1
|
Yousaf I, Domanico L, Nambara T, Yadav K, Kelly LK, Trejo-Lopez J, Shieh WJ, Rota PA, Devaux P, Kanekiyo T, Taylor MP, Cattaneo R. The measles virus matrix F50S mutation from a lethal case of subacute sclerosing panencephalitis promotes receptor-independent neuronal spread. J Virol 2025; 99:e0175024. [PMID: 39641619 PMCID: PMC11784085 DOI: 10.1128/jvi.01750-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 10/30/2024] [Indexed: 12/07/2024] Open
Abstract
Subacute sclerosing panencephalitis (SSPE) is a lethal neurological disorder occurring several years after measles. Reconstruction of the evolution of the measles virus (MeV) genome in an SSPE case suggested that the matrix (M) protein mutation M-F50S, when added to other mutations, drove neuropathogenesis. However, whether and how M-F50S would promote spread independently from other mutations was in question. We investigated here the cell specificity of MeV spread in this brain and documented that both neurons and astrocytes were heavily infected. We then generated recombinant MeV with individual mutations in the three proteins of the viral membrane fusion apparatus, M, fusion (F), and hemagglutinin (H). These viruses reached similar titers as the parental wild-type virus, kept the respective mutations upon passage, and infected cells expressing the tissue-specific MeV receptors SLAM and nectin-4 with similar efficiencies. However, after inoculation of receptor-negative neurons and astrocytes differentiated from human induced pluripotent stem cells, only MeV M-F50S spread with moderate efficiency; the parental virus and its derivatives coding for a hyperfusogenic F protein, or for a cytoplasmic tail-mutated H protein, did not spread. When delivered to primary mouse neurons by cell-mediated neurite overlay, MeV M-F50S frequently reached the cell bodies and occasionally formed small infectious centers, while the other MeV reached the cell bodies only sporadically. These results demonstrate that, in neuronal cell cultures, M-F50S can enable receptor-independent spread in the absence of other mutations, and validate the inference that this single amino acid change initiated ubiquitous MeV brain spread.IMPORTANCEMeasles virus (MeV), a non-integrating negative-strand RNA virus, rarely causes subacute sclerosing panencephalitis (SSPE) several years after acute infection. During brain adaptation, the MeV genome acquires multiple mutations reducing the dependence of its membrane fusion apparatus (MFA) from an activating receptor. It was proposed that one of these mutations, matrix protein F50S, drove neuropathogenesis in an SSPE case. We report here that, in two types of neuronal cultures, a recombinant MeV with only this mutation gained receptor-independent spread, whereas viruses expressing MFA proteins with other mutations acquired during brain adaptation did not. Our results validate the inference that M-F50S initiated ubiquitous MeV brain spread resulting in lethal disease. They also prompt studies of the impact of analogous amino acid changes of the M proteins of other nonsegmented negative-strand RNA viruses on their interactions with membrane lipids and cytoskeletal components.
Collapse
Affiliation(s)
- Iris Yousaf
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, Minnesota, USA
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Luke Domanico
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, USA
| | | | - Kalpana Yadav
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Lauren K. Kelly
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Jorge Trejo-Lopez
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Wun-Ju Shieh
- Infectious Diseases Pathology Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Paul A. Rota
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Patricia Devaux
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, Minnesota, USA
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Matthew P. Taylor
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, USA
| | - Roberto Cattaneo
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, Minnesota, USA
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
2
|
Kilich G, Perelygina L, Sullivan KE. Rubella virus chronic inflammatory disease and other unusual viral phenotypes in inborn errors of immunity. Immunol Rev 2024; 322:113-137. [PMID: 38009321 PMCID: PMC11844209 DOI: 10.1111/imr.13290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2023]
Abstract
Infectious susceptibility is a component of many inborn errors of immunity. Nevertheless, antibiotic use is often used as a surrogate in history taking for infectious susceptibility, thereby disadvantaging patients who present with viral infections as their phenotype. Further complicating clinical evaluations are unusual manifestations of viral infections which may be less familiar that the typical respiratory viral infections. This review covers several unusual viral phenotypes arising in patients with inborn errors of immunity and other settings of immune compromise. In some cases, chronic infections lead to oncogenesis or tumor-like growths and the conditions and mechanisms of viral-induced oncogenesis will be described. This review covers enterovirus, rubella, measles, papillomavirus, and parvovirus B19. It does not cover EBV and hemophagocytic lymphohistiocytosis nor lymphomagenesis related to EBV. EBV susceptibility has been recently reviewed. Our goal is to increase awareness of the unusual manifestations of viral infections in patients with IEI and to describe treatment modalities utilized in this setting. Coincidentally, each of the discussed viral infections can have a cutaneous component and figures will serve as a reminder of the physical features of these viruses. Given the high morbidity and mortality, early recognition can only improve outcomes.
Collapse
Affiliation(s)
- Gonench Kilich
- Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Ludmila Perelygina
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | | |
Collapse
|
3
|
Sharma S, Dhamne C, Bhosale S, Parambil B, Divatia J, Chinnaswamy G, Patil V, Joshi R, Epari S, Mahadevan A, Vaidya S, Kulkarni S, Kulkarni A, Patil V, Srinivasan S, Gollamudi VRM, Roy Moulik N, Prasad M, Narula G, Banavali S. Epilepsia Partialis Continua as a Sequelae of Measles Infection in Children With Hematolymphoid Malignancies. JCO Glob Oncol 2024; 10:e2300399. [PMID: 38422460 PMCID: PMC10914244 DOI: 10.1200/go.23.00399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/27/2023] [Accepted: 01/16/2024] [Indexed: 03/02/2024] Open
Abstract
PURPOSE To share our clinical experience with the diagnosis and management of children with hematolymphoid malignancies presenting with epilepsia partialis continua (EPC) as a sequelae of measles infection. MATERIALS AND METHODS In December 2022, a series of children in our hemato-oncology unit presented with focal status epilepticus with no conclusive evidence pointing toward any underlying etiology. One such child had a typical measles rash a few weeks before the onset of this focal status epilepticus. After a series of cases with a similar presentation, a clinical pattern suspicious for measles became evident. cerebrospinal fluid polymerase chain reaction was positive for measles virus with measles immunoglobin M detected in the serum. This led to the diagnosis of measles inclusion-body encephalitis in a series of children who presented with EPC over a period of 3 months. EPC is a rare manifestation of measles that is seen only in immunocompromised patients. RESULTS Among the 18 children reported in this series, only 10 had a history of rashes. The rash was mostly transient and elicited only on retrospective history taking. Five of the 18 children who did not lose consciousness during the prolonged seizure episode survived the disease but had residual neurologic sequelae. Among the 18 children, two were unimmunized and immunization status could not be confirmed in three other children. CONCLUSION This case series highlights the threats posed by measles infection in children with cancer who are immunosuppressed because of the underlying disease and ongoing chemotherapy. Loss of herd immunity because of declining measles immunization rates secondary to vaccine hesitancy and COVID-19 lockdown pose a greater risk of measles infection and its complications for patients with deficient immune systems.
Collapse
Affiliation(s)
- Sudivya Sharma
- Division of Critical Care Medicine, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | - Chetan Dhamne
- Department of Pediatric Oncology, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | - Shilpushp Bhosale
- Division of Critical Care Medicine, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | - Badira Parambil
- Department of Pediatric Oncology, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | - Jigeeshu Divatia
- Division of Critical Care Medicine, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | - Girish Chinnaswamy
- Department of Pediatric Oncology, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | - Vasundhara Patil
- Department of Radiology, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | | | - Sridhar Epari
- Department of Pathology, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | - Anita Mahadevan
- Department of Neuropathology, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Sunil Vaidya
- Virus Registry and Virus Repository, National Institute of Virology, Pune, India
| | - Shilpa Kulkarni
- Department of Neurology, Wadia Children's Hospital, Mumbai, India
| | - Atul Kulkarni
- Division of Critical Care Medicine, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | - Vijaya Patil
- Division of Critical Care Medicine, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | - Shyam Srinivasan
- Department of Pediatric Oncology, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | | | - Nirmalya Roy Moulik
- Department of Pediatric Oncology, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | - Maya Prasad
- Department of Pediatric Oncology, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | - Gaurav Narula
- Department of Pediatric Oncology, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | - Shripad Banavali
- Department of Pediatric Oncology, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
4
|
Tani N, Ikeda T, Ishikawa T. Effects of Prolactin on Brain Neurons under Hypoxia. Life (Basel) 2024; 14:152. [PMID: 38276281 PMCID: PMC10817236 DOI: 10.3390/life14010152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/17/2024] [Accepted: 01/20/2024] [Indexed: 01/27/2024] Open
Abstract
The levels and potential role of prolactin (PRL) in the brain under conditions of acute systemic hypoxia were examined, focusing on the accumulation of PRL in cerebrospinal fluid (CSF) and its effects on neuronal activity and injury. The amount of PRL in the brain was investigated using brain tissues from forensic autopsy cases. We counted the number of neurites that formed in human primary neurons (HNs) after the addition of PRL. Furthermore, HNs supplemented with PRL or triiodothyronine (T3) were exposed to hypoxic conditions, and the dead cells were counted. The results showed correlations between brain PRL and CSF PRL levels. Additionally, PRL accumulation in the brain was observed in cases of asphyxia. In vitro experimental findings indicated increased neurite formation in the HNs treated with PRL. Moreover, both PRL and T3 demonstrated neuroprotective effects against hypoxia-induced neuronal cell death, with PRL showing stronger neuroprotective potential than T3. These results suggest that PRL accumulates in the brain during hypoxia, potentially influences neuronal activity, and exhibits neuroprotective properties against hypoxia-induced neuronal injury.
Collapse
Affiliation(s)
- Naoto Tani
- Department of Legal Medicine, Graduate School of Medicine, Osaka Metropolitan University, 1-4-3 Asahi-machi, Abeno, Osaka 545-8585, Japan; (T.I.); (T.I.)
- Forensic Autopsy Section, Medico-Legal Consultation and Postmortem Investigation Support Center, 1-4-3 Asahi-machi, Abeno, Osaka 545-8585, Japan
| | - Tomoya Ikeda
- Department of Legal Medicine, Graduate School of Medicine, Osaka Metropolitan University, 1-4-3 Asahi-machi, Abeno, Osaka 545-8585, Japan; (T.I.); (T.I.)
| | - Takaki Ishikawa
- Department of Legal Medicine, Graduate School of Medicine, Osaka Metropolitan University, 1-4-3 Asahi-machi, Abeno, Osaka 545-8585, Japan; (T.I.); (T.I.)
- Forensic Autopsy Section, Medico-Legal Consultation and Postmortem Investigation Support Center, 1-4-3 Asahi-machi, Abeno, Osaka 545-8585, Japan
| |
Collapse
|
5
|
Yousaf I, Hannon WW, Donohue RC, Pfaller CK, Yadav K, Dikdan RJ, Tyagi S, Schroeder DC, Shieh WJ, Rota PA, Feder AF, Cattaneo R. Brain tropism acquisition: The spatial dynamics and evolution of a measles virus collective infectious unit that drove lethal subacute sclerosing panencephalitis. PLoS Pathog 2023; 19:e1011817. [PMID: 38127684 PMCID: PMC10735034 DOI: 10.1371/journal.ppat.1011817] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 11/10/2023] [Indexed: 12/23/2023] Open
Abstract
It is increasingly appreciated that pathogens can spread as infectious units constituted by multiple, genetically diverse genomes, also called collective infectious units or genome collectives. However, genetic characterization of the spatial dynamics of collective infectious units in animal hosts is demanding, and it is rarely feasible in humans. Measles virus (MeV), whose spread in lymphatic tissues and airway epithelia relies on collective infectious units, can, in rare cases, cause subacute sclerosing panencephalitis (SSPE), a lethal human brain disease. In different SSPE cases, MeV acquisition of brain tropism has been attributed to mutations affecting either the fusion or the matrix protein, or both, but the overarching mechanism driving brain adaptation is not understood. Here we analyzed MeV RNA from several spatially distinct brain regions of an individual who succumbed to SSPE. Surprisingly, we identified two major MeV genome subpopulations present at variable frequencies in all 15 brain specimens examined. Both genome types accumulated mutations like those shown to favor receptor-independent cell-cell spread in other SSPE cases. Most infected cells carried both genome types, suggesting the possibility of genetic complementation. We cannot definitively chart the history of the spread of this virus in the brain, but several observations suggest that mutant genomes generated in the frontal cortex moved outwards as a collective and diversified. During diversification, mutations affecting the cytoplasmic tails of both viral envelope proteins emerged and fluctuated in frequency across genetic backgrounds, suggesting convergent and potentially frequency-dependent evolution for modulation of fusogenicity. We propose that a collective infectious unit drove MeV pathogenesis in this brain. Re-examination of published data suggests that similar processes may have occurred in other SSPE cases. Our studies provide a primer for analyses of the evolution of collective infectious units of other pathogens that cause lethal disease in humans.
