1
|
Wyżewski Z, Mielcarska MB, Gregorczyk-Zboroch KP, Myszka A. Virus-Mediated Inhibition of Apoptosis in the Context of EBV-Associated Diseases: Molecular Mechanisms and Therapeutic Perspectives. Int J Mol Sci 2022; 23:ijms23137265. [PMID: 35806271 PMCID: PMC9266970 DOI: 10.3390/ijms23137265] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/25/2022] [Accepted: 06/27/2022] [Indexed: 12/10/2022] Open
Abstract
Epstein-Barr virus (EBV), the representative of the Herpesviridae family, is a pathogen extensively distributed in the human population. One of its most characteristic features is the capability to establish latent infection in the host. The infected cells serve as a sanctuary for the dormant virus, and therefore their desensitization to apoptotic stimuli is part of the viral strategy for long-term survival. For this reason, EBV encodes a set of anti-apoptotic products. They may increase the viability of infected cells and enhance their resistance to chemotherapy, thereby contributing to the development of EBV-associated diseases, including Burkitt’s lymphoma (BL), Hodgkin’s lymphoma (HL), gastric cancer (GC), nasopharyngeal carcinoma (NPC) and several other malignancies. In this paper, we have described the molecular mechanism of anti-apoptotic actions of a set of EBV proteins. Moreover, we have reviewed the pro-survival role of non-coding viral transcripts: EBV-encoded small RNAs (EBERs) and microRNAs (miRNAs), in EBV-carrying malignant cells. The influence of EBV on the expression, activity and/or intracellular distribution of B-cell lymphoma 2 (Bcl-2) protein family members, has been presented. Finally, we have also discussed therapeutic perspectives of targeting viral anti-apoptotic products or their molecular partners.
Collapse
Affiliation(s)
- Zbigniew Wyżewski
- Institute of Biological Sciences, Cardinal Stefan Wyszyński University, Dewajtis 5, 01-815 Warsaw, Poland;
- Correspondence: ; Tel.: +48-728-208-338
| | - Matylda Barbara Mielcarska
- Institute of Veterinary Medicine, Warsaw University of Life Sciences—SGGW, Nowoursynowska 166, 02-787 Warsaw, Poland; (M.B.M.); (K.P.G.-Z.)
| | | | - Anna Myszka
- Institute of Biological Sciences, Cardinal Stefan Wyszyński University, Dewajtis 5, 01-815 Warsaw, Poland;
| |
Collapse
|
2
|
Immunosuppressive Tumor Microenvironment and Immunotherapy of Epstein–Barr Virus-Associated Malignancies. Viruses 2022; 14:v14051017. [PMID: 35632758 PMCID: PMC9146158 DOI: 10.3390/v14051017] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/03/2022] [Accepted: 05/09/2022] [Indexed: 02/07/2023] Open
Abstract
The Epstein–Barr virus (EBV) can cause different types of cancer in human beings when the virus infects different cell types with various latent patterns. EBV shapes a distinct and immunosuppressive tumor microenvironment (TME) to its benefit by influencing and interacting with different components in the TME. Different EBV-associated malignancies adopt similar but slightly specific immunosuppressive mechanisms by encoding different EBV products to escape both innate and adaptive immune responses. Strategies reversing the immunosuppressive TME of EBV-associated malignancies have been under evaluation in clinical practice. As the interactions among EBV, tumor cells, and TME are intricate, in this review, we mainly discuss the epidemiology of EBV, the life cycle of EBV, the cellular and molecular composition of TME, and a landscape of different EBV-associated malignancies and immunotherapy by targeting the TME.
Collapse
|
3
|
SMAD proteins: Mediators of diverse outcomes during infection. Eur J Cell Biol 2022; 101:151204. [DOI: 10.1016/j.ejcb.2022.151204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/27/2022] [Accepted: 01/29/2022] [Indexed: 11/19/2022] Open
|
4
|
Afrasiabi A, Keane JT, Ong LTC, Alinejad-Rokny H, Fewings NL, Booth DR, Parnell GP, Swaminathan S. Genetic and transcriptomic analyses support a switch to lytic phase in Epstein Barr virus infection as an important driver in developing Systemic Lupus Erythematosus. J Autoimmun 2021; 127:102781. [PMID: 34952359 DOI: 10.1016/j.jaut.2021.102781] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/04/2021] [Accepted: 12/10/2021] [Indexed: 12/20/2022]
Abstract
To investigate the molecular mechanisms through which Epstein-Barr virus (EBV) may contribute to Systemic Lupus Erythematosus (SLE) pathogenesis, we interrogated SLE genetic risk loci for signatures of EBV infection. We first compared the gene expression profile of SLE risk genes across 459 different cell/tissue types. EBV-infected B cells (LCLs) had the strongest representation of highly expressed SLE risk genes. By determining an SLE risk allele effect on gene expression (expression quantitative trait loci, eQTL) in LCLs and 16 other immune cell types, we identified 79 SLE risk locus:gene pairs putatively interacting with EBV infection. A total of 10 SLE risk genes from this list (CD40, LYST, JAZF1, IRF5, BLK, IKZF2, IL12RB2, FAM167A, PTPRC and SLC15A) were targeted by the EBV transcription factor, EBNA2, differentially expressed between LCLs and B cells, and the majority were also associated with EBV DNA copy number, and expression level of EBV encoded genes. Our final gene network model based on these genes is suggestive of a nexus involving SLE risk loci and EBV latency III and B cell proliferation signalling pathways. Collectively, our findings provide further evidence to support the interaction between SLE risk loci and EBV infection that is in part mediated by EBNA2. This interplay may increase the tendency towards EBV lytic switching dependent on the presence of SLE risk alleles. These results support further investigation into targeting EBV as a therapeutic strategy for SLE.
