with liquid chromatography-tandem mass spectrometry, we identified 278 human cellular proteins that might interact with PA of H5N1 IAV. Gene Ontology annotation revealed that the identified proteins are highly associated with viral translation and replication. Further KEGG pathway analysis of the interactome profile highlighted cellular pathways associated with translation, infectious disease, and signal transduction. In addition, Diseases and Functions analysis suggested that these cellular proteins are highly related with Organismal Injury and Abnormalities and Cell Death and Survival. Moreover, two cellular proteins (nucleolin and eukaryotic translation elongation factor 1-alpha 1) identified both in this study and others were further validated to interact with PA using co-immunoprecipitation and co-localization assays. Therefore, this study presented the interactome data of H5N1 IAV PA protein in human cells which may provide novel cellular target proteins for elucidating the potential molecular functions of PA in regulating the lifecycle of IAV in human cells.
Collapse
Affiliation(s)
- Zhao Gao
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou UniversityYangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Jiangsu Key Laboratory of Zoonosis, Yangzhou UniversityYangzhou, China
| | - Jiao Hu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou UniversityYangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Jiangsu Key Laboratory of Zoonosis, Yangzhou UniversityYangzhou, China
| | - Yanyan Liang
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou UniversityYangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Jiangsu Key Laboratory of Zoonosis, Yangzhou UniversityYangzhou, China
| | - Qian Yang
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou UniversityYangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Jiangsu Key Laboratory of Zoonosis, Yangzhou UniversityYangzhou, China
| | - Kun Yan
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou UniversityYangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Jiangsu Key Laboratory of Zoonosis, Yangzhou UniversityYangzhou, China
| | - Dong Liu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou UniversityYangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Jiangsu Key Laboratory of Zoonosis, Yangzhou UniversityYangzhou, China
| | - Xiaoquan Wang
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou UniversityYangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Jiangsu Key Laboratory of Zoonosis, Yangzhou UniversityYangzhou, China
| | - Min Gu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou UniversityYangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Jiangsu Key Laboratory of Zoonosis, Yangzhou UniversityYangzhou, China
| | - Xiaowen Liu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou UniversityYangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Jiangsu Key Laboratory of Zoonosis, Yangzhou UniversityYangzhou, China
| | - Shunlin Hu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou UniversityYangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Jiangsu Key Laboratory of Zoonosis, Yangzhou UniversityYangzhou, China
| | - Zenglei Hu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou UniversityYangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Jiangsu Key Laboratory of Zoonosis, Yangzhou UniversityYangzhou, China
| | - Huimou Liu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou UniversityYangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Jiangsu Key Laboratory of Zoonosis, Yangzhou UniversityYangzhou, China
| | - Wenbo Liu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou UniversityYangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Jiangsu Key Laboratory of Zoonosis, Yangzhou UniversityYangzhou, China
| | - Sujuan Chen
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou UniversityYangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Jiangsu Key Laboratory of Zoonosis, Yangzhou UniversityYangzhou, China
| | - Daxin Peng
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou UniversityYangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Jiangsu Key Laboratory of Zoonosis, Yangzhou UniversityYangzhou, China
| | - Xin-An Jiao
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou UniversityYangzhou, China
| | - Xiufan Liu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou UniversityYangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Jiangsu Key Laboratory of Zoonosis, Yangzhou UniversityYangzhou, China
| |
Collapse
|
47
|
Panthu B, Terrier O, Carron C, Traversier A, Corbin A, Balvay L, Lina B, Rosa-Calatrava M, Ohlmann T. The NS1 Protein from Influenza Virus Stimulates Translation Initiation by Enhancing Ribosome Recruitment to mRNAs. J Mol Biol 2017; 429:3334-3352. [PMID: 28433538 DOI: 10.1016/j.jmb.2017.04.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 03/24/2017] [Accepted: 04/11/2017] [Indexed: 12/20/2022]
Abstract
The non-structural protein NS1 of influenza A viruses exerts pleiotropic functions during infection. Among these functions, NS1 was shown to be involved in the control of both viral and cellular translation; however, the mechanism by which this occurs remains to be determined. Thus, we have revisited the role of NS1 in translation by using a combination of influenza infection, mRNA reporter transfection, and in vitro functional and biochemical assays. Our data show that the NS1 protein is able to enhance the translation of virtually all tested mRNAs with the exception of constructs bearing the Dicistroviruses Internal ribosome entry segment (IRESes) (DCV and CrPV), suggesting a role at the level of translation initiation. The domain of NS1 required for translation stimulation was mapped to the RNA binding amino-terminal motif of the protein with residues R38 and K41 being critical for activity. Although we show that NS1 can bind directly to mRNAs, it does not correlate with its ability to stimulate translation. This activity rather relies on the property of NS1 to associate with ribosomes and to recruit them to target mRNAs.