Collapse
Affiliation(s)
- Iris Yousaf
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, Minnesota, United States of America
| | - William W. Hannon
- Basic Sciences and Computational Biology, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, Washington, United States of America
| | - Ryan C. Donohue
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, Minnesota, United States of America
| | - Christian K. Pfaller
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, Minnesota, United States of America
| | - Kalpana Yadav
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Ryan J. Dikdan
- Public Health Research Institute, Rutgers University, Newark, New Jersey, United States of America
| | - Sanjay Tyagi
- Public Health Research Institute, Rutgers University, Newark, New Jersey, United States of America
| | - Declan C. Schroeder
- Department of Veterinary Population Medicine, University of Minnesota, St Paul, Minnesota, United States of America
| | - Wun-Ju Shieh
- Infectious Diseases Pathology Branch, Division of High Consequence Pathogens and Pathology, Center for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Paul A. Rota
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Center for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Alison F. Feder
- Genome Sciences, University of Washington, Seattle, Washington, United States of America
- Public Health Sciences and Computational Biology, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Roberto Cattaneo
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, Minnesota, United States of America
| |
Collapse
|
6
|
Sakamoto K, Konami M, Kameda S, Satoh Y, Wakimoto H, Kitagawa Y, Gotoh B, Jiang DP, Hotta H, Itoh M. Suppression of viral RNA polymerase activity is necessary for persistent infection during the transformation of measles virus into SSPE virus. PLoS Pathog 2023; 19:e1011528. [PMID: 37494386 PMCID: PMC10406308 DOI: 10.1371/journal.ppat.1011528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 08/07/2023] [Accepted: 07/03/2023] [Indexed: 07/28/2023] Open
Abstract
Subacute sclerosing panencephalitis (SSPE) is a fatal neurodegenerative disease caused by measles virus (MV), which typically develops 7 to 10 years after acute measles. During the incubation period, MV establishes a persistent infection in the brain and accumulates mutations that generate neuropathogenic SSPE virus. The neuropathogenicity is closely associated with enhanced propagation mediated by cell-to-cell fusion in the brain, which is principally regulated by hyperfusogenic mutations of the viral F protein. The molecular mechanisms underlying establishment and maintenance of persistent infection are unclear because it is impractical to isolate viruses before the appearance of clinical signs. In this study, we found that the L and P proteins, components of viral RNA-dependent RNA polymerase (RdRp), of an SSPE virus Kobe-1 strain did not promote but rather attenuated viral neuropathogenicity. Viral RdRp activity corresponded to F protein expression; the suppression of RdRp activity in the Kobe-1 strain because of mutations in the L and P proteins led to restriction of the F protein level, thereby reducing cell-to-cell fusion mediated propagation in neuronal cells and decreasing neuropathogenicity. Therefore, the L and P proteins of Kobe-1 did not contribute to progression of SSPE. Three mutations in the L protein strongly suppressed RdRp activity. Recombinant MV harboring the three mutations limited viral spread in neuronal cells while preventing the release of infectious progeny particles; these changes could support persistent infection by enabling host immune escape and preventing host cell lysis. Therefore, the suppression of RdRp activity is necessary for the persistent infection of the parental MV on the way to transform into Kobe-1 SSPE virus. Because mutations in the genome of an SSPE virus reflect the process of SSPE development, mutation analysis will provide insight into the mechanisms underlying persistent infection.
Collapse
Affiliation(s)
- Kento Sakamoto
- Department of Microbiology, Faculty of Bio-Science, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, Japan
| | - Miho Konami
- Department of Microbiology, Faculty of Bio-Science, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, Japan
| | - Shinra Kameda
- Department of Microbiology, Faculty of Bio-Science, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, Japan
| | - Yuto Satoh
- Department of Microbiology, Faculty of Bio-Science, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, Japan
| | - Hiroshi Wakimoto
- Department of Microbiology, Faculty of Bio-Science, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, Japan
| | - Yoshinori Kitagawa
- Division of Microbiology and Infectious Diseases, Department of Pathology, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Bin Gotoh
- Division of Microbiology and Infectious Diseases, Department of Pathology, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Da-Peng Jiang
- Graduate School of Medicine, Kobe University, Kobe, Hyogo, Japan
| | - Hak Hotta
- Graduate School of Medicine, Kobe University, Kobe, Hyogo, Japan
| | - Masae Itoh
- Department of Microbiology, Faculty of Bio-Science, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, Japan
| |
Collapse
|
7
|
Takemoto R, Hirai Y, Watanabe S, Harada H, Suzuki T, Hashiguchi T, Yanagi Y, Shirogane Y. Interaction of the Hemagglutinin Stalk Region with Cell Adhesion Molecule (CADM) 1 and CADM2 Mediates the Spread between Neurons and Neuropathogenicity of Measles Virus with a Hyperfusogenic Fusion Protein. J Virol 2023; 97:e0034023. [PMID: 37166307 PMCID: PMC10231178 DOI: 10.1128/jvi.00340-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/19/2023] [Indexed: 05/12/2023] Open
Abstract
Measles virus (MeV), the causative agent of measles, is an enveloped RNA virus of the family Paramyxoviridae, which remains an important cause of childhood morbidity and mortality. MeV has two envelope glycoproteins, the hemagglutinin (H) and fusion (F) proteins. During viral entry or virus-mediated fusion between infected cells and neighboring susceptible cells, the head domain of the H protein initially binds to its receptors, signaling lymphocytic activation molecule family member 1 (SLAM) and nectin-4, and then the stalk region of the H protein transmits the fusion-triggering signal to the F protein. MeV may persist in the human brain and cause a fatal neurodegenerative disease, subacute sclerosing panencephalitis (SSPE). Recently, we showed, using in vitro cell culture, that cell adhesion molecule (CADM) 1 and CADM2 are host factors that trigger hyperfusogenic mutant F proteins, causing cell-to-cell fusion and the transfer of the MeV genome between neurons. Unlike conventional receptors, CADM1 and CADM2 interact in cis (on the same membrane) with the H protein and then trigger membrane fusion. Here, we show that alanine substitutions in part of the stalk region (positions 171-175) abolish the ability of the H protein to mediate membrane fusion triggered by CADM1 and CADM2, but not by SLAM. The recombinant hyperfusogenic MeV carrying this mutant H protein loses its ability to spread in primary mouse neurons as well as its neurovirulence in experimentally infected suckling hamsters. These results indicate that CADM1 and CADM2 are key molecules for MeV propagation in the brain and its neurovirulence in vivo. IMPORTANCE Measles is an acute febrile illness with skin rash. Despite the availability of highly effective vaccines, measles is still an important cause of childhood morbidity and mortality in many countries. The World Health Organization estimates that more than 120,000 people died from measles worldwide in 2021. Measles virus (MeV), the causative agent of measles, can also cause a fatal progressive neurological disorder, subacute sclerosing panencephalitis (SSPE), several years after acute infection. There is currently no effective treatment for this disease. In this study, using recombinant MeVs with altered receptor usage patterns, we show that cell adhesion molecule (CADM) 1 and CADM2 are host factors critical for MeV spread in neurons and its neurovirulence. These findings further our understanding of the molecular mechanism of MeV neuropathogenicity.
Collapse
Affiliation(s)
- Ryuichi Takemoto
- Department of Virology, Faculty of Medicine, Kyushu University, Fukuoka, Japan
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuichi Hirai
- Department of Virology, Faculty of Medicine, Kyushu University, Fukuoka, Japan
| | - Shumpei Watanabe
- Department of Microbiology, Faculty of Veterinary Medicine, Okayama University of Science, Ehime, Japan
| | - Hidetaka Harada
- Department of Virology, Faculty of Medicine, Kyushu University, Fukuoka, Japan
| | - Tateki Suzuki
- Laboratory of Medical Virology, Institute for Life and Medical Sciences, Kyoto University
| | - Takao Hashiguchi
- Laboratory of Medical Virology, Institute for Life and Medical Sciences, Kyoto University
| | - Yusuke Yanagi
- National Research Center for the Control and Prevention of Infectious Diseases, Nagasaki University, Nagasaki, Japan
| | - Yuta Shirogane
- Department of Virology, Faculty of Medicine, Kyushu University, Fukuoka, Japan
| |
Collapse
|
8
|
Langworth-Green C, Patel S, Jaunmuktane Z, Jabbari E, Morris H, Thom M, Lees A, Hardy J, Zandi M, Duff K. Chronic effects of inflammation on tauopathies. Lancet Neurol 2023; 22:430-442. [PMID: 37059510 DOI: 10.1016/s1474-4422(23)00038-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/20/2023] [Accepted: 01/27/2023] [Indexed: 04/16/2023]
Abstract
Tauopathies are a heterogeneous group of neurodegenerative disorders that are characterised by the aggregation of the microtubule-associated protein tau into filamentous inclusions within neurons and glia. Alzheimer's disease is the most prevalent tauopathy. Despite years of intense research efforts, developing disease-modifying interventions for these disorders has been very challenging. The detrimental role that chronic inflammation plays in the pathogenesis of Alzheimer's disease is increasingly recognised; however, it is largely ascribed to the accumulation of amyloid β, leaving the effect of chronic inflammation on tau pathology and neurofibrillary tangle-related pathways greatly overlooked. Tau pathology can independently arise secondary to a range of triggers that are each associated with inflammatory processes, including infection, repetitive mild traumatic brain injury, seizure activity, and autoimmune disease. A greater understanding of the chronic effects of inflammation on the development and progression of tauopathies could help forge a path for the establishment of effective immunomodulatory disease-modifying interventions for clinical use.
Collapse
Affiliation(s)
| | - Saisha Patel
- UK Dementia Research Institute, University College London, London, UK
| | - Zane Jaunmuktane
- Department of Clinical and Movement Neurosciences, University College London, London, UK; Queen Square Brain Bank for Neurological Disorders, University College London, London, UK; Division of Neuropathology, University College London, London, UK; National Hospital for Neurology and Neurosurgery, London, UK
| | - Edwin Jabbari
- Department of Clinical and Movement Neurosciences, University College London, London, UK; National Hospital for Neurology and Neurosurgery, London, UK; Department of Neurology, Royal Free Hospital, London, UK
| | - Huw Morris
- Department of Clinical and Movement Neurosciences, University College London, London, UK; National Hospital for Neurology and Neurosurgery, London, UK; Department of Neurology, Royal Free Hospital, London, UK
| | - Maria Thom
- Division of Neuropathology, University College London, London, UK; Department of Clinical and Experimental Epilepsy, University College London, London, UK
| | - Andrew Lees
- Department of Clinical and Movement Neurosciences, University College London, London, UK; Reta Lila Weston Institute, University College London, London, UK
| | - John Hardy
- UK Dementia Research Institute, University College London, London, UK; Reta Lila Weston Institute, University College London, London, UK; Department of Neurodegenerative Disease, University College London, London, UK
| | - Michael Zandi
- Department of Neuroinflammation, UCL Queen Square Institute of Neurology, University College London, London, UK; National Hospital for Neurology and Neurosurgery, London, UK
| | - Karen Duff
- UK Dementia Research Institute, University College London, London, UK.
| |
Collapse
|
9
|
Shirogane Y, Harada H, Hirai Y, Takemoto R, Suzuki T, Hashiguchi T, Yanagi Y. Collective fusion activity determines neurotropism of an en bloc transmitted enveloped virus. SCIENCE ADVANCES 2023; 9:eadf3731. [PMID: 36706187 PMCID: PMC9882980 DOI: 10.1126/sciadv.adf3731] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/29/2022] [Indexed: 06/09/2023]
Abstract
Measles virus (MeV), which is usually non-neurotropic, sometimes persists in the brain and causes subacute sclerosing panencephalitis (SSPE) several years after acute infection, serving as a model for persistent viral infections. The persisting MeVs have hyperfusogenic mutant fusion (F) proteins that likely enable cell-cell fusion at synapses and "en bloc transmission" between neurons. We here show that during persistence, F protein fusogenicity is generally enhanced by cumulative mutations, yet mutations paradoxically reducing the fusogenicity may be selected alongside the wild-type (non-neurotropic) MeV genome. A mutant F protein having SSPE-derived substitutions exhibits lower fusogenicity than the hyperfusogenic F protein containing some of those substitutions, but by the wild-type F protein coexpression, the fusogenicity of the former F protein is enhanced, while that of the latter is nearly abolished. These findings advance the understanding of the long-term process of MeV neuropathogenicity and provide critical insight into the genotype-phenotype relationships of en bloc transmitted viruses.