Collapse
Affiliation(s)
- Ali Afrasiabi
- EBV Molecular Lab, Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, University of Sydney, Sydney, NSW, Australia; BioMedical Machine Learning Lab (BML), The Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW, Australia
| | - Jeremy Thomas Keane
- EBV Molecular Lab, Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, University of Sydney, Sydney, NSW, Australia
| | - Lawrence T C Ong
- EBV Molecular Lab, Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, University of Sydney, Sydney, NSW, Australia
| | - Hamid Alinejad-Rokny
- BioMedical Machine Learning Lab (BML), The Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW, Australia; Health Data Analytics Program Leader, AI-enabled Processes (AIP) Research Centre, Macquarie University, Sydney, 2109, Australia; Core Member of UNSW Data Science Hub, The University of New South Wales (UNSW Sydney), Sydney, NSW, 2052, Australia
| | - Nicole Louise Fewings
- EBV Molecular Lab, Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, University of Sydney, Sydney, NSW, Australia; Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - David Richmond Booth
- EBV Molecular Lab, Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, University of Sydney, Sydney, NSW, Australia
| | - Grant Peter Parnell
- EBV Molecular Lab, Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, University of Sydney, Sydney, NSW, Australia; Biomedical Informatics and Digital Health, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.
| | - Sanjay Swaminathan
- EBV Molecular Lab, Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, University of Sydney, Sydney, NSW, Australia; Department of Medicine, Western Sydney University, Sydney, NSW, Australia.
| |
Collapse
|
5
|
Keane JT, Afrasiabi A, Schibeci SD, Swaminathan S, Parnell GP, Booth DR. The interaction of Epstein-Barr virus encoded transcription factor EBNA2 with multiple sclerosis risk loci is dependent on the risk genotype. EBioMedicine 2021; 71:103572. [PMID: 34488019 PMCID: PMC8426200 DOI: 10.1016/j.ebiom.2021.103572] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 12/12/2022] Open
Abstract
Background Epstein-Barr virus (EBV) infection may be necessary for the development of Multiple sclerosis (MS). Earlier we had identified six MS risk loci that are co-located with binding sites for the EBV transcription factor Epstein-Barr Nuclear Antigen 2 (EBNA2) in EBV-infected B cells (lymphoblastoid cell lines – LCLs). Methods We used an allele-specific chromatin immunoprecipitation PCR assay to assess EBNA2 allelic preference. We treated LCLs with a peptide inhibitor of EBNA2 (EBNA2-TAT), reasoning that inhibiting EBNA2 function would alter gene expression at these loci if it was mediated by EBNA2. Findings We found that EBNA2 binding was dependent on the risk allele for five of these six MS risk loci (p < 0·05). Treatment with EBNA2-TAT significantly altered the expression of TRAF3 (p < 0·05), CD40 (p < 0·001), CLECL1 (p <0·0001), TNFAIP8 (p < 0·001) and TNFRSF1A (p < 0·001). Interpretation These data suggest that EBNA2 can enhance or reduce expression of the gene depending on the risk allele, likely promoting EBV infection. This is consistent with the concept that these MS risk loci affect MS risk through altering the response to EBNA2. Together with the extensive data indicating a pathogenic role for EBV in MS, this study supports targeting EBV and EBNA2 to reduce their effect on MS pathogenesis. Funding Funding was provided by grants from MS Research Australia, National Health and Medical Research Council of Australia, Australian Government Research Training Program, Multiple Sclerosis International Federation, Trish Multiple Sclerosis Research Foundation.