Collapse
Affiliation(s)
- Baptiste Panthu
- CIRI, International Center for Infectiology Research, Université de Lyon, 69364 Lyon, France; Inserm, U1111, 69364 Lyon, France; Ecole Normale Supérieure de Lyon, 69364 Lyon, France; Université Lyon 1, Centre International de Recherche en Infectiologie, 69364 Lyon, France; CNRS, UMR5308, 69364 Lyon, France
| | - Olivier Terrier
- CIRI, International Center for Infectiology Research, Université de Lyon, 69364 Lyon, France; Inserm, U1111, 69364 Lyon, France; Ecole Normale Supérieure de Lyon, 69364 Lyon, France; Université Lyon 1, Centre International de Recherche en Infectiologie, 69364 Lyon, France; CNRS, UMR5308, 69364 Lyon, France; Laboratoire de Virologie et Pathologie Humaine VirPath, Université Claude Bernard Lyon 1, Hospices Civils de Lyon, Faculté de médecine RTH Laennec, rue Guillaume Paradin, F-69008 Lyon, France
| | - Coralie Carron
- CIRI, International Center for Infectiology Research, Université de Lyon, 69364 Lyon, France; Inserm, U1111, 69364 Lyon, France; Ecole Normale Supérieure de Lyon, 69364 Lyon, France; Université Lyon 1, Centre International de Recherche en Infectiologie, 69364 Lyon, France; CNRS, UMR5308, 69364 Lyon, France; Laboratoire de Virologie et Pathologie Humaine VirPath, Université Claude Bernard Lyon 1, Hospices Civils de Lyon, Faculté de médecine RTH Laennec, rue Guillaume Paradin, F-69008 Lyon, France
| | - Aurélien Traversier
- CIRI, International Center for Infectiology Research, Université de Lyon, 69364 Lyon, France; Inserm, U1111, 69364 Lyon, France; Ecole Normale Supérieure de Lyon, 69364 Lyon, France; Université Lyon 1, Centre International de Recherche en Infectiologie, 69364 Lyon, France; CNRS, UMR5308, 69364 Lyon, France; Laboratoire de Virologie et Pathologie Humaine VirPath, Université Claude Bernard Lyon 1, Hospices Civils de Lyon, Faculté de médecine RTH Laennec, rue Guillaume Paradin, F-69008 Lyon, France
| | - Antoine Corbin
- CIRI, International Center for Infectiology Research, Université de Lyon, 69364 Lyon, France; Inserm, U1111, 69364 Lyon, France; Ecole Normale Supérieure de Lyon, 69364 Lyon, France; Université Lyon 1, Centre International de Recherche en Infectiologie, 69364 Lyon, France; CNRS, UMR5308, 69364 Lyon, France
| | - Laurent Balvay
- CIRI, International Center for Infectiology Research, Université de Lyon, 69364 Lyon, France; Inserm, U1111, 69364 Lyon, France; Ecole Normale Supérieure de Lyon, 69364 Lyon, France; Université Lyon 1, Centre International de Recherche en Infectiologie, 69364 Lyon, France; CNRS, UMR5308, 69364 Lyon, France
| | - Bruno Lina
- CIRI, International Center for Infectiology Research, Université de Lyon, 69364 Lyon, France; Inserm, U1111, 69364 Lyon, France; Ecole Normale Supérieure de Lyon, 69364 Lyon, France; Université Lyon 1, Centre International de Recherche en Infectiologie, 69364 Lyon, France; CNRS, UMR5308, 69364 Lyon, France; Laboratoire de Virologie et Pathologie Humaine VirPath, Université Claude Bernard Lyon 1, Hospices Civils de Lyon, Faculté de médecine RTH Laennec, rue Guillaume Paradin, F-69008 Lyon, France
| | - Manuel Rosa-Calatrava
- CIRI, International Center for Infectiology Research, Université de Lyon, 69364 Lyon, France; Inserm, U1111, 69364 Lyon, France; Ecole Normale Supérieure de Lyon, 69364 Lyon, France; Université Lyon 1, Centre International de Recherche en Infectiologie, 69364 Lyon, France; CNRS, UMR5308, 69364 Lyon, France; Laboratoire de Virologie et Pathologie Humaine VirPath, Université Claude Bernard Lyon 1, Hospices Civils de Lyon, Faculté de médecine RTH Laennec, rue Guillaume Paradin, F-69008 Lyon, France
| | - Théophile Ohlmann
- CIRI, International Center for Infectiology Research, Université de Lyon, 69364 Lyon, France; Inserm, U1111, 69364 Lyon, France; Ecole Normale Supérieure de Lyon, 69364 Lyon, France; Université Lyon 1, Centre International de Recherche en Infectiologie, 69364 Lyon, France; CNRS, UMR5308, 69364 Lyon, France.
| |
Collapse
|
48
|