Collapse
Affiliation(s)
- Yuta Shirogane
- Department of Virology, Faculty of Medicine, Kyushu University, Fukuoka, Japan
| | - Hidetaka Harada
- Department of Virology, Faculty of Medicine, Kyushu University, Fukuoka, Japan
| | - Yuichi Hirai
- Department of Virology, Faculty of Medicine, Kyushu University, Fukuoka, Japan
| | - Ryuichi Takemoto
- Department of Virology, Faculty of Medicine, Kyushu University, Fukuoka, Japan
| | - Tateki Suzuki
- Laboratory of Medical Virology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Takao Hashiguchi
- Laboratory of Medical Virology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Yusuke Yanagi
- National Research Center for the Control and Prevention of Infectious Diseases, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
10
|
Shirogane Y. [RNA Virus Pathogenicity, Evolution, and Intrapopulation Interaction]. Uirusu 2023; 73:95-104. [PMID: 39343534 DOI: 10.2222/jsv.73.95] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Measles virus (MeV), the causative agent of measles, can persist in the brain and cause a fatal neurodegenerative disease, subacute sclerosing panencephalitis (SSPE). Because wild-type MeV is not neurotropic, the virus is thought to evolve and acquire neuropathogenicity to cause SSPE. Our recent studies have shown that MeV acquires hyperfusogenic mutations in the fusion (F) gene that confer the ability to use cell adhesion molecule 1 (CADM1) and CADM2 as cis-acting receptor mimicking molecules and allow MeV to spread in neurons. Furthermore, under these conditions, multiple MeV genomes, rather than a single one, are likely to be transmitted transsynaptically between neurons through cell-cell fusion. Therefore, F proteins encoded by different genomes are co-expressed in infected cells, and positive and negative functional interactions between them can occur. These interactions determine the ability of the virus to spread in neurons as a population. In this article, we describe our studies to understand the mechanism by which MeV acquires neuropathogenicity in SSPE.
Collapse
Affiliation(s)
- Yuta Shirogane
- Department of Virology, Faculty of Medicine, Kyushu University
| |
Collapse
|
11
|
Ahamed J, Laurence J. Long COVID endotheliopathy: hypothesized mechanisms and potential therapeutic approaches. J Clin Invest 2022; 132:e161167. [PMID: 35912863 PMCID: PMC9337829 DOI: 10.1172/jci161167] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
SARS-CoV-2-infected individuals may suffer a multi-organ system disorder known as "long COVID" or post-acute sequelae of SARS-CoV-2 infection (PASC). There are no standard treatments, the pathophysiology is unknown, and incidence varies by clinical phenotype. Acute COVID-19 correlates with biomarkers of systemic inflammation, hypercoagulability, and comorbidities that are less prominent in PASC. Macrovessel thrombosis, a hallmark of acute COVID-19, is less frequent in PASC. Female sex at birth is associated with reduced risk for acute COVID-19 progression, but with increased risk of PASC. Persistent microvascular endotheliopathy associated with cryptic SARS-CoV-2 tissue reservoirs has been implicated in PASC pathology. Autoantibodies, localized inflammation, and reactivation of latent pathogens may also be involved, potentially leading to microvascular thrombosis, as documented in multiple PASC tissues. Diagnostic assays illuminating possible therapeutic targets are discussed.
Collapse
Affiliation(s)
- Jasimuddin Ahamed
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Jeffrey Laurence
- Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
12
|
Multiple Receptors Involved in Invasion and Neuropathogenicity of Canine Distemper Virus: A Review. Viruses 2022; 14:v14071520. [PMID: 35891500 PMCID: PMC9317347 DOI: 10.3390/v14071520] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 07/06/2022] [Accepted: 07/09/2022] [Indexed: 12/04/2022] Open
Abstract
The canine distemper virus (CDV) is a morbillivirus that infects a broad range of terrestrial carnivores, predominantly canines, and is associated with high mortality. Similar to another morbillivirus, measles virus, which infects humans and nonhuman primates, CDV transmission from an infected host to a naïve host depends on two cellular receptors, namely, the signaling lymphocyte activation molecule (SLAM or CD150) and the adherens junction protein nectin-4 (also known as PVRL4). CDV can also invade the central nervous system by anterograde spread through olfactory nerves or in infected lymphocytes through the circulation, thus causing chronic progressive or relapsing demyelination of the brain. However, the absence of the two receptors in the white matter, primary cultured astrocytes, and neurons in the brain was recently demonstrated. Furthermore, a SLAM/nectin-4-blind recombinant CDV exhibits full cell-to-cell transmission in primary astrocytes. This strongly suggests the existence of a third CDV receptor expressed in neural cells, possibly glial cells. In this review, we summarize the recent progress in the study of CDV receptors, highlighting the unidentified glial receptor and its contribution to pathogenicity in the host nervous system. The reviewed studies focus on CDV neuropathogenesis, and neural receptors may provide promising directions for the treatment of neurological diseases caused by CDV. We also present an overview of other neurotropic viruses to promote further research and identification of CDV neural receptors.
Collapse
|
13
|
Sakamoto K, Satoh Y, Takahashi KI, Wakimoto H, Kitagawa Y, Gotoh B, Ayata M, Itoh M. Upregulation of viral RNA polymerase activity promotes adaptation of SSPE virus to neuronal cells. Virology 2022; 573:1-11. [DOI: 10.1016/j.virol.2022.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 05/13/2022] [Accepted: 05/24/2022] [Indexed: 11/26/2022]
|
14
|
Papetti L, Amodeo ME, Sabatini L, Baggieri M, Capuano A, Graziola F, Marchi A, Bucci P, D’Ugo E, Kojouri M, Gioacchini S, Marras CE, Nucci CG, Ursitti F, Sforza G, Ferilli MAN, Monte G, Moavero R, Vigevano F, Valeriani M, Magurano F. Subacute Sclerosing Panencephalitis in Children: The Archetype of Non-Vaccination. Viruses 2022; 14:v14040733. [PMID: 35458463 PMCID: PMC9029616 DOI: 10.3390/v14040733] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 12/22/2022] Open
Abstract
Subacute sclerosing panencephalitis (SSPE) is a late complication of measles virus infection that occurs in previously healthy children. This disease has no specific cure and is associated with a high degree of disability and mortality. In recent years, there has been an increase in its incidence in relation to a reduction in vaccination adherence, accentuated by the COVID-19 pandemic. In this article, we take stock of the current evidence on SSPE and report our personal clinical experience. We emphasise that, to date, the only effective protection strategy against this disease is vaccination against the measles virus.
Collapse
Affiliation(s)
- Laura Papetti
- Neurology Unit, Department of Neuroscience, Bambino Gesù Children Hospital, IRCCS, 00165 Rome, Italy; (A.C.); (F.G.); (F.U.); (G.S.); (M.A.N.F.); (G.M.); (F.V.); (M.V.)
- Correspondence: (L.P.); (F.M.)
| | - Maria Elisa Amodeo
- Department of Pediatrics, Bambino Gesù Children Hospital, IRCCS, 00165 Rome, Italy; (M.E.A.); (L.S.)
- Department of System Medicine, Tor Vergata University of Rome, Viale Oxford 81, 00133 Roma, Italy;
| | - Letizia Sabatini
- Department of Pediatrics, Bambino Gesù Children Hospital, IRCCS, 00165 Rome, Italy; (M.E.A.); (L.S.)
- Department of System Medicine, Tor Vergata University of Rome, Viale Oxford 81, 00133 Roma, Italy;
| | - Melissa Baggieri
- National Measles Reference Laboratory—WHO/LabNet, Department of Infectious Diseases—Istituto Superiore di Sanità (ISS), 00165 Rome, Italy; (M.B.); (A.M.); (P.B.); (E.D.); (M.K.); (S.G.)
| | - Alessandro Capuano
- Neurology Unit, Department of Neuroscience, Bambino Gesù Children Hospital, IRCCS, 00165 Rome, Italy; (A.C.); (F.G.); (F.U.); (G.S.); (M.A.N.F.); (G.M.); (F.V.); (M.V.)
| | - Federica Graziola
- Neurology Unit, Department of Neuroscience, Bambino Gesù Children Hospital, IRCCS, 00165 Rome, Italy; (A.C.); (F.G.); (F.U.); (G.S.); (M.A.N.F.); (G.M.); (F.V.); (M.V.)
| | - Antonella Marchi
- National Measles Reference Laboratory—WHO/LabNet, Department of Infectious Diseases—Istituto Superiore di Sanità (ISS), 00165 Rome, Italy; (M.B.); (A.M.); (P.B.); (E.D.); (M.K.); (S.G.)
| | - Paola Bucci
- National Measles Reference Laboratory—WHO/LabNet, Department of Infectious Diseases—Istituto Superiore di Sanità (ISS), 00165 Rome, Italy; (M.B.); (A.M.); (P.B.); (E.D.); (M.K.); (S.G.)
| | - Emilio D’Ugo
- National Measles Reference Laboratory—WHO/LabNet, Department of Infectious Diseases—Istituto Superiore di Sanità (ISS), 00165 Rome, Italy; (M.B.); (A.M.); (P.B.); (E.D.); (M.K.); (S.G.)
| | - Maedeh Kojouri
- National Measles Reference Laboratory—WHO/LabNet, Department of Infectious Diseases—Istituto Superiore di Sanità (ISS), 00165 Rome, Italy; (M.B.); (A.M.); (P.B.); (E.D.); (M.K.); (S.G.)
| | - Silvia Gioacchini
- National Measles Reference Laboratory—WHO/LabNet, Department of Infectious Diseases—Istituto Superiore di Sanità (ISS), 00165 Rome, Italy; (M.B.); (A.M.); (P.B.); (E.D.); (M.K.); (S.G.)
| | - Carlo Efisio Marras
- Unit of Neurosurgery, Department of Neurosciences, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (C.E.M.); (C.G.N.)
| | - Carlotta Ginevra Nucci
- Unit of Neurosurgery, Department of Neurosciences, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (C.E.M.); (C.G.N.)
| | - Fabiana Ursitti
- Neurology Unit, Department of Neuroscience, Bambino Gesù Children Hospital, IRCCS, 00165 Rome, Italy; (A.C.); (F.G.); (F.U.); (G.S.); (M.A.N.F.); (G.M.); (F.V.); (M.V.)
| | - Giorgia Sforza
- Neurology Unit, Department of Neuroscience, Bambino Gesù Children Hospital, IRCCS, 00165 Rome, Italy; (A.C.); (F.G.); (F.U.); (G.S.); (M.A.N.F.); (G.M.); (F.V.); (M.V.)
| | - Michela Ada Noris Ferilli
- Neurology Unit, Department of Neuroscience, Bambino Gesù Children Hospital, IRCCS, 00165 Rome, Italy; (A.C.); (F.G.); (F.U.); (G.S.); (M.A.N.F.); (G.M.); (F.V.); (M.V.)
| | - Gabriele Monte
- Neurology Unit, Department of Neuroscience, Bambino Gesù Children Hospital, IRCCS, 00165 Rome, Italy; (A.C.); (F.G.); (F.U.); (G.S.); (M.A.N.F.); (G.M.); (F.V.); (M.V.)
| | - Romina Moavero
- Department of System Medicine, Tor Vergata University of Rome, Viale Oxford 81, 00133 Roma, Italy;
- Child Neurology and Psychiatry Unit, Department of System Medicine, Tor Vergata University of Rome, Viale Oxford 81, 00133 Rome, Italy
| | - Federico Vigevano
- Neurology Unit, Department of Neuroscience, Bambino Gesù Children Hospital, IRCCS, 00165 Rome, Italy; (A.C.); (F.G.); (F.U.); (G.S.); (M.A.N.F.); (G.M.); (F.V.); (M.V.)
| | - Massimiliano Valeriani
- Neurology Unit, Department of Neuroscience, Bambino Gesù Children Hospital, IRCCS, 00165 Rome, Italy; (A.C.); (F.G.); (F.U.); (G.S.); (M.A.N.F.); (G.M.); (F.V.); (M.V.)
| | - Fabio Magurano
- National Measles Reference Laboratory—WHO/LabNet, Department of Infectious Diseases—Istituto Superiore di Sanità (ISS), 00165 Rome, Italy; (M.B.); (A.M.); (P.B.); (E.D.); (M.K.); (S.G.)
- Correspondence: (L.P.); (F.M.)
| |
Collapse
|
15
|
Samia P, Oyieke K, Tunje D, Udwadia-Hegde A, Feemster K, Oncel I, Anlar B. Options in the Treatment of Subacute Sclerosing Panencephalitis: Implications for Low Resource Areas. Curr Treat Options Neurol 2022; 24:99-110. [PMID: 35340572 PMCID: PMC8933242 DOI: 10.1007/s11940-022-00710-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2021] [Indexed: 12/11/2022]
Abstract
Purpose of the review Subacute sclerosing panencephalitis (SSPE) is a rare, slowly progressive, and frequently fatal neurodegenerative disorder caused by measles virus. The risk of SSPE remains significant globally, with fluctuating incidence noted in in tandem with measles vaccine uptake. This review aims to explore the current global status of SSPE, its treatment, and preventive measures. Recent findings An increase in measles cases have been reported in various parts of the world for different reasons related to the regional context of the outbreak. With reduction in measles vaccine doses since the onset of the COVID-19 pandemic, the future risk of SSPE can only accelerate. In recent years, subsequent cases of SSPE have been reported in the period following documented measles outbreaks in different settings. Concomitantly, there have been efforts to evaluate the efficacy of immunomodulatory, antiviral, and anti-seizure therapies that could ameliorate the devastating effects of this disease. This review elucidates on these approaches and their limitations, reasons for poor vaccine coverage in low- and middle-income countries, as well as the possible solutions to the prevention of measles and eventual avoidance of SSPE. Summary Prevention of measles virus infection with the resultant sequelae would be the most effective strategy for the management of SSPE. This approach would be particularly important in low resource setting that currently bears the double burden of widespread communicable diseases and malnutrition.