Collapse
Affiliation(s)
- Jeremy Thomas Keane
- Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, University of Sydney, Sydney, Australia
| | - Ali Afrasiabi
- Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, University of Sydney, Sydney, Australia; BioMedical Machine Learning Lab, The Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Stephen Donald Schibeci
- Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, University of Sydney, Sydney, Australia
| | - Sanjay Swaminathan
- Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, University of Sydney, Sydney, Australia; Department of Medicine, Western Sydney University, Sydney, NSW 2560, Australia
| | - Grant Peter Parnell
- Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, University of Sydney, Sydney, Australia.
| | - David Richmond Booth
- Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, University of Sydney, Sydney, Australia.
| |
Collapse
|
6
|
Hancock MH, Crawford LB, Pham AH, Mitchell J, Struthers HM, Yurochko AD, Caposio P, Nelson JA. Human Cytomegalovirus miRNAs Regulate TGF-β to Mediate Myelosuppression while Maintaining Viral Latency in CD34 + Hematopoietic Progenitor Cells. Cell Host Microbe 2020; 27:104-114.e4. [PMID: 31866424 PMCID: PMC6952548 DOI: 10.1016/j.chom.2019.11.013] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/25/2019] [Accepted: 11/22/2019] [Indexed: 02/07/2023]
Abstract
Infection with human cytomegalovirus (HCMV) remains a significant cause of morbidity and mortality following hematopoietic stem cell transplant (HSCT) because of various hematologic problems, including myelosuppression. Here, we demonstrate that latently expressed HCMV miR-US5-2 downregulates the transcriptional repressor NGFI-A binding protein (NAB1) to induce myelosuppression of uninfected CD34+ hematopoietic progenitor cells (HPCs) through an increase in TGF-β production. Infection of HPCs with an HCMVΔmiR-US5-2 mutant resulted in decreased TGF-β expression and restoration of myelopoiesis. In contrast, we show that infected HPCs are refractory to TGF-β signaling as another HCMV miRNA, miR-UL22A, downregulates SMAD3, which is required for maintenance of latency. Our data suggest that latently expressed viral miRNAs manipulate stem cell homeostasis by inducing secretion of TGF-β while protecting infected HPCs from TGF-β-mediated effects on viral latency and reactivation. These observations provide a mechanism through which HCMV induces global myelosuppression following HSCT while maintaining lifelong infection in myeloid lineage cells.
Collapse
Affiliation(s)
- Meaghan H Hancock
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Lindsey B Crawford
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Andrew H Pham
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Jennifer Mitchell
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Hillary M Struthers
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Andrew D Yurochko
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, Shreveport, LA 71130-3932, USA
| | - Patrizia Caposio
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Jay A Nelson
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006, USA.
| |
Collapse
|
7
|
Lang F, Pei Y, Lamplugh ZL, Robertson ES. Molecular Biology of EBV in Relationship to HIV/AIDS-Associated Oncogenesis. Cancer Treat Res 2019; 177:81-103. [PMID: 30523622 DOI: 10.1007/978-3-030-03502-0_4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Herpesvirus-induced disease is one of the most lethal factors which leads to high mortality in HIV/AIDS patients. EBV, also known as human herpesvirus 4, can transform naive B cells into immortalized cells in vitro through the regulation of cell cycle, cell proliferation, and apoptosis. EBV infection is associated with several lymphoma and epithelial cancers in humans, which occurs at a much higher rate in immune deficient individuals than in healthy people, demonstrating that the immune system plays a vital role in inhibiting EBV activities. EBV latency infection proteins can mimic suppression cytokines or upregulate PD-1 on B cells to repress the cytotoxic T cells response. Many malignancies, including Hodgkin Lymphoma and non-Hodgkin's lymphomas occur at a much higher frequency in EBV positive individuals than in EBV negative people during the development of HIV infection. Importantly, understanding EBV pathogenesis at the molecular level will aid the development of novel therapies for EBV-induced diseases in HIV/AIDS patients.
Collapse
Affiliation(s)
- Fengchao Lang
- Department of Otorhinolaryngology-Head and Neck Surgery and Tumor Virology and Global Cancer Programs, Abramson Cancer Center, Philadelphia, USA.,Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yonggang Pei
- Department of Otorhinolaryngology-Head and Neck Surgery and Tumor Virology and Global Cancer Programs, Abramson Cancer Center, Philadelphia, USA.,Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Zachary L Lamplugh
- Department of Otorhinolaryngology-Head and Neck Surgery and Tumor Virology and Global Cancer Programs, Abramson Cancer Center, Philadelphia, USA.,Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Erle S Robertson
- Department of Otorhinolaryngology-Head and Neck Surgery and Tumor Virology and Global Cancer Programs, Abramson Cancer Center, Philadelphia, USA. .,Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA. .,, 3610 Hamilton Walk, 201E Johnson Pavilion, Philadelphia, PA, 19104, USA.