Lee J, Yu H, Li Y, Ma J, Lang Y, Duff M, Henningson J, Liu Q, Li Y, Nagy A, Bawa B, Li Z, Tong G, Richt JA, Ma W. Impacts of different expressions of PA-X protein on 2009 pandemic H1N1 virus replication, pathogenicity and host immune responses. Virology 2017; 504:25-35. [PMID: 28142079 DOI: 10.1016/j.virol.2017.01.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Revised: 01/20/2017] [Accepted: 01/21/2017] [Indexed: 12/16/2022]
Abstract
Although several studies have investigated the functions of influenza PA-X, the impact of different expressions of PA-X protein including full-length, truncated or PA-X deficient forms on virus replication, pathogenicity and host response remains unclear. Herein, we generated two mutated viruses expressing a full-length or deficient PA-X protein based on the A/California/04/2009 (H1N1) virus that expresses a truncated PA-X to understand three different expressions of PA-X protein on virus replication, pathogenicity and host immune responses. The results showed that expression of either full-length or truncated PA-X protein enhanced viral replication and pathogenicity as well as reduced host innate immune response in mice by host shutoff activity when compared to the virus expressing the deficient PA-X form. Furthermore, the full-length PA-X expression exhibited a greater effect on virus pathogenicity than the truncated PA-X form. Our results provide novel insights of PA-X on viral replication, pathogenicity and host immune responses.
Collapse
Affiliation(s)
- Jinhwa Lee
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, USA
| | - Hai Yu
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, USA; Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Yonghai Li
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, USA
| | - Jingjiao Ma
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, USA
| | - Yuekun Lang
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, USA
| | - Michael Duff
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, USA
| | - Jamie Henningson
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, USA
| | - Qinfang Liu
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, USA; Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Yuhao Li
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, USA
| | - Abdou Nagy
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, USA
| | - Bhupinder Bawa
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, USA
| | - Zejun Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Guangzhi Tong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Juergen A Richt
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, USA
| | - Wenjun Ma
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, USA.
| |
Collapse
|
49
|
Amino acid substitutions V63I or A37S/I61T/V63I/V100A in the PA N-terminal domain increase the virulence of H7N7 influenza A virus. Sci Rep 2016; 6:37800. [PMID: 27886255 PMCID: PMC5122915 DOI: 10.1038/srep37800] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 11/02/2016] [Indexed: 12/28/2022] Open
Abstract
The PA N-terminal domain (PA-Nter) is essential for viral transcription and replication. Here we identified PA-Nter substitutions A37S, I61T, V63I and V100A in recently emerged avian influenza A viruses (IAVs) with potential effect on virus pathogenicity and/or host adaptation. We introduced the identified PA-Nter substitutions into avian H7N7 IAV by reverse genetics. Our results showed that single substitution V63I and combined substitutions, I61T/V63I and A37S/I61T/V63I/V100A (Mfour), significantly increased virus growth capacity in mammalian cells. Meanwhile, these substitutions conferred higher virus transcription/replication capacity by producing more mRNA, cRNA and vRNA. Consistently, the polymerase activity and the endonuclease activity were enhanced by these PA-Nter substitutions. Notably, substitutions V63I and Mfour strongly increased virus replication and virulence in mice. Collectively, our findings demonstrated that the PA-Nter substitutions V63I and Mfour enhanced IAV pathogenicity through modification of the polymerase activity and the endonuclease activity, which added to the evolving knowledge of IAV virulence determinants.