Collapse
Affiliation(s)
- Pauline Samia
- Department of Paediatrics and Child Health, Medical College, Aga Khan University, 3rd Parklands Avenue, P.O BOX 30270 00100, East Tower block, fourth floor Nairobi, Kenya
- Brain and Mind Institute, Aga Khan University, Nairobi, Kenya
- Department of Public Health and Primary Care, Ghent University, Ghent, Belgium
| | - Katherine Oyieke
- Department of Paediatrics and Child Health, Medical College, Aga Khan University, 3rd Parklands Avenue, P.O BOX 30270 00100, East Tower block, fourth floor Nairobi, Kenya
| | - Dorcas Tunje
- Department of Paediatrics and Child Health, Medical College, Aga Khan University, 3rd Parklands Avenue, P.O BOX 30270 00100, East Tower block, fourth floor Nairobi, Kenya
| | - Anaita Udwadia-Hegde
- Department of Pediatric Neurosciences, SRCC NH Children’s Hospital, Mumbai, India
- Department of Pediatric Neurosciences, Jaslok Hospital & Research Center, Mumbai, India
| | - Kristen Feemster
- Department of Pediatrics, Division of Infectious Diseases, Global Health Center, Children’s Hospital of Philadelphia, Philadelphia, PA USA
| | - Ibrahim Oncel
- Department of Pediatric Neurology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Banu Anlar
- Department of Pediatric Neurology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| |
Collapse
|
16
|
Ohka S, Yamada S, Nishizawa D, Fukui Y, Arita H, Hanaoka K, Iseki M, Kato J, Ogawa S, Hiranuma A, Kasai S, Hasegawa J, Hayashida M, Fukushi S, Saijo M, Ikeda AK. Heparan sulfate 3- O-sulfotransferase 4 is genetically associated with herpes zoster and enhances varicella-zoster virus-mediated fusogenic activity. Mol Pain 2021; 17:17448069211052171. [PMID: 34904858 PMCID: PMC8733353 DOI: 10.1177/17448069211052171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Acute pain that is associated with herpes zoster (HZ) can become long-lasting
neuropathic pain, known as chronic post-herpetic neuralgia (PHN), especially in
the elderly. HZ is caused by the reactivation of latent varicella-zoster virus
(VZV), whereas PHN is not attributed to ongoing viral replication. Although VZV
infection reportedly induces neuronal cell fusion in humans, the pathogenesis of
PHN is not fully understood. A genome-wide association study (GWAS) revealed
significant associations between PHN and the rs12596324 single-nucleotide
polymorphism (SNP) of the heparan sulfate 3-O-sulfotransferase
4 (HS3ST4) gene in a previous study. To further examine whether
this SNP is associated with both PHN and VZV reactivation, associations between
rs12596324 and a history of HZ were statistically analyzed using GWAS data. HZ
was significantly associated with the rs12596324 SNP of HS3ST4,
indicating that HS3ST4 is related to viral replication. We investigated the
influence of HS3ST4 expression on VZV infection in cultured cells. Fusogenic
activity after VZV infection was enhanced in cells with HS3ST4 expression by
microscopy. To quantitatively evaluate the fusogenic activity, we applied
cytotoxicity assay and revealed that HS3ST4 expression enhanced cytotoxicity
after VZV infection. Expression of the VZV glycoproteins gB, gH, and gL
significantly increased cytotoxicity in cells with HS3ST4 expression by
cytotoxicity assay, consistent with the fusogenic activity as visualized by
fluorescence microscopy. HS3ST4 had little influence on viral genome
replication, revealed by quantitative real-time polymerase chain reaction. These
results suggest that HS3ST4 enhances cytotoxicity including fusogenic activity
in the presence of VZV glycoproteins without enhancing viral genome
replication.
Collapse
Affiliation(s)
- Seii Ohka
- Addictive Substance Project, 13931Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.,Department of Virology I, 13511National Institute of Infectious Diseases, Tokyo, Japan
| | - Souichi Yamada
- Department of Virology I, 13511National Institute of Infectious Diseases, Tokyo, Japan
| | - Daisuke Nishizawa
- Addictive Substance Project, 13931Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Yoshiko Fukui
- Department of Virology I, 13511National Institute of Infectious Diseases, Tokyo, Japan
| | - Hideko Arita
- Department of Anesthesiology and Pain Relief Center, 13622JR Tokyo General Hospital, Tokyo, Japan
| | - Kazuo Hanaoka
- Department of Anesthesiology and Pain Relief Center, 13622JR Tokyo General Hospital, Tokyo, Japan
| | - Masako Iseki
- Department of Anesthesiology and Pain Medicine, 175793Juntendo University School of Medicine, Tokyo, Japan
| | - Jitsu Kato
- Department of Anesthesiology, 38113Nihon University School of Medicine, Tokyo, Japan
| | - Setsuro Ogawa
- Nihon University University Research Center, Tokyo, Japan
| | - Ayako Hiranuma
- Addictive Substance Project, 13931Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.,Department of Clinical Oncology, Graduate School of Medicine, 38138Toho University, Tokyo, Japan
| | - Shinya Kasai
- Addictive Substance Project, 13931Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Junko Hasegawa
- Addictive Substance Project, 13931Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Masakazu Hayashida
- Addictive Substance Project, 13931Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.,Department of Anesthesiology and Pain Medicine, 175793Juntendo University School of Medicine, Tokyo, Japan.,Department of Anesthesiology, 12277Saitama Medical University International Medical Center, Saitama, Japan
| | - Shuetsu Fukushi
- Department of Virology I, 13511National Institute of Infectious Diseases, Tokyo, Japan
| | - Masayuki Saijo
- Department of Virology I, 13511National Institute of Infectious Diseases, Tokyo, Japan
| | - And Kazutaka Ikeda
- Addictive Substance Project, 13931Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| |
Collapse
|
17
|
Short-stalk isoforms of CADM1 and CADM2 trigger neuropathogenic measles virus-mediated membrane fusion by interacting with the viral hemagglutinin. J Virol 2021; 96:e0194921. [PMID: 34788082 DOI: 10.1128/jvi.01949-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Measles virus (MeV), an enveloped RNA virus in the family Paramyxoviridae, usually causes acute febrile illness with skin rash, but in rare cases persists in the brain, causing a progressive neurological disorder, subacute sclerosing panencephalitis (SSPE). MeV bears two envelope glycoproteins, the hemagglutinin (H) and fusion (F) proteins. The H protein possesses a head domain that initially mediates receptor binding and a stalk domain that subsequently transmits the fusion-triggering signal to the F protein. We have recently shown that cell adhesion molecule 1 (CADM1, also known as IGSF4A, Necl-2, SynCAM1) and CADM2 (also known as IGSF4D, Necl-3, SynCAM2) are host factors enabling cell-cell membrane fusion mediated by hyperfusogenic F proteins of neuropathogenic MeVs as well as MeV spread between neurons lacking the known receptors. CADM1 and CADM2 interact in cis with the H protein on the same cell membrane, triggering hyperfusogenic F protein-mediated membrane fusion. Multiple isoforms of CADM1 and CADM2 containing various lengths of their stalk regions are generated by alternative splicing. Here we show that only short-stalk isoforms of CADM1 and CADM2 predominantly expressed in the brain induce hyperfusogenic F protein-mediated membrane fusion. While the known receptors interact in trans with the H protein through its head domain, these isoforms can interact in cis even with the H protein lacking the head domain and trigger membrane fusion, presumably through its stalk domain. Thus, our results unveil a new mechanism of viral fusion triggering by host factors. Importance Measles, an acute febrile illness with skin rash, is still an important cause of childhood morbidity and mortality worldwide. Measles virus (MeV), the causative agent of measles, may also cause a progressive neurological disorder, subacute sclerosing panencephalitis (SSPE), several years after acute infection. The disease is fatal, and no effective therapy is available. Recently, we have reported that cell adhesion molecule 1 (CADM1) and CADM2 are host factors enabling MeV cell-to-cell spread in neurons. These molecules interact in cis with the MeV attachment protein on the same cell membrane, triggering the fusion protein and causing membrane fusion. CADM1 and CADM2 are known to exist in multiple splice isoforms. In this study, we report that their short-stalk isoforms can induce membrane fusion by interacting in cis with the viral attachment protein independently of its receptor-binding head domain. This finding may have important implications for cis-acting fusion triggering by host factors.
Collapse
|
18
|
Satoh Y, Higuchi K, Nishikawa D, Wakimoto H, Konami M, Sakamoto K, Kitagawa Y, Gotoh B, Jiang DP, Hotta H, Itoh M. M protein of subacute sclerosing panencephalitis virus, synergistically with the F protein, plays a crucial role in viral neuropathogenicity. J Gen Virol 2021; 102. [PMID: 34643483 PMCID: PMC8604190 DOI: 10.1099/jgv.0.001682] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Subacute sclerosing panencephalitis (SSPE) is a rare fatal neurodegenerative disease caused by a measles virus (MV) variant, SSPE virus, that accumulates mutations during long-term persistent infection of the central nervous system (CNS). Clusters of mutations identified around the matrix (M) protein in many SSPE viruses suppress productive infectious particle release and accelerate cell–cell fusion, which are features of SSPE viruses. It was reported, however, that these defects of M protein function might not be correlated directly with promotion of neurovirulence, although they might enable establishment of persistent infection. Neuropathogenicity is closely related to the character of the viral fusion (F) protein, and amino acid substitution(s) in the F protein of some SSPE viruses confers F protein hyperfusogenicity, facilitating viral propagation in the CNS through cell–cell fusion and leading to neurovirulence. The F protein of an SSPE virus Kobe-1 strain, however, displayed only moderately enhanced fusion activity and required additional mutations in the M protein for neuropathogenicity in mice. We demonstrated here the mechanism for the M protein of the Kobe-1 strain supporting the fusion activity of the F protein and cooperatively inducing neurovirulence, even though each protein, independently, has no effect on virulence. The occurrence of SSPE has been estimated recently as one in several thousand in children who acquired measles under the age of 5 years, markedly higher than reported previously. The probability of a specific mutation (or mutations) occurring in the F protein conferring hyperfusogenicity and neuropathogenicity might not be sufficient to explain the high frequency of SSPE. The induction of neurovirulence by M protein synergistically with moderately fusogenic F protein could account for the high frequency of SSPE.
Collapse
Affiliation(s)
- Yuto Satoh
- Department of Microbiology, Faculty of Bio-Science, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, Japan
| | - Kurara Higuchi
- Department of Microbiology, Faculty of Bio-Science, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, Japan
| | - Daichi Nishikawa
- Department of Microbiology, Faculty of Bio-Science, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, Japan
| | - Hiroshi Wakimoto
- Department of Microbiology, Faculty of Bio-Science, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, Japan
| | - Miho Konami
- Department of Microbiology, Faculty of Bio-Science, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, Japan
| | - Kento Sakamoto
- Department of Microbiology, Faculty of Bio-Science, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, Japan
| | - Yoshinori Kitagawa
- Division of Microbiology and Infectious Diseases, Department of Pathology, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Bin Gotoh
- Division of Microbiology and Infectious Diseases, Department of Pathology, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Da-Peng Jiang
- Graduate School of Medicine, Kobe University, Kobe, Hyogo, Japan
| | - Hak Hotta
- Graduate School of Medicine, Kobe University, Kobe, Hyogo, Japan
- Present address: Faculty of Clinical Nutrition and Dietetics, Konan Women’s University, Kobe, Hyogo, Japan
| | - Masae Itoh
- Department of Microbiology, Faculty of Bio-Science, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, Japan
- *Correspondence: Masae Itoh,
| |
Collapse
|
19
|
Measles Sclerosing Subacute PanEncephalitis (SSPE), an intriguing and ever-present disease: Data, assumptions and new perspectives. Rev Neurol (Paris) 2021; 177:1059-1068. [PMID: 34187690 DOI: 10.1016/j.neurol.2021.02.387] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/01/2021] [Accepted: 02/03/2021] [Indexed: 11/21/2022]
Abstract
BACKGROUND Subacute sclerosing panencephalitis (SSPE) is a rare, non-treatable and fatal neurological complication of measles, still present due to the return of the epidemic linked to the loosening of vaccination policies. Its mechanism remains unexplained. OBJECTIVE The main objective was to investigate explanatory variables relating to the risk of developing SSPE and its pathophysiology. METHODS Literature analysis was focused on different varieties of SSPE: perinatal forms, short-incubation forms similar to acute measles inclusion body encephalitis (MIBE), rapidly evolving forms, forms occurring in the immunosuppressed, adult forms, and family forms. In addition, several studies on the parameters of innate immunity and interferon responses of patients were analyzed. RESULTS Two main data were highlighted: a relationship between the so-called fulminant forms and the prescription of corticosteroids was established. In familial SSPE, two groups were individualized according to the duration of the latency period, prompting an analysis of patient exomes. CONCLUSION Treatment with corticosteroids should be banned. Knowledge of the genes involved and epigenetics should be useful for understanding the pathophysiology of SSPE and other late-onset neurological infections with RNA viruses.