| |
Collapse
|
8
|
El-Sharkawy A, Al Zaidan L, Malki A. Epstein-Barr Virus-Associated Malignancies: Roles of Viral Oncoproteins in Carcinogenesis. Front Oncol 2018; 8:265. [PMID: 30116721 PMCID: PMC6082928 DOI: 10.3389/fonc.2018.00265] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 06/27/2018] [Indexed: 12/19/2022] Open
Abstract
The Epstein–Barr virus (EBV) is the first herpesvirus identified to be associated with human cancers known to infect the majority of the world population. EBV-associated malignancies are associated with a latent form of infection, and several of the EBV-encoded latent proteins are known to mediate cellular transformation. These include six nuclear antigens and three latent membrane proteins (LMPs). In lymphoid and epithelial tumors, viral latent gene expressions have distinct pattern. In both primary and metastatic tumors, the constant expression of latent membrane protein 2A (LMP2A) at the RNA level suggests that this protein is the key player in the EBV-associated tumorigenesis. While LMP2A contributing to the malignant transformation possibly by cooperating with the aberrant host genome. This can be done in part by dysregulating signaling pathways at multiple points, notably in the cell cycle and apoptotic pathways. Recent studies also have confirmed that LMP1 and LMP2 contribute to carcinoma progression and that this may reflect the combined effects of these proteins on activation of multiple signaling pathways. This review article aims to investigate the aforementioned EBV-encoded proteins that reveal established roles in tumor formation, with a greater emphasis on the oncogenic LMPs (LMP1 and LMP2A) and their roles in dysregulating signaling pathways. It also aims to provide a quick look on the six members of the EBV nuclear antigens and their roles in dysregulating apoptosis.
Collapse
Affiliation(s)
- Ahmed El-Sharkawy
- Human Molecular Genetics Laboratory, Institute of Genetics and Biophysics "A. Buzzati-Traverso" (IGB)-CNR, Naples, Italy.,Biomolecular Science Programme, Università Degli Studi Della Campania "Luigi Vanvitelli", Naples, Italy
| | - Lobna Al Zaidan
- Biomedical Science Department, College of Health Sciences, Qatar University, Doha, Qatar
| | - Ahmed Malki
- Biomedical Science Department, College of Health Sciences, Qatar University, Doha, Qatar
| |
Collapse
|
9
|
Velapasamy S, Dawson CW, Young LS, Paterson IC, Yap LF. The Dynamic Roles of TGF-β Signalling in EBV-Associated Cancers. Cancers (Basel) 2018; 10:E247. [PMID: 30060514 PMCID: PMC6115974 DOI: 10.3390/cancers10080247] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 07/23/2018] [Accepted: 07/25/2018] [Indexed: 02/07/2023] Open
Abstract
The transforming growth factor-β (TGF-β) signalling pathway plays a critical role in carcinogenesis. It has a biphasic action by initially suppressing tumorigenesis but promoting tumour progression in the later stages of disease. Consequently, the functional outcome of TGF-β signalling is strongly context-dependent and is influenced by various factors including cell, tissue and cancer type. Disruption of this pathway can be caused by various means, including genetic and environmental factors. A number of human viruses have been shown to modulate TGF-β signalling during tumorigenesis. In this review, we describe how this pathway is perturbed in Epstein-Barr virus (EBV)-associated cancers and how EBV interferes with TGF-β signal transduction. The role of TGF-β in regulating the EBV life cycle in tumour cells is also discussed.
Collapse
Affiliation(s)
- Sharmila Velapasamy
- Department of Oral & Craniofacial Sciences, Faculty of Dentistry, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Christopher W Dawson
- Institute of Cancer and Genomic Medicine, University of Birmingham, Birmingham B15 2TT, UK.
| | - Lawrence S Young
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK.
| | - Ian C Paterson
- Department of Oral & Craniofacial Sciences, Faculty of Dentistry, University of Malaya, 50603 Kuala Lumpur, Malaysia.
- Oral Cancer Research and Coordinating Centre, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Lee Fah Yap
- Department of Oral & Craniofacial Sciences, Faculty of Dentistry, University of Malaya, 50603 Kuala Lumpur, Malaysia.