Collapse
|
50
|
Hayashi T, Chaimayo C, McGuinness J, Takimoto T. Critical Role of the PA-X C-Terminal Domain of Influenza A Virus in Its Subcellular Localization and Shutoff Activity. J Virol 2016; 90:7131-7141. [PMID: 27226377 PMCID: PMC4984632 DOI: 10.1128/jvi.00954-16] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Accepted: 05/22/2016] [Indexed: 12/31/2022] Open
Abstract
UNLABELLED PA-X is a recently identified influenza virus protein that is composed of the PA N-terminal 191 amino acids and unique C-terminal 41 or 61 residues. We and others showed that PA-X has a strong ability to suppress host protein synthesis via host mRNA decay, which is mediated by endonuclease activity in its N-terminal domain (B. W. Jagger, H. M. Wise, J. C. Kash, K. A. Walters, N. M. Wills, Y. L. Xiao, R. L. Dunfee, L. M. Schwartzman, A. Ozinsky, G. L. Bell, R. M. Dalton, A. Lo, S. Efstathiou, J. F. Atkins, A. E. Firth, J. K. Taubenberger, and P. Digard, 2012, Science 337:199-204, http://dx.doi.org/10.1126/science.1222213, and E. A. Desmet, K. A. Bussey, R. Stone, and T. Takimoto, 2013, J Virol 87:3108-3118, http://dx.doi.org/10.1128/JVI.02826-12). However, the mechanism of host mRNA degradation, especially where and how PA-X targets mRNAs, has not been analyzed. In this study, we determined the localization of PA-X and the role of the C-terminal unique region in shutoff activity. Quantitative subcellular localization analysis revealed that PA-X was located equally in both cytoplasm and nucleus. By characterizing a series of PA-X C-terminal deletion mutants, we found that the first 9 amino acids were sufficient for nuclear localization, but an additional 6 residues were required to induce the maximum shutoff activity observed with intact PA-X. Importantly, forced nuclear localization of the PA-X C-terminal deletion mutant enhanced shutoff activity, highlighting the ability of nuclear PA-X to degrade host mRNAs more efficiently. However, PA-X also inhibited luciferase expression from transfected mRNAs synthesized in vitro, suggesting that PA-X also degrades mRNAs in the cytoplasm. Among the basic amino acids in the PA-X C-terminal region, 3 residues, 195K, 198K, and 199R, were identified as key residues for inducing host shutoff and nuclear localization. Overall, our data indicate a critical role for the 15 residues in the PA-X C-terminal domain in degrading mRNAs in both the cytoplasm and nucleus. IMPORTANCE Influenza A viruses express PA-X proteins to suppress global host gene expression, including host antiviral genes, to allow efficient viral replication in infected cells. However, little is known about how PA-X induces host shutoff. In this study, we showed that PA-X localized equally in both the cytoplasm and nucleus of the cells, but the nuclear localization of PA-X mediated by its C-terminal region has a significant impact on shutoff activity. Three basic residues at the C-terminal region play a critical role in nuclear localization, but additional basic residues were required for maximum shutoff activity. Our findings indicate that PA-X targets and degrades mRNAs in both the nucleus and cytoplasm, and that the first 15 residues of the PA-X unique C-terminal region play a critical role in shutoff activity.
Collapse
Affiliation(s)
- Tsuyoshi Hayashi
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| | - Chutikarn Chaimayo
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - James McGuinness
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| | - Toru Takimoto
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|