Collapse
|
20
|
CADM1 and CADM2 Trigger Neuropathogenic Measles Virus-Mediated Membrane Fusion by Acting in cis. J Virol 2021; 95:e0052821. [PMID: 33910952 DOI: 10.1128/jvi.00528-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Measles virus (MeV), an enveloped RNA virus in the family Paramyxoviridae, is still an important cause of childhood morbidity and mortality worldwide. MeV usually causes acute febrile illness with skin rash, but in rare cases persists in the brain, causing a progressive neurological disorder, subacute sclerosing panencephalitis (SSPE). The disease is fatal, and no effective therapy is currently available. Although transsynaptic cell-to-cell transmission is thought to account for MeV propagation in the brain, neurons do not express the known receptors for MeV. Recent studies have shown that hyperfusogenic changes in the MeV fusion (F) protein play a key role in MeV propagation in the brain. However, how such mutant viruses spread in neurons remains unexplained. Here, we show that cell adhesion molecule 1 (CADM1; also known as IGSF4A, Necl-2, and SynCAM1) and CADM2 (also known as IGSF4D, Necl-3, SynCAM2) are host factors that enable MeV to cause membrane fusion in cells lacking the known receptors and to spread between neurons. During enveloped virus entry, a cellular receptor generally interacts in trans with the attachment protein on the envelope. However, CADM1 and CADM2 interact in cis with the MeV attachment protein on the same cell membrane, causing the fusion protein triggering and membrane fusion. Knockdown of CADM1 and CADM2 inhibits syncytium formation and virus transmission between neurons that are both mediated by hyperfusogenic F proteins. Thus, our results unravel the molecular mechanism (receptor-mimicking cis-acting fusion triggering) by which MeV spreads transsynaptically between neurons, thereby causing SSPE. IMPORTANCE Measles virus (MeV), an enveloped RNA virus, is the causative agent of measles, which is still an important cause of childhood morbidity and mortality worldwide. Persistent MeV infection in the brain causes a fatal progressive neurological disorder, subacute sclerosing panencephalitis (SSPE), several years after acute infection. However, how MeV spreads in neurons, which are mainly affected in SSPE, remains largely unknown. In this study, we demonstrate that cell adhesion molecule 1 (CADM1) and CADM2 are host factors enabling MeV spread between neurons. During enveloped virus entry, a cellular receptor generally interacts in trans with the attachment protein on the viral membrane (envelope). Remarkably, CADM1 and CADM2 interact in cis with the MeV attachment protein on the same membrane, triggering the fusion protein and causing membrane fusion, as viral receptors usually do in trans. Careful screening may lead to more examples of such "receptor-mimicking cis-acting fusion triggering" in other viruses.
Collapse
|
21
|
Fitness selection of hyperfusogenic measles virus F proteins associated with neuropathogenic phenotypes. Proc Natl Acad Sci U S A 2021; 118:2026027118. [PMID: 33903248 DOI: 10.1073/pnas.2026027118] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Measles virus (MeV) is resurgent and caused >200,000 deaths in 2019. MeV infection can establish a chronic latent infection of the brain that can recrudesce months to years after recovery from the primary infection. Recrudescent MeV leads to fatal subacute sclerosing panencephalitis (SSPE) or measles inclusion body encephalitis (MIBE) as the virus spreads across multiple brain regions. Most clinical isolates of SSPE/MIBE strains show mutations in the fusion (F) gene that result in a hyperfusogenic phenotype in vitro and allow for efficient spread in primary human neurons. Wild-type MeV receptor-binding protein is indispensable for manifesting these mutant F phenotypes, even though neurons lack canonical MeV receptors (CD150/SLAMF1 or nectin-4). How such hyperfusogenic F mutants are selected and whether they confer a fitness advantage for efficient neuronal spread is unresolved. To better understand the fitness landscape that allows for the selection of such hyperfusogenic F mutants, we conducted a screen of ≥3.1 × 105 MeV-F point mutants in their genomic context. We rescued and amplified our genomic MeV-F mutant libraries in BSR-T7 cells under conditions in which MeV-F-T461I (a known SSPE mutant), but not wild-type MeV, can spread. We recovered known SSPE mutants but also characterized at least 15 hyperfusogenic F mutations with an SSPE phenotype. Structural mapping of these mutants onto the prefusion MeV-F trimer confirm and extend our understanding of the F regulatory domains in MeV-F. Our list of hyperfusogenic F mutants is a valuable resource for future studies into MeV neuropathogenesis and the regulation of paramyxovirus F.
Collapse
|
22
|
Busch J, Chey S, Sieg M, Vahlenkamp TW, Liebert UG. Mutated Measles Virus Matrix and Fusion Protein Influence Viral Titer In Vitro and Neuro-Invasion in Lewis Rat Brain Slice Cultures. Viruses 2021; 13:605. [PMID: 33916225 PMCID: PMC8066528 DOI: 10.3390/v13040605] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/30/2021] [Accepted: 03/30/2021] [Indexed: 12/20/2022] Open
Abstract
Measles virus (MV) can cause severe acute diseases as well as long-lasting clinical deteriorations due to viral-induced immunosuppression and neuronal manifestation. How the virus enters the brain and manages to persist in neuronal tissue is not fully understood. Various mutations in the viral genes were found in MV strains isolated from patient brains. In this study, reverse genetics was used to introduce mutations in the fusion, matrix and polymerase genes of MV. The generated virus clones were characterized in cell culture and used to infect rat brain slice cultures. A mutation in the carboxy-terminal domain of the matrix protein (R293Q) promoted the production of progeny virions. This effect was observed in Vero cells irrespective of the expression of the signaling lymphocyte activation molecule (SLAM). Furthermore, a mutation in the fusion protein (I225M) induced syncytia formation on Vero cells in the absence of SLAM and promoted viral spread throughout the rat brain slices. In this study, a solid ex vivo model was established to elucidate the MV mutations contributing to neural manifestation.
Collapse
Affiliation(s)
- Johannes Busch
- Institute of Virology, University Hospital Leipzig, Johannisallee 30, 04103 Leipzig, Germany; (S.C.); (U.G.L.)
- Faculty of Veterinary Medicine, Institute of Virology, Leipzig University, An den Tierkliniken 29, 04103 Leipzig, Germany; (M.S.); (T.W.V.)
| | - Soroth Chey
- Institute of Virology, University Hospital Leipzig, Johannisallee 30, 04103 Leipzig, Germany; (S.C.); (U.G.L.)
| | - Michael Sieg
- Faculty of Veterinary Medicine, Institute of Virology, Leipzig University, An den Tierkliniken 29, 04103 Leipzig, Germany; (M.S.); (T.W.V.)
| | - Thomas W. Vahlenkamp
- Faculty of Veterinary Medicine, Institute of Virology, Leipzig University, An den Tierkliniken 29, 04103 Leipzig, Germany; (M.S.); (T.W.V.)
| | - Uwe G. Liebert
- Institute of Virology, University Hospital Leipzig, Johannisallee 30, 04103 Leipzig, Germany; (S.C.); (U.G.L.)
| |
Collapse
|
23
|
Hashimoto K, Hosoya M. Advances in Antiviral Therapy for Subacute Sclerosing Panencephalitis. Molecules 2021; 26:molecules26020427. [PMID: 33467470 PMCID: PMC7830519 DOI: 10.3390/molecules26020427] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/09/2021] [Accepted: 01/12/2021] [Indexed: 12/17/2022] Open
Abstract
Subacute sclerosing panencephalitis (SSPE) is a late-onset, intractable, and fatal viral disease caused by persistent infection of the central nervous system by a mutant strain of the measles virus. Ribavirin intracerebroventricular therapy has already been administered to several SSPE patients in Japan based on fundamental and clinical research findings from our group, with positive therapeutic effects reported in some patients. However, the efficacy of this treatment approach has not been unequivocally established. Hence, development of more effective therapeutic methods using new antiviral agents is urgently needed. This review describes the current status of SSPE treatment and research, highlighting promising approaches to the development of more effective therapeutic methods.
Collapse
|
24
|
Dawes BE, Freiberg AN. Henipavirus infection of the central nervous system. Pathog Dis 2020; 77:5462651. [PMID: 30985897 DOI: 10.1093/femspd/ftz023] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 04/13/2019] [Indexed: 02/07/2023] Open
Abstract
Nipah virus (NiV) and Hendra virus are highly pathogenic zoonotic viruses of the genus Henipavirus, family Paramyxoviridae. These viruses were first identified as the causative agents of severe respiratory and encephalitic disease in the 1990s across Australia and Southern Asia with mortality rates reaching up to 75%. While outbreaks of Nipah and Hendra virus infections remain rare and sporadic, there is concern that NiV has pandemic potential. Despite increased attention, little is understood about the neuropathogenesis of henipavirus infection. Neuropathogenesis appears to arise from dual mechanisms of vascular disease and direct parenchymal brain infection, but the relative contributions remain unknown while respiratory disease arises from vasculitis and respiratory epithelial cell infection. This review will address NiV basic clinical disease, pathology and pathogenesis with a particular focus on central nervous system (CNS) infection and address the necessity of a model of relapsed CNS infection. Additionally, the innate immune responses to NiV infection in vitro and in the CNS are reviewed as it is likely linked to any persistent CNS infection.
Collapse
Affiliation(s)
- Brian E Dawes
- Department of Microbiology and Immunology, University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas, 77555, USA.,Department of Pathology, University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas, 77555, USA
| | - Alexander N Freiberg
- Department of Pathology, University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas, 77555, USA.,Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas, 77555, USA.,Institute for Human Infections and Immunity, University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas, 77555, USA
| |
Collapse
|
25
|
Shirogane Y, Hashiguchi T, Yanagi Y. Weak cis and trans Interactions of the Hemagglutinin with Receptors Trigger Fusion Proteins of Neuropathogenic Measles Virus Isolates. J Virol 2020; 94:e01727-19. [PMID: 31619560 PMCID: PMC6955248 DOI: 10.1128/jvi.01727-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 10/10/2019] [Indexed: 12/13/2022] Open
Abstract
Measles virus (MeV) is an enveloped RNA virus bearing two envelope glycoproteins, the hemagglutinin (H) and fusion (F) proteins. Upon receptor binding, the H protein triggers conformational changes of the F protein, causing membrane fusion and subsequent virus entry. MeV may persist in the brain, infecting neurons and causing fatal subacute sclerosing panencephalitis (SSPE). Since neurons do not express either of the MeV receptors, signaling lymphocytic activation molecule (SLAM; also called CD150) and nectin-4, how MeV propagates in neurons is unknown. Recent studies have shown that specific substitutions in the F protein found in MeV isolates from SSPE patients are critical for MeV neuropathogenicity by rendering the protein unstable and hyperfusogenic. Recombinant MeVs possessing the F proteins with such substitutions can spread in primary human neurons and in the brains of mice and hamsters and induce cell-cell fusion in cells lacking SLAM and nectin-4. Here, we show that receptor-blind mutant H proteins that have decreased binding affinities to receptors can support membrane fusion mediated by hyperfusogenic mutant F proteins, but not the wild-type F protein, in cells expressing the corresponding receptors. The results suggest that weak interactions of the H protein with certain molecules (putative neuron receptors) trigger hyperfusogenic F proteins in SSPE patients. Notably, where cell-cell contacts are ensured, the weak cis interaction of the H protein with SLAM on the same cell surface also could trigger hyperfusogenic F proteins. Some enveloped viruses may exploit such cis interactions with receptors to infect target cells, especially in cell-to-cell transmission.IMPORTANCE Measles virus (MeV) may persist in the brain, causing incurable subacute sclerosing panencephalitis (SSPE). Because neurons, the main target in SSPE, do not express receptors for wild-type (WT) MeV, how MeV propagates in the brain is a key question for the disease. Recent studies have demonstrated that specific substitutions in the MeV fusion (F) protein are critical for neuropathogenicity. Here, we show that weak cis and trans interactions of the MeV attachment protein with receptors that are not sufficient to trigger the WT MeV F protein can trigger the mutant F proteins from neuropathogenic MeV isolates. Our study not only provides an important clue to understand MeV neuropathogenicity but also reveals a novel viral strategy to expand cell tropism.