- Oral Cancer Research and Coordinating Centre, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| |
Collapse
|
10
|
Fitzsimmons L, Kelly GL. EBV and Apoptosis: The Viral Master Regulator of Cell Fate? Viruses 2017; 9:E339. [PMID: 29137176 PMCID: PMC5707546 DOI: 10.3390/v9110339] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 11/08/2017] [Accepted: 11/09/2017] [Indexed: 12/14/2022] Open
Abstract
Epstein-Barr virus (EBV) was first discovered in cells from a patient with Burkitt lymphoma (BL), and is now known to be a contributory factor in 1-2% of all cancers, for which there are as yet, no EBV-targeted therapies available. Like other herpesviruses, EBV adopts a persistent latent infection in vivo and only rarely reactivates into replicative lytic cycle. Although latency is associated with restricted patterns of gene expression, genes are never expressed in isolation; always in groups. Here, we discuss (1) the ways in which the latent genes of EBV are known to modulate cell death, (2) how these mechanisms relate to growth transformation and lymphomagenesis, and (3) how EBV genes cooperate to coordinately regulate key cell death pathways in BL and lymphoblastoid cell lines (LCLs). Since manipulation of the cell death machinery is critical in EBV pathogenesis, understanding the mechanisms that underpin EBV regulation of apoptosis therefore provides opportunities for novel therapeutic interventions.
Collapse
Affiliation(s)
- Leah Fitzsimmons
- Institute of Cancer and Genomic Sciences and Centre for Human Virology, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | - Gemma L Kelly
- Molecular Genetics of Cancer Division, The Walter and Eliza Hall Institute for Medical Research, Parkville, Melbourne, VIC 3052, Australia.
- Department of Medical Biology, The University of Melbourne, Parkville, Melbourne, VIC 3052, Australia.
| |
Collapse
|
11
|
Okamoto T, Suzuki T, Kusakabe S, Tokunaga M, Hirano J, Miyata Y, Matsuura Y. Regulation of Apoptosis during Flavivirus Infection. Viruses 2017; 9:v9090243. [PMID: 28846635 PMCID: PMC5618009 DOI: 10.3390/v9090243] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 08/19/2017] [Accepted: 08/25/2017] [Indexed: 02/06/2023] Open
Abstract
Apoptosis is a type of programmed cell death that regulates cellular homeostasis by removing damaged or unnecessary cells. Its importance in host defenses is highlighted by the observation that many viruses evade, obstruct, or subvert apoptosis, thereby blunting the host immune response. Infection with Flaviviruses such as Japanese encephalitis virus (JEV), Dengue virus (DENV) and West Nile virus (WNV) has been shown to activate several signaling pathways such as endoplasmic reticulum (ER)-stress and AKT/PI3K pathway, resulting in activation or suppression of apoptosis in virus-infected cells. On the other hands, expression of some viral proteins induces or protects apoptosis. There is a discrepancy between induction and suppression of apoptosis during flavivirus infection because the experimental situation may be different, and strong links between apoptosis and other types of cell death such as necrosis may make it more difficult. In this paper, we review the effects of apoptosis on viral propagation and pathogenesis during infection with flaviviruses.
Collapse
Affiliation(s)
- Toru Okamoto
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan.
| | - Tatsuya Suzuki
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan.
| | - Shinji Kusakabe
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan.
| | - Makoto Tokunaga
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan.
| | - Junki Hirano
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan.
| | - Yuka Miyata
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan.
| | - Yoshiharu Matsuura
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan.
| |
Collapse
|
12
|
Borst A, Haferkamp S, Grimm J, Rösch M, Zhu G, Guo S, Li C, Gao T, Meierjohann S, Schrama D, Houben R. BIK is involved in BRAF/MEK inhibitor induced apoptosis in melanoma cell lines. Cancer Lett 2017; 404:70-78. [PMID: 28720543 DOI: 10.1016/j.canlet.2017.07.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 07/04/2017] [Accepted: 07/07/2017] [Indexed: 12/29/2022]
Abstract
In patients with BRAF-mutated melanoma specific inhibitors of BRAFV600E and MEK1/2 frequently induce initial tumor reduction, frequently followed by relapse. As demonstrated previously, BRAFV600E-inhibition induces apoptosis only in a fraction of treated cells, while the remaining arrest and survive providing a source or a niche for relapse. To identify factors contributing to the differential initial response towards BRAF/MEK inhibition, we established M14 melanoma cell line-derived single cell clones responding to treatment with BRAF inhibitor vemurafenib and MEK inhibitor trametinib predominantly with either cell cycle arrest (CCA-cells) or apoptosis (A-cells). Screening for differentially expressed apoptosis-related genes revealed loss of BCL2-Interacting Killer (BIK) mRNA in CCA-cells. Importantly, ectopic expression of BIK in CCA-cells resulted in increased apoptosis rates following vemurafenib/trametinib treatment, while knockdown/knockout of BIK in A-cells attenuated the apoptotic response. Furthermore, we demonstrate reversible epigenetic silencing of BIK mRNA expression in CCA-cells. Importantly, HDAC inhibitor treatment associated with re-expression of BIK augmented sensitivity of CCA-cells towards vemurafenib/trametinib treatment both in vitro and in vivo. In conclusion, our results suggest that BIK can be a critical mediator of melanoma cell fate determination in response to MAPK pathway inhibition.