Collapse
Affiliation(s)
- Yuta Shirogane
- Department of Virology, Faculty of Medicine, Kyushu University, Fukuoka, Japan
| | - Takao Hashiguchi
- Department of Virology, Faculty of Medicine, Kyushu University, Fukuoka, Japan
| | - Yusuke Yanagi
- Department of Virology, Faculty of Medicine, Kyushu University, Fukuoka, Japan
| |
Collapse
|
26
|
Ferren M, Horvat B, Mathieu C. Measles Encephalitis: Towards New Therapeutics. Viruses 2019; 11:E1017. [PMID: 31684034 PMCID: PMC6893791 DOI: 10.3390/v11111017] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/25/2019] [Accepted: 10/31/2019] [Indexed: 12/20/2022] Open
Abstract
Measles remains a major cause of morbidity and mortality worldwide among vaccine preventable diseases. Recent decline in vaccination coverage resulted in re-emergence of measles outbreaks. Measles virus (MeV) infection causes an acute systemic disease, associated in certain cases with central nervous system (CNS) infection leading to lethal neurological disease. Early following MeV infection some patients develop acute post-infectious measles encephalitis (APME), which is not associated with direct infection of the brain. MeV can also infect the CNS and cause sub-acute sclerosing panencephalitis (SSPE) in immunocompetent people or measles inclusion-body encephalitis (MIBE) in immunocompromised patients. To date, cellular and molecular mechanisms governing CNS invasion are still poorly understood. Moreover, the known MeV entry receptors are not expressed in the CNS and how MeV enters and spreads in the brain is not fully understood. Different antiviral treatments have been tested and validated in vitro, ex vivo and in vivo, mainly in small animal models. Most treatments have high efficacy at preventing infection but their effectiveness after CNS manifestations remains to be evaluated. This review describes MeV neural infection and current most advanced therapeutic approaches potentially applicable to treat MeV CNS infection.
Collapse
Affiliation(s)
- Marion Ferren
- CIRI, International Center for Infectiology Research, INSERM U1111, University of Lyon, University Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, France.
| | - Branka Horvat
- CIRI, International Center for Infectiology Research, INSERM U1111, University of Lyon, University Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, France.
| | - Cyrille Mathieu
- CIRI, International Center for Infectiology Research, INSERM U1111, University of Lyon, University Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, France.
| |
Collapse
|
27
|
Mekki M, Eley B, Hardie D, Wilmshurst JM. Subacute sclerosing panencephalitis: clinical phenotype, epidemiology, and preventive interventions. Dev Med Child Neurol 2019; 61:1139-1144. [PMID: 30680706 DOI: 10.1111/dmcn.14166] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/07/2018] [Indexed: 11/28/2022]
Abstract
Subacute sclerosing panencephalitis (SSPE) is a preventable condition reported in 6.5 to 11 per 100 000 cases of measles, and highest in children who contracted measles infection when they were less than 5 years of age. Children residing in areas with poor vaccination coverage and high prevalence of human immunodeficiency virus are at increased risk of developing SSPE. SSPE is life-threatening in most affected children. This report documents current data relating to the clinical phenotype, epidemiology, and understanding of SSPE, inclusive of preventive interventions. While improvements in disease progression with immunomodulation may occur, overall there is no cure. Most therapies focus on supportive needs. Seizures and abnormal movements may respond to carbamazepine. Many countries advocate policies to enhance vaccination coverage. Effective preventive health care programmes, assurance of parental perceptions, and crisis support for unprecedented events obstructing effective primary health care are needed. Until measles is eradicated worldwide, children in all regions remain at risk. WHAT THIS PAPER ADDS: Measles contracted under 5 years of age has highest risk of developing subacute sclerosing panencephalitis (SSPE). Children with, or exposed to, human immunodeficiency virus infection, who contract measles may be at increased risk of SSPE.
Collapse
Affiliation(s)
- Mohammed Mekki
- Paediatric Neurology Division, Department of Paediatrics and Child Health, Neuroscience Institute, Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa
| | - Brian Eley
- Paediatric Infectious Diseases Unit, Department of Paediatrics and Child Health, Faculty of Health Sciences, Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa
| | - Diana Hardie
- Division of Medical Virology, Department of Clinical Laboratory Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,National Health Laboratory Service, Cape Town, South Africa
| | - Jo M Wilmshurst
- Paediatric Neurology Division, Department of Paediatrics and Child Health, Neuroscience Institute, Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
28
|
Generous AR, Harrison OJ, Troyanovsky RB, Mateo M, Navaratnarajah CK, Donohue RC, Pfaller CK, Alekhina O, Sergeeva AP, Indra I, Thornburg T, Kochetkova I, Billadeau DD, Taylor MP, Troyanovsky SM, Honig B, Shapiro L, Cattaneo R. Trans-endocytosis elicited by nectins transfers cytoplasmic cargo, including infectious material, between cells. J Cell Sci 2019; 132:jcs235507. [PMID: 31331966 PMCID: PMC6737912 DOI: 10.1242/jcs.235507] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 07/12/2019] [Indexed: 12/13/2022] Open
Abstract
Here, we show that cells expressing the adherens junction protein nectin-1 capture nectin-4-containing membranes from the surface of adjacent cells in a trans-endocytosis process. We find that internalized nectin-1-nectin-4 complexes follow the endocytic pathway. The nectin-1 cytoplasmic tail controls transfer: its deletion prevents trans-endocytosis, while its exchange with the nectin-4 tail reverses transfer direction. Nectin-1-expressing cells acquire dye-labeled cytoplasmic proteins synchronously with nectin-4, a process most active during cell adhesion. Some cytoplasmic cargo remains functional after transfer, as demonstrated with encapsidated genomes of measles virus (MeV). This virus uses nectin-4, but not nectin-1, as a receptor. Epithelial cells expressing nectin-4, but not those expressing another MeV receptor in its place, can transfer infection to nectin-1-expressing primary neurons. Thus, this newly discovered process can move cytoplasmic cargo, including infectious material, from epithelial cells to neurons. We name the process nectin-elicited cytoplasm transfer (NECT). NECT-related trans-endocytosis processes may be exploited by pathogens to extend tropism. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Alex R Generous
- Department of Molecular Medicine, Mayo Clinic, Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN 55905, USA
- Virology and Gene Therapy Track, Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN 55905, USA
| | - Oliver J Harrison
- Departments of Biochemistry and Molecular Biophysics, Systems Biology and Medicine, Zuckerman Mind, Brain, Behavior Institute, Columbia University, New York, NY 10032, USA
| | - Regina B Troyanovsky
- Department of Dermatology, Northwestern University, The Feinberg School of Medicine, Chicago, IL 60611
| | - Mathieu Mateo
- Department of Molecular Medicine, Mayo Clinic, Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN 55905, USA
| | - Chanakha K Navaratnarajah
- Department of Molecular Medicine, Mayo Clinic, Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN 55905, USA
| | - Ryan C Donohue
- Department of Molecular Medicine, Mayo Clinic, Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN 55905, USA
- Virology and Gene Therapy Track, Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN 55905, USA
| | - Christian K Pfaller
- Department of Molecular Medicine, Mayo Clinic, Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN 55905, USA
- Virology and Gene Therapy Track, Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN 55905, USA
| | - Olga Alekhina
- Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
| | - Alina P Sergeeva
- Departments of Biochemistry and Molecular Biophysics, Systems Biology and Medicine, Zuckerman Mind, Brain, Behavior Institute, Columbia University, New York, NY 10032, USA
- Howard Hughes Medical Institute, Columbia University, New York, NY 10032, USA
| | - Indrajyoti Indra
- Department of Dermatology, Northwestern University, The Feinberg School of Medicine, Chicago, IL 60611
| | - Theresa Thornburg
- Department of Microbiology & Immunology, Montana State University, Bozeman, MT 59717, USA
| | - Irina Kochetkova
- Department of Microbiology & Immunology, Montana State University, Bozeman, MT 59717, USA
| | | | - Matthew P Taylor
- Department of Microbiology & Immunology, Montana State University, Bozeman, MT 59717, USA
| | - Sergey M Troyanovsky
- Department of Dermatology, Northwestern University, The Feinberg School of Medicine, Chicago, IL 60611
| | - Barry Honig
- Departments of Biochemistry and Molecular Biophysics, Systems Biology and Medicine, Zuckerman Mind, Brain, Behavior Institute, Columbia University, New York, NY 10032, USA
- Howard Hughes Medical Institute, Columbia University, New York, NY 10032, USA
| | - Lawrence Shapiro
- Departments of Biochemistry and Molecular Biophysics, Systems Biology and Medicine, Zuckerman Mind, Brain, Behavior Institute, Columbia University, New York, NY 10032, USA
| | - Roberto Cattaneo
- Department of Molecular Medicine, Mayo Clinic, Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN 55905, USA
- Virology and Gene Therapy Track, Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN 55905, USA
| |
Collapse
|
29
|
Measles Virus Bearing Measles Inclusion Body Encephalitis-Derived Fusion Protein Is Pathogenic after Infection via the Respiratory Route. J Virol 2019; 93:JVI.01862-18. [PMID: 30728259 DOI: 10.1128/jvi.01862-18] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 01/30/2019] [Indexed: 12/19/2022] Open
Abstract
A clinical isolate of measles virus (MeV) bearing a single amino acid alteration in the viral fusion protein (F; L454W) was previously identified in two patients with lethal sequelae of MeV central nervous system (CNS) infection. The mutation dysregulated the viral fusion machinery so that the mutated F protein mediated cell fusion in the absence of known MeV cellular receptors. While this virus could feasibly have arisen via intrahost evolution of the wild-type (wt) virus, it was recently shown that the same mutation emerged under the selective pressure of small-molecule antiviral treatment. Under these conditions, a potentially neuropathogenic variant emerged outside the CNS. While CNS adaptation of MeV was thought to generate viruses that are less fit for interhost spread, we show that two animal models can be readily infected with CNS-adapted MeV via the respiratory route. Despite bearing a fusion protein that is less stable at 37°C than the wt MeV F, this virus infects and replicates in cotton rat lung tissue more efficiently than the wt virus and is lethal in a suckling mouse model of MeV encephalitis even with a lower inoculum. Thus, either during lethal MeV CNS infection or during antiviral treatment in vitro, neuropathogenic MeV can emerge, can infect new hosts via the respiratory route, and is more pathogenic (at least in these animal models) than wt MeV.IMPORTANCE Measles virus (MeV) infection can be severe in immunocompromised individuals and lead to complications, including measles inclusion body encephalitis (MIBE). In some cases, MeV persistence and subacute sclerosing panencephalitis (SSPE) occur even in the face of an intact immune response. While they are relatively rare complications of MeV infection, MIBE and SSPE are lethal. This work addresses the hypothesis that despite a dysregulated viral fusion complex, central nervous system (CNS)-adapted measles virus can spread outside the CNS within an infected host.
Collapse
|
30
|
Batley KC, Sandoval‐Castillo J, Kemper CM, Attard CRM, Zanardo N, Tomo I, Beheregaray LB, Möller LM. Genome-wide association study of an unusual dolphin mortality event reveals candidate genes for susceptibility and resistance to cetacean morbillivirus. Evol Appl 2019; 12:718-732. [PMID: 30976305 PMCID: PMC6439501 DOI: 10.1111/eva.12747] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 11/25/2018] [Accepted: 11/27/2018] [Indexed: 12/28/2022] Open
Abstract
Infectious diseases are significant demographic and evolutionary drivers of populations, but studies about the genetic basis of disease resistance and susceptibility are scarce in wildlife populations. Cetacean morbillivirus (CeMV) is a highly contagious disease that is increasing in both geographic distribution and incidence, causing unusual mortality events (UME) and killing tens of thousands of individuals across multiple cetacean species worldwide since the late 1980s. The largest CeMV outbreak in the Southern Hemisphere reported to date occurred in Australia in 2013, where it was a major factor in a UME, killing mainly young Indo-Pacific bottlenose dolphins (Tursiops aduncus). Using cases (nonsurvivors) and controls (putative survivors) from the most affected population, we carried out a genome-wide association study to identify candidate genes for resistance and susceptibility to CeMV. The genomic data set consisted of 278,147,988 sequence reads and 35,493 high-quality SNPs genotyped across 38 individuals. Association analyses found highly significant differences in allele and genotype frequencies among cases and controls at 65 SNPs, and Random Forests conservatively identified eight as candidates. Annotation of these SNPs identified five candidate genes (MAPK8, FBXW11, INADL, ANK3 and ACOX3) with functions associated with stress, pain and immune responses. Our findings provide the first insights into the genetic basis of host defence to this highly contagious disease, enabling the development of an applied evolutionary framework to monitor CeMV resistance across cetacean species. Biomarkers could now be established to assess potential risk factors associated with these genes in other CeMV-affected cetacean populations and species. These results could also possibly aid in the advancement of vaccines against morbilliviruses.
Collapse
Affiliation(s)
- Kimberley C. Batley
- Molecular Ecology Laboratory, College of Science and EngineeringFlinders UniversityAdelaideSouth AustraliaAustralia
- Cetacean Ecology, Behaviour, and Evolution Laboratory, College of Science and EngineeringFlinders UniversityAdelaideSouth AustraliaAustralia
| | - Jonathan Sandoval‐Castillo
- Molecular Ecology Laboratory, College of Science and EngineeringFlinders UniversityAdelaideSouth AustraliaAustralia
| | | | - Catherine R. M. Attard
- Molecular Ecology Laboratory, College of Science and EngineeringFlinders UniversityAdelaideSouth AustraliaAustralia
- Cetacean Ecology, Behaviour, and Evolution Laboratory, College of Science and EngineeringFlinders UniversityAdelaideSouth AustraliaAustralia
| | - Nikki Zanardo
- Molecular Ecology Laboratory, College of Science and EngineeringFlinders UniversityAdelaideSouth AustraliaAustralia
- Cetacean Ecology, Behaviour, and Evolution Laboratory, College of Science and EngineeringFlinders UniversityAdelaideSouth AustraliaAustralia
| | - Ikuko Tomo
- South Australian MuseumAdelaideSouth AustraliaAustralia
| | - Luciano B. Beheregaray
- Molecular Ecology Laboratory, College of Science and EngineeringFlinders UniversityAdelaideSouth AustraliaAustralia
| | - Luciana M. Möller
- Molecular Ecology Laboratory, College of Science and EngineeringFlinders UniversityAdelaideSouth AustraliaAustralia
- Cetacean Ecology, Behaviour, and Evolution Laboratory, College of Science and EngineeringFlinders UniversityAdelaideSouth AustraliaAustralia
| |
Collapse
|
31
|
Analysis of a Subacute Sclerosing Panencephalitis Genotype B3 Virus from the 2009-2010 South African Measles Epidemic Shows That Hyperfusogenic F Proteins Contribute to Measles Virus Infection in the Brain. J Virol 2019; 93:JVI.01700-18. [PMID: 30487282 DOI: 10.1128/jvi.01700-18] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 11/20/2018] [Indexed: 12/28/2022] Open
Abstract
During a measles virus (MeV) epidemic in 2009 in South Africa, measles inclusion body encephalitis (MIBE) was identified in several HIV-infected patients. Years later, children are presenting with subacute sclerosing panencephalitis (SSPE). To investigate the features of established MeV neuronal infections, viral sequences were analyzed from brain tissue samples of a single SSPE case and compared with MIBE sequences previously obtained from patients infected during the same epidemic. Both the SSPE and the MIBE viruses had amino acid substitutions in the ectodomain of the F protein that confer enhanced fusion properties. Functional analysis of the fusion complexes confirmed that both MIBE and SSPE F protein mutations promoted fusion with less dependence on interaction by the viral receptor-binding protein with known MeV receptors. While the SSPE F required the presence of a homotypic attachment protein, MeV H, in order to fuse, MIBE F did not. Both F proteins had decreased thermal stability compared to that of the corresponding wild-type F protein. Finally, recombinant viruses expressing MIBE or SSPE fusion complexes spread in the absence of known MeV receptors, with MIBE F-bearing viruses causing large syncytia in these cells. Our results suggest that alterations to the MeV fusion complex that promote fusion and cell-to-cell spread in the absence of known MeV receptors is a key property for infection of the brain.IMPORTANCE Measles virus can invade the central nervous system (CNS) and cause severe neurological complications, such as MIBE and SSPE. However, mechanisms by which MeV enters the CNS and triggers the disease remain unclear. We analyzed viruses from brain tissue of individuals with MIBE or SSPE, infected during the same epidemic, after the onset of neurological disease. Our findings indicate that the emergence of hyperfusogenic MeV F proteins is associated with infection of the brain. We also demonstrate that hyperfusogenic F proteins permit MeV to enter cells and spread without the need to engage nectin-4 or CD150, known receptors for MeV that are not present on neural cells.
Collapse
|
32
|
Watanabe S, Shirogane Y, Sato Y, Hashiguchi T, Yanagi Y. New Insights into Measles Virus Brain Infections. Trends Microbiol 2019; 27:164-175. [DOI: 10.1016/j.tim.2018.08.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 08/22/2018] [Accepted: 08/24/2018] [Indexed: 11/15/2022]
|
33
|
Contemporary Circulating Enterovirus D68 Strains Have Acquired the Capacity for Viral Entry and Replication in Human Neuronal Cells. mBio 2018; 9:mBio.01954-18. [PMID: 30327438 PMCID: PMC6191546 DOI: 10.1128/mbio.01954-18] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Since the EV-D68 outbreak during the summer of 2014, evidence of a causal link to a type of limb paralysis (AFM) has been mounting. In this article, we describe a neuronal cell culture model (SH-SY5Y cells) in which a subset of contemporary 2014 outbreak strains of EV-D68 show infectivity in neuronal cells, or neurotropism. We confirmed the difference in neurotropism in vitro using primary human neuron cell cultures and in vivo with a mouse paralysis model. Using the SH-SY5Y cell model, we determined that a barrier to viral entry is at least partly responsible for neurotropism. SH-SY5Y cells may be useful in determining if specific EV-D68 genetic determinants are associated with neuropathogenesis, and replication in this cell line could be used as rapid screening tool for identification of neurotropic EV-D68 strains. This may assist with better understanding of pathogenesis and epidemiology and with the development of potential therapies. Enterovirus D68 (EV-D68) has historically been associated with respiratory illnesses. However, in the summers of 2014 and 2016, EV-D68 outbreaks coincided with a spike in polio-like acute flaccid myelitis/paralysis (AFM/AFP) cases. This raised concerns that EV-D68 could be the causative agent of AFM during these recent outbreaks. To assess the potential neurotropism of EV-D68, we utilized the neuroblastoma-derived neuronal cell line SH-SY5Y as a cell culture model to determine if differential infection is observed for different EV-D68 strains. In contrast to HeLa and A549 cells, which support viral infection of all EV-D68 strains tested, SH-SY5Y cells only supported infection by a subset of contemporary EV-D68 strains, including isolates from the 2014 outbreak. Viral replication and infectivity in SH-SY5Y were assessed using multiple assays: virus production, cytopathic effects, cellular ATP release, and VP1 capsid protein production. Similar differential neurotropism was also observed in differentiated SH-SY5Y cells, primary human neuron cultures, and a mouse paralysis model. Using the SH-SY5Y cell culture model, we determined that barriers to viral binding and entry were at least partly responsible for the differential infectivity phenotype. Transfection of genomic RNA into SH-SY5Y generated virions for all EV-D68 isolates, but only a single round of replication was observed from strains that could not directly infect SH-SY5Y. In addition to supporting virus replication and other functional studies, this cell culture model may help identify the signatures of virulence to confirm epidemiological associations between EV-D68 strains and AFM and allow for the rapid identification and characterization of emerging neurotropic strains.
Collapse
|
34
|
Kalbermatter D, Shrestha N, Ader-Ebert N, Herren M, Moll P, Plemper RK, Altmann KH, Langedijk JP, Gall F, Lindenmann U, Riedl R, Fotiadis D, Plattet P. Primary resistance mechanism of the canine distemper virus fusion protein against a small-molecule membrane fusion inhibitor. Virus Res 2018; 259:28-37. [PMID: 30296457 DOI: 10.1016/j.virusres.2018.10.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 09/30/2018] [Accepted: 10/03/2018] [Indexed: 10/28/2022]
Abstract
Morbilliviruses (e.g. measles virus [MeV] or canine distemper virus [CDV]) employ the attachment (H) and fusion (F) envelope glycoproteins for cell entry. H protein engagement to a cognate receptor eventually leads to F-triggering. Upon activation, F proteins transit from a prefusion to a postfusion conformation; a refolding process that is associated with membrane merging. Small-molecule morbilliviral fusion inhibitors such as the compound 3G (a chemical analog in the AS-48 class) were previously generated and mechanistic studies revealed a stabilizing effect on morbilliviral prefusion F trimers. Here, we aimed at designing 3G-resistant CDV F mutants by introducing single cysteine residues at hydrophobic core positions of the helical stalk region. Covalently-linked F dimers were generated, which highlighted substantial conformational flexibility within the stalk to achieve those irregular F conformations. Our findings demonstrate that "top-stalk" CDV F cysteine mutants (F-V571C and F-L575C) remained functional and gained resistance to 3G. Conversely, although not all "bottom-stalk" F cysteine variants preserved proper bioactivity, those that remained functional exhibited 3G-sensitivity. According to the recently determined prefusion MeV F trimer/AS-48 co-crystal structure, CDV residues F-V571 and F-L575 may directly interact with 3G. A combination of conformation-specific anti-F antibodies and low-resolution electron microscopy structural analyses confirmed that 3G lost its stabilizing effect on "top-stalk" F cysteine mutants thus suggesting a primary resistance mechanism. Overall, our data suggest that the fusion inhibitor 3G stabilizes prefusion CDV F trimers by docking at the top of the stalk domain.
Collapse
Affiliation(s)
- David Kalbermatter
- Institute of Biochemistry and Molecular Medicine and Swiss National Centre of Competence in Research (NCCR) TransCure, University of Bern, CH-3012, Bern, Switzerland
| | - Neeta Shrestha
- Division of Experimental and Clinical Research, Vetsuisse Faculty, University of Bern, CH-3001, Bern, Switzerland
| | - Nadine Ader-Ebert
- Institute of Virology and Immunology, Bern and Mittelhäusern, Switzerland
| | - Michael Herren
- Division of Experimental and Clinical Research, Vetsuisse Faculty, University of Bern, CH-3001, Bern, Switzerland
| | - Pascal Moll
- Division of Experimental and Clinical Research, Vetsuisse Faculty, University of Bern, CH-3001, Bern, Switzerland
| | - Richard K Plemper
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Karl-Heinz Altmann
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | | | - Flavio Gall
- Institute of Chemistry and Biotechnology, Center for Organic and Medicinal Chemistry, Zurich University of Applied Sciences (ZHAW), Einsiedlerstrasse 31, CH-8820, Wädenswil, Switzerland
| | - Urs Lindenmann
- Institute of Chemistry and Biotechnology, Center for Organic and Medicinal Chemistry, Zurich University of Applied Sciences (ZHAW), Einsiedlerstrasse 31, CH-8820, Wädenswil, Switzerland
| | - Rainer Riedl
- Institute of Chemistry and Biotechnology, Center for Organic and Medicinal Chemistry, Zurich University of Applied Sciences (ZHAW), Einsiedlerstrasse 31, CH-8820, Wädenswil, Switzerland
| | - Dimitrios Fotiadis
- Institute of Biochemistry and Molecular Medicine and Swiss National Centre of Competence in Research (NCCR) TransCure, University of Bern, CH-3012, Bern, Switzerland
| | - Philippe Plattet
- Division of Experimental and Clinical Research, Vetsuisse Faculty, University of Bern, CH-3001, Bern, Switzerland.
| |
Collapse
|
35
|
Sato Y, Watanabe S, Fukuda Y, Hashiguchi T, Yanagi Y, Ohno S. Cell-to-Cell Measles Virus Spread between Human Neurons Is Dependent on Hemagglutinin and Hyperfusogenic Fusion Protein. J Virol 2018; 92:e02166-17. [PMID: 29298883 PMCID: PMC5827375 DOI: 10.1128/jvi.02166-17] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 12/21/2017] [Indexed: 12/30/2022] Open
Abstract
Measles virus (MV) usually causes acute infection but in rare cases persists in the brain, resulting in subacute sclerosing panencephalitis (SSPE). Since human neurons, an important target affected in the disease, do not express the known MV receptors (signaling lymphocyte activation molecule [SLAM] and nectin 4), how MV infects neurons and spreads between them is unknown. Recent studies have shown that many virus strains isolated from SSPE patients possess substitutions in the extracellular domain of the fusion (F) protein which confer enhanced fusion activity. Hyperfusogenic viruses with such mutations, unlike the wild-type MV, can induce cell-cell fusion even in SLAM- and nectin 4-negative cells and spread efficiently in human primary neurons and the brains of animal models. We show here that a hyperfusogenic mutant MV, IC323-F(T461I)-EGFP (IC323 with a fusion-enhancing T461I substitution in the F protein and expressing enhanced green fluorescent protein), but not the wild-type MV, spreads in differentiated NT2 cells, a widely used human neuron model. Confocal time-lapse imaging revealed the cell-to-cell spread of IC323-F(T461I)-EGFP between NT2 neurons without syncytium formation. The production of virus particles was strongly suppressed in NT2 neurons, also supporting cell-to-cell viral transmission. The spread of IC323-F(T461I)-EGFP was inhibited by a fusion inhibitor peptide as well as by some but not all of the anti-hemagglutinin antibodies which neutralize SLAM- or nectin-4-dependent MV infection, suggesting the presence of a distinct neuronal receptor. Our results indicate that MV spreads in a cell-to-cell manner between human neurons without causing syncytium formation and that the spread is dependent on the hyperfusogenic F protein, the hemagglutinin, and the putative neuronal receptor for MV.IMPORTANCE Measles virus (MV), in rare cases, persists in the human central nervous system (CNS) and causes subacute sclerosing panencephalitis (SSPE) several years after acute infection. This neurological complication is almost always fatal, and there is currently no effective treatment for it. Mechanisms by which MV invades the CNS and causes the disease remain to be elucidated. We have previously shown that fusion-enhancing substitutions in the fusion protein of MVs isolated from SSPE patients contribute to MV spread in neurons. In this study, we demonstrate that MV bearing the hyperfusogenic mutant fusion protein spreads between human neurons in a cell-to-cell manner. Spread of the virus was inhibited by a fusion inhibitor peptide and antibodies against the MV hemagglutinin, indicating that both the hemagglutinin and hyperfusogenic fusion protein play important roles in MV spread between human neurons. The findings help us better understand the disease process of SSPE.