Collapse
Affiliation(s)
- Andreas Borst
- Department of Dermatology, Venereology and Allergology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Sebastian Haferkamp
- Department of Dermatology, University Hospital Regensburg, Regensburg, Germany
| | - Johannes Grimm
- Department of Physiological Chemistry I, Biocenter, Wuerzburg, Germany
| | - Manuel Rösch
- Department of Dermatology, Venereology and Allergology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Guannan Zhu
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Sen Guo
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Chunying Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Tianwen Gao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | | | - David Schrama
- Department of Dermatology, Venereology and Allergology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Roland Houben
- Department of Dermatology, Venereology and Allergology, University Hospital Wuerzburg, Wuerzburg, Germany.
| |
Collapse
|
13
|
Mebratu YA, Tipper J, Chand HS, Walton S, Harrod KS, Tesfaigzi Y. Bik Mediates Caspase-Dependent Cleavage of Viral Proteins to Promote Influenza A Virus Infection. Am J Respir Cell Mol Biol 2017; 54:664-73. [PMID: 26437021 DOI: 10.1165/rcmb.2015-0133oc] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Influenza virus induces apoptosis in infected cells to promote viral replication by manipulating the host cell death signaling pathway. Although some Bcl-2 family proteins play a role in the replication of influenza A virus (IAV), the role of cell death pathways in the viral replication cycle is unclear. We investigated whether deficiency of the proapoptotic Bcl-2 family protein, Bik, plays a role in IAV replication. IAV replication was attenuated in mouse airway epithelial cells (MAECs) from bik(-/-) compared with bik(+/+) mice, as indicated by reduced viral titers. Bik(-/-) MAECs showed more stable transepithelial resistance after infection than did bik(+/+) MAECs, were less sensitive to infection-induced cell death, and released fewer copies of viral RNA. Similar results were obtained when Bik expression was suppressed in human airway epithelial cells (HAECs). Bik(+/+) mice lost weight drastically and died within 8 days of infection, whereas 75% of bik(-/-) mice survived infection for 14 days and were 10-fold less likely to die from infection compared with bik(+/+) mice. IAV infection activated caspase 3 in bik(+/+) but not in bik(-/-) MAECs. Cleavage of viral nucleoprotein and M2 proteins were inhibited in bik(-/-) MAECs and when caspase activation was inhibited in HAECs. Furthermore, Bik deficiency impaired cytoplasmic export of viral ribonucleoprotein. These studies suggest a link between Bik-mediated caspase activation and cleavage of viral proteins. Thus, inhibition of proapoptotic host factors such as Bik and downstream mediators of cell death may represent a novel approach to influenza treatment.
Collapse
Affiliation(s)
- Yohannes A Mebratu
- 1 Chronic Obstructive Pulmonary Disease Program, Lovelace Respiratory Research Institute, Albuquerque, New Mexico
| | - Jennifer Tipper
- 2 Department of Anesthesiology and Perioperative Medicine, School of Medicine, University of Alabama Birmingham, Birmingham, Alabama
| | - Hitendra S Chand
- 1 Chronic Obstructive Pulmonary Disease Program, Lovelace Respiratory Research Institute, Albuquerque, New Mexico
| | - Stephanie Walton
- 1 Chronic Obstructive Pulmonary Disease Program, Lovelace Respiratory Research Institute, Albuquerque, New Mexico
| | - Kevin S Harrod
- 2 Department of Anesthesiology and Perioperative Medicine, School of Medicine, University of Alabama Birmingham, Birmingham, Alabama
| | - Yohannes Tesfaigzi
- 1 Chronic Obstructive Pulmonary Disease Program, Lovelace Respiratory Research Institute, Albuquerque, New Mexico
| |
Collapse
|
14
|
Banerjee S, Uppal T, Strahan R, Dabral P, Verma SC. The Modulation of Apoptotic Pathways by Gammaherpesviruses. Front Microbiol 2016; 7:585. [PMID: 27199919 PMCID: PMC4847483 DOI: 10.3389/fmicb.2016.00585] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Accepted: 04/11/2016] [Indexed: 12/11/2022] Open
Abstract
Apoptosis or programmed cell death is a tightly regulated process fundamental for cellular development and elimination of damaged or infected cells during the maintenance of cellular homeostasis. It is also an important cellular defense mechanism against viral invasion. In many instances, abnormal regulation of apoptosis has been associated with a number of diseases, including cancer development. Following infection of host cells, persistent and oncogenic viruses such as the members of the Gammaherpesvirus family employ a number of different mechanisms to avoid the host cell’s “burglar” alarm and to alter the extrinsic and intrinsic apoptotic pathways by either deregulating the expressions of cellular signaling genes or by encoding the viral homologs of cellular genes. In this review, we summarize the recent findings on how gammaherpesviruses inhibit cellular apoptosis via virus-encoded proteins by mediating modification of numerous signal transduction pathways. We also list the key viral anti-apoptotic proteins that could be exploited as effective targets for novel antiviral therapies in order to stimulate apoptosis in different types of cancer cells.