Collapse
Affiliation(s)
- Yuma Sato
- Department of Virology, Faculty of Medicine, Kyushu University, Fukuoka, Japan
| | - Shumpei Watanabe
- Department of Virology, Faculty of Medicine, Kyushu University, Fukuoka, Japan
- Special Pathogens Laboratory, Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yoshinari Fukuda
- Department of Virology, Faculty of Medicine, Kyushu University, Fukuoka, Japan
| | - Takao Hashiguchi
- Department of Virology, Faculty of Medicine, Kyushu University, Fukuoka, Japan
| | - Yusuke Yanagi
- Department of Virology, Faculty of Medicine, Kyushu University, Fukuoka, Japan
| | - Shinji Ohno
- Department of Virology, Faculty of Medicine, Kyushu University, Fukuoka, Japan
- Department of Virology, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| |
Collapse
|
36
|
Structures of the prefusion form of measles virus fusion protein in complex with inhibitors. Proc Natl Acad Sci U S A 2018; 115:2496-2501. [PMID: 29463726 DOI: 10.1073/pnas.1718957115] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Measles virus (MeV), a major cause of childhood morbidity and mortality, is highly immunotropic and one of the most contagious pathogens. MeV may establish, albeit rarely, persistent infection in the central nervous system, causing fatal and intractable neurodegenerative diseases such as subacute sclerosing panencephalitis and measles inclusion body encephalitis. Recent studies have suggested that particular substitutions in the MeV fusion (F) protein are involved in the pathogenesis by destabilizing the F protein and endowing it with hyperfusogenicity. Here we show the crystal structures of the prefusion MeV-F alone and in complex with the small compound AS-48 or a fusion inhibitor peptide. Notably, these independently developed inhibitors bind the same hydrophobic pocket located at the region connecting the head and stalk of MeV-F, where a number of substitutions in MeV isolates from neurodegenerative diseases are also localized. Since these inhibitors could suppress membrane fusion mediated by most of the hyperfusogenic MeV-F mutants, the development of more effective inhibitors based on the structures may be warranted to treat MeV-induced neurodegenerative diseases.
Collapse
|
37
|
Delpeut S, Sisson G, Black KM, Richardson CD. Measles Virus Enters Breast and Colon Cancer Cell Lines through a PVRL4-Mediated Macropinocytosis Pathway. J Virol 2017; 91:e02191-16. [PMID: 28250131 PMCID: PMC5411587 DOI: 10.1128/jvi.02191-16] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 02/21/2017] [Indexed: 12/20/2022] Open
Abstract
Measles virus (MeV) is a member of the family Paramixoviridae that causes a highly contagious respiratory disease but has emerged as a promising oncolytic platform. Previous studies of MeV entry focused on the identification of cellular receptors. However, the endocytic and trafficking pathways utilized during MeV entry remain poorly described. The contribution of each endocytic pathway has been examined in cells that express the MeV receptors SLAM (signaling lymphocyte-activating molecule) and PVRL4 (poliovirus receptor-like 4) (nectin-4). Recombinant MeVs expressing either firefly luciferase or green fluorescent protein together with a variety of inhibitors were used. The results showed that MeV uptake was dynamin independent in the Vero.hPVRL4, Vero.hSLAM, and PVRL4-positive MCF7 breast cancer cell lines. However, MeV infection was blocked by 5-(N-ethyl-N-propyl)amiloride (EIPA), the hallmark inhibitor of macropinocytosis, as well as inhibitors of actin polymerization. By using phalloidin staining, MeV entry was shown to induce actin rearrangements and the formation of membrane ruffles accompanied by transient elevated fluid uptake. Small interfering RNA (siRNA) knockdown of p21-activated kinase 1 (PAK1) demonstrated that MeV enters both Vero.hPVRL4 and Vero.hSLAM cells in a PAK1-independent manner using a macropinocytosis-like pathway. In contrast, MeV entry into MCF7 human breast cancer cells relied upon Rac1 and its effector PAK1 through a PVRL4-mediated macropinocytosis pathway. MeV entry into DLD-1 colon and HTB-20 breast cancer cells also appeared to use the same pathway. Overall, these findings provide new insight into the life cycle of MeV, which could lead to therapies that block virus entry or methods that improve the uptake of MeV by cancer cells during oncolytic therapy.IMPORTANCE In the past decades, measles virus (MeV) has emerged as a promising oncolytic platform. Previous studies concerning MeV entry focused mainly on the identification of putative receptors for MeV. Nectin-4 (PVRL4) was recently identified as the epithelial cell receptor for MeV. However, the specific endocytic and trafficking pathways utilized during MeV infections are poorly documented. In this study, we demonstrated that MeV enters host cells via a dynamin-independent and actin-dependent endocytic pathway. Moreover, we show that MeV gains entry into MCF7, DLD-1, and HTB-20 cancer cells through a PVRL4-mediated macropinocytosis pathway and identified the typical cellular GTPase and kinase involved. Our findings provide new insight into the life cycle of MeV, which may lead to the development of therapies that block the entry of the virus into the host cell or alternatively promote the uptake of oncolytic MeV into cancer cells.
Collapse
Affiliation(s)
- Sebastien Delpeut
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
- Canadian Centre for Vaccinology, IWK Health Centre, Goldbloom Pavilion, Halifax, Nova Scotia, Canada
| | - Gary Sisson
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Karen M Black
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Christopher D Richardson
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
- Canadian Centre for Vaccinology, IWK Health Centre, Goldbloom Pavilion, Halifax, Nova Scotia, Canada
- Department of Pediatrics, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
38
|
Caviness K, Kuhn JH, Palacios G. Ebola virus persistence as a new focus in clinical research. Curr Opin Virol 2017; 23:43-48. [PMID: 28340374 DOI: 10.1016/j.coviro.2017.02.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 02/21/2017] [Accepted: 02/24/2017] [Indexed: 11/16/2022]
Abstract
Ebola virus (EBOV) causes severe acute human disease with high lethality. Viremia is typical during the acute disease phase. However, EBOV RNA can remain detectable in immune-privileged tissues for prolonged periods of time after clearance from the blood, suggesting EBOV may persist during convalescence and thereafter. Eliminating persistent EBOV is important to ensure full recovery of survivors and decrease the risk of outbreak re-ignition caused by EBOV spread from apparently healthy survivors to naive contacts. Here, we review prior evidence of EBOV persistence and explore the tools needed for the development of model systems to understand persistence.
Collapse
Affiliation(s)
- Katie Caviness
- U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702, USA
| | - Jens H Kuhn
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD 21702, USA
| | - Gustavo Palacios
- U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702, USA.
| |
Collapse
|
39
|
Tahara M, Takeda M. [Measles Virus]. Uirusu 2017; 67:3-16. [PMID: 29593149 DOI: 10.2222/jsv.67.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Measles virus (MeV) is exceptionally contagious and still a major cause of death in child.However, recently significant progress towards the elimination of measles has been made through increased vaccination coverage of measles-containing vaccines. The hemagglutinin (H) protein of MeV interacts with a cellular receptor, and this interaction is the first step of infection. MeV uses two different receptors, signaling lymphocyte activation molecule (SLAM) and nectin-4 expressed on immune cells and epithelial cells, respectively. The interactions of MeV with these receptors nicely explain the immune suppressive and high contagious properties of MeV. Binding of the H protein to a receptor triggers conformational changes in the fusion (F) protein, inducing fusion between viral and host plasma membranes for entry. The stalk region of the H protein plays a key role in the F protein-triggering. Recent studies of the H protein epitopes have revealed that the receptor binding site of the H protein constitutes a major neutralizing epitope. The interaction with two proteinaceous receptors probably imposes strong functional constraints on this epitope for amino acid changes. This would be a reason why measles vaccines, which are derived from MV strains isolated more than 60 years ago, are still highly effective against all MV strains currently circulating.
Collapse
Affiliation(s)
- Maino Tahara
- Department of Virology III, National Institute of Infectious Diseases
| | - Makoto Takeda
- Department of Virology III, National Institute of Infectious Diseases
| |
Collapse
|
40
|
Miller KD, Schnell MJ, Rall GF. Keeping it in check: chronic viral infection and antiviral immunity in the brain. Nat Rev Neurosci 2016; 17:766-776. [PMID: 27811921 DOI: 10.1038/nrn.2016.140] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
It is becoming clear that the manner by which the immune response resolves or contains infection by a pathogen varies according to the tissue that is affected. Unlike many peripheral cell types, CNS neurons are generally non-renewable. Thus, the cytolytic and inflammatory strategies that are effective in controlling infections in the periphery could be damaging if deployed in the CNS. Perhaps for this reason, the immune response to some CNS viral infections favours maintenance of neuronal integrity and non-neurolytic viral control. This modified immune response - when combined with the unique anatomy and physiology of the CNS - provides an ideal environment for the maintenance of viral genomes, including those of RNA viruses. Therefore, it is possible that such viruses can reactivate long after initial viral exposure, contributing to CNS disease.
Collapse
Affiliation(s)
- Katelyn D Miller
- Program in Cell and Molecular Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Program in Blood Cell Development and Function, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| | - Matthias J Schnell
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | - Glenn F Rall
- Program in Blood Cell Development and Function, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| |
Collapse
|
41
|
Morbillivirus Experimental Animal Models: Measles Virus Pathogenesis Insights from Canine Distemper Virus. Viruses 2016; 8:v8100274. [PMID: 27727184 PMCID: PMC5086610 DOI: 10.3390/v8100274] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 09/29/2016] [Accepted: 09/30/2016] [Indexed: 12/19/2022] Open
Abstract
Morbilliviruses share considerable structural and functional similarities. Even though disease severity varies among the respective host species, the underlying pathogenesis and the clinical signs are comparable. Thus, insights gained with one morbillivirus often apply to the other members of the genus. Since the Canine distemper virus (CDV) causes severe and often lethal disease in dogs and ferrets, it is an attractive model to characterize morbillivirus pathogenesis mechanisms and to evaluate the efficacy of new prophylactic and therapeutic approaches. This review compares the cellular tropism, pathogenesis, mechanisms of persistence and immunosuppression of the Measles virus (MeV) and CDV. It then summarizes the contributions made by studies on the CDV in dogs and ferrets to our understanding of MeV pathogenesis and to vaccine and drugs development.
Collapse
|
42
|
Measles Virus Fusion Protein: Structure, Function and Inhibition. Viruses 2016; 8:112. [PMID: 27110811 PMCID: PMC4848605 DOI: 10.3390/v8040112] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 03/26/2016] [Accepted: 04/14/2016] [Indexed: 01/02/2023] Open
Abstract
Measles virus (MeV), a highly contagious member of the Paramyxoviridae family, causes measles in humans. The Paramyxoviridae family of negative single-stranded enveloped viruses includes several important human and animal pathogens, with MeV causing approximately 120,000 deaths annually. MeV and canine distemper virus (CDV)-mediated diseases can be prevented by vaccination. However, sub-optimal vaccine delivery continues to foster MeV outbreaks. Post-exposure prophylaxis with antivirals has been proposed as a novel strategy to complement vaccination programs by filling herd immunity gaps. Recent research has shown that membrane fusion induced by the morbillivirus glycoproteins is the first critical step for viral entry and infection, and determines cell pathology and disease outcome. Our molecular understanding of morbillivirus-associated membrane fusion has greatly progressed towards the feasibility to control this process by treating the fusion glycoprotein with inhibitory molecules. Current approaches to develop anti-membrane fusion drugs and our knowledge on drug resistance mechanisms strongly suggest that combined therapies will be a prerequisite. Thus, discovery of additional anti-fusion and/or anti-attachment protein small-molecule compounds may eventually translate into realistic therapeutic options.
Collapse
|