Collapse
Affiliation(s)
- Shuvomoy Banerjee
- Amity Institute of Virology and Immunology, Amity University Noida, India
| | - Timsy Uppal
- Department of Microbiology and Immunology, Center for Molecular Medicine, School of Medicine, University of Nevada, Reno Reno, NV, USA
| | - Roxanne Strahan
- Department of Microbiology and Immunology, Center for Molecular Medicine, School of Medicine, University of Nevada, Reno Reno, NV, USA
| | - Prerna Dabral
- Department of Microbiology and Immunology, Center for Molecular Medicine, School of Medicine, University of Nevada, Reno Reno, NV, USA
| | - Subhash C Verma
- Department of Microbiology and Immunology, Center for Molecular Medicine, School of Medicine, University of Nevada, Reno Reno, NV, USA
| |
Collapse
|
15
|
Dolcetti R. Cross-talk between Epstein-Barr virus and microenvironment in the pathogenesis of lymphomas. Semin Cancer Biol 2015; 34:58-69. [DOI: 10.1016/j.semcancer.2015.04.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 04/22/2015] [Accepted: 04/24/2015] [Indexed: 12/13/2022]
|
16
|
Abstract
PURPOSE OF REVIEW Since the discovery of Epstein-Barr virus in Burkitt's lymphoma 50 years ago, only one other virus, namely Kaposi's sarcoma-associated herpesvirus/human herpesvirus-8, has been confirmed to be a direct cause of B-cell lymphoma. Here we will review the evidence for Epstein-Barr virus and Kaposi's sarcoma-associated herpesvirus as causal lymphoma agents. RECENT FINDINGS A deeper understanding of specific mechanisms by which Epstein-Barr virus and Kaposi's sarcoma-associated herpesvirus cause B-cell lymphomas has been acquired over the past years, in particular with respect to viral protein interactions with host cell pathways, and microRNA functions. Specific therapies based on knowledge of viral functions are beginning to be evaluated, mostly in preclinical models. SUMMARY Understanding the causal associations of specific infectious agents with certain B-cell lymphomas has allowed more accurate diagnosis and classification. A deeper knowledge of the specific mechanisms of transformation is essential to begin assessing whether virus-targeted treatment modalities may be used in the future.
Collapse
Affiliation(s)
- Ethel Cesarman
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York, USA
| |
Collapse
|
17
|
Chen H, Liao K, Cui-Zhao L, Qiang-Wen F, Feng-Zeng X, Ping-Wu F, Liang-Guo S, Juan-Chen Y. Cigarette smoke extract induces apoptosis of rat alveolar Type II cells via the PLTP/TGF-β1/Smad2 pathway. Int Immunopharmacol 2015; 28:707-14. [PMID: 26258626 DOI: 10.1016/j.intimp.2015.07.029] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 07/21/2015] [Accepted: 07/21/2015] [Indexed: 02/05/2023]
Abstract
Apoptosis of alveolar epithelial cells has been implicated in the pathogenesis of acute lung injury. Phospholipid transfer protein (PLTP) may play a role in apoptosis. In the present study, the effect of the novel function of PLTP in cigarette smoke extract (CSE)-induced apoptosis of alveolar epithelial cells and the possible mechanism were examined. Male Wistar rats were exposed to air and cigarette smoke (n=10/exposure) for 6h/day on 3 consecutive days, then the lungs were sectioned and examined. To investigate effects on alveolar epithelial cells, rat alveolar epithelial cells (RLE-6TN) were treated with different concentrations of CSE for various times. siRNA for PLTP was transfected into cells and an inhibitor of the transforming growth factor-β1 (TGF-β1) type I receptor was administered prior to CSE exposure. Apoptosis was measured, and mRNA expression of PLTP and TGF-β1 and protein levels of PLTP, TGF-β1, p-Smad2 and cleaved caspase-3 were analyzed. The results showed that apoptosis, as well as expression of PLTP, TGF-β1, p-Smad2 and cleaved caspase-3 were all significantly increased after CSE stimulation (P<0.05). Furthermore, the expression of TGF-β1, p-Smad2 and cleaved caspase-3 induced by CSE could be partly abrogated by knockdown of PLTP. The expression of PLTP showed no significant change as a result of TGF-β1 receptor inhibition, while cleaved caspase-3 showed a remarkable reduction. PLTP may act as an upstream signal molecule of the TGF-β1/Smad2 pathway and is likely to be involved in CSE-induced apoptosis of alveolar epithelial cells.
Collapse
Affiliation(s)
- Hong Chen
- Respiratory Department, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Ke Liao
- Respiratory Department, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Respiratory Department, Chengdu Seventh People's Hospital, Chengdu, China.
| | - Lv Cui-Zhao
- Drug Engineering Research Center of Chongqing Medical University, Chongqing, China.
| | - Fu Qiang-Wen
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Department of Respiratory Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, China.
| | - Xue Feng-Zeng
- Respiratory Department, The Third People's Hospital of Cheng Du, Cheng Du, China.
| | - Feng Ping-Wu
- Respiratory Department, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Shu Liang-Guo
- Respiratory Department, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Ya Juan-Chen
- Respiratory Department, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
18
|
Taylor JG, Gribben JG. Microenvironment abnormalities and lymphomagenesis: Immunological aspects. Semin Cancer Biol 2015; 34:36-45. [PMID: 26232774 DOI: 10.1016/j.semcancer.2015.07.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Revised: 07/19/2015] [Accepted: 07/21/2015] [Indexed: 01/06/2023]
Abstract
Innate and adaptive immune cells within the microenvironment identify and eliminate cells displaying signs of malignant potential. Immunosurveillance effector Natural Killer (NK) cells and Cytotoxic T Lymphocytes (CTL) identify malignant cells through germline receptors such as NKG2D and in the case of CTLs, presentation of antigen through the T cell receptor. Manipulation of immunosurveillance through altered tumor-identifying ligand expression or secretion, resistance to cytotoxicity, or compromised cytotoxic cell activity through immune tolerance mechanisms all contribute to failure of these systems to prevent cancer development. This review examines the diverse mechanisms by which alterations in the immune microenvironment can promote lymphomagenesis.
Collapse
Affiliation(s)
| | - John G Gribben
- Barts Cancer Institute, Queen Mary University of London, UK.
| |
Collapse
|
19
|
Donohoe OH, Henshilwood K, Way K, Hakimjavadi R, Stone DM, Walls D. Identification and Characterization of Cyprinid Herpesvirus-3 (CyHV-3) Encoded MicroRNAs. PLoS One 2015; 10:e0125434. [PMID: 25928140 PMCID: PMC4416013 DOI: 10.1371/journal.pone.0125434] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 03/17/2015] [Indexed: 12/19/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of small non-coding RNAs involved in post-transcriptional gene regulation. Some viruses encode their own miRNAs and these are increasingly being recognized as important modulators of viral and host gene expression. Cyprinid herpesvirus 3 (CyHV-3) is a highly pathogenic agent that causes acute mass mortalities in carp (Cyprinus carpio carpio) and koi (Cyprinus carpio koi) worldwide. Here, bioinformatic analyses of the CyHV-3 genome suggested the presence of non-conserved precursor miRNA (pre-miRNA) genes. Deep sequencing of small RNA fractions prepared from in vitro CyHV-3 infections led to the identification of potential miRNAs and miRNA–offset RNAs (moRNAs) derived from some bioinformatically predicted pre-miRNAs. DNA microarray hybridization analysis, Northern blotting and stem-loop RT-qPCR were then used to definitively confirm that CyHV-3 expresses two pre-miRNAs during infection in vitro. The evidence also suggested the presence of an additional four high-probability and two putative viral pre-miRNAs. MiRNAs from the two confirmed pre-miRNAs were also detected in gill tissue from CyHV-3-infected carp. We also present evidence that one confirmed miRNA can regulate the expression of a putative CyHV-3-encoded dUTPase. Candidate homologues of some CyHV-3 pre-miRNAs were identified in CyHV-1 and CyHV-2. This is the first report of miRNA and moRNA genes encoded by members of the Alloherpesviridae family, a group distantly related to the Herpesviridae family. The discovery of these novel CyHV-3 genes may help further our understanding of the biology of this economically important virus and their encoded miRNAs may have potential as biomarkers for the diagnosis of latent CyHV-3.
Collapse
Affiliation(s)
- Owen H. Donohoe
- Marine Institute, Rinville, Oranmore, Co. Galway, Ireland
- School of Biotechnology and National Centre for Sensor Research, Dublin City University, Dublin, Ireland
| | | | - Keith Way
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), The Nothe, Weymouth, Dorset, the United Kingdom
| | - Roya Hakimjavadi
- School of Biotechnology and National Centre for Sensor Research, Dublin City University, Dublin, Ireland
| | - David M. Stone
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), The Nothe, Weymouth, Dorset, the United Kingdom
| | - Dermot Walls
- School of Biotechnology and National Centre for Sensor Research, Dublin City University, Dublin, Ireland
- * E-mail:
| |
Collapse
|